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Modern MOSFET - “Fundamental” Limit
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Current flow with Bias
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How to make a Good Silicon Transistor

For a given Emitter length ~1, same material
primarily determined
\ by bandgap
5 = DoV s N
DC 2
W; D, 0" Ng

Make-Base short ...
(few mm in 1950s, 200 A now) Emitter doping higher
Want high gradient of carrier density than Base doping

Base doping hard to control
Emitter doping easier
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525 MM Electrostatics in Equilibrium
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Two back to back p-n junction

b
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Electrostatics in Equilibrium

- Ist“:o Ne _ _ |2k&, Ne _
Xp,8E V q N, (NE + NB) (Vbi VEB) Xp,Bc = q NB(NC + NB) (Vbi VcB)
- I2ks€O Ng 2k.£, N
XE = A = g E V., -V,
\ « NE(NB+NE)( bi ) Xc \/ q NC(NC+NB)( b —Ves)
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Assume
current flow
is small...
fermilevel is

Problem of Low Base Doping: Punch-through

Veg>0 Vcp<0 E-B depletion C-B depletion E-B depletion  C-B depletion
PANEEPANY region \ region \ Tegion \ region \
ok A " 2l
|w—| | W=

o ] ]

_ |2K& Ne _ X =\/2k5£0 Ne Vi, =V,
Xp,BE_\/ q NB(NE+NB)(Vbi VBE) p.BC q NB(NC+NB)( bi BC)

Vg is positive (forward bias) Vgc is negative (reverse bias)
=> X, gc GTOWS

Low base doping is not a good idea! 7
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Problem of low Base-doping:

Base Width Modulation

Electrical base region is smaller than the
metallurgical region!

2k£

E -
ey e Ve

\l
Jzkso o +N )(v, ~Vee)

Gain depends on collector voltage (bad) ...

Depletion region width modulation .
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S5 NCN The Early Voltage
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:C Bsicp=2.51A F
o In practice . | _— B
Device Pioneer| .- § | — i
JimEarly .7 Ideally . —
""""""" VBC VEC(volts)
Vg about 1V
Va V, ideally infinity

*  The collector current depends on Vg:

* For afixed value of Vg, as Vg increases, the reverse bias on the
collector-base junction increases, hence the width of the depletion
region increases.

— The quasi-neutral base width decreases
- collector current increases.

collector current increases with increasing Vg, for a fixed value of Vgg. ‘

Gain depends on collector voltage (bad) ...

Depletion region width modulation .
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The Early Voltage

=C IBsiep=2.54A - |
o In practice . | __— B
Device Pioneer| .- § | i
JimEarly Ideally -
"""""""" VB C ° ° v1=.c(mn:)n * *
Vg about 1V
Va V, ideally infinity

* The Early voltage is obtained by drawing a line tangential to the
transistor I-V characteristic at the point of interest.

e The Early voltage equals the horizontal distance between the point
chosen on the |-V characteristics and the intersection between the
tangential line and the horizontal axis.

e Early voltage is indicated on the figure by the horizontal dotted line
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o5 AVER) Problem of Low Base-doping: Early Voltage
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Punch-through and Early Voltage
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Collector Doping

p=— Do WeaNe
We =X, 5 = Xc Dy A% Ng
VA - — qNBWB C — KSEO
CB
CCB Xn,C + Xp,B

Base-Collector in reverse bias
=Majority carriers only
=No diffusion capacitance

=Reduce capacitance
=Increase X, ¢

If you want low base doping
then reduce collector doping
even more to increase

Collector depletion..... 1
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525 MM ... but (!) Kirk Effect and Base Pushout
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Kirk Effect and Base Pushout

O nanotlU '-.org‘

n+ n
emitter collector

=
%24
c
[}
o)
& g o
&|p-Base | n-Collector  |N* % |p-Base | n-Collector |+ 3 p-Base | n-Collector
e e =
O Nc O Nc (@)
@ @ Iy
(8] Q Q
gl g x &
n X 0 2 Wi
B B B
! C
Ws Wc Ws Wc Ws Wc
‘ \‘/ =Increase \‘ =Junction lost
bias & current =High current dominates
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Kirk Effect and Base Pushout
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Can not reduce collector doping
arbitrarily without causing base pushout
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T
= U nanctll '-.c:rg= Kirk Effect

The Kirk effect occurs at high current densities in a bipolar transistor. The effect is due
to the charge density associated with the current passing through the base-collector
region. As this charge density exceeds the charge density in the depletion region the
depletion region ceases to exist. Instead, there will be a build-up of majority carriers
from the base in the base-collector depletion region. The dipole formed by the
positively and negatively charged ionized donors and acceptors is pushed into the
collector and replaced by positively charged ionized donors and a negatively charged
electron accumulation layer, which is referred to as base push out. This effect occurs if
the charge density associated with the current is larger than the ionized impurity
density in the base-collector depletion region. Assuming full ionization, this translates
into the following condition on the collector current density.

Key point : Under high current and low collector doping the
depletion approximation is invalid in the C-B junction!
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Perhaps High Doping in Emitter?

Very high doping can narrow the bandgap of a semiconductor!
If the emitter is extremely highly doped,

then the bandgap in the emitter may be smaller

than the base

=> Reduction in gain

Band-gap narrowing reduces gain significantly ...
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Perhaps High Doping in Emitter?

(Easki-like) Tunneling cause loss of base control ...

e
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5 MNCN Intermediate Summary

L) nancHUBorg

While basic transistor operation is simple, its
optimum design is not.

In general, good transistor gain requires that the
emitter doping be larger than base doping, which in
turn should be larger than collector doping.

If the base doping is too low, however, the transistor
suffers from current crowding, Early effects. If the
collector doping is too low, then we have Kirk effect
(base push out) with reduced high-frequency
operation and if the emitter doping is too high then
the gain is reduced.
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Outline

1) Current gain in BJTs

2) Considerations for base doping

3) Considerations for collector doping
4) Intermediate Summary

5) Problems of classical transistor
6) Poly-Si emitter

7) Short base transport

8) High frequency response

9) Conclusions

REF: SDF, Chapter 10
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S5 NCN Doping for Gain

/Emitter doping: As high as possible Without\

band gap narrowing

ﬁdc =~—————| Base doping: As low as possible, without
W; D, n’e Ng current crowding, Early effect

Collector doping: Lower than base doping
without Kirk Effect

Base Width: As thin as possible without
punch through

v
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How to make better Transistor

Graded Base transport

Polysilicon Emitter Classical Shockley Transistor

Hetero-junction Bipolar Transistor
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Poly-silicon Emitter

Collector

” AR,
A rf/

SiGe intrinsic base  pjelectric trench

——

Poly-silicon
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Poly-silicon Emitter

nancHUB.crg

V. Infinite at metal pP; U.xD
" Finie at poly & 72 i‘ o poy = ~0UP, = -qmwﬁ
“ Wg— I =—q(Dp/WE) P,
| oe.pay =00, plv\_/ P - -qu.p, | 5.E.poly _ U,
- s DP/WE +U;
p, _ Dp/We Question: Why does poly only suppress
p D, W +u, the hole current, not electron current?

Ans. Polysilicon is not a ohmic contact and acts as rectifying

contact. It blocks the easy passage of holes but lets electrofis
RUBDIII,E Klimeck - ECE606 Fall 2012 - notes adopted from Alam pass th rough %

525 MM Gain in Poly-silicon Transistor

L) nancHUBorg

g, =—e=[ e || tos | [ DoV Mo Ne {Dp/wws}
ol
P IB,poly IB,si IB|poly VVB Dp Ip'izE NB Us
2
_’&ni_f&xi (.'.Us<<DP/VVE)
V\/B Q,E NB Us

Poly suppresses base current, increases gain ... ,
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2) Considerations for base doping

3) Considerations for collector doping
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REF: SDF, Chapter 10
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S5 NCN How to make better Transistor

L) nancHUBorg

Polysilicon Emitter

Graded Base transport

Classical Shockley transistor

Heterojunction bipolar transistor

"ol
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Short-base Quasi-ballistic Transistor

A

_ n—-n _
In,E =-qb, =—Quyn,
WB
n_ D,/Ws | £ baisic — U,
n  D,/Mg+y, | E.s D,/W; + U,
A2
Uth
_ N F
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D, We+u, lgg |

,8 — IC,balIistic — lC.ba!!iaic % IC,::;' x lB,sj
poly,ballistic I - I ] I
B, poly L Csd B B,poly

{u—. {En_!"gﬁiaﬁgH D, /W, m}

Dn’/WB +Uih_ WB Dp an NB v

s
Assume small
Vg Compared to nizvB N 0,

diffusion velocity Vs Assume small

- > —_—X—
rR,E NB Us
Large devices, dinite diffusion length => small diffusion velocity
=> thermal velocity is large => neglect diffusion velocity
Quasi-Ballistic transport in very short base limits the gain ...
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1) Current gain in BJTs

4) Intermediate Summary

6) Poly-Si emitter

7) Short base transport

8) High frequency response
9) Conclusions

REF: SDF, Chapter 10
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2) Considerations for base doping

5) Problems of classical transistor

3) Considerations for collector doping

Outline
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Topic Map

Equilibrium |DC |Small |Large |Circuits
signal |Signal
Diode
Schottky
BJT/HBT ‘
MOS
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Small Signal Response

log,,| A

~p %
|/B(a)x“':30c w

1 | |091o f
1
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1 | W + Wec 4 ke T I:C' o +C. BE}E =High IC
2irf, | 2D, g | idlc- "1 =Low capacitances
N LN < =lLow widths
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Frequency Response

Mid-Frequency Band

+—r

Low Frequency Band High Frequency Band
= The gain of an amplifier is affected by the capacitance associated with its circuit.
= This capacitance reduces the gain in both the low and high frequency ranges of
operation.
= The reduction of gain in the low frequency band is due to the coupling
and bypass capacitors selected. They are essentially short circuits in the
mid and high bands.
= The reduction of gain in the high frequency band is due to the internal
capacitance of the amplifying device, e.g., BJT, FET, etc.
= This capacitance is represented by capacitors in the small signal equivalent circuit
for these devices. They are essentially open circuits in the low and mid bands.
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Small Signal Response (Common Emitter)

From Ebers Moll Model

DC Circuit => AC small signal Circuit
C, BC In reverse bias, 1;=0
C
1%
JEQZL lg | lc
Ir aFlF _aRlR
—C, C) ér —C ()
" " 9mVeE
I
d, _d[(l-a: )l ]_aly _ 1 gl
dVge dVge KeT  Boc KgT
e = 1o (e ~1) _d(agly) _dl
o= =
dVge KsT
5(aF|F):gmé\/BE =0 Vee ’
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Base Transit Time

Ref. Charge control model

i = nW, i
idQB_QB _anl B_VVB2 5 Base
i B - - - transit time
. le gh 2D,
,,,,,,,,,,,,,,,,,,,,,,,,,,, o oo
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S NCN Collector Transit Time
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Electrons injected into collector depletion
region — very high fields more than
diffusion => drift => acceleration of carriers

Charge imaged in collector

4

_
N
\
f
=
Y

U$1
| 4
t
T - —xixr:q
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Putting the Terms Together

Collector transit time

log,,| ;| KirkCT”em Basetranlsit time
77777 5o
1 We +WBC: +

IK logy 1 Junction charging time

Do you see the motivation to reduce WB and Wy as much as possible?
What problem would you face if you push this too far ?

Increasing I too high reduces Wy and increases the overall capacitance
=> frequency rolls off.... L
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5 MNCN High Frequency Metrics
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/ (current-gain cutoff frequency, f;) \
1 :WB2 +WBC +kBT/q
2irf, 2D, g, lc

n

(Cise +Cioc) + (R +R)Cs

(power-gain cutoff frequency, f,,,)

fT

K " N8R, Coy /
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Summary

We have discussed various modifications of the classical
BJTs and explained why improvement of performance

has become so difficult in recent years.

The small signal analysis illustrates the importance of
reduced junction capacitance, resistances, and transit

times.

Classical homojunctions BJTs can only go so far, further
improvement is possible with heterojunction bipolar

transistors.
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