T7-1

NOTE: U; in the following notes is used instead of U to represent the normalized electrostatic

potential in the semiconductor.

In-Vb "Exact" formulation

The relationship between the exact formulation and the
foregoing theories is much the same as the relationship between
charge analysis and the §-depletion approach used in establishing
the MOS-C C—VG' characteristics. QN(y) is no longer thought of
as a $-function but is deduced from electrostatic computations
which treat the x-direction band bending in the channel.
Furthermore, the exact formulation retains both the drift and
diffusion components in the computation of ID' As a consequence
of the increased theoretical sophistication one can eliminate a
major failing present in the simpler theories. Conceptually,
leads ohmically connected to a semiconductor can be thought of
as tying directly into the semiconductor Fefmi_level. When the
soufce is grounded and the drain VD ? O biased, the Fermi level
of the drain island is lowered by an energy qVD relative to the
Fermi level of the source island. This does NOT automatically
imply that the electrostatic potential increases by an amount
VD at y=L relative to y=0. In other words, externally applied
voltages set the electrochemical potential difference between

points in a semiconductor, not the electrostatic potential
difference. By invoking the QN‘ § -function approximation and
ignoring the diffusion current one essentially equates the
electrochemical and electrostatic potential variation in the
y-direction. This simplification is no longer necessary in the

exact formulation.
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As implied in the preceding paragraph, the exact formulation
involves Permi level and quasi-Fermi level considerations.
Addressing ourselves to the positional variation of these levels

we note that setting J =4 in the MOST channel (general

Ny
simplification (6), section 11.2.1) is equivalent to assuming

JP = 0 and JNX = O in a n-channel device. However,

Ip =,upPVFP =0 = FP_: constant = Ep
Ig = KN dFy/dx = 0 = F\=Fy(y)=constant in the x-direction

In other words, based on the J = JNyAsimplification, the majority
carrier (hole) quasi-Fermi level forms an energy surface which is
constant everywhere under the MOST gate. The bulk minority
carrier (electron) quasi-Fermi level forms an energy surface in
the channel which is constant in the x-direction but slopes in

the y-direction from the source to the drain. At the source FN
must line-up with the source Fermi level; at the drain FN

must line-up with the drain Fermi level (see Fig. 11.8). 1In the
semiconductor bulk FN must of course come back up to the bulk
Fermi level, EF; i.e., FN will exhibit an x-dependence at some
point exterior to the channel and a small JNX current will flow
from the semiconductor surface into the semiconductor bulk.
Because of the low carrier concentrations involved, however, litfie
error is introduced if one assumes FN = FN(y) = constant independent
of x everywhere. Taking FN = FN(y) everywhere under the MOST

gate we can write

Uy() =[5, B-ry()] e [, ®-mg) /it + [mgmmy(3)] frem
= Up + g(y> (11.32)

§(r) = [Bp - g/ (11.33)

- The newly introduced g(y) parameter can be thought of as the

normalized electrochemical potential at any given point in the
channel. At the source g(y)=0; at the drain §(y)=VD/(kT/q)51;D.
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The remainder of the exact formulation involves straight-

forward algebra. Since

U,.-U U (x,y)-U_-£t(y)
N(x,y) = nse LN n;e L F g , (11.34a)
(n-channel
U,-U U,-U,(x,y) device)
P(x,y) = ne Pl _ n e ¥l (11.34p)
and, under the gradual channel approximation,
2
~ J& U
V€ & X - _ 21 (11.35)
9x 3x
we can write
92”1 1 Up-Up-§(y) Up-Up Uy -
= (e -e +e -—-e ) (11.36)
2 2
X 2Ly,

The constancy of E in the x-direction permits eq.(ll.36) to

be integrated in a routine manner.

W A F(Up,UL,E)

- - g L1 Fo (11.37)
Ix I8 LD
- | 1/2 .
U, -U U, U.- -
F(U;,Up,%) = [e Ple Tup-1) +e F(e ! g—UIfe )] (11.38)
We can now determine QN(y).
4 % :
N Up=Up=§ -Up-§
Qp(y) = -q \N(x,y)dx = ~qn; | (e T T—e 7 Tdx  (11.39a)
[+] (-]
R g
U.-U_—- U~
I~ YF F :
(e = )dU; (11.39b)

e
= —qn.L
i™D F(UI,UF,g)

The introduction of the niexp(—UF—S) term in the above equations
is merely a maneuver to permit integration into the semiconductor
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bulk. Without this term QN formally blows up as UI-#-O. In an
actual computation, however, one terminates UI at some value > O,
usually UI = UF’ thereby completely negating the importance of
this term. UIS was dropped in transforming from x to UI in
eq.(11.39b) with the understanding that only UIS ? 0 values are
of interest in n-channel operation.

Turning to the current derivation proper we have

J = JNy = QN dFN/dy = ~kI® N ag/dy (11.40)
Xe Xe
ID = -7 SJNydx = ankT dg‘gN(x,y)dX : (11.41a)
. [ o
at
= -7t —E-‘QN e (11.41b)

Separating variables, integrating over the length of the channel,
. o 2 . .
noting aniLD = (00/2)(KSXO/KOLD)(kT/q) , and remembering I is

a constant independent of y, one obtains
= ey

Y Urs
. 2
Z'“nco( s o) (ﬂ) at eUI_UF_E__ o §
21, \KoMp/\a AU D B
d
LV >0
Up= VD/(kT/q)> 0

I, =

D (11.42)

I

where the functional relationship between UIS and § is determined by

' K. x
. kT A S7o
Vo =& [UIS + Upg _KOLD UpgyU §)] (11.43)

Taken together egs.(11.42) and (11.43) constitute a complete

. . '
solution for ID(VG',VD). To compute I for a given V,'--Vy
data set one must first solve eq.(11.43) by an iteration process

to obtain U vs. § at various points along the channel. This

IS
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information is then substituted into eg.(11.42) and the double
integration performed using numerical methods.

The most intriguing aspect of the exact formulation is the
automatic saturation of the predicted ID—VD characteristics at
large VD values. This negates the need to define a VDS and the
theory ean be utilized for all drain voltages > 0 (n-channel
devices) even though one of the major theoretical assumptions,
nameLy£5,<<€X, is explicitly violated in the structure above
pinch-off. This automatic saturation results of course from
the inclusion of the diffusion current and the proper handling
of the applied voltage boundary conditions. The reader will
also note the absence of a turn-on voltage in the exact
formulation. A sharply defined turn-on point is in reality a
convenient fiction necessitated by the $-depletion approximation
utilized in the simpler theories. As correctly predicted by the
exact theory, a surféce current can be obsgserved at surface potentials
slightly below UIS = 2U, and "turn-on" is not an abrupt phenomenon;

R
the current actually increases to a significant magnitude over

a small range in gate potentials.
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Abstract—The now-classic and highly accurate double-integral expression for the drain current flowing in

long-channel MOSFET’s is shown to be reducible to

a completely equivalent single-integral expression. The

single-integral expression is used in turn to straightforwardly establish the approximate closed-form results
commonly known as the bulk-charge and charge-sheet relationships. Sample computations which illustrate the
general utility of the single-integral expression are also presented.

1. INTRODUCTION

The double-integral relationship established by H. C. Pao
and C. T. Sah{l] is generally accepted as a precise
representation of the static characteristics derived from
long-channel MOSFET’s. The relationship is routinely
cited in authoritative textbooks{2] and review articles[3].
The Pao-Sah result, moreover, has been used as a start-
ing point in deriving approximate closed-form relation-
ships and in evaluating the accuracy of such
relationships 4, 5S]. One advantage of the Pao-Sah for-
mulation is that it is continuously valid in all biasing
regions including weak inversion and saturation. A major
drawback is the complexity and time consuming nature
of the numerical calculations required in evaluating a
double-integral relationship.

The primary purpose of this paper is to point out that
the Pao-Sah double-integral expression can be trans-
formed into a completely equivalent single-integral
expression. The single-integral result automatically leads
to drastically reduced computational times. Details of the
mathematical simplification are presented in the next sec-
tion along with the development of closed-form ap-
proximations, the “charge-sheet” and ‘‘bulk-charge”
expressions[5, 6], which follow in a very direct manner
from the single-integral result. Sample computations in-
volving both the single-integral and charge-sheet expres-
sions are presented in Section 3; the final section con-
tains a summary of results and concluding comments.

2. THEORY
Single-integral derivation
The Pao-Sah result for the drain current (Ip) flowing
in an n-channel MOSFET can be written in the following
formt:

lemCo Xy (kT)J’UDJ'UseU Up—¢_ o-Ur—¢
b= 2Lp F(U, Un dU d¢
)

1The form presented here differs slightly from the Ref. [1] result
in that the U = 0 value of the electron concentration is subtracted
from the electron concentration at all points in the surface channel.
This minor modification employed by J. R. Brews[5] and other

authors permits one to extend the lower integration limit on U to -

U=0.

where
Voo + L RUs Um0 ]z0 @
Vo =k—TUD>0 G)
and
F(U, Ur, §=[e"F (™ + U~1)

+e UFeVHE-U-e9]'"% @)
Z is the channel width, L the channel length, g, the
electron effective mobility in the surface channel, Lp, is
the intrinsic Debye length, k Boltzmann’s constant, T
temperature, and ¢ the magnitude of the electronic
charge. Co= Ko€o/Xo is the oxide capacitance per unit
area; Ko is the oxide dielectric constant, €, the permit-
tivity of free space, and x, the oxide thickness. x{=
Ksxo/K,, where K is the semiconductor dielectric con-
stant. Vp is of course the applied drain voltage and Vg
the ideal device gate voltage (the gate voltage less the flat
band voltage). The source and back of the structure are
assumed to be grounded.

Normalized potentials appearing in the formulation are
defined as follows:

U =[Ei(bulk) — E(x))/kT &)
Us= U |x=0 (6)
Ug = [E;(bulk) — Er}/kt =In(Na/n;) 0]
and
£=[Ep — Fn()VkT ®

x is taken to be the coordinate directed into the semi-
conductor, with x =0 at the oxide-semiconductor inter-
face; y is the coordinate parallel to, the oxide-semicon-
ductor interface, with y =0 at the source contact. E; is
the intrinsic Fermi energy, Er the bulk Fermi energy,
Fu(y) the electron quasi-Fermi level in the surface
channel, N, the bulk acceptor doping and #; the intrinsic
carrier concentration.

143
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The key to the simplification of the double-integral
result is the observation that

aF eU‘UF“E_e“UF—ﬁ

% U Und ©)

Equation (1) therefore becomes

_ ZuCo xb (kT IuofusaF
I === dUdg (1)

The obvious next step is to interchange the order of the
integrations. Some care must be exercised in effecting
this interchange to obtain the correct integration limits.
With reference to Fig. 1 one concludes

LUD [Iousuéjogvd({/l i Ust Up
LU S [ o

where Uy, is Us evaluated at the source (x =0), Us, is
Us evaluated at the drain (x = L), and &(y) for a given
Us(y) is specified by the gate voltage relationship (eqn
2). Changing variables from ¢ to F of course yields a
perfect differential and

U, U.
[7f T avde- f (F(U, Us, Up)
CFU, Un 014U

Usgr
¥ f [F(U, Ur, Up)
Uso

—F(U, U, &)1dU (12a)

Up fUs
J' f é’FdUdgf F(U, Up, Up) dU

—f F(U, Ug, 0)dU
0

Usp
- F(Us, U, £&)dUs.

Uso

(12b)

UsLt

|IC

Integration
Region 2

Uso 1
Integration
Region 1

H
4

0 Up
£

Fig. .1. The U~ ¢ integration plane. Note the two regions of
integration when the integration on £ is performed first.

However, referring to eqn (2), we note

Ve—(kTIq)Us

F(Us, Ur, &) = UTia)ed L) (13)
and therefore
Ust
[ Puws, e gaaus
Usy
L[ (ve- T ws) 4
=T % Ju, V& Us }dUsg (14a)

- Lo lvyve - v "T(USL )]
(14b)

Finally, combining eqns (10), (I2b) and (14b), we
obtain the desired result

Zitn , 1
o =2 Vi Yoy - Vo)~ (V- Vi

Z.u‘nCO xo (
L Lp

_ fo F(U, Ur, UD)dU] (15)

T\? Usgo
q) U F(U, Ur, 0)dU
0

where the surface potentials at the source and drain are
computed respectively from

vy=kL [Uso X P(Uso, Ur, o>] (162)
, kT ;,
Vo= | Usn + 32 F(Ust, Un )| ai6b)
and

kT
Vso= T Uso (17a)

T
Ve = 1‘— Ust (17b)

As previously defined, Vp = (kT/q) Up.

Closed-form approximations

The eqn (15) result is highly suggestive of the simpler
closed-form MOSFET theories used extensively in first-
order analyses. Seeking a closed-form result, we note
that, to a high degree of precision,

F(U, Ug, =[e"F(U-D+e""F 412 (18)

for the range of parameters encountered in n-channel
MOSFET operation. Unfortunately, the eqn (18) form of
the F-function when substituted into eqn (15) still does
not yield a closed-form result. A further simplification of
the F-function is clearly required.

One approach, which leads to the bulk-charge result, is
to totally neglect the exp (U — Uz — £) term in eqn (18).
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Specifically, substituting F(U, Ug, £) = V(U) exp (Ug2)
into eqn (15) and integrating vields

1 i

o =20 vy v, - Ve -2 (V2 - V3
_gx_(l)\/(k___T)(NA) 3/2 _ 3/2]
V&) B )ve- v (19)

Equation (19) reduces to the standard bulk-charge
expression if, following the usual formulation, one fur-
ther approximates the potentials at the source and drain
ends of the channel to be Vso=(kT/q)2Ur) and Vg, =
(kT]q)(2Ug) + Vp, respectively.

A second, more carefully structured, F-function ap-
proximation leads in a straightforward manner to the
closed-form charge-sheet expression. The charge-sheet
result is of special interest herein because it is reported
to be highly accurate and continuously valid in all biasing
regions including weak inversion and saturation. To
obtain the charge-sheet result we introduce the ap-
proximation,

F(U, Up, ) =e"™[V(U ~ 1) + a(Us, U, e V27 ~¢)
(20)

where a(Us, Ug, £ is chosen such that F(U, Up, &)
computed from eqn (20) precisely matches F(U, Up, &)
computed from eqn (18) {or eqn 4] at U = Us. In other
words, the proposed approximation is exact when F(U,
Up, §) is at its maximum.}

Obviously, the precise functional form of a(Us, Ug, &)
could be determined by first evaluating the two F-func-
tions [eqns 18 and 20] at U = Us and then equating the
two expressions. As it turns out, however, the precise
functional form of « is not required in the derivation.

Substituting the eqn (20) approximation into the eqn
(15) integrals, one obtains

Uso Ust,
f F(U, Us 04U~ [ ™ F(U, Uy, Up)dU
0 0

UsL
eU—ZUF—UDdU

Uso
=eUF’2[aof CU_ZUFdU"aLI
0 s, o
—f \/(U—l)dU] (21a)
Uso
=~ CUF/Z [aerso—-ZUp_ ar eUgL—ZUF—UD —§(USL _ 1)3/2
+‘§‘(Uso”‘ 1)3/2] (21b)

Where Qo= a(Uso, UF, 0) and ayp = a(Us[_, UF, UD).
Next we note that eqns (16a) and (16b) can be written in
the alternative form

Vi= H{ Uso+ 22 " [\ [Tso— 1) + o Uso—wq}
q Lp
(222)

tAn accurate match to F,,,, is clearly desirable in evaluating the
integrals in eqn (15). Also note that eqa (20) corresponds very
closely to the first two terms in the expansion of eqn (18) when
exp (U— Up — §<(U - Dexp (Up). This is required if the for-
malism is to yield the proper weak inversion dependence.
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and

Vo= S U 458 w05 )
D
+ oy e USLT2UF UD]}. (22b)
Thus, upon equating (22a) and (22b), one finds
@€ Ugo—2Up _ ape Usg—-2Up-Up — @ e—Up’Z(USL _ USO)

Xo

+V(Use— 1) - V(Uso— ). (23)

Eliminating the a-related terms in eqn (21b) using eqn
(23), and substituting the resulting expression into eqn
(15), one finally obtains

I =Z‘_‘T"C—9 {(V&+%)(VSL— Vso)—%(vza_ V2
+ Ve’ [\/( Us. — 1)~ V(Uso—1) ‘%(Us;_ _qy
+ %( Uso— 1)3’2]} 4)
where

Although established by a decidedly different approach,
eqn (24) is precisely equivalent to eqn (11) of Ref. [5], the
generalized charge-sheet result.

3. SAMPLE COMPUTATIONS

Sample computations were performed to numerically
confirm the equivalence of the double and single integral
theories, to investigate the accuracy of the charge-sheet
expression, and to generally exhibit the utility of the eqn
(15) result. Calculations were performed on a VAX
11/780 and all figures were computer generated. The
integrals in eqn (15) were evaluated using the integration
routine contained in the standard IMSL package.

Computed I, -V, characteristics are displayed in
Figs. 2(a) and 3(a). The device parameters assumed in
constructing Fig. 2(a) were chosen to match a device
described by Pao and Sah. Parameters typical of a
modern but still long-channel MOSFET were assumed in
constructing Fig. 3(a). Both figures contain two sets of
curves, one computed from eqn (15) and the other based
on the charge-sheet theory of eqn (24). The source and
drain surface potentials in all cases were interpolated
from the eqn (16) relationships.

As must be the case, the single integral results presen-
ted in Fig. 2(a) are identical to the double-integral curves
shown in Fig. 2 of Pao and Sah. The charge-sheet
relationship, moreover, is seen to be quite accurate in the
triode and saturation regions of operation. A more pre-
cise appraisal of the approximate formula can be
obtained from the fractional difference plots presented in
Figs. 2(b) and 3(b); the largest computed error is only

T7-9
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Fig. 2. (a) Theoretical I, - V), characteristics of a p-channel
MOS_transistor described by Pao and Sah in Ref. [} xo=
2000 A, Np =4.6 x 10"/cm?, i, = 256 cm?/V-sec, L = 70 pm, gate
area=84x10"*cm® and T=23°C. The solid-line curves were
computed using the single-integral expression, eqn (15), while the
dashed-line curves were computed using the charge-sheet expres-
sion, eqn (24). In both cases, the source and drain surface potentials
were calculated iteratively employing eqn (16). (b) Comparison
between the single-integral and the charge-sheet computations of
part (a). The percentage error is defined as 100% X
[Ip(integral) — Ip(charge-sheet))/ I(integral).

2.7%. An interesting aspect of the Figs. 2 and 3 com-
putation is the self-saturating nature of the charge-sheet
theory. This feature in an approximate formulation fol-
lows from the proper computation of the surface poten-
tials at the source and drain ends of the channel.

Computations of the subthreshold transfer charac-
teristics, In Ip vs Vg, are shown in Fig. 4. The experi-
mental data also shown in Fig. 4 was taken from Fig. 33,
p. 470 of Szel?]. In effecting the comparison the
theoretical characteristics were translated along the vol-
tage axis to account for the nonzero flat-band voltages of
the experimental devices. Needless to say, the charge-
sheet formulation closely approximates the exact result
which in turn is in excellent agreement with experiment.
Somewhat larger charge-sheet errors are observed with
decreasing substrate doping for gate biases at or slightly
above the threshold point.

It should be mentioned that computations were also
carried out using the eqn (19) bulk-charge relationship.
When eqns (16) are used to compute the source and drain

0.0 1.0 20 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Vp (VOLTS)
(®)

Fig. 3. (a) Theoretical I, - Vp characteristics of an n-channel
MOS transistor with xo=3500A, N,y=1x10"[cm®, j,=
550cm?/V-sec, L=7 um, Z=70 um, and T = 23°C. The solid-
line curves were derived from the single-integral result while the
dashed-line curves were computed from the charge-sheet
expression. (b) Comparison between the single-integral and
charge-sheet computations of part (a). The percentage error is as
defined in Fig. 2.

surface potentials, the bulk-charge theory is self-saturat-
ing. However, the fractional error was some two to four
times greater than that exhibited by the charge-sheet
theory. Moreover, the bulk-charge formulation is parti-
cularly inaccurate at and below the threshold voltage and
as should be expected, yields highly inaccurate sub-
threshold transfer characteristics.

4. SUMMARY AND CONCLUDING COMMENTS

We have exhibited that the double-integral expression
for the static characteristics of a long-channel MOSFET,
a result which includes the diffusion component of the
channel current and is continuously valid from weak
inversion through saturation, can be reduced to a com-
pletely equivalent single-integral expression. Calculations
based on the simplified integral expression are readily
implemented, requiring little more computation time than
approximate closed-form theories. Two approximate
closed-form expressions, the bulk-charge and chaige-
sheet results, were shown to follow directly from the
single integral relationship.

Computations presented herein simultaneously exhibit
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Fig. 4. The subthreshold transfer characteristics of n-channel
MOSFET’s having the same parameters as the Fig. 3 device
except Ny=10"/cm® or N,=10"/cm® and xo=130A. The
experimental data (*) was extracted from Fig. 33, p. 470 of
Sze[2]. The solid and dashed-line curves were computed respec-
tively from the single-integral and charge sheef’expressions with
Vp=1V. Vg =—092V for the N,=10"/cm® device while
Ve = —0.86 V for the N, = 10°° fem?® device.

the general utility of the single-integral result and in-
dependently confirm the high accuracy of the charge-
sheet expression over the entire range of biases from
weak inversion through saturation. These computational
results, combined with the straightforward derivation of
the charge-sheet expression, may provide greater ac-
ceptance and more wide-spread utilization of this
excellent closed-form approximation.

Finally, as has been emphasized throughout, the
theory considered herein is only valid for long-channel
devices. Nevertheless, even with the advent of short-
channel devices and short-channel effects, there remains
a continuing utilization of long-channel and pseudo-long-
channel models. Moreover, the observations cited herein
may be of use in establishing improved models for
short-channel devices.
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