## 3 / Capacitance-Voltage Characteristics

#### 3.3 EXACT CHARGE ANALYSIS

The delta-depletion characteristics, as typified by Fig. 3.4, are a rather crude representation of reality. The first-order theory does a credible job for gate voltages comfortably within a given biasing region, but fails badly in the neighborhood of the transition points going from accumulation to depletion and from depletion to inversion. A more accurate modeling of the observed characteristics is often required in practical applications and is established by working with the exact charge distribution inside the MOS-capacitor. The exact charge analysis for the low frequency capacitance is quite tractable and is reviewed herein. The high frequency analysis, however, is very complex and involved. For this reason the high frequency results are simply quoted and appropriately combined with the low frequency results.

Let us consider an ideal MOS-capacitor with a low frequency ac signal applied to the gate of the device. When the ac gate voltage,  $v_{\rm g}'$ , is added to the dc gate voltage,  $V_{\rm G}'$ , the charge on the MOS-C gate is of course modified to  $Q_{\rm G}+q_{\rm g}$ , where  $Q_{\rm G}$  and  $q_{\rm g}$  are the dc gate charge per unit area and ac gate charge per unit area, respectively. Provided the device can follow the ac change in gate potential quasi-statically, the assumed case at low operational frequencies, one can state  $Q_{\rm G}(V_{\rm G}')+q_{\rm g}$  equals  $Q_{\rm G}(V_{\rm G}'+v_{\rm g}')$  or

$$q_{\rm g} = Q_{\rm G}(V_{\rm G}' + v_{\rm g}') - Q_{\rm G}(V_{\rm G}') = \Delta Q_{\rm G}$$
 (3.14)

Since, quite generally,

$$C = A_{\rm G} \frac{q_{\rm g}}{v_{\rm g}} \tag{3.15}$$

we have, in the low frequency limit for the ideal structure,

$$C = A_{\rm G} \frac{q_{\rm g}}{v_{\rm g}'} = A_{\rm G} \frac{\Delta Q_{\rm G}}{\Delta V_{\rm G}'} \rightarrow A_{\rm G} \frac{dQ_{\rm G}}{dV_{\rm G}'}$$
(3.16)

Equation (3.16) states that the low frequency capacitance can be determined by simply differentiating the dc expression for the gate charge. Instead of working with  $Q_G$  directly, it is more convenient to note that in an ideal structure the charge on the gate must balance the charge inside the semiconductor, or  $Q_G = -Q_S$ , where  $Q_S$  is the total semiconductor charge per unit area of the gate. We can therefore write

$$C = -A_G \frac{dQ_S}{dV_G'} = -A_G \frac{dQ_S}{dU_S} \frac{dU_S}{dV_G'}$$
(3.17)

The latter form of Eq. (3.17) suggests a mode of attack for completing the analysis. We already know, restating Eq. (2.42),

$$V'_{G} = \frac{kT}{q} \left[ U_{S} + \hat{U}_{S} \frac{x'_{o}}{L_{D}} F(U_{S}, U_{F}) \right]$$
(3.18)

In addition, applying Gauss' law, we find that

$$Q_{\rm S} = -K_{\rm S} \varepsilon_0 \mathscr{E}_{\rm S} = -\hat{U}_{\rm S} \frac{kT}{q} \frac{K_{\rm S} \varepsilon_0}{L_{\rm D}} F(U_{\rm S}, U_{\rm F})$$
(3.19)

Thus, performing the required differentiations, substituting into Eq. (3.17), and reorganizing the result, we conclude

$$C = \frac{C_{\text{O}}}{1 + W_{\text{eff}}/x'_{\text{o}}}$$

$$W_{\text{eff}} = \hat{U}_{\text{S}}L_{\text{D}} \left[ \frac{2F(U_{\text{S}}, U_{\text{F}})}{e^{U_{\text{F}}}(1 - e^{-U_{\text{S}}}) + e^{-U_{\text{F}}}(e^{U_{\text{S}}} - 1)/(1 + \Delta)} \right]$$
(3.20)

$$W_{\text{eff}} = \hat{U}_{\text{S}} L_{\text{D}} \left[ \frac{2F(U_{\text{S}}, U_{\text{F}})}{e^{U_{\text{F}}(1 - e^{-U_{\text{S}}}) + e^{-U_{\text{F}}}(e^{U_{\text{S}}} - 1)/(1 + \Delta)}} \right]$$
(3.21)

where

$$\Delta = 0$$
 in the low frequency limit (3.22)

and, in the high-frequency limit, for a p-type device,

$$\Delta = \begin{cases} 0 & \text{acc } (U_{S} < 0, U_{F} > 0) \\ \frac{(e^{U_{S}} - U_{S} - 1)/F(U_{S}, U_{F})}{\int_{0}^{U_{S}} e^{U_{F}} (1 - e^{-U})(e^{U} - U - 1)} dU & \text{depl, inv} \\ (U_{S} > 0, U_{F} > 0) & \text{(3.23a)} \end{cases}$$
(3.23b)

Unlike the delta-depletion result, C cannot be expressed explicitly as a function of  $V_{\rm G}'$  in the exact charge formulation. Both variables, however, have been related to  $U_{\rm S}$  and it is possible to compute numerically the capacitance expected from the structure for a given applied gate voltage using Eqs. (3.20) through (3.23) in conjunction with Eq. (3.18). The usual and most efficient computational procedure is to calculate C and the corresponding  $V'_{G}$  for a set of assumed  $U_{S}$  values. Typically, a sufficient set of  $(C, V'_{G})$  points to construct the  $C-V'_G$  characteristic will be generated if  $U_S$  is stepped by whole-number units  $(-5, -4, \cdots)$  over the normal operating range of  $U_S$  values  $(U_F - 21 \le U_S \le U_F + 21)$ at room temperature). It should be noted that care must be exercised if  $U_{\rm S} = 0$  is included as one of the computational points. At  $U_S = 0$  the Eq. (3.21) expression for  $W_{\text{eff}}$  becomes indeterminate (0/0) and, as is readily established, must be replaced by  $W_{\rm eff} = \sqrt{2}$  $L_{\rm D}/[\exp(U_{\rm F}) + \exp(-U_{\rm F})]^{1/2}$ . Also, the quoted high frequency results hold only for p-type devices. It is nevertheless possible to obtain an n-type characteristic by simply running the calculations for an equivalently doped p-type device and then changing the sign of all computed  $V'_{G}$  values. This procedure works because of the voltage symmetry between ideal n- and p-type devices.

## EXACT-CHARGE C-V THEORY SUPPLEMENT

### BASIC RELATIONSHIPS

$$v_{G}' = v_{G}' + v_{g}'$$
 $q_{G} = q_{G} + q_{g}$ 
 $\mathcal{E}_{S} = \mathcal{E}_{SØ} + \mathcal{E}_{A}$ 

TOTAL D.C. A.C. TOTAL D.C. A.C.

TOTAL D.C. A.C.

$$\mathcal{V}_{G}' = \frac{k\Gamma}{q}U_{S} + \chi_{O}'\mathcal{E}_{S} \qquad \mathcal{V}_{G}' = \frac{k\Gamma}{q}U_{S} + \chi_{O}'\mathcal{E}_{S}, \qquad \mathcal{V}_{G}' = \frac{k\Gamma}{q}U_{A} + \chi_{O}'\mathcal{E}_{A}.$$

$$\mathcal{G}_{G} = -\mathcal{G}_{S} = K_{S} \mathcal{E}_{S} \mathcal{E}_{S} \qquad \mathcal{G}_{G} = -\mathcal{G}_{S} = K_{S} \mathcal{E}_{S} \mathcal{E}_{S} \qquad \mathcal{G}_{G} = -\mathcal{G}_{A} = K_{S} \mathcal{E}_{S} \mathcal{E}_{A}$$

$$\mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{N}, U_{R})}{LD} \qquad \mathcal{E}_{S} \mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{R})}{LD}$$

$$\mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{N}, U_{R})}{LD} \qquad \mathcal{E}_{S} \mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{R})}{LD}$$

$$\mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{N}, U_{R})}{LD} \qquad \mathcal{E}_{S} \mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{R})}{LD}$$

$$\mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{N}, U_{R})}{LD} \qquad \mathcal{E}_{S} \mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{R})}{LD}$$

$$\mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{N}, U_{R})}{LD} \qquad \mathcal{E}_{S} \mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{R})}{LD}$$

$$\mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{N}, U_{R})}{LD} \qquad \mathcal{E}_{S} \mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{R})}{LD}$$

$$\mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{N}, U_{R})}{LD} \qquad \mathcal{E}_{S} \mathcal{E}_{S} = \hat{U}_{S} \frac{k\Gamma}{g} \frac{F(U_{S}, U_{R})}{LD}$$

$$F(u_{S}, u_{N}, u_{p}) = \left[ e^{-U_{S}} + u_{s} - 1 \right] + e^{-U_{N}} \left( e^{U_{S}} - u_{s} - 1 \right) \right]^{\frac{1}{2}}$$

$$F(U_{S}, U_{F}) = \left[ e^{-U_{F}} \left( e^{-U_{S}} + U_{S} - 1 \right) + e^{-U_{F}} \left( e^{U_{S}} - U_{S} - 1 \right) \right]^{\frac{1}{2}}$$

$$C = \frac{99}{v_{g'}} = \frac{-9a}{\frac{k\Gamma}{q}u_{A} + \gamma_{o}' \mathcal{E}_{A}} = \frac{-9a}{\frac{k\Gamma}{q}u_{A} - 9a/C_{o}} = \frac{C_{o}\left(\frac{-9s}{k\gamma_{q}}u_{A}\right)}{C_{o} + \left(\frac{-9s}{k\Gamma}u_{A}\right)}$$

ळ

$$C = \frac{C_0 C_0}{C_0 + C_0}$$
 where  $C_0 = -\frac{Q_0}{\frac{ET}{8}U_0} = seniconjunctor capacitable$ 

NOTE: all q's and C's are per unit area of the gate.

| <br>GENERAL CA RELATIONSHIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| We note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $-q_{\Delta} = K_{S} \epsilon_{o} \mathcal{E}_{\Delta} = K_{S} \epsilon_{o} (\mathcal{E}_{S} - \mathcal{E}_{S\phi}) = \hat{U}_{S} \frac{k_{\Gamma} K_{S} \epsilon_{o}}{q} \left[ F(u_{S}, u_{N}, u_{P}) - F(u_{S}, u_{F}) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <br>where $u_s = U_s + u_s$ ; $u_N = U_F + u_m$ ; $u_P = U_F + u_P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Expanding F(us, up, up) in a Taylor series expansion about the d.c. operating point, and only beaping first order us, un, and up terms in the expansion, one obtains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $F(u_{s}, u_{n}, u_{p}) = F(v_{s}, v_{f}) + \frac{2F}{2u_{s}} u_{s} + \frac{2F}{2u_{n}} u_{m} + \frac{2F}{2u_{p}} u_{p}$ $v_{s}v_{f} \qquad v_{s}v_{f} \qquad v_{s}v_{f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $= F(U_{S_1}U_F) + \underbrace{e^{-U_{S_1}U_F}}_{Q_F(U_{S_1}U_F)} + \underbrace{e^{-U_{S_1}U_F}}_{Q_F(U_{S_1}U_F)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\frac{-U_{F}U_{S}}{-e^{-(e^{-}U_{S}-1)}u_{m} + e^{-(e^{-}+U_{S}-1)}u_{p}}$ $\frac{-U_{F}U_{S}U_{F}}{2F(U_{S}U_{F})}u_{m} + e^{-(e^{-}+U_{S}-1)}u_{p}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Substituting the expansion cuto the - qs relationship, and then substituting the new - qs relationship into the Cs expression, we conclude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $C_{\Delta} = U_{S} \frac{k_{S} \epsilon_{O}}{k_{D}} \left[ \underbrace{C_{I} - C_{I} + C_{I} + C_{I} + C_{I} - U_{S} - U_{$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Low-FREQUENCY CAPACITANCE

cln the lover-frequency limit, the MOS-C follows the a.c.

gate signal quasistatecally, meaning  $U_{n}=0$  and  $U_{n}=0$ .

Introducing the symbols Cst and Ct to be the

Rose-frequency semisordiester copacitance and MOS-C

capacitance (both per unit area), we conclude

$$C_{DL} = U_{S} \frac{k_{S} \epsilon_{0}}{L_{D}} \frac{e^{U_{F}}(1 - e^{-U_{S}}) + e^{-U_{F}}(e^{U_{S}})}{2 F(U_{S}, U_{F})}$$

and

HIGH-FREQUENCY CAPACITANCE

In the high-frequency limit, the majority corrier can

still follow the applied a.c. signal. Thus, um = 0 if
the semiconductor is m-type and up = 0 if the semiconductor
is p-type. Moreover, of the MOS-C is accumulation or
weakly Depletion biased, only the majority corriers affect
the observed co positions; i.e., the minority carrier quasiFermi level term in the general Cs. expression can be
agnored. Therefore, under accumulation and weak Doplotion
beasing Cs==Cs+ and C==C+, where Cs+ and Cq are
the high-frequency semiconductor and MOS-C corporations
per unit also, respectively. On the other hand, for Depletion
beases where IUs1>1Us1 and for inversion beases, the minority
carrier term in the general Cs expression cannot be
megleited. To complete the analysis, we are therefore
required to obtain explicit expressions for um/les and
up/us.

| <br>The relationship between un or up and us is obtained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| from the requirement that the total number of menorety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| carriers in an inversion love at a given d.c. bear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| carriers in an inversion loyer at a given d.c. beas<br>does not change diering a high-frequency copocitaine<br>measurement. Mothematically, to being the<br>semiconductor to be p-type, we require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| measurement. Mathematically, to bring the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <br>semiconductor to be p-time, we repliere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| (m-m) dx = (m-m) dx my is the electron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>Consortion in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <br>$ \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_b) dx} = \frac{\int (m - m_b) dx}{\int (m - m_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D.C. TA.C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br>Mating m = m P DC + AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <br>O - O C U-UF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <br>Noting $M = M_1 \in U - UF \dots D.C. + A.C.$ $M = M_1 \in U - UF \dots D.C.$ Changing variables from x to u or U, and concelling the same greatities appearing in both integrals, we obtain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Changing Darlabeas from x to a of 0, and concerning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| same greantités appearing en both migrals, me obtain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br>$ \frac{e^{u-u_N}-e^{-u_N}}{F(u_1u_N,U_F)}du = \frac{e^{U-U_F}-e^{-U_F}}{F(U_1U_F)}dU \qquad p-type semi $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| F(U,UF) P-type sens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br>Satting Us = Us + us and UN = UF + Um, expanding the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| left-hand integral in terms of the a.c. quantities is and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Un, and Reaping only up to first order terms in us and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <br>un, one ultimately dedieces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br>$\frac{u_{m}}{u_{\Delta}} = \frac{1}{\langle E(U_{n},U_{n}) \rangle \langle U_{n}   U_{n}   U_{n} \rangle \langle U_{n}   U_{n}   U_{n}   U_{n} \rangle \langle U_{n}   U_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <br>$\frac{\left(\frac{F(U_{S_1}U_F)}{e^{U_{S_1}}}\right)^{\left(U_{S_1}\left(\frac{e^{-1}}{e^{-1}}\right)\left(1-\frac{e^{-U_F(e^{-U_{-1}})}}{2F^2(U_1U_F)}\right)}\left[\frac{U_{S_1}\left(\frac{e^{-1}}{e^{-1}}\right)\left(1-\frac{e^{-U_F(e^{-U_{-1}})}}{2F^2(U_1U_F)}\right)\right]dU$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <br>$\left(\frac{\partial U_{S-1}}{\partial U_{S-1}}\right) \left(\frac{\partial U_{S-1}}{\partial U_{S-1}}\right) $ |
| (C , 1) [ +(0)0E) ( 24-(0)0E) 1]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <br>Finally, substituting the above Un/U, relationship outs the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Finally, substituting the above $U_n/U_s$ relationship into the general Cs expression, remembering $U_p = 0$ for a $p$ -type semiconductor, and manipulating the result into as simple a form as possible, we conclude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| semiconductor, and manipulating the result into as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| semple a lorm as possible. Les complede.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|   | C <sub>0</sub> = C <sub>0</sub>        |
|---|----------------------------------------|
|   | + Û <sub>S</sub> L <sub>D</sub>        |
|   | 1 - US LD QUE/1 - Q-US/QUS 1) // 14 A) |
|   | χ, ι ε · (ι - ε · ) τ ε · (ε ι)/(ιτΔ)] |
|   |                                        |
|   | where                                  |
|   | ( O Us < UF                            |
|   | $\Delta = $                            |
|   |                                        |
|   | (05 0 0 F (1-6-0 10 0 0 - 0 - 1) 11    |
|   | 2 F 3(() () -)                         |
|   | 0 20 10 1                              |
|   |                                        |
|   | ·                                      |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
| , |                                        |
|   |                                        |
|   |                                        |
|   |                                        |
| · |                                        |
|   |                                        |
|   |                                        |
|   |                                        |

# A Comparison of Quantum-Mechanical Capacitance–Voltage Simulators

C. A. Richter, A. R. Hefner, and E. M. Vogel

Abstract—We have systematically compared the results of an extensive ensemble of the most advanced available quantum-mechanical capacitance-voltage (C-V) simulation and analysis packages for a range of metal-oxide-semiconductor device parameters. While all have similar trends accounting for polysilicon depletion and quantum-mechanical confinement, quantitatively, there is a difference of up to 20% in the calculated accumulation capacitance for devices with ultrathin gate dielectrics. This discrepancy leads to large inaccuracies in the values of dielectric thickness extracted from capacitance measurements and illustrates the importance of consistency during C-V analysis and the need to fully report how such analysis is done.

Index Terms—Capacitance, effective oxide thickness, gate dielectric, inversion quantization, MOS devices, polysilicon depletion.

#### I. INTRODUCTION

IN RECENT years, the continuing decrease of the gate dielectric thickness in conventional silicon MOS devices has made it increasingly difficult to predict capacitance—voltage (C-V) curves accurately. Thus, predictive TCAD is problematic and likely to be incorrect. Researchers have developed sophisticated methods to simulate C-V curves [1]–[8], [10], [11] in an effort to overcome this difficulty. However, there has been little work comparing the outputs from such simulators to check their agreement. In an effort to determine the variability between such simulators, we have acquired an ensemble of five advanced quantum-mechanical (QM) simulation and analysis packages and compared their results for a matrix of C-V curves produced for a range of device parameters.

Currently, one of the most prevalent uses of these QM C–V simulators is to determine the equivalent oxide thickness (EOT) of MOS devices made from alternate (high-k) dielectrics proposed to replace  $\mathrm{SiO}_2$  as the gate dielectric in future MOS technologies. Finding a replacement gate dielectric is necessary in order for traditional CMOS scaling to continue, and EOT is a primary criteria used to assess which materials are technologically most promising. Thus, it is critical that the interrelationship of QM CV simulators be well characterized to properly compare EOT extracted from experimental C–V curves.

Traditionally, the thickness, d, of the dielectric in an MOS capacitor was easily found by  $d = \varepsilon A/C_{ox}$ , where  $\varepsilon$  is the dielectric's permittivity, A is the device area, and  $C_{ox}$  is the

Manuscript received June 13, 2000. This work was funded in part by the NIST Office of Microelectronics Programs. The review of this letter was arranged by Editor K. De Meyer.

The authors are with Semiconductor Electronics Division, National Institute of Standards and Technology, Gaithersburg, MD 20899-8121 USA (e-mail: Curt.Richter@NIST.Gov).

Publisher Item Identifier S 0741-3106(01)00686-3.

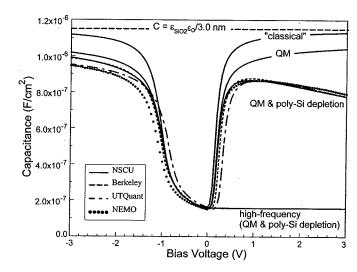



Fig. 1. Simulated C-V curves accounting for both QM confinement and poly-Si depletion. Simulated parameters are  $d_{ox}=3.0$  nm (2.987 nm for NEMO [10]),  $N_d=3\times 10^{17}$  cm<sup>-3</sup>, and  $N_{poly}=5\times 10^{19}$  cm<sup>-3</sup>. A classical C-V with no QM confinement or poly-Si depletion and a QM C-V which accounts for QM confinement only are also shown for illustrative purposes.

device capacitance (in accumulation). However, this simple relationship does not hold for thin oxides, and extracting a accurate physical thickness from C-V curves is increasingly difficult for oxide thicknesses at and below 2 nm. Two primary effects, illustrated in Fig. 1, must be considered: quantum mechanical confinement, and the finite voltage drop across polysilicon gates (poly-Si depletion). To avoid the confusion often associated with C-V-derived film thickness, the following terminology will be used. EOT is the equivalent thickness of SiO<sub>2</sub> that would produce the same C-V curve as that obtained from the alternate dielectric system. The capacitive effective thickness (CET(V)) is simply the thickness that is derived directly from the relationship CET(V) =  $(\varepsilon_0 \varepsilon_{\text{SiO}_2} A)/\text{C(V)}$ , where  $\varepsilon_0$  is the permittivity of free space,  $\varepsilon_{\text{SiO}_2}$  is the relative permittivity of SiO<sub>2</sub>, and C(V) is the capacitance at bias voltage V.

#### II. SIMULATORS

An ensemble of five of the most advanced, one-dimensional (1-D), quantum-mechanical C-V software packages was used in this comparison:

- 1) Quantum mechanical C-V simulator developed by the Device Group at UC Berkeley (Berkeley) [5];
- 2) Nanotechnology Engineering Modeling Program (NEMO) [2], [11];
- CVC, a program developed by Hauser [1], [10] at NCSU (NCSU);

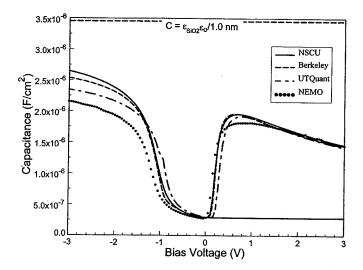



Fig. 2. Simulated C-V curves accounting for both QM confinement and poly-Si depletion. Simulated parameters are  $d_{ox}=1.0$  nm (1.086 nm for NEMO),  $N_d=1\times 10^{18}$  cm<sup>-3</sup>, and  $N_{poly}=1\times 10^{20}$  cm<sup>-3</sup>.

- 4) UTQuant developed at UT-Austin [4];
- 5) IBM's Tqm\_v6 [3].

Three programs are purely simulation packages; Berkeley, NEMO, and UTQuant. NCSU is both a simulation and analysis package, while IBM's Tqm\_v6 is only a C-V analysis program. The simulators all assume a source of minority carriers in the Si-substrate, and therefore produce ideal quasistatic C-V curves, or curves obtained in transistor measurements.

In simulating *C-V* curves, Berkeley calculates the electron/hole distributions in both inversion and accumulation derived by solving the Schrödinger and Poisson equations self-consistently with the Fermi-Dirac distribution [5]. NEMO, the most physically comprehensive of the ensemble, is a nonequilibrium Green's function simulator [2], [11]. In it, fundamental physics—such as multiband scattering, inelastic scattering, and interface roughness—can be simulated. NCSU is based upon a model containing first order physics approximations that can be rapidly calculated [1], [10]. UTQuant is another self-consistent, QM Poisson solver [4]. IBM's Tqm\_v6 is a fast QM *C-V* analysis program that is based upon polynomial interpolation from the results of IBM's extensive QM simulations [3].

An n-channel MOS capacitor was chosen as the test structure to compare the various simulators. The MOS capacitor consists of a p-type silicon substrate, ideal SiO<sub>2</sub> gate dielectric, and n-type poly-Si as the gate material. This idealized structure was chosen in order to best compare the results of the simulators themselves. The parameters of the capacitor were varied to create a matrix of C-V curves: oxide thickness,  $d_{ox}=1.0$  nm, 2.0 nm, 3.0 nm, and 10.0 nm; silicon substrate doping,  $N_d=1\times10^{15}$  cm<sup>-3</sup>,  $1\times10^{17}$  cm<sup>-3</sup>,  $3\times10^{17}$  cm<sup>-3</sup>, and  $1\times10^{18}$  cm<sup>-3</sup>; and poly-Si doping,  $N_{poly}=1\times10^{19}$  cm<sup>-3</sup>,  $5\times10^{19}$  cm<sup>-3</sup>, and  $1\times10^{20}$  cm<sup>-3</sup>. An effort was made to insure that comparable values were used for other parameters in the simulations such as work functions because their default values sometimes varied between simulators. Our simulations were done

TABLE I

PARAMETERS EXTRACTED BY USING Tqm\_v6. SIMULATED PARAMETERS ARE: TOP,  $d_{ox} = 1.0$  nm,  $N_d = 1 \times 10^{18} {\rm cm}^{-3}$ , and  $N_{poly} = 1 \times 10^{20} {\rm cm}^{-3}$ ; BOTTOM,  $d_{ox} = 3.0$  nm,  $N_d = 3 \times 10^{17} {\rm cm}^{-3}$  and  $N_{poly} = 5 \times 10^{19} {\rm cm}^{-3}$ . CET IS DETERMINED AT -2.5 V

| Simulator       | CET (nm) | EOT (nm) | $V_{fb}(V)$ | Na (cm-3) |
|-----------------|----------|----------|-------------|-----------|
| Berkeley        | 1.408    | 0.878    | -1.141      | 1.12E18   |
| NCSU            | 1.357    | 0.833    | -1.133      | 1.12E18   |
| NEMO (1.086 nm) | 1.663    | 1.108    | -1.281      | 1.12E18   |
| UTQuant         | 1.520    | 0.979    | -0.948      | 1.20E18   |

| Simulator       | CET (nm) | EOT (nm) | $V_{\mathbb{D}}(V)$ | N <sub>d</sub> (cm <sup>-3</sup> ) |
|-----------------|----------|----------|---------------------|------------------------------------|
| Berkeley        | 3.562    | 2.849    | -1.087              | 3.44E17                            |
| NCSU            | 3.552    | 2.840    | -1.076              | 3.44E17                            |
| NEMO (2.987 nm) | 3.737    | 3.012    | -1.153              | 3.19E17                            |
| UTQuant         | 3.695    | 2.973    | -0.920              | 3.44E17                            |

from -5 V to 5 V in nominally 50 mV steps <sup>1</sup>. It should be noted that this voltage range can lead to artificially large electric fields in the thinnest devices simulated.

#### III. RESULTS AND DISCUSSION

Figs. 1 and 2 show typical C-V simulations for  $d_{ox}=3.0 \text{ nm}$ and for  $d_{ox} = 1.0$  nm, respectively (with the exception of the thickness used in NEMO, which is nominally the same 2). These figures illustrate that the simulators are in qualitative agreement; i.e., the overall shape of the C-V curves is the same for these four different simulators. More specifically, the capacitance value at the minimum is the same for the set. This agreement indicates that the simulators agree on how substrate doping affects the shape of the C-V curves. The flatband and threshold values of the C-V curves are also in good agreement with the exception that the default parameters used for UTQuant lead to a slight shift with respect to the others. This agreement between the simulators, where some are based on very different fundamentals (such as NSCU and NEMO) and others that have nominally the same basis (i.e., UTQuant and Berkeley), instills confidence in the overall capabilities of all these simulators.

However, there are systematic trends and important differences between the various simulators. The largest disparity is in the values of the accumulation region capacitance. The NCSU and Berkeley simulators tend to have the largest accumulation capacitance for a given set of parameters, while NEMO and UTQuant have a lower accumulation capacitance. This disagreement leads to C-V curves that appear to be from devices with different oxide thicknesses. On the other hand, there is surprisingly little difference in the simulated C-V curves in the inversion region. It should be noted that there is slightly greater variability (not shown) in the inversion capacitance when a metal gate is simulated (i.e., no poly-Si depletion).

<sup>&</sup>lt;sup>1</sup>The Berkeley simulator simulates data in steps that are uniform in Si-surface potential, and are therefore not uniform in gate bias. A comparable number of data points (200) were simulated

<sup>&</sup>lt;sup>2</sup>In NEMO, a minimum mesh of the silicon lattice constant (0.271 547 nm) is most physically realistic and gives consistent results. Therefore, the thicknesses simulated in NEMO are near, but not exactly, the same as the nominal thickness values

37

In order to quantitatively determine the relationships among the various simulators, we have used Tqm\_v6, IBM's QM C-V analysis program, to extract a reduced set of parameters (or assessment criteria) for each simulated C-V curve. These extracted values are then used to compare the results for the simulators. This analysis also compares the simulators with the calculations utilized by Tqm\_v6. Table I shows the extracted EOT, CET, and N<sub>d</sub> for two different sets of parameters; one set at  $d_{ox} = 3.0$  nm and the other set at  $d_{ox} = 1.0$  nm. There is little variation in the extracted substrate doping values, as expected. In addition, the extracted flatband values are also in moderate agreement, as expected from the results shown in Figs. 1 and 2. The simulators are not in such strong agreement for EOT. There is a maximum difference <sup>3</sup> of 0.185 nm between the simulations for the  $d_{ox} = 3.0$  nm parameter set, and a maximum difference of 0.189 nm for  $d_{ox}=1.0$  nm. This illustrates that the offset between simulators is not scaling with the thickness of the SiO2, and thus becomes a larger problem for thinner gate dielectrics. The apparent thickness variability is a significant proportion of the total film thickness (up to 20%). This observed thickness variability is larger than the EOT thickness control value (<±0.08 nm) required for the year 2001 by the 1999 ITRS [9]. We are currently investigating the possible physical assumptions leading to differences between the various simulators such as: the use of approximations for quantum effects versus a full solution of the Schrödinger equation, wave function boundary conditions at the Si/SiO2 interface, type of carrier statistics, and models for handling highly doped poly-Si. In addition to a comprehensive understanding of the physical assumptions, a detailed knowledge of the computational methods used to solve the underlying physical equations is necessary to fully understand why this suite of programs is not in exact agreement in accumulation.

Although a significant discrepancy has been identified, it is difficult experimentally to determine which simulator is most "accurate." Typically, physical thickness measurements have minimum uncertainties on the order of 0.2 nm with regards to accuracy. In addition, the active doping concentration and profiles in the poly-Si gate affect the derived thickness and therefore also must be determined accurately. Thus, while there are systematic differences among the simulators they are in agreement to levels that are experimentally verifiable. Choosing the "most correct" one remains extremely challenging.

#### IV. CONCLUSIONS

While this extensive comparison of C-V simulator/analysis packages increases the confidence in the individual packages

 $^3 \rm The~maximum~difference$  is determined from comparing  $d_{ox}^{\rm simulated}$  EOT(Tqm\_v6) for the various simulators.

in this ensemble, important systematic differences in the resulting C--V curves have been observed. The most noticeable of these variations occurs in the accumulation capacitance region and leads to variations in extracted EOT on the order of 0.2 nm for total  $SiO_2$  film thicknesses in the range 1.0 nm to 3.0 nm. This thickness variation is a significant proportion of the total film thickness—up to 20% of the total film thickness. The demonstrated discrepancy illustrates that when reporting experimentally derived electrical thickness results, it is important to describe fully how these values were obtained. The same experimental curve can lead to different extracted EOT values depending upon which QM software is used for the analysis. Therefore, it is essential that EOT results be presented consistently and with sufficient detail to allow the technical community to reliably compare C--V results.

#### ACKNOWLEDGMENT

The authors would like to acknowledge R. Lake (Raytheon), J. Hauser (NCSU), D. Buchanan, E. Gusev (IBM), A. Tasch (UT Austin), the Device Group at UC Berkeley, S. Satterfeld, D. Blackburn, and J. Ehrstein (NIST) for their help during this comparison.

#### REFERENCES

- J. R. Hauser and K. Ahmed, "Characterization of ultra-thin oxides using electrical C-V and I-V measurements," in *Characterization and Metrology for ULSI Technology*, Seiler et al., Eds. Woodbury, NY: AIP, 1998, pp. 235-239.
- [2] R. Lake et al., "Single and multiband modeling of quantum electron transport through layered semiconductor devices," J. Appl. Phys., vol. 81, pp. 7845-7869, 1997.
- [3] S.-H. Lo, D. A. Buchanan, and Y. Taur, "Modeling and characterization of quantization, polysilicon depletion and direct tunneling effects in MOSFET's with ultrathin oxides," *IBM J. Res. Develop.*, vol. 43, pp. 327–337, 1999.
- [4] W.-K. Shih et al., UTQUANT 2.0 User's Guide. Austin, TX: Univ. Texas Press, Oct. 1997.
- [5] Berkeley Device Group.. [Online]. Available: www.device.eecs.berkeley.edu/qmcv/html
- [6] K. S. Krisch, J. D. Bude, and L. Manchanda, "Gate capacitance attenuation in MOS devices with thin gate dielectrics," *IEEE Electron Device Lett.*, vol. 17, pp. 521–524, 1996.
- [7] C. Bowen et al., "Physical oxide thickness extraction using quantum mechanical simulation," in *IEDM Tech. Dig.*, 1997, pp. 869–872.
- [8] S. V. Walstra and C.-T. Sah, "Thin oxide thickness extrapolation from capacitance-voltage measurements," *IEEE Trans. Electron Devices*, vol. 44, pp. 1136–1142, 1997.
- [9] Semiconductor Industry Association, International Technology Roadmap for Semiconductors: 1999. Austin, TX: SEMATECH, 1999.
- [10] W. K. Henson et al., "Estimating oxide thickness of tunnel oxides down to 1.4 nm using conventional capacitance-voltage measurements on MOS capacitors," *IEEE Electron Device Lett.*, vol. 20, pp. 179–181, 1999.
- [11] D. K. Blanks et al., "NEMO: General release of a new comprehensive quantum device simulator," in Proc. IEEE 24th Int. Symp. Compound Semiconductors, 1998, pp. 639-642.