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Abstract

Procedural techniques are widely used in computer graphics to
generate models, textures, and animations. Proceduralism
provides a means to abstract a given task away from the user and
place the burden of complexity on the computer. Through the use
of these procedural methods, developers can provide parametric
interfaces to users so that a complex system can manipulated
through a relatively small number of simple controls. However,
these controls are often non-intuitive and require the user to have
some prior knowledge of the underlying techniques. This thesis
presents a system that combines implicit surfaces and genetic
algorithms in order to solve the problems inherent with parametric
control. By treating implicit surface representations as genotypes
with a genetic algorithm, complex geometry can be generated in a
semi-automated fashion. The only effort required of the user is to
select individual surfaces that most closely approximate their
target model. Furthermore, the user can bias the mating of two
individuals thereby making slight changes to a specific surface in
order to refine the model. Thus, the user is provided with a means
of procedurally generating highly complex geometry without
needing to have any prior understanding of the underlying
techniques.

1 INTRODUCTION

Procedural techniques have become an integral part of modern
computer animation and modeling packages. Allowing for such
effects as realistic plant modeling and automated generation of
realistic terrain geometry.  A significant benefit of proceduralism
is the ability to provide parametric control of these abstract
representations to the user. Programmatic tools give the developer
a means to provide complex functionality with a relatively small
number of input parameters. This provides a means to create tools
with simple interfaces that produce relatively complex results.
Thus, the amount of time and effort put forth by the user is
minimized.

While proceduralism can be extremely beneficial, it also presents
some unique disadvantages. Parametric control is a powerful tool,
as discussed above. However, providing intuitive parameters can
often be problematic. Because the parameters are directly linked
to the underlying mechanisms of the technique, the user is often
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required to have insights into the workings of the procedural tool.
This is in direct contradiction with the pursuit of simple interfaces
to complex systems.

The system presented in this paper shows that by combining
complementary procedural techniques these drawbacks are
overcome. We have developed a system that procedurally
generates complex geometry through the combination of genetic
algorithms and implicit surfaces. The goal is to provide a means
of complex geometry generation with minimal time and effort
required of the user. Furthermore, the user needs no understanding
of the underlying techniques or mathematical complexity to
effectively generate interesting, organic, complex forms.

To generate complex geometry in a procedural manner we have
chosen to use implicit surfaces as the modeling primitive
[BLO97]. This representation is exceptionally well suited to
proceduralism. The representation is very compact, as opposed to
parametric surface definition, and thus is easily manipulated
programmatically. However, the problem of complexity becomes
immediately evident. To create a surface, the developer must be
able to provide the function f. This is precisely the disadvantage
our system addresses. To do this, the system procedurally
explores the set of all functions f(x,y,z) to find a suitable function
for the user’s needs.

Karl Sims presented genetic programming as means to explore a
two-dimensional texture function space [SIM91]. As the name
implies, genetic programming borrows vocabulary as well as
methodology from biology [HOL75]. We will treat the implicit
polynomial representation of the surface as a genetic code or
genotype. The genotype provides directions for building an
organism or phenotype. In the system, the phenotype will be the
surface represented by the mathematical genotype.

Mating is the process through which the genotypes of one or more
phenotypes are combined to create new genotypes, which in turn
are used to generate new phenotypes. It is this mating process that
allows us to create new shapes from an initial pool of pre-
generated parents. The children generated from a mating make up
a generation. Each generation must be evaluated and those
individuals deemed most fit are chosen to mate to generate the
next subsequent generation. The process of choosing the fittest
individual is called selection.

William Latham and Steven Todd introduced aesthetic selection
based on computer generated imagery [TOD92].  Aesthetic
selection is when the users chooses the most fit individuals based
on subjective criteria, as opposed to automated fitness where some
automated function handles fitness ranking and selection. This
methodology is particularly useful when it is difficult, or
impossible, to quantify the target of the genetic algorithm. Since
our system provides a means to interactively search surface space,
aesthetic selection is very well suited to our task.



With aesthetic selection as the primary means of control, the user
can choose those surfaces exhibiting traits of interest and reiterate
the mating process. Hence, the system provides an automated
means of exploring the function space, solving the problem of
generating the mathematical representation of our target surface.
Furthermore, by using a genetic programming approach traits of
interest are maintained throughout the evolution of the model. The
mating process and sharing of genetic material, in our case pieces
of the functional surface definition, facilitates this unique
functionality.

Our initial version of the system followed the lead of Sims and
Koza by using LISP to handle all the expression manipulation
[EBE98].  LISP however, does not provide a graphics framework
suitable for our needs.  Furthermore, the original genetic
algorithm that we implemented was very rudimentary and
provided very little user control.  In the latest version, the system
has been rewritten in C++ and significant functionality has been
introduced into the genetic algorithm.  Mating of surfaces is a
more gradual process thanks to a more controlled mating process.
Also the user is provided with a weighting mechanism whereby
one surface can be favored over another in a given mating. These
extensions provide a much more powerful and more controllable
system for generating complex implicit models.

1.1 Statement of Purpose
By combining implicit modeling and genetic programming, the
system we have developed alleviates the inherent parametric
control problem of procedural techniques.  The use of the genetic
metaphor abstracts the direct manipulation of the geometry away
from the user. This abstraction provides a method for modeling
complex objects that does not require the user to have any prior
knowledge of the underlying techniques used to represent and
manipulate the geometry. Furthermore, we have extended the
commonly used genetic approach to allow the user a greater level
of control through unbalanced mating. Thus, the system provides
an intuitive means of generating complex geometry in a way that
has not been previously explored, as well as a unique solution to
procedural parametric control problems.

2 SYSTEM ARCHITECHTURE

The application is built upon a command line interface giving the
user control over all the system’s core functionality. The system is
initialized by user input of the initial “primitive” parents. These
are fed to the parser and the underlying data structures are created.
The user then initiates the genetic algorithm, which operates on
the parent data structures generating new children genotypes. The
new children expressions are sent to the graphics sub-system for
display and interaction. Next, based on the phenotypes displayed
by the graphics sub-system, the user selects two of the children to
become parents. We already have their data structures stored in
the genetic algorithm, so they are simply made parents and the
process continues.

Interface

Expression Parser and Data
Structure Generation

Genetic Algorithm Graphics Sub-system

Figure 2-1: General overview of system architecture

2.1 Parsing and Data Structure
Construction

The system is initialized by reading in two expressions either
provided by the user, or chosen from a predefined list of
“primitive” functions.  When parsing each expression a tree is
built of the sub-expressions based on the precedence of the
operators present, as in Figure 2-2. A simple binary tree data
structure is used to represent this parse tree [SIM91].  A binary
tree suffices for our purposes because the user is limited to “c-
like” expressions consisting solely of unary operators (-), binary
operators (-, +, *,  /,  %), and function calls (e.g. “pow( x, y)”).
An initial observation one might make is that function calls do not
seem to lend themselves to a simple tree like representation as
they may have an arbitrary number of arguments.  Furthermore,
these arguments should be treated as sub-expressions in their own
right.  However, as shown in Figure 2-2, if the function call itself
is considered to be unary operator, and the comma to be a binary
operator of the highest precedence, the problem of functions is
nicely solved without using an
n-ary tree data structure .

Figure 2-2: Example of a function in a parse tree representation

2.2 Genetic Algorithm
This section will discuss in detail each step of the genetic
algorithm used for the surface generation system. We have
previously introduced the genetic operations of crossover and
selection. The following pseudo-code describes how these
operations are applied.

parents[ ] = select(finished_kids[a], finished_kids[a])
for each generation

for (num_children / 2)
children[ ] = crossover(parent0, parent1)

if (random < mutation_probability)
mutate(children[0])

if (random < mutation_probability)
mutate(children[1])

append children[ ]  to  finished_kids[ ]
pass finished_kids[ ] to graphics sub-system

2.2.1 Crossover
The structured representation of the expression tree provides the
flexibility that is necessary for the genetic algorithm.  As
mentioned before, the expression provides the genetic code or
genotype.  Given the binary tree representation, the tree itself is



viewed as the genotype upon which our genetic operations can be
performed [KOZ90].  Once the user has defined the initial two
parents and the number of matings desired, the system generates
children using the crossover mechanism.  Crossover, defined as
the swapping of genetic material from the parents’ genotypes, is
applied to the parent trees.  One node in each parent tree is
selected pseudo-randomly and the sub-trees rooted at these points
are swapped.  This will generate two new unique trees, or
genotypes, containing a portion of each parents’ genetic code.
The user-defined number of matings will determine how many
times this process is repeated.  Since the crossover point will be
chosen in a random fashion, the children generated from these
multiple matings are rarely duplicates.

In order for traits from both parents to be evident in the children,
the swapping of genetic information must be somewhat balanced.
In other words, no one parent should dominate the provision of
genetic material.  Choosing the crossover point completely at
random does not provide a mechanism for such a balancing.
Thus, each node is assigned a value denoting the probability that it
will be the crossover point.  Since entire sub-trees are swapped,
the closer the crossover point is to the root the greater the amount
of material swapped.  To provide a balance, proportional
quantities of each parent must be selected for the sharing.  Thus,
the crossover probability is defined based on the height of a given
node in a tree.  The value is determined by (Hnode / Hmax *
MAXPROB) where Hnode is the distance of the node from the root,
Hmax is the maximum distance from the root in the tree, and
MAXPROB is a value between 0.0 and 1.0 denoting the maximum
probability that any given node will be the crossover point. With
these probabilities in place, nodes closer to the leaves are more
likely to be chosen as the crossover point than nodes closer to the
root. In addition to providing proportional amounts of the parents’
genetic code, this scheme provides a means of limiting the rate of
evolution. If MAXPROB is defined to be relatively low, the
crossover point will be more likely to be found in close proximity
to the leaves. Thus, smaller quantities of genetic material are
being swapped and change will come about at a slower rate.

In some instances the user may wish to circumvent this
proportional balance between the parents.  For instance, if one
parent surface (phenotype) is very close to meeting the user’s
target requirements and the other exhibits a trait that the user
would like to see incorporated into the first parent.  This scenario
calls for an uneven swapping of material.  The system allows the
user to override the default proportional system and define an
arbitrary weight to each parent.  This is facilitated again through
the use of the MAXPROB value.  Again referring to the above
example, defining the MAXPROB to be relatively high in the first
parent will make it more likely that the crossover point will be
located near the root thus providing a large quantity of genetic
material.  Likewise, defining the MAXPROB to be relatively low
in the second parent will provide a smaller amount of material.
The resulting child will therefore be weighted unevenly in favor
of the first parent, while its sibling will, likewise, be weighted
toward the second parent.

Throughout the mating process, care must be taken to ensure that
the resulting trees still represent valid expressions. Thus, some
simple rules must be followed.  If one target node is an operator
(+, *, %…) the other node must also be an operator.  If one target
node is a terminal (x, y, radius…) or a function call (pow, sqrt,
abs…) the other node must be a terminal or function call.  These
two rules ensure that operations stay operations, and nodes that

represent some value will continue to represent a value.  Finally,
under no circumstance can the node selected be a comma.  As
described above, the “,” separating function arguments is treated
as a binary operator.  However, if we allow a comma to be
swapped with another operator the resulting function definition
may no longer be valid.

2.2.2 Mutation
In biological systems the genetic operation by which new traits
are injected into a population is mutation.  Mutation is a
modification of a single genotype independent of mating.  The
purpose of mutation is to bring about traits that are not present in
either parent.  However, for this to be useful it must be done in a
way that preserves the overall structure of the original genotype so
as not to completely destroy the evolutionary progress already
made.  Thus, we have implemented three mutation methods,
shown in Figure 2-3, that operate in a well defined and controlled
manner [KOZ90]. Mutation is applied to random children at a
fixed probability. If a genotype is mutated, which mutation is
applied is also determined randomly based on probabilities
defined for each mutation.

First is the sub-tree swap mutation. This is very similar to the
crossover process but applied to a single individual as opposed to
two parents.  This operation selects two nodes at random from the
genotype tree representation and swaps the sub-trees rooted at
these nodes.  This is a non-destructive process that rearranges sub-
expressions within the genotype expression.  Another possible
operation is the node swap mutation.  As the name suggests this
genetic operation swaps two randomly selected nodes in the tree.
The swap node mutation has the highest probability of occurring
because it does not modify the tree structure.  Finally, the sub-tree
destructive mutation selects a node at random within the tree and
destroys the sub-tree rooted at this node. This is the least likely
mutation to occur because it is the only destructive mutation
included in the system.

Figure 2-3: Expression tree mutations

The sub-tree swap mutation and sub-tree destructive mutation
require that we use the same height based probabilities we used
for crossover selection.  This is done to reduce the severity of the
mutation allowing for gradual change over time.  The swap node
mutation, however, does not need to make use of the height based
probabilities.  Since this operation does not modify the
organization of the tree there is nothing gained by checking the
probabilities.  As in the mating process, care must be taken to
ensure that the resulting trees still represent valid expression.
Thus, the same rules applied to crossover node selection must be
applied to the selection of mutation nodes.  However, if the
mutation is a node swap we must make sure that we do not swap



function calls at all because we cannot guarantee that the proper
number of arguments will be provided.

2.3 Graphics Sub-system
Once the user has selected two parents and mated them, the
system provides them with a new generation of genotypes.  These
can be viewed as algebraic expressions, which are arguably of
little use.  In order for the user to be able to meaningfully evaluate
the progeny we must present them with the phenotype for each of
the newly created individuals.  By performing an in-order
traversal of the parse tree the newly created expressions are
extracted.  These expressions are then passed into the graphics
sub-system, where the surface geometry represented by the
expression is generated in the form of a polygonal mesh.  This
geometry is then rendered to provide the user with a visual
representation of the phenotype.  Furthermore, the system
provides the capability to interact with this view of the surface by
providing an intuitive interface to rotate, translate and zoom the
view of the surface.  Thus, the user is able to evaluate the surface
in its entirety.

Figure 2-3: Overview of the graphics sub-system

In order to provide this robust graphical interface, the system uses
the Visualization Toolkit (vtk) (www.kitware.com). Vtk provides
an abstract class definition for an implicit surface
(vtkImplicitFunction).  To use this class the system defines a
concrete sub-class of the vtkImplicitFunction.  This sub-class
defines a method that takes a point in three space as an argument,
evaluates a genotype expression at this point, and returns the
floating point result. At first glance this may seem like a simple
task. However, we must bear in mind that we are generating these
expressions dynamically and C++ does not have first order
function capabilities.  Thus, the system provides this functionality
by instantiating an interpreter that can easily evaluate an arbitrary
expression. We chose to use TCL for this purpose simply because
it is easily integrated into a C/C++ environment, and it provides
the function expression capabilities we require.

With the vtk Implicit function in place, vtk provides native
functionality for the remainder of the graphics sub-system. The
implicit function instance is passed to a 3D-sampling filter. This
filter samples a cube, or bounding box, of three space defined by
the system to be from  –7.0 to 7.0 along the three Cartesian axes.
The granularity of the sampling is also an adaptable parameter,
which the system defines to be a 50x50x50 regular grid. The
values generated by sampling the function space at these locations
are then passed on the vtk contour filter. The contour filter
interpolates the values to estimate where the function is equal to
the system defined threshold value of 0.0. The contour filter then
generates a polygonal mesh representing the surface that coincides

with these threshold values. This polygonal representation is then
rendered using OpenGL. Finally, a window is presented to the
user to allow them to interactively view the surface through vtk
provided mouse interaction.

To view all the children generated from the genetic algorithm, the
system instantiates a separate graphics sub-system for each one. A
separate process is forked for each of the children allowing the
user to continue the mating process while the rendering takes
place. Furthermore, by separating the rendering of each surface
into its own process we can take advantage of parallelism in
operating platforms with multiple processors.

3 RESULTS

To demonstrate the effectiveness of the system, we have
performed a number of experiments.  The first supports the claim
that the system will produce children that are significantly more
visually complex than the initial parents.  The experiment detailed
in section 3.2 shows that visual traits exhibited by the initial
parents are inherited by the children of later generations. The final
experiment shows the effectiveness of weighting parents during
the mating process.

The implicit functions for all the children shown in the following
sections were generated by the previously described system.
However, the images were rendered using the POV-Ray
(www.povray.org) public domain ray-tracer. We chose to ray-
trace the images because the level of detail is significantly higher
than that generated by the vtk driven graphics sub-system. The
simplified graphics in the system allow for real-time interaction
with the generated surfaces at the expense of image quality. Since
this document is limited to still images, we have used POV-Ray to
generate high quality images. A screenshot of the system-
generated graphics is included in Section 6.

3.1 Generation of Complexity
To demonstrate the capability of the system to generate visual
complexity, we chose the sphere and torus primitive surfaces as
the initial parents. Of all the primitive surfaces provided to the
user, these two are visually the least complex (see Section 6). All
of the surfaces shown in Figure 3-1 are individuals in the same
family generated by mating a sphere and a torus. All children
were generated with a MAXPROB of 0.2, with no weighting.

Figure 3-1: Results of complexity generation experiment.



3.2 Inheritance of Visual Traits
This experiment deals with, arguably, the most important function
of the system, inheritance of traits from one or both parents. The
children below are shown with the initial parents so that the
similarities are evident. For the system to be successful, it is
necessary to provide a modicum of control. Inheritance, along
with weighting, provides a means of directing the evolution
toward a general goal surface.

The results shown in Figure 3-2 demonstrate the inheritance of
visual traits throughout the generations created by the sphere and
torus mating. Both the hole of the torus, as well as overall
spheroid geometry are evident throughout all the generations of
the family tree. We have selected a representative sample of the
generated surfaces that demonstrate the inheritance particularly
well. These results also show that new traits that arise are in turn
passed on to later generations. All children were generated with a
MAXPROB of 0.2, with no weighting.
.

Sphere
Torus

Generation 0
Generation 0

Generation 2 Generation 2

Generation3 Generation4

Generation 5 Generation 5

Generation 6 Generation 6

Figure 3-2: Results of visual trait inheritance experiment

3.3 Effects of Weighting
The goal of weighting is to bias the crossover process to maintain
the overall structure of a particular parent but introduce a small
amount of the other parent. The experiment we conducted used
the klein bottle and heart primitive surfaces as the initial parents.
We weighted the mating such that the nodes in the heart genotype
had their crossover probabilities reduced by 60%, and thus
passing only small amounts of genetic material to the mating. The
goal being that we could introduce the heart’s tail into the overall
klein bottle structure.

The results, as seen in Figure 3-3, show that this experiment was
indeed successful.  The child shown from generation 0 was mated
again with the heart weighted at 60% to get the second generation
surface showing an extension of the “tail”.  All children were
generated with a MAXPROB of 0.2 before weighting.

Klein Bottle Heart

Generation 0 Generation 1

Figure 3-3: Results of the weighted surface mating experiment

4 CONCLUSION

Evolutionary surface generation is a powerful technique. It
provides an intuitive method for creating highly complex and
interesting geometry. Furthermore, the combination of genetic
algorithms with implicit surface modeling provides a unique
solution to the problems of parametric control found in many
procedural modeling techniques. While the models that the system
generates are pseudo-random, the genetic algorithm successfully
provides tacit control through trait inheritance. This control allows
for a goal-based application of the surface evolution system. Thus,
complex target models, conceived by the user, can be
approximated without direct user manipulation of the geometry or
underlying mathematical implicit representation.

This method of geometry generation is not intended to replace
traditional modeling techniques, but rather serves to augment
them. For instance, a user of the system can generate complex



shapes, which could be blended with other implicit surfaces.
Traditionally, blending surfaces have been limited to spheres and
ellipsoid primitives. The evolutionary surface system, however,
provides a large variety of other more complex and interesting
primitives.

As mentioned above, the system will only provide an
approximation of the user’s target surface. However, the
generated model can then be modified using traditional modeling
techniques to more exactly match the target. If the user is
generating some complex “organic” form, the automated
generation of a similar model will provide a “stepping-off” point
that can vastly reduce the time and effort needed to generate the
model entirely by hand.

One final application of the system is as an artistic tool. As the
results presented in the previous chapter show, very complex and
interesting forms can be generated. Digital art is a quickly
growing genre to which the system can be directly applied. The
genetic algorithm provides a result-oriented means of exploration
of all possible implicit surfaces. The process of aesthetic selection
makes this exploration an inherently creative process. The
individuals generated through the genetic algorithm are as much
creations of the user as of the system. One side effect of the
mating process is that unbounded or asymptotic functions are also
generated. These are of arguably little use as blending primitives.
However these often produce stunning geometry and are thus
prime examples of the artistic merit inherent in the system. An
example of this is shown in Figure 4-1.

Figure 4-1: An example of an aesthetically pleasing unbounded
surface

We believe that the combination of techniques that form this
system have significant promise. The state of the art hardware still
struggles to generate high quality images of complex implicit
functions. The graphics sub-system can produce an average of six
images every five minutes on an SGI R10000 Octane workstation.
Some of the higher quality ray-traced images shown in Section 3
took nearly twenty minutes each. While five minutes is tolerable
for a graduate student doing research, it would need to be
significantly faster to be applied in a production environment.
However, with the current rate at which computing power is
growing, this methodology should be usable in the near future.

In the meantime, the system will be extended to handle blending
surfaces in addition to algebraic surfaces. The genetic algorithm
can be applied to not only the underlying primitives, but also the
blending functions used to build the aggregate surface.
Furthermore, blending is often done through functional
composition providing a unified mathematical representation of
the object. This will facilitate the mating of multiple blending
surfaces.

We have shown that complex three-dimensional geometry can be
successfully generated in a semi-automated fashion. By

combining implicit surfaces and genetic algorithms, the user is
provided with a means of intuitively creating complex and
interesting forms. Furthermore, these procedural techniques make
this technology accessible to those who do not have experience
with or knowledge of computer modeling. This system provides
more weight to the arguments of those who have carried the
banner for procedural techniques.
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