
Klimeck – ECE606 Fall 2012 – notes adopted from Alam

ECE606: Solid State Devices
Lecture 13

Solutions of the Continuity Eqs.
Analytical & Numerical
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Analytical Solutions to the Continuity Equations

1) Example problems

2) Summary

Numerical Solutions to the Continuity Equations

1) Basic Transport Equations

2) Gridding and finite differences

3) Discretizing equations and boundary conditions

4) Conclusion
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Consider a complicated real device example
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x

1 2 3

Unpassivated
surfaceMetal contact

� Acceptor doped

� Light turned on in the middle section. 

� The right region is full of mid-gap traps because of dangling bonds due 

to un-passivated surface.

� Interface traps at the end of the right region 

(That’s where the dangling bonds are…)

� The left region is trap free.

� The left/right  regions contacted by metal electrode. 
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Recall: Analytical Solution of 
Schrodinger Equation
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1) 
2N unknowns 
for N regions

2) Reduces 2 unknowns

3)
Set 2N-2  equations for 
2N-2 unknowns (for continuous U)

Det(coefficient matix)=0
And find E by graphical 
or numerical solution

4) 2
( , ) 1x E dxψ

∞

−∞
=∫5)

for wave function
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Recall: Bound-levels in Finite well
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( ) 0

( ) 0

x

x

ψ
ψ

= −∞ =
= +∞ =

U(x)

E

2) Boundary Conditions …

0 a

sin cosA kx B kxψ = +

x xMe Ceα αψ − ++=
x xDe Neα αψ − ++=

1)
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Analogously, we solve for our device
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Solve the equations in different regions independently.

Bring them together by applying boundary conditions.
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Region 2: Transient, Uniform Illumination, 
Uniform doping
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Recall Shockley-
Read-Hall

Electric field still zero because 
new carriers balance
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Example: Transient, Uniform Illumination, 
Uniform doping, No applied electric field
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∂ τ
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( )( , ) 1 nt
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Acceptor doped

0, ( ,0) 0

, ( , ) n

t n x A B

t n x G A

= ∆ = ⇒ = −
→ ∞ ∆ ∞ = =τ

time

No carriers yet generated…

Steady state, no change 
in carriers with time…
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Region 1: 
One sided Minority Diffusion at steady state
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∂n
∂t

= 0(steady-state)

rN = 0(trap free)

g
N

= 0(nogeneration)
1

E = 0

D
N

dn
dx

≠ 0 (due to insertion of electrons from central region)

2
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D
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Trap-free
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n dJ
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qn E qD
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Example: One sided Minority Diffusion
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, ( ' ) 0

(Metal has high electron density 

as compared to semiconductor)

x a n x a C Da= ∆ = = ⇒ = −

'
( , ) ( 0 ') 1

 ∆ = ∆ = − 
 

x
n x t n x

a

2

2
0 N

d n
D

dx
=

( , ) 'n x t C Dx∆ = +

x’

a

Metal contact

x = 0', ∆n (x ' = 0')=C

Just substitute x=0 in above eqn.

0x’

υ= m mJ q n



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Region 3: Steady state Minority Diffusion with 
recombination
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Steady state
Acceptor doped

Flux
2

2
0

τ
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n
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x
D

Trap-filled

∂n
∂t

= 0(steady-state)

r
N

≠ 0(not trap free)

g N = 0(nogeneration)

E = 0

D
N

dn
dx

≠ 0 (due to insertion of electrons from central region)
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Diffusion with Recombination …
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0 X

Metal contact
Functionally 
similar to 
Schrodinger eqn.
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Combining them all ….
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Calculating current N N N

dn
qn E qD

dx
µ= +J
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b0x’ 0’
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Analytical Solutions Summary
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1) Continuity Equations form the basis of analysis 

of all the devices we will study in this course. 

2) Full numerical solution of the equations are 

possible and many commercial software are 

available to do so.

3) Analytical solutions however provide a great deal 

of insight into the key physical mechanism 

involved in the operation of a device. 
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Outline
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Analytical Solutions to the Continuity Equations

1) Example problems

2) Summary

Numerical Solutions to the Continuity Equations

1) Basic Transport Equations

2) Gridding and finite differences

3) Discretizing equations and boundary conditions

4) Conclusion
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Preface
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• The 5 equations we derived the past few lectures have 
been used for the longest time in the industry and in 
academia to understand carrier transport in devices.

• It is useful to know the essentials of how these equations 
are implemented on a modern computer so that one 
understands some of the finer details involved in creating 
tools that simulate thee phenomena.

• Understanding some of these details helps one become a 
‘power user’ of the simulation tools that implement the 
physics. One also understands the limitations re. numerical 
issues and applicability ranges of results.
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Equations to be solved – derived last time…
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( )+ −∇ • = − + −D AD q p n N N

1∂ −= ∇ • − +
∂

JP P P
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r g

t q

P P Pqp E qD pµ= − ∇J

1
N N N

n
r g

t q

∂ = ∇ • − +
∂

J

J µ= + ∇N N Nqn E qD n

Band-diagram

Diffusion approximation,
Minority carrier transport,

Ambipolar transport
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1) The Semiconductor Equations 
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∇•

�
J

n
−q( ) = g

N
− r

N( )
∇•

�
J

p
q( ) = g

P
− r

P( )

VED ∇−==
���

00 κεκε

(steady-state)
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= pqµ
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�
E − qD

p

�
∇p

, ( , ) etc.=N Pg f n p

Conservation Laws: not 
specific to a particular problem 
- Universal

Constitutive relations: specific 
to problem at hand – reflect 
physics of the problem
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1) The Mathematical Problem
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∇•
�

D = ρ
∇•

�
J n −q( ) = g N − rN( )

∇•
�

J p q( ) = g N − rN( )

The “Semiconductor Equations”

3 coupled, nonlinear,
second order PDE’s
for the 3 unknowns:

V (
�
r ) n (

�
r ) p (

�
r )

Conservations laws: exact
Transport eqs. (drift-diffusion):  approximate

Why are these equations coupled?
Potential�Field�current�changes
potential�changes field and so on…

Why are these equations coupled?
Potential�Field�current�changes
potential�changes field and so on…
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Analytical Solutions to the Continuity Equations

1) Example problems

2) Summary

Numerical Solutions to the Continuity Equations

1) Basic Transport Equations

2) Gridding and finite differences

3) Discretizing equations and boundary conditions

4) Conclusion
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2) The Grid 
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(ii) “exact” numerical solutions

i

i

i

p

n

V

N nodes
3N unknowns

a

‘Gridding‘– total length divided into ‘N’ parts
- equal (uniform gridding) , or 
- unequal (adaptive and non-uniform gridding)

Variables described at each point ‘i’. 

Vo and Vn+1 is known because these are 
voltages at source and drain. 
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Finite Difference Expression for Derivative
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The Second Derivative … 
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3 point formula, could be 
extended to N points 
depending on the number 
of derivatives we carry in 
our expansion
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Analytical Solutions to the Continuity Equations

1) Example problems

2) Summary

Numerical Solutions to the Continuity Equations

1) Basic Transport Equations

2) Gridding and finite differences

3) Discretizing equations and boundary conditions

4) Conclusion



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

2) Control Volume
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x

(i)(i -1) (i +1)

“control volume”

3 unknowns at each node:

iii pnV ,,

Need 3 equations
at each node
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Discretizing Poisson’s Equation
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2 / o
s

V Kρ ε∇ = −

( ) 0,,,, 11 =+− iiiii
i

V pnVVVF

(i)(i -1) (i +1)

DRDL

V ( i − 1) − 2V ( i ) +V ( i + 1)

a
2

= − q

K
s
ε

0

(pi −ni +N
D ,i
+ −N

A,i
− )

0 0s s
KD KD Vρ ε ε∇ • = = ∇E = -

Since Vo and V-1 are known, 
as are carrier concentration 
on doping (or lack thereof) 
in contacts, we find V1 and 
iterate from this point to 
solve for potential. Once this potential is 

found, solve continuity 
equation to obtain new 
carrier concentrations
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Discretizing Continuity Equations
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Three Discretized Equations
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3 unknowns at each node
N nodes
3N unknowns and 3N equations (coupled to each other)

x

(i)(i -1) (i +1, j)
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Numerical Solution – Poisson Equation Only 
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•  Have a system of 3N nonlinear equations to solve

•  Recall Poisson’s equation at node (i):

( ) 0,,,, 11 =+− iiiii
i

V pnVVVF

linear if ni and pi are known A[ ]
�

V =
�
b

[A]:
�

V =

V1

V2

⋮

VN




















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Boundary conditions
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2
0 0 i
n p n= 2

1 1N N i
n p n+ + =

a

A
V V= 0V =

Dopant density

Contacts are assumed large and in equilibrium � detailed 
balance and law of mass-action apply!!

One could have unequal 
materials on the two contact 
sides, one must be careful to 
use the right intrinsic 
concentration <-> material.
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Numerical Solution…
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V Q
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+

+

     
    
    
    
   
   
   
   
    =   
   
   
   
   
   
   
   
        
















p=>Qn=>Q

Poissonp-continuityn-continuity

Off-diagonal terms are Poisson-Continuity equations talking to 
each other. Recombination-generation terms also feed into 
continuity equations.

V=>n

V=>p
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3) Uncoupled Numerical Solution
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The semiconductor equations are nonlinear!
(but they are linear individually)

Uncoupled solution procedure

Guess V,n,p

Solve Poisson
for new V

Solve electron
cont for new  n

Solve hole
cont for new p

repeat
until
satisfied
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Summary
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1) Two methods to solve drift-diffusion equation 
consistently – analytical and numerical. 

2) Analytical solution provides great insight and the 
solution methodology is similar to that of Schrodinger 
equations. 

3) Numerical solution is more versatile. One begins with a 
set of equations and boundary conditions, discretize the 
equations on a grid with N nodes to obtain 3N nonlinear 
equations in 3N unknowns, and solve the system of 
nonlinear equations by iteration.


