ECE606: Solid State Devices
Lecture 13

Solutions of the Continuity Egs.

Analytical & Numerical
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Analytical Solutions to the Continuity Equations

1) Example problems

2) Summary

Numerical Solutions to the Continuity Equations

1) Basic Transport Equations

2) Gridding and finite differences

3) Discretizing equations and boundary conditions

4) Conclusion
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Unpassivated
Metal contact surface

Ch

a Acceptor doped
a Light turned on in the middle section.

o The right region is full of mid-gap traps because of dangling bonds due

to un-passivated surface.
o Interface traps at the end of the right region
(That's where the dangling bonds are...)
a The left region is trap free.
a The left/right regions contacted by metal electrode.
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ote ACA Recall: Analytical Solution of
- U nanolBorg SCh rOdin per E J uation
Py . 2N unknowns
1) e tkv=0 for N regions
2) $x=-=)=0 . peduces 2 unknowns

Y(x=+) =0

3) w|x:x5' = w|x=x5*
dg|  _dy

e 05

— > Set2N-2 equations for

x=Xg"

4) Det(coefficient matix)=0  5) J'°° @ (xE) dx=1

And find E by graphical

or numerical solution for wave function
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2N-2 unknowns (for continuous U




Recall: Bound-levels in Finite well

U(X

v

¢ = Asinkx + B coskx

1)
w =De ™ + e+ax N
¢ =M™ +Ce" ™ 2) Boundary Conditions
3/ W(x=-e)=0
Wix=+0)=0
| |
f }
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2B ACHY Analogously, we solve for our device

L) nancHUBorg

Solve the equations in different regions independently.

Bring them together by applying boundary conditions.

6 .
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; (uniform)
Ezaa/\]N_rN"'gN Iy =aniE+gDyUn lll’l‘l’l
2

Recall Shockley-
o(m+4n) __4An - Read-Hall
ot T,

. Acceptor doped
(uniform)

op_ -1
g/ et 9 Iy =apu,E-aD:lp

OB, +0p) _ L, o
ot T

p

Majority carrier
Electric field still zero because

new carriers balance
OeD=q(p-n+N; —N;)zq(po—mﬁ:ngo—Ap+ N3 —N;)=0
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25 ACN Example: Transient, Uniform Illumination,

ing, No applied electric field

o(An) _ _An

e Wi
2

n

An(x,t) = A+ Be ™" Acceptor doped

> No carriers yet generated...
t=0, An(x,0)= 0= A=-B

t - o, An(X,0)=Gr,=A

——_, Steady state, no change
in carriers with time...

An(x,t) =Gr, (1— e“/T")
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Region 1:

One sided Minority Diffusion at steady state

g—'t? =0(steady-state)
r, =0(trap free) Steady state T

g, = O(nogeneration)o‘cceIOtor doped

-— Trap-free
- 1 -—
?% 1dJ, / 4
t q dx 9/ 2
o:DNd—g
an dx
E =0 :qn/ E+gD,—
dx

D % #0 (due to insertion of electrons from central regio
X

.
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o5 AVER) Example: One sided Minority Diffusion

U nanoHUB. org

Metal contact

J=qn.u,

An(x,t) =C + Dx'
x=a, An(x'=a)=0=C=-Da
(Metal has high electron density
as compared to semiconductor)
x=0", An(x'=0")=C
Just substitute x=0 in above eqn.
An(x,t) =An(x=0 )(1—zj X'

A

"al
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Region 3: Steady state Minority Diffusion with

recombination

I

g—'; =0(steady-state)

r,, #0(not trap free)

g, =0(nogeneration)

E=0
D an #0 (due to insertion of electrons from central regio
N dx
) Steady state
0=D, M _4n Acceptor doped
dx T
n Flux 3|3 N
2
0=p,LAn_An I
a7, Trap-filled |
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S5 NCN Diffusion with Recombination ...

L) nancHUBorg

Metal contact

d’An _An _ Functionally
Yo T, similar to
Schrodinger eqn. b
An(x,t) = B’ + Fe ™/ =3
a
0 X
x=b, An(x=b)=0 =F =-Ee*"
l\An

x=0, An(x=0)=E+F =An(x=0)

An(0)
(1-€e*)

"al
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An(x,t) = (' —e?he )

2
x




=

An,(X)=Gr, = o 0

An,(0) = An, (0') llllllo |
2

3 ——>

Combining them all ....

Match boundary condition

An (x") =An(x=0) (1—£alj =Gr, (1— LJ

a

An(x) = m (1- /L, )

dn
Calculating current ~ Jy = dnuE + 0Dy I
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(09 (emn _e?he x/Ln) _ Gr, (e e’re’ )

o5 AVER) Analytical Solutions Summary

L) nancHUBorg

1) Continuity Equations form the basis of analysis

of all the devices we will study in this course.

2) Full numerical solution of the equations are
possible and many commercial software are

available to do so.

3) Analytical solutions however provide a great deal
of insight into the key physical mechanism

involved in the operation of a device.
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Outline

Analytical Solutions to the Continuity Equations

1) Example problems

2) Summary

Numerical Solutions to the Continuity Equations
1) Basic Transport Equations

2) Gridding and finite differences

3) Discretizing equations and boundary conditions

4) Conclusion
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* The 5 equations we derived the past few lectures have
been used for the longest time in the industry and in
academia to understand carrier transport in devices.

 Itis useful to know the essentials of how these equations
are implemented on a modern computer so that one
understands some of the finer details involved in creating
tools that simulate thee phenomena.

» Understanding some of these details helps one become a
‘power user’ of the simulation tools that implement the
physics. One also understands the limitations re. numerical
issues and applicability ranges of results.

16 x
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Equations to be solved - derived last time.

Oe D=q(p—n+ N;—N;\)

on_1
EzaD.JN_rN'*-gN

Jy =anyE+qgDyn

op -1
Englj.‘]P_rP-'-gP

Jp = 0pH-E - aD:p
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Band-diagram

Diffusion approximation,
Minority carrier transport,
Ambipolar transport

S NCN

g nancHUB.erg

Conservation Laws: not

specific to a particular problem

“Universal
OeD=p

o (0,4)(o.
0+ (J,/ 4)=(9, -

(steady-state)

PURDUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam

1) The Semiconductor Equations

Constitutive relations: specific
to problem at hand — reflect
physics of the problem

K& E = —ke, OV
d(p-n+N;-N;)
nqu E +qD On
= pqu,E -qD Op

rN)
A

D
Yo,
J,
jp
dvpe = f(n, p) etc.

189;}




1) The Mathematical Problem

The “Semiconductor Equations”

3 coupled, nonlinear,
PDE’s
owns:

Why are these equations coupled?
Potential->Field->current->changes _
potential>changes field and so on... p(r)

Conservations laws: exact
Transport eqgs. (drift-diffusion): approximate
RI:]BPUE Klimeck - ECE606 Fall 2012 - notes adopted from Alam 19 s@

S NCN

g nancHUB.erg

Analytical Solutions to the Continuity Equations

1) Example problems

2) Summary

Numerical Solutions to the Continuity Equations

1) Basic Transport Equations

2) Gridding and finite differences

3) Discretizing equations and boundary conditions

4) Conclusion
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2) The Grid

T | |
‘Gridding‘— total length divided into ‘N’ parts

- equal (uniform gridding) , or
- unequal (adaptive and non-uniform gridding)

Variables described at each point 1’

V, and V,,, is known because these are
voltages at source and drain.
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N nodes
3N unknowns

Vi
N.

S NCN

Finite Difference Expression for Derivative

U nanoHUB. org

fle)= fl+ %) =5

\

f(x) df

a

|
I
Xia X Xiyg X
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flxo+a)= f(xo + 95) +=

‘centered difference”

a df
2 dx

_fu—f

a

22%




The Second Derivative ...

(%, +a) (x0)+a—Ohc +—aZOIZf +..
x| ., 2 o _
Xp=a
df a? d?f
f(x-a)=f(x)-ao]| +> -
o= t0o)-agy] S50
Xp=a
f (6 +a)+f(x-a)-2f(x)=a z?jxf
%=a

d2.f - fi—l - Zﬁ + fi+1

dx? ,- a?
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3 point formula, could be
extended to N points

depending on the number
of derivatives we carry in
our expansion 2

S NCN

U nanoHUB. org

1) Example problems

2) Summary

4) Conclusion

Analytical Solutions to the Continuity Equations

Numerical Solutions to the Continuity Equations
1) Basic Transport Equations
2) Gridding and finite differences

3) Discretizing equations and boundary conditions
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2) Control Volume

3 unknowns at each node:

X

V.n,p (i-1) - (i +1)

Need 3 equations
at each node

“control volume”

Q’Y
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OO iy Discretizing Poisson’s Equation

0% =-plKeg OeD=p D=Ke&E=-KeOV

Vi-y=2Vih+V i+ __ 9

(pi=m+N, =N, )

2
a /(5{:‘0
Since V, and V_; are known, . _
as are carrier concentration (i-1) (i+1)
on doping (or lack thereof
ping ( ) D, Dp,

in contacts, we find V, and
iterate from this point to

solve for potential. Once this potential is
i _ A — found, solve continuity
|:V i—1’Vi ’Vi +1 ni ’ Pi ) =0 equation to obtain new

carrier concentrations
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Discretizing Continuity Equations

(i+1)
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525 MM Three Discretized Equations

L) nancHUBorg

FV':O X

Fi=0 (i-1) - (i +1, )

Fl=0

3 unknowns at each node
N nodes
3N unknowns and 3N equations (coupled to each other
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Numerical Solution - Poisson Equation Only

« Have a system of 3N nonlinear equations to solve

» Recall Poisson’s equation at node (i):
RV Vi Vg np) =0

linear if n; and p, are known [A]\7 =b

~] .
[A]: “ V=
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OO s Boundary conditions

Contacts are assumed large and in equilibrium - detailed
balance and law of mass-action apply!!

_ 2 _ 2
NoPy = N; Ny Py = N,

- T -
T T T I T T T T T I T
One could have unequal \

materials on the two contact
V — sides, one must be careful to V — O
A use the right intrinsic

concentration <-> material. .
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Numerical Solution...

n-continuity p-continuity Poisson

ot

Off-diagonal terms are Poisson-Continuity equations talking to
each other. Recombination-generation terms also feed into

RU%I QHLT!IeEy EQM g’aﬁlgg -Sn'otes adopted from Alam 31 ;@

2B ACHY 3) Uncoupled Numerical Solution

L) nancHUBorg

The semiconductor equations are nonlinear!
(but they are linear individually)

Guess V,n,p

Uncoupled solution procedure
repeat
until
satisfied
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Summary

1) Two methods to solve drift-diffusion equation
consistently — analytical and numerical.

2) Analytical solution provides great insight and the
solution methodology is similar to that of Schrodinger
equations.

3) Numerical solution is more versatile. One begins with a
set of equations and boundary conditions, discretize the
equations on a grid with N nodes to obtain 3N nonlinear
equations in 3N unknowns, and solve the system of
nonlinear equations by iteration.
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