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Current flow with Bias
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EC-Fn,C

Fp,B-EV

EC-Fn,E
V

Input small amount of 
holes results in large 
amount of electron output
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Gummel Plot and Output Characteristics
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How to make a Good Silicon Transistor
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Emitter doping higher
than Base doping

Base doping hard to control
Emitter doping easier

~1, same material
primarily determined 
by bandgap

Make-Base short …
(few mm in 1950s, 200 A now)
Want high gradient of carrier density

For a given Emitter length
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Electrostatics in Equilibrium
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Electrostatics in Equilibrium
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Assume 
current flow 
is small…
fermi level is 
flat
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Problem of Low Base Doping: Punch-through 
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Low base doping is not a good idea!

VBE is positive (forward bias) VBC is negative (reverse bias) 
=> xp,BC grows
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Problem of low Base-doping: 
Base Width Modulation 

11

2
,

2
,, ,

E i Bn E
DC

p i EB p B p c B

D W n N

W x x D n N
β ≈

− −

N
+

P N

( ) ( )0
,

2 s E
p BE bi BE

B E B

k N
x V V

q N N N
= −

+
ε

( ) ( )0
,

2 s C
p BC bi BC

B C B

k N
x V V

q N N N
= −

+
ε
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Electrical base region is smaller than the 
metallurgical region!

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

The Early Voltage
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• The collector current depends on VCE:

• For a fixed value of VBE, as VCE increases, the reverse bias on the 
collector-base junction increases, hence the width of the depletion 
region increases.  

− The quasi-neutral base width decreases 
� collector current increases.

collector current increases with increasing VCE, for a fixed value of VBE.

VA

VBC

IC

Ideally

In practice

Gain depends on collector voltage (bad) …
Depletion region width modulation

Device Pioneer
Jim Early 

VBC about 1V
VA ideally infinity
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The Early Voltage
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VA

VBC

IC

Ideally

In practice

• The Early voltage is obtained by drawing a line tangential to the 
transistor I-V characteristic at the point of interest. 

• The Early voltage equals the horizontal distance between the point 
chosen on the I-V characteristics and the intersection between the 
tangential line and the horizontal axis. 

• Early voltage is indicated on the figure by the horizontal dotted line

Device Pioneer
Jim Early 

VBC about 1V
VA ideally infinity
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Problem of Low Base-doping: Early Voltage 
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Punch-through and Early Voltage
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1) Current gain in BJTs 

2) Considerations for base doping

3) Considerations for collector doping

4) Intermediate Summary

5) Problems of classical transistor

6) Poly-Si emitter

7) Short base transport

8) High frequency response

9) Conclusions

REF: SDF, Chapter 10
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Collector Doping 
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If you want low base doping
then reduce collector doping 
even more to increase 
Collector depletion….. 
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Base-Collector in reverse bias
⇒Majority carriers only
⇒No diffusion capacitance

⇒Reduce capacitance
⇒Increase xnC
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… but (!) Kirk Effect and Base Pushout
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Kirk Effect and Base Pushout
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bias & current

⇒Junction lost
⇒High current dominates 
collector doping
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Kirk Effect and Base Pushout
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Kirk Effect

The Kirk effect occurs at high current densities in a bipolar transistor. The effect is due
to the charge density associated with the current passing through the base-collector
region. As this charge density exceeds the charge density in the depletion region the
depletion region ceases to exist. Instead, there will be a build-up of majority carriers
from the base in the base-collector depletion region. The dipole formed by the
positively and negatively charged ionized donors and acceptors is pushed into the
collector and replaced by positively charged ionized donors and a negatively charged
electron accumulation layer, which is referred to as base push out. This effect occurs if
the charge density associated with the current is larger than the ionized impurity
density in the base-collector depletion region. Assuming full ionization, this translates
into the following condition on the collector current density.

Key point : Under high current and low collector doping the 
depletion approximation is invalid in the C-B junction!
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Perhaps High Doping in Emitter? 
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Band-gap narrowing reduces gain significantly …
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Very high doping can narrow the bandgap of a semiconductor!

If the emitter is extremely highly doped, 
then the bandgap in the emitter may be smaller 
than the base

=> Reduction in gain
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Perhaps High Doping in Emitter? 
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(Easki-like) Tunneling cause loss of base control …

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Intermediate Summary

24

While basic transistor operation is simple, its 
optimum design is not. 

In general, good transistor gain requires that the 
emitter doping be larger than base doping, which in 
turn should be larger than collector doping. 

If the base doping is too low, however, the transistor 
suffers from current crowding, Early effects. If the 
collector doping is too low, then we have Kirk effect 
(base push out) with reduced high-frequency 
operation and if the emitter doping is too high then 
the gain is reduced. 
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Doping for Gain 
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Emitter doping: As high as possible without
band gap narrowing

Base doping: As low as possible, without
current crowding, Early effect

Collector doping: Lower than base doping
without Kirk Effect

Base Width: As thin as possible without
punch through
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How to make better Transistor
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Classical Shockley Transistor

Hetero-junction Bipolar Transistor

Graded Base transport

Polysilicon Emitter
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Poly-silicon Emitter
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Poly-silicon Emitter
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Question: Why does poly only suppress 
the hole current, not electron current?

Ans. Polysilicon is not a ohmic contact  and acts as rectifying 
contact. It blocks the easy passage of holes but lets electrons 

pass through

vs Infinite at metal

Finite at poly
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Gain in Poly-silicon Transistor
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How to make better Transistor
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Short-base Quasi-ballistic Transistor
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Gain in short-base Poly-silicon Transistor
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Quasi-Ballistic transport in very short base limits the gain …
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Topic Map
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Small Signal Response 
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Desire high fT
⇒High IC
⇒Low capacitances
⇒Low widths
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Frequency Response
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� The gain of an amplifier is affected by the capacitance associated with its circuit.
� This capacitance reduces the gain in both the low and high frequency ranges of 

operation.
� The reduction of gain in the low frequency band is due to the coupling

and bypass capacitors selected. They are essentially short circuits in the
mid and high bands.

� The reduction of gain in the high frequency band is due to the internal
capacitance of the amplifying device, e.g., BJT, FET, etc.

� This capacitance is represented by capacitors in the small signal equivalent circuit 
for these devices. They are essentially open circuits in the low and mid bands.
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Small Signal Response (Common Emitter)
From Ebers Moll Model

39
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Short Circuit Current Gain
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Base Transit Time
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Ref. Charge control model

Base 
transit time
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Collector Transit Time

44

?BC

sat

W=τ
υ

N
+ P

1

2
qi τ× × =

, 2 2
BC

eff BC
sat

q W

i

ττ
υ

= = =

t

i τ

Electrons injected into collector depletion 
region – very high fields more than 
diffusion => drift => acceleration of carriers
Charge imaged in collector 
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Putting the Terms Together
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Base transit time 

Collector transit time

Junction charging time

10log Tf

10log CI

Kirk Current

Do you see the motivation to reduce WB and WBC as much as possible? 
What problem would you face if you push this too far ? 

KI

Increasing IC too high reduces WBC and increases the overall capacitance
=> frequency rolls off….  
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We have discussed various modifications of the classical 

BJTs and explained why improvement of performance 

has become so difficult in recent years.

The small signal analysis illustrates the importance of 

reduced junction capacitance, resistances, and transit 

times. 

Classical homojunctions BJTs can only go so far, further 

improvement is possible with heterojunction bipolar 

transistors. 


