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Carrier Distribution 
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Electron Concentration in 3D solids
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Boltzmann vs. Fermi-Dirac Statistics
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Effective Density of States
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Law of Mass-Action
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Product is independent of the Fermi level!
Very useful balance equation!  Will use it often
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Fermi-Level for Intrinsic Semiconductors
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• We discussed how electrons are distributed in electronic states 

defined by the solution of Schrodinger equation. 

• Since electrons are distributed according to their energy, 

irrespective of their momentum states, the previously 

developed concepts of constant energy surfaces, density of 

states etc. turn out to be very useful.

=> will not discuss Schroedinger Eq. anymore

=> everything is captured in bandedges and effective masses

• We still do not know where EF is for general semiconductors … If 

we did, we could calculate electron concentration. 

Summary – DOS and Fermi Functions
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E-k diagram vs. band-diagram
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Position Resolved E-k Diagram
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E-k Diagram vs. Band-diagram
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Potential, Field and Charge
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In most practical cases start from charge and derive potentials!
=> Useful to learn “graphical” integration
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Carrier Distribution 
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Critical items here;
Intrinsic semiconductor has VERY few active electrons
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=> Replace by delta functions at band edge
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Effective Density of States
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Often good enough to forget about the 
Distribution of carriers in energy  
=> Replace by delta functions at band edge 17
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E-k Diagram vs. Band-diagram
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All quantum mechanics is now hidden in a single point per band!
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Potential, Field and Charge
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In most practical cases start from charge and derive potentials!
=> Useful to learn “graphical” integration
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Insulator, Semiconductor, Metal

• Metal:
»Conducts electrons even at very low temperatures

»Fermi Level crosses multiple bands even at very low temperaturs

• Semiconductor
»Very weakly conducting

»Si: Eg=1.1eV ni~1010/cm3  in 1023/cm3 0.1 in a trillion

»GaAs: Eg=1.42eV ni~106/cm3 in 1023/cm3

»Ge: Eg=0.8eV ni~1013/cm3 in 1023/cm3 0.1 in a billion

• Insulator
»“Not” conducting

»SiO2, Eg= 9eV, ni~10-68/cm3  
� The whole earch has about 1050 atoms!  If you made the whole worl out of 

glass there would be not one electon conductive at room temperature!
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Simplified Planar View of Atoms
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Donor Atoms

Even with donors, material 
is charge neutral
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Donor Atoms in H2-analogy
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Donor Atoms in Real and Energy Space
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Assumption of Large Radius …
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Characteristics of Donor Atoms

The number of donor atoms is much 
smaller compared to host atoms. 
Therefore, the electrons from one donor 
atom can go to the other donor atoms only 
via the  conduction /valence bands of the 
host crystal.

Just like a Hydrogen atom, it is possible to 
have multiple localized level for a given 
atom (see the blue levels).  

Good donors live close to the conduction 
band, so that they can offer electrons 
easily. However, if they are below the 
midgap, the donor levels are marked with 
(D) to differentiate them from acceptor 
atoms (which live close to the valence 
band). 

(D)
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Acceptor Atoms

Even with acceptor, material 
is charge neutral
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Characteristics of Acceptor Atoms

A

r0

ET

29

Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Amphoteric Dopants

acceptor-typeDonor-type
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How to Read the Table …
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Conclusion

Intrinsic carrier concentration is so small that semiconductor 

must be doped to make it useful. 

A doping atom behaves like a H-atom, except that the 

dielectric constant and effective masses are given by by those 

of the host atom. 
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Looking ahead: Carrier-Density w/Doping
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A bulk material must be charge neutral over all …

Further if the material is spatially homogenous 

Let us see how the formula come about …
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Characteristics of Donor Atoms
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Localized vs. Delocalized States

2N states/per-band (with spin) 

2N-2 states/per-band (with spin) 
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Statistics of Donor Levels
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Statistics of Donor Levels
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Coulomb Exclusion for Band Electrons?
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Localized vs. Band Electrons

E1 ← 2π/Lx

E2 ← 4π/Lx

E3 ← 6π/Lx

E4 ← 8π/Lx

E5 ← 10π/Lx

E6 ← 12π/Lx

E1’ ← 2p/(Lx/2)

E2’ ← 4π/(Lx/2)

E3’ ← 6π/(Lx/2)

Lx

Lx/2 Lx/2

Two electrons (even with 
opposite spin) can not 
be at the same position 
and same energy because
of electrostatic repulsion

Band electrons (with 
opposite spin) need not 
be at the same position, 
so they can share occupy 
same energy level.  

When we divide space by a factor of 2, the 
number of states (e.g. 6 here) does not change.
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Acceptor Atoms

State [1] …. Hole present … N-1 charges

State [0] … Hole filled …. N charges
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Statistics of Acceptor Levels in Si and Ge

1.  Each atom contributes 2 states (up & down 
spin) 
to a band, therefore a band has 2N states. 

2. Every time a host atom is replaced by a 
impurity atom, 2 states are disappear per a 
band and 
appear as localized states (sort of). 

3.  Therefore an acceptor atom close to hh and 
lh bands removes four states from those 
bands.

4. Because of Coulomb interaction only 1 hole 
can seat in these 4 states: the states are 
0000, 0001, 0010, 0100, 1000. 

5. One now uses P to compute the occupation 

from lh
from hh

EC

EV
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Number and Energy Considerations …

4N-4 States
In HH/LH bands

0000     1000      0100     0010    0001

1) [0000]  is the charged state as it has N electrons, but N-1 
protons.  

2) Single hole configuration [0001] is uncharged, as we have N-1 
electrons, and N-1 protons …  same is true for [0010], [0100], 
[1000] states. 

3) Going from [0000] to [0001] states, the number of electrons 
goes down by 1 (Ni=-1).

4) Going from [0000] to [0001] states energy goes down by –EA, 
because one electron is no longer occupying the high energy 
level at EA.  
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Statistics of Acceptor Levels
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Filled and empty Donor/Acceptor Levels
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Distributions are physical ….
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Degeneracy factor …

Effective donor level
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Summary …
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A bulk material must be charge neutral over all …

Further if the material is spatially homogenous 
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Carrier-density with Uniform Doping
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A bulk material must be charge neutral over all …

Further if the doping is spatially homogenous

Once you know EF, you can calculate n, p, ND
+, NA

-. 
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FD integral vs. FD function ?
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Intrinsic Concentration
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Carrier Density with Donors
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In spatially homogenous field-free region …

Assume  
N-type doping …

n
(will plot in next slide)
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Temperature-dependent Concentration
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Physical Interpretation
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Electron Concentration with Donors
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Electron concentration with Donors
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High Donor density/Freeze out T
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Extrinsic T

( )
2

C DE E / kTC
D

N
N e Nξ

− −≡ ≫

1 2

4
1 1

2
ξ

ξ

  
 = + −     

D
N

n
N

N

Electron concentration equals donor density
hole concentration by  nxp=ni2

D

n

N

Temperature

1

Freeze
out Extrinsic 

Intrinsic 

i

D

n

N

41

2
1 1

2
ξ

ξ

  
≈ + −      

DNN

N

≈ DN



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Intrinsic T
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Extrinsic/Intrinsic T
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What will happen if you use silicon circuits at very high temperatures ? 

Bandgap determines the intrinsic carrier density.



Klimeck – ECE606 Fall 2012 – notes adopted from Alam

Determination of Fermi-level
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Reference: Vol. 6, Ch. 3 & 4

Presentation Outline

• Intrinsic carrier concentration
•Potential, field, and charge
•E-k diagram vs. band-diagram
•Basic concepts of donors and acceptors 
•Law of mass-action & intrinsic concentration 
•Statistics of donors and acceptor levels
• Intrinsic carrier concentration
•Temperature dependence of carrier concentration
•Multiple doping, co-doping, and heavy-doping
•Conclusions
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Multiple Donor Levels
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Codoping…
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Heavy Doping Effects: Bandtail States
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Heavy Doping Effects: Hopping Conduction 
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Arrangement of Atoms

Poly-crystalline
Thin Film 
Transistors

Crystalline

Amorphous
Oxides
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Poly-crystalline material 

Isotropic bandgap and increase in scattering
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Band-structure and Periodicity

Periodicity is sufficient, but not necessary for bandgap. 
Many amorphous material show full isotropic bandgap
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Conclusions

1. Charge neutrality condition and law of mass-action 
allows calculation of Fermi-level and all carrier 
concentration.

2. For semiconductors with field, charge neutrality will 
not hold and we will need to use Poisson equation.

3. Heaving doping effects play an important role in 
carrier transport. 


