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ECE606: Solid State Devices
Lecture 18

Bipolar Transistors
a) Introduction
b) Design (I)

Gerhard Klimeck
gekco@purdue.edu

1

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Background

2

Point contact Germanium transistor

Ralph Bray from Purdue missed the invention of transistors.
http://www.electronicsweekly.com/blogs/david-manners-semiconductor-blog/2009/02/how-purdue-university-nearly-i.html
http://www.physics.purdue.edu/about_us/history/semi_conductor_research.shtml

Transistor research was also in advanced stages in Europe (radar).  

E C

Base!

E B C
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Shockley’s Bipolar Transistors … 

n+
emitter

p
base

n
collector

n+

Double

Diffused BJT

p base
n-collector

n+

n+

n+ emitter
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Modern Bipolar Junction Transistors (BJTs)
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SiGe Layer

Transistor speed increases 
as the electron's travel 
distance is reduced

SiGe intrinsic base Dielectric trench

N+P+
N

P-

N-

CollectorEmitterBase
N+

Why do we need all 
these design?
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Symbols and Convention
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Poly emitter

Low-doped base

Collector doping
optimization

N+

P

N

Symbols

NPN PNP

Collector

Emitter

Base

Collector

Emitter

Base

IC+IB+IE=0

VEB+VBC+VCE=0

E

B

C

(DC)
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Outline
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1) Equilibrium and forward band-diagram 

2) Currents in bipolar junction transistors

3) Eber’s Moll model

4) Intermediate Summary

5) Current gain in BJTs 

6) Considerations for base doping

7) Considerations for collector doping

8) Conclusions

REF: SDF, Chapter 10
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Topic Map

7

Equilibrium DC Small 
signal

Large 
Signal

Circuit
s

Diode

Schottky

BJT/HBT

MOS
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Band Diagram at Equilibrium
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( )D AD q p n N N+ −∇ • = − + −

P P Pqp E qD pµ= − ∇J

1
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n
r g

t q
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Equilibrium

DC  dn/dt=0
Small signal dn/dt ~ jωtn

Transient --- Charge control model
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Band Diagram at Equilibrium 
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BaseEmitter Collector

Vacuum 
level

EC

EV

EF

χ2

χ1 χ3

NPN homojunction BJT
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Electrostatics in Equilibrium
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( )
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BaseEmitter Collector

Two back to back p-n junction



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Outline

11

1) Equilibrium and forward band-diagram 

2) Currents in bipolar junction transistors

3) Eber’s Moll model

4) Intermediate Summary

5) Current gain in BJTs 

6) Considerations for base doping

7) Considerations for collector doping

8) Conclusions

REF: SDF, Chapter 10
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Topic Map

12

Equilibriu
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Band Diagram with Bias 
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1
P P P

p
r g

t q

∂ = ∇ • − +
∂

J

( )D AD q p n N N+ −∇ • = − + −

P P Pqp E qD pµ= − ∇J

1
N N N

n
r g

t q
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J

J µ= + ∇N N Nqn E qD n

Non-equilibrium

DC  dn/dt=0
Small signal dn/dt ~ jωtn

Transient --- Charge control model
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Electrostatics in Equilibrium
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( ) ( )0
,

2 s B
n E bi EB

E B E

k N
x V V

q N N N

ε= −
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( ) ( )0
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2 s E
p BE bi EB

B E B

k N
x V V

q N N N

ε= −
+

( ) ( )0
,

2 s B
n C bi CB

C C B

k N
x V V

q N N N

ε= −
+

( ) ( )0
,

2 s C
p BC bi CB

B C B

k N
x V V

q N N N

ε= −
+

BaseEmitter Collector

VEB VCB

Assume 
current flow 
is small…
fermi level is 
flat
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Current flow with Bias

15

EC-Fn,C

Fp,B-EV

EC-Fn,E
V

Input small amount of 
holes results in large 
amount of electron output
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Vg↑

Modern MOSFET - “Fundamental” Limit
looks similar to BJT

p

Metal

n+ n+

Oxide

DS
Vg

x

E

S≥60 mV/dec

Threshold

VgVdd

log Id

0
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Vg↑

Modern MOSFET - “Fundamental” Limit
looks similar to BJT

p

Metal

n+ n+

Oxide

DS
Vg

x

E

S≥60 mV/dec

Threshold

VgVdd

log Id

0

DOS(E), log f(E)

Ef

`̀
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Coordinates and Convention
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BaseEmitter Collector

N+ P N

0 W
X’’ X’X

, , ,

0 0 0 0 0 0

, . . . . , . . . .

, . . . . . . . . , . . . . . .
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E P B N C P

E p B n C p

N N N N N N

D D D D D D

n n p p n n

= = =
= = =
= = =

Doping

Minority carrier 
diffusion

Majority carriers
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Carrier Distribution in Base 

19
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DC
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    DC

Assume no recombination. 
Start from minority carrier
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Collector and Emitter Electron Current 
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Current-Voltage Characteristics
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JC

VCE

IB

VBE

log10 JC

> 60 mV/dec.

High-level injection
series resistance, etc.

Normal, Active Region
EB:  Forward biased
BC:  Reverse biased

( ) ( )
2 2
, ,

, 1 1BCBEi B i B qVqVn n
n C

B B B B

n nqD qD
J e e

W N W N
= − − + −ββ

WB is not independent of bias
=> Early Effect same physics of diode , rollover
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Outline
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1) Equilibrium and forward band-diagram 

2) Currents in bipolar junction transistors

3) Eber’s Moll model

4) Intermediate Summary

5) Current gain in BJTs 

6) Considerations for base doping

7) Considerations for collector doping

8) Conclusions

REF: SDF, Chapter 10
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Ebers Moll Model 
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 
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I
E

IF

IB

IC

E

B

C

IR

αFI
F

αRI
R

Hole diffusion in collector

IE=IE,n+IE,p

Temperature 
dependent
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Common Base Configuration
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P N
E

IE IC
C

BB

VEB
(in)

VCB
(out)

How would the model change if this was a Schottky barrier BJT? 

IE

IF

IB

IC

E

B

C

IR

CBE CBC

αRIR αFIFN

Junction capacitance 
and diffusion capacitance

The original transistor was a metal/ semicond / metal device
No minority carriers, no diffusion capacitance but the “rest” about the same.

Common base configuration provides power gain, but no current gain.  
=> Emitter and collector current are identical => no current gain
=> Collector current IC can be driven through large resistor => power gain
Is there another configuration that can deliver current gain?
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Common Emitter Configuration
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αRIR

αFIF

CBE

CBC

E

B
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IR
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I I
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−
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Cµ

Cπ

IR

P+

N

P

C

E E

B

VEB
(in)

VEC
(out)

ICIB

This is a practice problem … 
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Intermediate Summary

26

• The physics of BJT is most easily understood with 

reference to the physics of junction diodes. 

• The equations can be encapsulated in simple 

equivalent circuit appropriate for dc, ac, and large 

signal applications. 

• Design of transistors is far more complicated than this 

simple model suggests => the next lecture elements

• For a terrific and interesting history of invention of the 

bipolar transistor, read the book “Crystal Fire”. 
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Outline

27

1) Equilibrium and forward band-diagram 

2) Currents in bipolar junction transistors

3) Eber’s Moll model

4) Intermediate Summary

5) Current gain in BJTs 

6) Considerations for base doping

7) Considerations for collector doping

8) Conclusions

REF: SDF, Chapter 10
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Ebers Moll Model 
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Ebers Moll Model (Basic definition)
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 IB IC

0 VCE

saturation
region

active region

The Ebers-Moll model describes both the active and the saturation 
regions of BJT operation.
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Gummel Plot and Output Characteristics

30

• The simultaneous plot of collector and base current vs.
the base-emitter voltage on a semi-logarithmic scale is
known as a Gummel Plot.

• This plot is extremely useful in device characterization
because it reflects on the quality of the emitter-base
junction while the base-collector bias is kept at a
constant.

• A number of other device parameters can be ascertained
either quantitatively or qualitatively directly from the
Gummel plot because of its semi-logarithmic nature

− For example the d.c gain β, base and collector ideality
factors, series resistances and leakage currents.
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Gummel Plot and Output Characteristics
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2 2
, , //( 1) ( 1)BCBEi B i B q kTq kTn n

B B B B

C VVn nqD qD
e e

A W N W N

I − − + −≃

2
, /( 1)BEp i E V kT

E E

B qqD n
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A W N

I = −

C
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BI

Iβ =

DCβ Common emitter 
Current Gain

VBE
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Current Gain 
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P+
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C

E E
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IBCommon Emitter current gain ..
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=

−
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i Bn E E

B p i E B

nD W N

W D n N
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Common Base current gain ..
P+ N P

E

IE IC

C

BB

VEB
(in)

VCB
(out)

C
DC

E

I

I
α = C C

DC

B E C

I I

I I I
β = =

− 1
DC

DC

α
α

=
−

DC transfer gain

Will examine

Properties are related – (transistor did not change ☺)
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Current Gain
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How to make a Good Silicon Transistor

34

Emitter doping higher
than Base doping

Base doping hard to control
Emitter doping easier

~1, same material
primarily determined 
by bandgap

Make-Base short …
(few mm in 1950s, 200 A now)
Want high gradient of carrier density

For a given Emitter length

2
,

2
,

i Bn E E
DC

B p i E B

nD W N

W D n N
β ≈
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Doping for Gain …

35

N
E

N
B

N
C

N+

P

N

2
,

2
,

i Bn E E
DC

B p i E B

nD W N

W D n N
β ≈
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Outline
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1) Equilibrium and forward band-diagram 

2) Currents in bipolar junction transistors

3) Eber’s Moll model

4) Intermediate Summary

5) Current gain in BJTs 

6) Considerations for base doping

what’s wrong with the previous recipe?

7) Considerations for collector doping

8) Conclusions

REF: SDF, Chapter 10



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Problem of Low Base Doping: 
Current Crowding 

37

( )

( )

' ( )

' ( )

2
,

2
,

1( )

( )
1

BE

BE

qi Bn V

CC B B

p qi EB B

E E

x

V x

nqD
e dxJ x dxI W N

qD nI J x dx
e dx

W N

β

β

β
−

= = =
−

∫∫
∫ ∫

p base

n-collector

n+

n+VBE

VBE
Double diffused 
junction 
configuration:
Emitter doping must 
compensate / 
overcome the base 
doping

Low doping in base
=> resistance along 
the current path
=> potential drop

=> Determines the 
injection 
=> Spatially 
dependent
=> More current in 
the corners
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Low Base Doping: Non-uniform Turn-on

38

n+ p base

n-collector
n+

B

E

Interdigitated designs for almost all high power 
transistors (E-B distance minimized)

Non-uniform current inefficient
High current at the edge can cause burn-out

Sketches from text book
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Low Base Doping: Current Crowding
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p base

n-collector

n+

n+VBE

We talked about how low doping for the base enhances the current gain.

But there is a potential downside to this approach

If the base doping is kept to small values, it will have a high 
resistance: Lesser ability to conduct means higher resistance
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Low Base Doping: Current Crowding

40

p base

n-collector

n+

n+VBE

Non-zero base resistance results in a lateral potential difference under 
the emitter region

For an n-p-n transistor as shown, the potential decreases from edge of 
the emitter towards the centre (the emitter is highly doped and can be 
considered an equipotential region)
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Low Base Doping: Current Crowding

41

p base

n-collector

n+

n+VBE

The number of electrons injected from emitter to base is exponentially 
dependent on base-emitter voltage

With the lateral drop in the voltage in the base between the edge and 
centre of emitter, more carriers will be injected at the edge than the 
emitter centre.
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Low Base Doping: Current Crowding

42

Key facts:

1. Current crowding is due to 2D nature of BJTs

2. It is a function of the doping concentration

3. As doping concentration increases, resistivity decreases

− Consequence: Current gain goes smaller � Emitter current 
injection efficiency decreases

The larger current density near the emitter may cause localized heating 
and high injection effects

Possible Solution: Emitter widths are fabricated with an inter-digitated 
design � Many narrow emitters connected in parallel to achieve the 
required emitter area
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Low Base Doping: Non-uniform Turn-on
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n+ p base

n-collector
n+

B

E

Interdigitated designs for almost all high power 
transistors (E-B distance minimized)

Non-uniform current inefficient
High current at the edge can cause burn-out

Sketches from text book
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Problem of Low Base Doping: Punch-through 
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N
E

N
B

N
C

( ) ( )0
,

2 s E
p BE bi BE

B E B

k N
x V V

q N N N
= −

+
ε

( ) ( )0
,

2 s C
p BC bi BC

B C B

k N
x V V

q N N N
= −

+
ε

NN+

Low base doping is not a good idea!
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Problem of low Base-doping: 
Base Width Modulation 
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2
,

2
,, ,

E i Bn E
DC

p i EB p B p c B

D W n N

W x x D n N
β ≈

− −

N
+

P N

( ) ( )0
,

2 s E
p BE bi BE

B E B

k N
x V V

q N N N
= −

+
ε

( ) ( )0
,

2 s C
p BC bi BC

B C B

k N
x V V

q N N N
= −

+
ε

Gain depends on collector voltage (bad) …
Depletion region width modulation

N
B

N
C

N
E

Electrical base region is smaller than the 
metallurgical region!
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Problem of Low Base-doping: Early Voltage 
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2
,

2
. . ,

i Bn E E
DC

p B p C i EB p B

D W n N

W x x D n N
β ≈

− −

2 2
, ,( / ) ( / )

, ( 1) 1
' '

( )BE BCi B i BqV kT qV kTn n
n

B
C

B B B

qD n qD n
I e e

NW W N
= − − + −

C C C

BC BC A A

dI I I

dV V V V
= ≈

+

VBC

VA

IC

Ideally

In practice

VBC about 1V
VA ideally infinity

Jim Early 
device pioneer
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The Early Voltage PS1

47

VA

VBC

IC

Ideally

In practice

• The collector current depends on VCE:

• For a fixed value of VBE, as VCE increases, the reverse bias on the 
collector-base junction increases, hence the width of the depletion 
region increases.  

− The quasi-neutral base width decreases � collector current 
increases.

Due to the Early effect, collector current increases with increasing 
VCE, for a fixed value of VBE.
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The Early Voltage PS2
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VA

VBC

IC

Ideally

In practice

• The Early voltage is obtained by drawing a line tangential to the 
transistor I-V characteristic at the point of interest. 

• The Early voltage equals the horizontal distance between the point 
chosen on the I-V characteristics and the intersection between the 
tangential line and the horizontal axis. 

• Early voltage is indicated on the figure by the horizontal dotted line
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Punch-through and Early Voltage
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Outline
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1) Equilibrium and forward band-diagram 

2) Currents in bipolar junction transistors

3) Eber’s Moll model

4) Intermediate Summary

5) Current gain in BJTs 

6) Considerations for base doping

7) Considerations for collector doping

8) Conclusions

REF: SDF, Chapter 10
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Collector Doping 
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then reduce collector doping 
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Collector depletion….. 
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… but (!) Kirk Effect and Base Pushout
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Kirk Effect and Base Pushout
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Kirk Effect and Base Pushout
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Kirk Effect

The Kirk effect occurs at high current densities in a bipolar transistor. The effect is due
to the charge density associated with the current passing through the base-collector
region. As this charge density exceeds the charge density in the depletion region the
depletion region ceases to exist. Instead, there will be a build-up of majority carriers
from the base in the base-collector depletion region. The dipole formed by the
positively and negatively charged ionized donors and acceptors is pushed into the
collector and replaced by positively charged ionized donors and a negatively charged
electron accumulation layer, which is referred to as base push out. This effect occurs if
the charge density associated with the current is larger than the ionized impurity
density in the base-collector depletion region. Assuming full ionization, this translates
into the following condition on the collector current density.

Key point : Under high current and low collector doping the 
depletion approximation is invalid in the C-B junction!
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Perhaps High Doping in Emitter? 
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Summary
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While basic transistor operation is simple, its 
optimum design is not. 

In general, good transistor gain requires that the 
emitter doping be larger than base doping, which in 
turn should be larger than collector doping. 

If the base doping is too low, however, the transistor 
suffers from current crowding, Early effects. If the 
collector doping is too low, then we have Kirk effect 
(base push out) with reduced high-frequency 
operation and if the emitter doping is too high then 
the gain is reduced. 


