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2 / MOS Fundamentals

2.1 IDEAL STRUCTURE DEFINITION

As pictured in Fig. 2.1, the MOS-capacitor is a simple two-terminal device composed of
a thin (0.01 um~1.0 um) SiO, layer sandwiched between a silicon substrate and a metallic
field plate. The most common field plate materials are aluminum and heavily doped poly-
crystalline silicon.” A second metallic layer present along the back or bottom side of the

1 Heavily doped Si is metallic in nature. Polysilicon gates, used extensively in complex MOS device structures,
are deposited by a chemical-vapor process and then heavily n- or p-doped by either diffusion or ion implantation.
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Figure 21 The metal-oxide—semiconductor capacitor.

semiconductor provides an electrical contact to the silicon substrate. The terminal con-
nected to the field plate and the field plate itself are referred to as the gate; the silicon
terminal, which is normally grounded, is simply called the back or substrate contact.

The ideal MOS structure has the following explicit properties: (1) the metallic gate is
sufficiently thick so that it can be considered an equipotential region under a.c. as well as
d.c. biasing conditions; (2) the oxide is a perfect insulator with zero current flowing
through the oxide layer under all static biasing conditions; (3) there are no charge centers
located in the oxide or at the oxide—semiconductor interface; (4) the semiconductor is uni-
formly doped; (5) the semiconductor is sufficiently thick so that, regardless of the applied
gate potential, a field-free region (the so-called Si “bulk™) is encountered before reaching
the back contact; (6) an ohmic contact has been established between the semiconductor and
the metal on the back side of the device; (7) the MOS-C is a one-dimensional structure
with all variables taken to be a function only of the x-coordinate (see Fig. 2.1); and
8) @y = &5 = x + (E, — Ep)gp- The material parameters appearing in idealization 8
were previously introduced in Section 14.1 and will be reviewed in the next section.

All of the listed idealizations can be approached in practice and the ideal MOS struc-
ture is fairly realistic. For example, the resistivity of Si0, can be as high as 10 '8 ohm-cm,
and the d.c. leakage current through the layer is indeed negligible for typical oxide thick-
nesses and applied voltages. Moreover, even very thin gates can be considered equipoten-
tial regions and ohmic back contacts are quite easy to achieve in practice. Similar state-
ments can be made concerning most of the other idealizations. Special note, however,
should be made of idealization 8. The ®,, = P4 requirement could be omitted and will in
fact be eliminated in Chapter 18. The requirement has only been included at this point to
avoid unnecessary complications in the initial description of the static behavior.
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2.2 ELECTROSTATICS—MOSTLY QUALITATIVE

2 .2.1 Visualization Aids
Energy Band Diagram

The energy band diagram is an indispensable aid in visualizing the internal status of the
MOS structure under static biasing conditions. The task at hand is to construct the diagram
appropriate for the ideal MOS structare under equilibrium (zero-bias) conditions.

Figure 1.2 shows the surface-included energy band diagrams for the individual com-
ponents of the MOS structure. In each case the abrupt termination of the diagram in a
vertical line designates a surface. The ledge at the top of the vertical line, known as the
vacuum level, denotes the minimum energy (Ey) an electron must possess to completely
free itself from the material. The energy difference between the vacuum level and the Fermi
energy in a metal is known as the metal workfunction, ®,,. In the semiconductor the height
of the surface energy barrier is specified in terms of the electron affinity, x, the energy
difference between the vacuum level and the conduction band edge at the surface. y is used
instead of E, — Ep because the latter quantity is not a constant in semiconductors, but
varies as a function of doping and band bending near the surface. Note that (E~Eg)gg is
the energy difference between E, and Eg in the flat band (FB) or field-free portion of the
semiconductor. The rernaining compunent, the insulator, is in essence modeled as an intrin-
sic wide-gap semiconductor where the surface barrier is again specified in terms of the
electron affinity. ’

The conceptual formation of the MOS zero-bias band diagram from the individual
components involves a two-step process. First the metal and semiconductor are brought
together until they are a distance X, apart and the two-component system is allowed to
equilibrate. Once the system is in equilibrium the metal and semiconductor Fermi levels
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Figure 2.2 Individual energy band diagrams for the metal, insulator, and semiconductor compo-
nents of the MOS structure. The diagram labeled “semiconductor with band bending” defines
(E. — Eg)pg and shows y to be invariant with band bending. The value of x, it should be emphasized,
is measured relative to E, at the semiconductor surface.
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Figure .3 Equilibrium energy band diagram for an ideal MOS structure.

must be at the same energy, . ’ Moreover, the vacuum levels of the M
and S components must also be in alignment because we have specified @, = 5. The
foregoing implies that there are no charges or electric fields anywhere in the metal—gap—
semiconductor system. Next the insulator of thickness x, is inserted into the empty space
between the metal and semiconductor components. Given the zero electric field in the x,
gap, the only effect of inserting the insulator is to slightly lower the barrier between the M
and S components. Thus the equilibrium energy band diagram for the ideal MOS structure
1s concluded to be of the form pictured in Fig. 2.3.

Block Charge Diagrams

Complementary in nature to the energy band diagram, block charge diagrams provide in-
formation about the approximate charge distribution inside the MOS structure. As just
noted in the energy band diagram discussion, there are no charges anywhere inside the
ideal MOS structure under equilibrium conditions. However, when a bias is applied to the
MOS-C, charge appears within the metal and semiconductor near the metal—-oxide and
oxide—semiconductor interfaces. A sample block charge diagram is shown in Fig. 2.4.
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Figure 2.4 Sample block charge diagram.



Note that no attempt is made to represent the exact charge distributions inside the structure.
Rather, a squared-off or block approximation is employed and hence the resulting figure is
called a block charge diagram. Block charge diagrams are intended to be qualitative in
nature; the magnitude and spatial extent of the charges should be interpreted with this fact
in mind. Nevertheless, because the electric field is zero in the interior of both the metal and
the semiconductor (see idealization 5), the charges within the structure must sum to zero
according to Gauss’s law. Consequently, in constructing block charge diagrams, the area
representing positive charges is always drawn equal to the area representing negative
charges.

2.2.2 Effect of an Applied Bias
General Observations

Before examining specific-case situations, it is useful to establish general ground rules as
to how one modifies the MOS energy band diagram in response to an applied bias. Assume
normal operating conditions where the back side of the MOS-C is grounded and let Vé be
the d.c. bias applied to the gate-."

With V£ # 0 we note first of all that the semiconductor Fermi energy is unaffected by
the bias and remains invariant (level on the diagram) as a function of position. This is a
direct consequence of the assumed zero current flow through the structure under all static
biasing conditions. In essence, the semiconductor always remains in equilibrium indepen-
dent of the bias applied to the MOS-C gate. Second, as in a pn junction, the applied bias
separates the Fermi energies at the two ends of the structure by an amount equal to qV’;
that 1s,

Eg(metal) — Eg(semiconductor) = — gV, (2.1)

Conceptually, the metal and semiconductor Fermi levels may be thought of as “handles”
connected to the outside world. In applying a bias, one grabs onto the handles and rear-
ranges the relative up-and-down positioning of the Fermi levels. The back contact is
grounded and the semiconductor-side handle therefore remains fixed in position. The
metal-side handle, on the other hand, is moved downward if Vé > 0 and vpward if
vi<o.

Since the barrier heights are fixed quantities, the movement of the metal Fermi level
obviously leads in turn to a distortion in other features of the band diagram. The situation
is akin to bending a rubber doll out of shape. Viewed another way, Vé # 0 causes potential
drops and E_ (E,) band bending interior to the structure. No band bending occurs, of
course, in the metal because it is an equipotential region. In the oxide and semiconductor,
however, the energy bands must exhibit an upward slope (increasing E going from the gate
toward the back contact) when V> 0 and a downward slope when V§ < 0. Moreover, the
application of Poisson’s equation to the oxide, taken to be an ideal insulator with no carriers
or charge centers, yields d§_,./dx = 0 and therefore B oxide = constant. Hence, the slope

The prime in V§, it should
be interjected, indicates at a glance that one is referring to the ideal structure; the unprimed
symbol Vg is specifically reserved for the gate voltage applied to an actual MOS-C.
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of the energy bands in the oxide is a constant—E_ and E, are linear functions of position.
Naturally, band bending in the semiconductor is expected to be somewhat more complex
in its functional form, but per idealization 5, must always vanish (€ — 0) before reaching
the back contact.

Specific Biasing Regions

Given the general principles just discussed, it is now a relatively simple matter to describe
the internal status of the ideal MOS structure under various static biasing conditions. Tak-
ing the Si substrate to be n-type, consider first the application of a positive bias. The appli-
cation of VG > 0 lowers Eg in the metal relative to Eg in the semiconductor and causes a
positive sloping of the energy bands in both the msulator and semiconductor. The resulting
energy band diagram is shown in Fig. 2.5(a). The major conclusion to be derived from
Fig. 2.5(a) is that the electron concentration inside the semiconductor, n = n; exp[(Ey —
E;)/kT], increases as one approaches the oxide—semiconductor interface. This particular
situation, where the majority carrier concentration is greater near the oxide—semiconductor
interface than in the bulk of the semiconductor, is known as accumulation.

When viewed from a charge standpoint, the application of VG/ > 0 places positive
charges on the MOS-C gate. To maintain a balance of charge, negatively charged electrons
must be drawn toward the semiconductor—insulator interface—the same conclusion estab-
lished previously by using the energy band diagram. Thus the charge inside the device as a
function of position can be approximated as shown in Fig. 2.5(b).

Consider next the application of a small negative potential to the MOS-C gate. The
application of a small V4 < 0 slightly raises Eg in the metal relative to Eg in the semicon-
ductor and causes a small negative sloping of the energy bands in both the insulator and
semiconductor, as displayed in Fig. 2'.5(c). From the diagram it is clear that the concentra-
tion of majority carrier electrons has been decreased, depleted, in the vicinity of the oxide—
sennconductor interface. A similar conclusion results from charge considerations. Setting
V < 0 places a minus charge on the gate, which in turn repels electrons from the oxide—
semiconductor interface and exposes the positively charged donor sites. The approximate
charge distribution is therefore as shown in Fig. 2.5(d). This situation, where the electron
and hole concentrations at the oxide—semiconductor interface are less than the background
doping concentration (N, or Np,), is known for obvious reasons as depletion.

Finally, suppose a larger and larger negative bias is applied to the MOS-C gate. As Vé
is increased negatively from the situation pictured in Fig. 2.5(c), the bands at the semicon-
ductor surface will bend up more and more. The hole concentration at the surface (p,) will
likewise increase systematically from less than n; when E,(surface) < Eg, to n, when
E;(surface) = Eg, to greater than n; when E,(surface) exceeds Eg. Eventually, the hole
concentration increases to the point shown in Fig. 2.5(e) and (f), where

Ej(surface) — E,(bulk) = 2[E; — E,(bulk)] (2.2)
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Figure 2.5 Energy band diagrams and corresponding block charge diagrams describing the static

state in an ideal n-type MOS-capacitor.
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and

p. = nie[Ei(surface)—EF]/kT = nie[EF"Ei(b“‘k)]”‘T = my = Np (2.3)

Clearly, when p, = N, for the special applied bias Vé = V{ the surface is no longer de-
pleted. Moreover, for further increases in negative bias (V4 < V{), p, exceeds ny,, = Np
and the surface region appears to change in character from n-type to p-type. In accordance
with the change in character observation, the VG' < V/!situation where the minority carrier
concentration at the surface exceeds the bulk majority carrier concentration is referred to
as inversion. Energy band and block charge diagrams depicting the inversion condition are
displayed in Fig. 2.5(g) and (h).

If analogous biasing considerations are performed for an ideal p-type device, the re-
sults will be as shown in Fig.&.5’. It is important to note from this figure that biasing
regions in a p-type device are reversed in polarity relative to the voltage regions in an n-
type device; that is, accumulation in a p-type device occurs when Vé < 0, and so forth.

In summary, then, one can distinguish three physically distinct biasing regions—ac-
cumulation, depletion, and inversion. For an ideal n-type device, accumulation occurs
when V4 > 0, depletion when V{ < V§ < 0, and inversion when V¢ < Vi. The cited
voltage polarities are simply reversed for an ideal p-type device. No band bending in the
semiconductor or flat band at V{ = 0 marks the dividing line between accumulation and
depletion. The dividing line at V4 = V{is simply called the depletion—inversion transition
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Figure Q. 5’ Energy band and block charge diagrams for a p-type device under flat band, accu-
mulation, depletion, and inversion conditions.



point, with Eq. ( 2.2) quantitatively specifying the onset of inversion for both n-

type devices.

and p-

Exercise 2.1

and p-type MOS devices.

INV | DEPL | ACC ,
1 — VG

Vi 0

ACC | DEPLl INV

> VG

Y

P: Construct line plots (with Vé plotted along the x-axis) that visually identify the
voltage ranges corresponding to accumulation, depletion, and inversion in ideal n-

S: The “plots” shown below are in essence a graphical representation of the word
summary given at the end of the preceding section. Note that acc, depl, and inv are
standard abbreviations for accumulation, depletion, and inversion, respectively.

n-type

p-type
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2.3 SEMICONDUCTOR ELECTROSTATICS
2.3.1 Definition of Parameters

The purpose of this section is to establish analytical relationships for the charge density,
electric field, and electrostatic potential existing inside the semiconductor component of
an MOS-C under static conditions. Like the pn junction analysis (Chapter 5, SDF ),
obtaining a mathematical description of the dc state within the semiconductor is tactically
a matter of solving Poisson’s equation. Although an approximate solution paralleling
that presented in the pn junction analysis will be included herein, our initial efforts are
directed toward obtaining a solution which is “exact” within the ideal structure framework.
An exact solution is possible in the MOS-C case because the semiconductor is always
in equilibrium regardless of the applied dc bias. As the reader might suspect, however,
the exact formulation is somewhat more involved and therefore requires a certain amount
of preparatory development.

We begin by letting x be the depth into the semiconductor as measured from the
oxide—semiconductor interface (see Fig. 2.6). Note that, under the assumption the
semiconductor is sufficiently thick so that the electric field vanishes in the bulk of the
material (idealization #5), it is permissible to treat the semiconductor mathematically as
if it extended from x = 0 to x = . Furthermore, since the electrostatic potential is
arbitrary to within a constant, we can choose the potential to be zero in the semiconductor
bulk; that is, let V = 0 at x = .

In solving Poisson’s equation one could work with the standard system parameters
and variables such as the semiconductor doping (N,, Np) and the electrostatic potential
V. However, in performing mathematical manipulations and in interpreting results, it is
far more convenient to deal in terms of normalized parameters. It is therefore customary
to introduce the dimensionless quantities,

and
U = [Ei(bulk) — E (x))/kT = V/(kT/q) (2.5)

Urand U are also defined graphically in Fig. 2.6. Uy is called the doping parameter and
is directly related to the semiconductor doping concentration. U(x) is the electrostatic
potential normalized to kT /g and is usually referred to as simply “the potential” if no
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Fig. 2.6 Graphical definition of U and Uk

ambiguity exists. U evaluated at the oxide-semiconductor interface is given the special
symbol, Us, and is known as the “surface potential.” Also note that U(x — ) = 0 in
agreement with the choice of V = 0 at x = o,

Normalized parameters such as Ur and U are often accepted rather reluctantly. To
surmount this problem it is helpful to learn as much as possible about the parameters.
Relative to the doping parameter one should know (1) the significance of the sign (plus
or minus) associated with Ug, (2) how to calculate Us for a given impurity concentration,
and (3) the range of U values normally encountered in practical problems. Since E¢ lies
above E; in n-type materials and drops below E; in p-type materials, an inspection of
Eq. (2.4) rapidly reveals Ur < 0 given an n-type semiconductor and Us > 0 given a
p-type semiconductor. Consequently, the sign of U indicates the doping type. Turning
next to the computation of Ug, we know

Mo = el EOWIAT = N (G N > N) (2.6a)
Pour = miglECWEIRT — (if Na > Np) (2.6b)

Thus, combining Egs. (2.4) and (2.6) yields

Ur = — In(Np/n;) for n-type semiconductor (2.7a)
Ue = In(N,/n) for p-type semiconductor (2.7b)

Finally, semiconductor doping concentrations in MOS devices typically lie somewhere
between 10*/cm’ and 10"7/cm’. Employing Eqgs. (2.7) with n; = 10°/cm’ appropriate
for Si at room temperature, we therefore find the range of U values normally encountered
in practical problems is . '

The second parameter U is of course a function of both position inside the semicon-
ductor and the voltage applied to the MOS-C gate. Of prime importance is the connection
between the Us value at the oxide—semiconductor interface and the biasing states described
in the previous section. Clearly, under flat band conditions Us = 0. Moreover, combining
Egs. (2.2), (2.4), and (2.5), one concludes at the depletion-inversion transi-
tion point . It therefore follows that, in a p-type semiconductor, Us < 0 if the semicon-
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ductor is accumulated, 0 < Us < 2U if the semiconductor is depleted, and Us > 22U
if the semiconductor is inverted. For an n-type semiconductor the inequalities are merely
reversed. In other words, knowledge of Uy completely specifies the biasing state inside
the semiconductor.

Another item of interest is the range of Us values normally encountered in practical
problems. Although greater excursions are possible, the band bending inside an MOS-C
is routinely such that the Fermi level at the oxide-semiconductor interface is confined to
band gap energies between E, and E,. Thus, given E, (surface) < Ep < E, (surface), and
assuming a Si substrate maintained at room temperature, the range of Us values normally
encountered in practice is | Uy — 21 = Us =< Uy + 21]. It is left to the reader as an exercise
to verify this result. The cited range of Us values, it should be noted, is also of interest
from a theoretical standpoint. When Ej crosses into either the valence band or conduction
band at the surface, the surface region becomes decidedly degenerate and degenerate
relationships must be employed in calculating the carrier concentrations. Standard quan-
titative analyses, including the one presented herein, employ nondegenerate relationships
and are therefore restricted in validity to the indicated range of Us values.

In addition to U and Uy, quantitative expressions for the band bending inside of a
semiconductor are normally formulated in terms of a special length parameter known as
the intrinsic Debye length. The Debye length is a characteristic length which was
originally introduced in the study of plasmas. (A plasma is a highly ionized gas containing
an equal number of positive gas ions and negative electrons.) Whenever a plasma is
perturbed by placing a charge in or near it, the mobile species always rearrange so as to
shield the plasma proper from the perturbing charge. The Debye length is the shielding
distance, or roughly the distance where the electric field emanating from the perturbing
charge falls off by a factor of 1/e. A semiconductor devoid of band bending can be
viewed as a type of plasma with its equal number of ionized impurity sites and mobile
electrons or holes. The placement of charge near the semiconductor, on the MOS-C gate
for example, also causes the mobile species inside the semiconductor to rearrange so as
to shield the semiconductor proper from the perturbing charge. The shielding distance or
band bending region is again on the order of a,Debye length, Lg, where

K k 172
séokl ] (2.8)

Lg=|—F—"""——
B [‘I z(nbulk + Poun)

Although the Debye length characterization applies only to small deviations from flat
band, it is convenient to employ the Debye length appropriate for an intrinsic material
as a normalizing factor in theoretical expressions. The intrinsic Debye length, Lp, is
obtained from the more general Lg relationship by Setting nyy, = poux = n; that is,

K kT 12
Ly = [Tseg ] (2.9)
qn;



Exercise 2.2

P: (a) Construct line plots (with (/5 plotted along the x-axis) that visually identify
the surface potential ranges corresponding to accumulation, depletion, and inversion
in ideal n-type and p-type MOS devices.

(b) For each of the {/g, [Jg parameter sets listed below, indicate the doping type and
the specified biasing condition. Also draw the corresponding energy band diagram
and block charge diagram that characterize the static state of the ideal MOS system.

@)

6

(iii)

U = 12, Ug=12
Up = -9, Ug=3

U= -9, Ug=-18

) U =15 Us=36
W Ue=-15 U =0
S:(a) Converting the discussion - iN the preceding subsection into a graphi-

cal representation yields

INV l DEPL | ACC

i i > U Ur <0 (n-type)
2(!]: 0

ACC | DEPL | INV

i ] >Us | Up>0(p-type)
0 20k
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2.3.2 Exact Solution

Expressions for the charge density, electric field, and potential as a function of position
inside the semiconductor are obtained by solving Poisson’s equation. Since the MOS-C
is assumed to be a one-dimensional structure (idealization #7), Poisson’s equation
simplifies to
¢ _ p _ ¢
dx Ksg, - Kse,

(p —n + Np— Ny (2.10

Maneuvering to recast the equation in a form more amenable to solution, we note

1 dE; kT dU
_ldhw __a .
q dx q dx
The first equality in Eq. (2.11) is a restatement of Eq. (3.15) in SDF. The second
equality follows from the Eq. (2.5) definition of U and the fact that dE; (bulk)/dx = 0.
In a similar vein we can write

(3

nie[Ei(.\') —Ep)/kT ne Up—U(x) (2 123)

ne¥t-Ur (2.12b)

p =
n = nie[EF—Ei(x)]/kT _

Moreover, since p = 0 and U = 0 in the semiconductor bulk,

0 = pouk = o + Np — Na = ne’s — ne ™% + N, — N, (2.13)
or
Np — Ny = ni(e™VF — %) (2.14)

Substituting the foregoing €, p, n, and Np — N, expressions into Eq. (2.10) yields

p = qni(e¥ U — U U 4 ¢7Ur — oUr) (2.15)
and
if,j = <I-<:172:/;?>(6U"UF — eUF U 4 oUr — U (2.16)
or, in terms of the intrinsic Debye length,
% — EIIJ_ZD(QU*UF — Ul 4 pUs _ e ) (2.17)

We turn next to the main task at hand. Poisson’s equation, Eq. (2.17), is to be solved
subject to the boundary conditions:

du
€=0 or E:O’ atx = x (2.18a)

and
U = Us, atx =0 (2.18b)
Multiplying both sides of Eq. (2.17) by dU /dx, integrating from x = = to an arbitrary
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point x, and making use of the Eq. (2.18a) boundary condition, we quickly obtain

kT /q\*
€= <——-L/q> [e% e+ U -1 +eUEl-yU - 1] (2.19)
D
Equation (2.19) is of the form y2 = a2, which has two roots,y = a andy = —qa. As

can be deduced by inspection from the energy band diagram, we must have € > 0 when
U > 0and€ < OwhenU < 0. Since the right-hand side of Eq. (2.19) is always positive
(a = 0), the proper polarity for the electric field is obviously obtained by choosing the
positive root when U > 0 and the negative root when U < 0. We can therefore write

€= - %T%U = Us %T——F(IZLUF) (2.20)
where
FUU)=[e% (e +U - 1) + e V(¥ — U — ]" (2.21)
and
O, = { +1  if Us>0 (2.22)
-1 if Us<o0

To complete the solution, one separates the U and x variables in Eq. (2.20) and, making
use of the Eq. (2.18b) boundary condition, integrates from x = 0 to an arbitrary
point x. The end result is Eq. (2.23),

0J'US dU! _i
* v F(U', Ug) Ly (2.23)

Although not in a totally explicit form, Egs. (2.15), (2.20), and (2.23) collectively
constitute an exact solution for the electrostatic variables. For a given Us, numerical
techniques can be used to compute U as a function of x from Eq. (2.23). Once U as a
function of x is established, direct substitution into Egs. (2.15) and (2.20) yields p and
% as a function of x. Sample plots of U versus x and p versus x obtained in the manner
Just described are presented in Fig. 2.7.

2.3.3 Delta-Depletion Solution

A closed-form though approximate solution for the charge density, electric field, and
potential interior to the semiconductor can be established by utilizing the depletion
approximation first introduced in the pn junction analysis. Because additional approxi-
mations based in large part on the nature of the exact solution are also employed in the
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Fig. 2.7 Exact solution for the charge density and potential inside a semiconductor as a function
of position assuming U = 12, T = 23°C and an Ly, appropriate for silicon (Lp = 3.11 X 10~° cm).
(a) Accumulation (Us = 6) and (b) middle of depletion (Us = Us = 12). (See next page for
continuation of Fig. 2.7(c, d).)

formulation, the approximate relationships for the electrostatic variables are herein
referred to collectively as the delta-depletion solution .

Since the nature of the exact solution plays a role in the approximate formulation,
it is reasonable to spend a few moments examining the plots presented in Fig. 2.7. First
of all, note thie general correlation between the Fig. 2.7 plots and the semiconductor
portion of the diagrams sketched in Fig. 2.5/ Next, specifically note that the charge
associated with majority carrier accumulation and minority carrier inversion resides in
an extremely narrow portion of the semiconductor immediately adjacent to the
oxide—semiconductor interface. By comparison, the depleted portion of the semicon-
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Fig. 2.7 (continued). (c) Onset of inversion {(Us = 2Ur = 24), and (d) heavily inverted
(Us = 2Ue + 6 = 30). The p-diagrams were drawn on a linear scale and the + U axes oriented
downward to enhance the correlation with the diagrams sketched in Fig. 2.5¢

ductor under moderate depletion biasing extends much deeper into the semiconductor.
Moreover, in comparing the depleted semiconductor regions when Us = Uz (middle of
depletion, Us = 2U (onset of inversion), and Us = 2U; + 6 (inversion), we find the
depletion width increases substantially with increased depletion biasing, but increases
only slightly once the semiconductor inverts. This, we might interject, occurs because
the highly peaked inversion charge near the oxide—semiconductor interface is nearly
sufficient, in itself, to shield the interior of the semiconductor from any additional charge
placed on the MOS-C gate.

In the delta-depletion formulation the very narrow extent of the accumulation and
inversion layers is used as justification for approximately representing these layers by



d-functions of charge located at x = 0, the oxide—semiconductor interface. Naturally,
invoking the standard depletion approximation means the depleted region existing under
depletion and inversion biases is also taken to be terminated abruptly a distance x = W
into the semiconductor. However, reflecting the observation that the depletion width
increases only slightly once the semiconductor inverts, W is fixed at Wy for all inversion
biases, where Wy is the depletion width at the onset of inversion (Us = 2Uf).

The ramifications of the above approximations are as follows: Under accumulation
biasing in the delta-depletion formulation the majority carriers pile up in a §-function
distribution at the oxide—semiconductor interface; p = 0, € = 0, and U = 0 for all
x > 0. In depletion W progressively increases with increased depletion biasing until
W = Wr; p, €, and V for a given depletion bias are computed using the standard
depletion approximation. In inversion, minority carriers pile up in a §-function distribu-
tion at the oxide—semiconductor interface, while W, p, €, and V for all x > 0O remain
fixed at their Ug = 2Ug values.

From the foregoing discussion, then, to complete the delta-depletion solution we need
only work out expressions for the electrostatic variables when the semiconductor is biased
into depletion. Let us perform the required analysis. Invoking the depletion approximation
(n and p <€ N, or Np), we can write

p = q(Np — N,) O=x=w) (2.24)

and

dcg d2V Q(ND - NA)
—_— = - = — O0=x=W
dx dxz Kse() ( X ) (225)

The straightforward integration of Eq. (2.25) employing € = 0 and V = 0 at
x = W yields

éx) = M(W - x) O=x<W) (2.26)
and .
= M JERRY -y <
Vix) = Ko, W — x) O=x=W) 2.27)

The remaining unknown, W, is determined by applying the boundary condition
V = (kT /q)Us at x = 0. Thus

K, aMa—No) o,

— 2.28
s Keto (2.28)
and
2K380 kT ][/2
W=|——"——U 2.29)
[‘I(NA — Np) q °
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Figure 2.8 Doping dependence of the maximum equilibrium depletion width inside silicon de-
vices maintained at 300 K. .

Since W = Wy when Us = 2Ug, we also conclude

2K580 kT J”z
Wi = | —————— — (U, (2.30
T [Q(NA - Np) g (20 )

A plot of Wr versus doping covering the range 9 < |Ug < 16 is displayed in Fig. 2.8.

The delta-depletion solution just completed is clearly a relatively gross, first-order
theory compared to the exact solution. However, because of its greater simplicity and the
direct analogies possible with pn junction theory, the approximate formulation is widely
employed in the analysis of MOS devices. Quite often the reader will encounter both
solution approaches in a given problem. An initial analysis based on the delta-depletion
formulation usually provides closed-form results that can be readily interpreted. Greater
precision is obtained by performing a subsequent analysis based on the exact formulation.

2.4 GATE VOLTAGE RELATIONSHIP

Throughout the discussion of semiconductor electrostatics the biasing state was described
in terms of the semiconductor surface potential, Us. Results formulated in this manner
are dependent only on the properties of the semiconductor. Us, however, is an internal
system constraint or boundary condition. It is the externally applied gate potential, Vg,
which is subject to direct control. Thus, if the results of the previous section are to be
utilized in practical problems, an expression relating V5 and Us must be established. This
section is devoted to deriving the required relationship.



We begin by noting that V; in the ideal structure is dropped partly across the oxide
and partly across the semiconductor or, symbolically,

V(Ii = AVsemi + AVox (231)

Because V = 0 in the semiconductor bulk, however, the voltage drop across the semicon-
ductor is simply

A“/semi = V(x = 0) = __US (232)
q

The task of developing a relationship between Vg and Us is therefore reduced to the
problem of expressing AV,, in terms of Us.

As stated previously (Section 2.2), in an ideal insulator with no carriers or charge
centers

d%ox
=0 2.33
. (2.33)
and
dVo,
Cox = — e = constant (2.34)
Therefore
0
AV, = f Eondx = x,8,, (2.35)

where x, is the oxide thickness. The next step is to relate &, to the electric field in the
semiconductor. The well-known boundary condition on the fields normal to an interface
between two dissimilar materials requires

(Dsemi - Dox)|O~Simen‘ace = QO~S (236)

where D = £% is the dielectric displacement and Qg s is the surface center chérge/unit
area located at the interface. Since Qo5 = 0 in the idealized structure (idealization #3),*

Dox = DsemiLr =0 (237)
Ks
cgox = 2.38
Ko%s (2.38)
and

Ksx,
AV, = —0g = x'g, (2.39)

Ko

*The development here is exact. If the delta-depletion formulation is invoked, the 8-function layers of carrier
charge at the O-S interface constitute an effective “Qo.s” under accumulation and inversion conditions.
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where

x = KSxo
. = —
Ko

K is the semiconductor dielectric constant; Ko, the oxide dielectric constant; and €, the
electric field in the semiconductor at the oxide—semiconductor interface.
Finally, if Eqs. (2.32) and (2.39) are substituted into Eq. (2.31), we obtain

kT

(2.40)

Ve = —Us + x\%s (2.41)
q ‘ _
or, making use of Eq. (2.20),
kT A X4
Vi = —[US + USX—F(US,UF)} (2.42)
q Lp
sl
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Delta-depletion
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Figure 2.9 Typical interrelationship between the applied gate voltage and the semiconductor
surface potential; - delta-depletion solution, ———— exact solution (x, = 0.1 um,
N, =10/em?3, T = 300 K).



The Vi — Us dependence calculated from Eq. (2.42) employing a typical set of device
parameters - - ' is displayed in Fig. 2.9. The figure nicely
illustrates certain important features of the gate voltage relationship. For one, Uy is a rather
rapidly varying function of Vi when the device is depletion biased. However, when the
semiconductor is accumulated (Us < 0) or inverted (Us > 2Up), it takes a large change
in gate voltage to produce a small change in Us. This implies the gate voltage divides
proportionally between the oxide and the semiconductor under depletion biasing. Under
accumulation and inversion biasing, on the other hand, changes in the applied potential
are dropped almost totally across the oxide. Also note that the depletion bias region extends
only from V=0 to V5= 1V, Since the character of the semiconductor changes
drastically in progressing from one side of the depletion bias region to the other, we
therefore anticipate a significant variation in the electrical characteristics over a rather
narrow range of voltages.

2.5 SUMMARY AND CONCLUDING COMMENTS

The statics of the ideal MOS structure was the main concern of this chapter. Care was
taken to clearly define what was envisioned as the ideal structure and, wherever possible,
the specific use of a particular idealization was noted. In a subsequent chapter some of
the idealizations will be removed and the ensuing perturbations on the device character-
istics will be fully examined. The ideal structure, therefore, serves as a reference plane,
a foundation for understanding and analyzing the more complex behavior of the real
MOS structure.

Qualitatively, MOS statics has been envisioned in terms of the energy band diagram
and the block charge diagrams. These visualization aids are, of course, not confined to
this single application, but will be utilized again and again in later work. The terms
accumulation, flat band, depletion, and inversion were given a physical interpretation
using the aforementioned diagrams. Accumulation corresponds to the pile-up of majority
carriers at the oxide—semiconductor interface; flat band, to no bending of the semicon-
ductor bands, or equivalently, to no charge in the semiconductor; depletion, to the
repulsion of majority carriers from the interface leaving behind an uncompensated
impurity-ion charge; and inversion, to the pile-up of minority carriers at the
oxide—semiconductor interface. The reader should be able to associate an energy band
diagram and block charge diagram with each of these physical situations.

The quantitative formulation of MOS statics is a simple matter of solving Poisson’s
equation. Two solutions for the semiconductor part of the structure were presented herein:
a first-order solution based on the depletion approximation and an exact solution based
only on the assumptions of nondegeneracy, a constant doping profile, and a semiconductor
of sufficient thickness so that € — 0 as x — back contact. At first glance the exact
solution is complicated by the introduction of the normalized potential, U, and the
normalized doping parameter, Ug. However, once these parameters are “digested,” the
mathematical convenience derived from their use becomes obvious. Knowledge of the
parameters general properties greatly aids the “digestion” process. One should specifically
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remember that, for typical silicon substrates at room temperature, 9 < |Us| < 16 and
Up — 21 = Us < U + 21. Furthermore, Us = 0 corresponds to the dividing line be-
tween accumulation and depletion while Us = 2U; marks the end of depletion and the
start of inversion. Finally, it should be remembered that a one-to-one relationship exists

between Us, an internal system constraint, and V§, the external gate voltage applied to
the ideal structure.

PROBLEMS

2.1 For the U, Us parameter sets listed below first indicate the specified biasing condition and
then draw the energy band diagram and block charge diagram which characterizes the static state
of the system. Assume the MOS structure to be ideal.

@ Ue =18, Us =9

(b) Ue = -1, Us =0;

© Ur =13, Us =2¥;

(d) Ug ==15, Us = 3 ;

€ Ue =9 ,Us=2l.

2.2 Given Si maintained at T = 300K
with a donor doping of Np = 10"/cm®, compute:
(@ Lo

() Lg

) Ue

(d) és when Us = Ug (exact value)

(e} és when Us = 2Us (exact value)

) WatUs = Ug

(&) Wr

2.3 In this problem we wish to verify the text statement that the range of Us values is normally
restricted to Ur — 21 < Us < U + 21 for Si substrates maintained at room temperature.

(@) Referring to Fig. 2.6, draw the semiconductor energy band diagrams corresponding to the
situations where (i) Er = E. at x = 0 and (ii) Er = E, at x = 0. Indicate kTUs and kTUr on
your diagrams.

(b) Noting E. — E; = E; — E, = E¢/2, show that:

() Us=Up+ Ec/2kT, if Er = E. at x = 0;
(i) Us=Up—Ec/2kT, if Er=E, at x = 0;

(iii)’,UF — Eg/2kT < Us == Ug + Eg/2kT, if Er is confined to band gap energies between
"E,and E..

() AtT =300K the Sibafid gapis 1.12 eV and kT = 0.0259 eV. Specialize the (iii) result in part
(b) to room temperature (T =300K). Is your result compatible with the Us limits given in the text?
(Note: The text limits were chosen to be on the “safe” side to allow for variations in the meaning
of “room temperature.”)



2.4 Let us examine Fig. 2.7, particularly Fig. 2.7(c), more closely.

(a) Draw the block charge diagram describing the charge situation inside an ideal p -bulk MOS-C
biased at the onset of inversion.
(b) Is your part (a) diagram in'agree_ment with the plot of p/gNa versus x in Fig. 2.7(c)? Explain

why the p/gN4 plot has a spike-like nature near x = 0 and shows a value of p/gNa = —2atx = 0.

(c) Noting that Ur = 12 was assumed in constructing Flg 2.7, determine the Wy predicted by the
delta-depletion theory. Is the W obtained from the delta-depletion theory consistent with the charge
density plot in Fig. 2.7(c)?

2.5 (a) Construct a computer program (possibly employing a hand-held calculator) which will
automatically give V§ versus Us based on Eq. (2.42) for Us stepped in single-unit values between
the limits Ur — 21 < Us =< Ue + 21. Only Ur and xo are to be considered input variables. Let
T =300K (kT /q = 0.0259 V and Lo =2.21 x 107> cm).

(b) Settmg Xo = 0.1 g, use your program to compute Vg versus Us for A = lO / C m . . Check
your . results against Fig. 2.9.

2.6 The exact solution approach presented in Section 2.3 can also be applied to obtain the exact
electric field and electrostatic potential variation in a pn step junction under equilibrium conditions.

(a) Assuming a nondegenerately doped step junction, develop a set of equations that constitutes
an exact solution for the electrostatic variables (p, €, V) inside the pa junction under equilibrium
conditions. In the development you will find it convenient to introduce the normalized potentials:
Usi = In{NaNp/n2); Uep = In(Na/ni); and Uen = —In(Np/n). Set up x = 0 at the metal-
lurgical junction, take U = 0 atx = — on the p-side of the junction, and let U atx = 0 be U,.
(b) The exact solution approach of Section 2.3 cannot be employed to obtain the electrostatic
variables inside a pn junction when V4 # 0. Why is it the solution approach is valid for any applied
bias in an MOS-C and not in a pn junction?
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2T Construct a Wy versus doping plot similar to Fig. 2,8 that is appropriate for GaAs.
Assume T = 300 K; K = 12.85.

2.8 The energy band diagram for an ideal X, = 0.2 um MOS-C operated at T = 300 K is
sketched in Fig. P2, 8. Note that the applied gate voltage causes band bending in the semi-
conductor such that Ey = E, at the Si-SiO, interface. Invoke the delta-depletion approxi-
mation as required in answering the questions that follow.

Epym W _ .

Figure P2.,8

(a) Sketch the electrostatic potential (/) inside the semiconductor as a function of
position.

(b) Roughly sketch the electric field (€) inside the oxide and semiconductor as a function
of position.

(¢) Do equilibrium conditions prevail inside the semiconductor? Explain.
(d) Roughly sketch the electron concentration versus position inside the semiconductor.

(e) What is the electron concentration at the Si-Si0, interface?

) Ny =?
(® Us=?
() V{=7?

(i) What is the voltage drop (AVOX) across the oxide?
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2.9 Figure P2.9 is a dimensioned energy band diagram for an ideal MOS-C operated at
T = 300 K with V{ # 0. Note that Eg = E, at the Si-SiO, interface.

E
e 5 {056eV
d Ep $030eV
E
0.6 eV 4 v

Figure P3 .9

(a) Do equilibrium conditions prevail inside the semiconductor?

() Upz?
© Us=?
(d V=12
) x,=7

(f) Draw the block charge diagram corresponding to the state pictured in the energy band
diagram. For reference purposes, include the maximum equilibrium depletion width,

W, on your diagram.



