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A Sensing Chair Using Pressure Distribution Sensors

Hong Z. Tan Member, IEEELynne A. Slivovsky Student Member, IEEERNd Alex Pentlandviember, IEEE

Abstract—One challenge in multimodal interface research isthe liver useful information to its occupant, vibrotactile stimulators
lack of robust subsystems that support multimodal interactions. are embedded in ehair display[27], [28]. This paper reports
By focusing on a chair—an object that is involved in virtually - \ork on the sensing chair. Our work is motivated by the de-

all human—computer interactions, the sensing chair project . tot f di hairs i tuabndmultimodal
enables an ordinary office chair to become aware of its occupant’s sire to transform ordinary chairs inperceptuaandmultimoda

actions and needs. Surface-mounted pressure distribution sensorshuman—computer interfaces.
are placed over the seatpan and backrest of the chair for real
time capturing of contact information between the chair and its A. Why Perceptual User Interfaces?

occupant. Given the similarity between a pressure distribution Because a combuter can not act intelligently or be helpful if
map and a grayscale image, pattern recognition techniques P gently p

commonly used in computer and robot vision, such as principal it is not aware of its user [20]. Today’s computers are blind,
components analysis, have been successfully applied to solvingdeaf, and deafferented (except for their awareness of keystrokes
the problem of sitting posture classification. The current static and mouse clicks). Tomorrow’s computers will be able to see,
posture classification system operates in real time with an overall hear, and touch the environment, as well as people who interact

classification accuracy of 96% and 79% for familiar (people it ith th onlv th ter b tuati
had felt before) and unfamiliar users, respectively. Future work wi em. Only then can a computer become situation aware

is aimed at a dynamic posture tracking system that continuously and helpful—like an invisible butler [20]. Numerous systems
tracks not only steady-state (static) but transitional (dynamic) have been developed that explore the idea of perceptual intelli-
sitting postures. Results reported here form important stepping gence where computers are equipped with sensory mechanisms
stones toward an intelligent chair that can find applications in  gimilar to our own (for example, vision through cameras, and
many areas including multimodal interfaces, intelligent environ- . . h !
ment, and safety of automobile operations. hearing through microphones) [4], [8], [9], [15], [22], [29]_—[31].
] _ o Among those, very few employ touch-based sensory informa-
Index Terms—Haptic sensing, posture classification, pos- tion The sensing chair project is conceptualized to explore the
ture-based interface, pressure-distribution sensors, sensing chair. - - .
use ofdistributedpressure information, from sensors that are
analogous to artificial skin, to achieve perceptual intelligence.
|. INTRODUCTION Perceptual intelligence for a computer can not be achieved

S COMPUTING becomes more ubiquitous and disk?y merely collecting and displaying sensory information, like
tributed, there is a growing need for human—comput(\-ﬁ\fhat most webcams do. Perceptual intelligence results from an
interfaces that support a new interaction paradigm. Effork derstandingf what the sensory data reveal about hate

are currently underway to develop a novel haptic interfa ths denwro;m%r:ttr?nd pe(_)ple.r;r hetI:]ey r](esearcrt\hprobtlem ttc_)
system around an object that is involved in virtually al € addressed wi € Ssensing chair, theretore, Is the automatic

human—computer interactions, yet has so far remained sens‘g cessing and interpretatipn of to.uch sensor information, and
and information deprived—a chair. The chair is said to bt modellng of us,er behavpr Ieadmg to such sensory da’ga. we
sensory deprived because it can not sense the actions of [fs'on tomo_rrows computl_n_g _envw_onment where all Ob]e.CtS
occupant and therefore can not interpret the user’'s intentioR (_a_outfltted W'th alayerof art_|f|C|e_1I skin (for example, a sensing
The chair is said to be information deprived because it does Ir, a sensing flqor, asensing file folder). We e.xpect the algo-
provide any useful information to its occupant. The chair th h'.“s and behavpr models that we d.evglop with th? sensing
is available today is, therefore, a passive object that does ROt to be ext§n3|ble to large-scale distributed haptic sensing
respond to its user’'s needs. and interpretation.

_ To enable a chair to_sense and interpret its occupant’s gc- Why Multimodal Interfaces?

tions, pressure distribution sensors are surface-mounted on the

seatpan and backrest oéansing chairTo enable a chair to de- Because humans naturally employ multimodal information
channels for communication, and because multimodal inter-

faces have been demonstrated to be effective [19]. Cognitive
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features contribute to the overall appearance of a face). ThiBCAM International (Melville, NY) has developed a recliner
increase in transmitted information can be obtained whethgith pneumatically controlled air bladders placed near the
multiple modalities convey different information or encodsurface of the recliner that can be inflated to “hug” and support
the same information redundantly [14]. Therefore, multimod#ie body? This technology, called the “intelligent surface,” has
interfaces facilitate more natural and efficient human—computercently been implemented in the United Airline’s connoisseur
interactions. class seats [7], [24]. It should be pointed out that the air bladder
One challenge in multimodal interface research is the laektivation patterns are based on ergonomic considerations,
of multimodal interface systems. Robust systems for applicather than on the needs of its occupant. The sensing chair
tions such as speech recognition or gesture interpretation reque provide the needed intelligence to such mechanisms so
long-term research and development efforts from a multidise¢hat surface distribution can be alteréd response tothe
plinary team of investigators. True multimodal interactions caneal-time pressure distributions in the chair in an ergonomically
not take place until problems in each of these application dieeneficial manner.
mains are solved. Our work focuses on the development of a
single-modality (haptic) interface system that can be integratBd Pressure Sensing
with other state-of-the-art interface systems to enable the nex

generation of computer users to interact naturally with CONyaluation of weight supporting surfaces in shoes, chairs, and

pugrs.l i | with th . hai act is 1o d beds. Examples of shoe studies include the assessment of seven
ur long-term goal with the Sensing chair project IS 10 dggnaq of shoes with regard to their ability to reduce peak pres-
velop a chair-based haptic sensing system that is robust eno during walking for leprosy patients [2], the evaluation of

lt_o drltve many real—tlfme apphcia\tlons. In .the cr?s.e of an”mt e generalizability of in-shoe peak pressure measures with data
\gent environment, Tor example, a Sensing chair can allow o cteq from numerous subjects over a period of time using

s_eated participant to use sitting postures to direct_ly contro!t\ﬁo calibration schemes [16], and the validation of the use of
wdeo&:}amera Itn the relino'i)e clonfe_renfce roo(rjn. Imaglng Zotﬁm't%gal contact casts for healing plantar neuropathic ulcerations
n otn N remobe sptee; erthy eﬁn!n'gwﬂrr\]/var ' %r :oanmng € IEﬁ'rough reduction of pressure over the ulcer [6]. Studies of seats
mote camera by rotating the chair: VAith regard to ergonomiGre,ge the development of a measurement protocol and anal-

a sensing office chair can gather the information needed b &s technique for assessing pressure distribution in office chairs

“\./ir'tual posture coagh” tohelpa Comp“ter user maintain prop 3], the use of body pressure distribution measures as part of
sitting postures. This can be especially helpful when long-te series of tests for assessing comfort associated with five au-

momtpr_mg is required d-ue to previous allments such as ne§kt8FnobiIe seats [12], and an interesting review of how objective
bac!< Injuries. Our Sensing chair system can als_o help furnit essure measures can lead to improved aircrew seating with
d$§|g?§rs (ra]vgluate their ne;/v c;ha:jlrs b)./ gbsfetr_vmg IhO\tAr/1 PEORGre evenly distributed pressure patterns, thereby potentially
S'f mh bejl'f t{;\lrs over an ex ﬁn Fh period o ITe.thn € argg roving a pilot’s task performance by reducing or eliminating
E 'rIE:j abl |tar\]|onr,]a_ senzlrtlg wheelc ar‘]'r can moni ?]r € prfeSSlH in endured during high-acceleration maneuvers of the aircraft
uridup In the chair, and trigger mechanisms such as surtace ﬁr. Examples of bed studies include an investigation of support
bladders to redistribute pressure distribution on the chair s Urface pressure and reactive hyperemia (the physiological re-

facle. A_tf]y_stem_ I'lije thi.lc.?n E? eﬁpeually penzﬁqal ,to indivi Sponse to pressure) in older population [1], and a recent devel-
uais W', impaired mobiiity. Finatly, a Sensing rl\{er S OI'PaSgH ment of body posture estimation system for sleepers based on
senger’s seat can automatically adjust an airbag’s deploym

; ding to th timated weiaht and si f the dri ssure distribution measures and a human skeletal model [11].
orce according 1o the estimated weight and size of the driv ur sensing chair project is similar to the last study cited [11] in

or disable the airbag if an infant car seat is detected in the ff‘%ﬂ&t we focus on the automatic processing and interpretation of
seat. contact sensor information, whereas the other studies reply on
expert analysis of pressure distribution measures. Of particular
importance is the development of real-time systems that can be
In the interest of space and due to a body of literature thatlsed to drive other processes such as the automatic control of
scattered in many disciplines, a full review is not presented hegdrbag deployment force based on the size, weight, and sitting
Instead, we contrast our sensing chair with projects on chahesture of a driver or passenger.
based systems and on the use of pressure distribution sensors.

bressure distribution sensors have been widely used for the

Il. RELATED WORK

i [ll. THE SENSING CHAIR SYSTEM
A. Chair-Based Systems )
A. Overview
Many systems have been developed around the structure of a

chair. The British Telecom SmartSpace, for example, is a con-10 Pegin with, we are interested in modeling the sitting pos-
cept personal working environment of the future, built aroundtd"es of the person occupying the sensing chair (Fig. 1). As
swivel chairt Itis equipped with a horizontal LCD touchscreenShown in Fig. 2, the sensing chair project is further divided
video projection, and 3-D sound space. In contrast, the goal'BﬁO the two components of static posture classification (iden-

our sensing chair is to achieve information extraction and didfication of steady-state sitting postures), and dynamic posture
play by instrumenting the chair itself. tracking (continuous tracking of steady state, as well as transi-

Ihttp://www.bt.com/innovation/exhibition/smartspace/index.htm. 2The first author was given a demo of a prototype at BCAM International.



TAN et al: PRESSURE DISTRIBUTION SENSORS 263

Fig. 1. The sensing chair.

Sensing Chair

I l Fig. 3. A full pressure map for the posture “left leg crossed” shown as a 2-D
Static Posture Dynamic Posture grayscale image. The top, bottom, left, and right sides of the map correspond
Classification Tracking to the _shoulder area, knee area, right side, and left side of the occupant,
I I respectively.
_ | I l I B. Hardware Configuration and Preprocessing of Pressure
Single-user Multi-user Single-user Multi-user Data

System System System System

Our sensing chair is equipped with a commercially available
pressure distribution sensor called the body pressure measure-
ment system (BPMS) manufactured by Tekscan, Inc. (South
tional sitting postures). In each case, we start with a single-u&waston, MA). The office chair shown in Fig. 1 is fitted with
system and proceed to a multiuser system. Our goal is a teo sensor sheets (hidden inside the protective pouches) on the
bust, real-time, and user-independesitting posture tracking seatpan and the backrest. The BPMS system has been selected
system. for: 1) its high resolution (10-mm interelement distance); 2)

This paper presents our approach and results on a static gbs-flexibility of the sensor sheets (0.10 mm in thickness) so
ture classification system. Given the similarity between a preey can conform to the shape of a chair; 3) its usage by major
sure map and an 8-b grayscale image (see Fig. 3), it is spe&search and industry laboratories including Natick Army Re-
ulated that pattern recognition algorithms developed for corearch Lab (for design of army boots) and Steelcase NA and
puter vision would be applicable to the interpretation of sittingferman Miller (for chair evaluation); and 4) most importantly,
postures from pressure distribution data. There are two majékscan’s willingness to provide an API that made it possible
approaches to object representation and recognition in compuférus to access and manipulate pressure distribution data in
vision: model-based (for example, [3]) and appearance-badég! time. Each sensor sheet has an array of 42-by-48 pressure
(for example, [17]). The latter is considered more applicabReNSiNg eIement_s. Each sensing element outputs an 8-bit dig-
since the concept of object model does not apply directly to pré@-' value proportlolnal tothe Iopal pressure. Although thg sensor
sure maps. Our work is based primarily on the technique of prif?€€ts can be calibrated to display pressure readings in PSI or
cipal components analysis (PCA), also known as “eigensp er standard gnlts, the_ raw digital dafca are _used since we are
methods,” “eigendecomposition,” or “Karhunen—Loeve expaﬁ-”'y mtt_erested in theelative pressure distribution patterns on
sion” [10]. It has been successfully applied to the problem &€ chair surfaces.

presented in Section IV. ting posture of left leg crossed (after noise removal), shown as a

2-D grayscale image. The top and bottom halves of the pressure
map correspond to the pressure distribution on the backrest and

seatpan, respectively. To understand the orientation of the pres-

3By user independence, we refer to a system that works for people who have . . dingin f fthe chai di
not contributed to a training database, but whose anthropometry is well rep?éflre map, imagine standing in front of the chair and its occupant,

sented by the database. and unfolding the chair so that the backrest and the seatpan lie in

Fig. 2. Overview of the sensing chair project.
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Fig. 4. 3-D views of a pressure map for the posture “seated upright,” before (left) and after (right) smoothing.

the same plane. Therefore, the top, bottom, left and right sic
of the pressure map shown in Fig. 3 correspond to the shouli
area, knee area, right, and left sides of the occupant, respectiv
The size of each full pressure map is 84-by-4& (22-by-48),
or 4,032 pixels.

The raw pressure distribution map is typically noisy (spike
in the left image of Fig. 4). The noise is removed by convolvin
the pressure map with a 3-by-3 smoothing kernel

Calculation of One Eigenposture Space

covariance

The smoothed pressure map (right image of Fig. 4) contai matrix

pressure artifacts (at the top left and right corners of the imag
due to the corners of pressure sensor sheets being wrap
around the chair. Since these artifacts are common to

pressure maps, their removal is not necessary. Finally, 1
values of pressure readings are normalized, separately for ™

seatpan and the backrest maps. The rest of this paper assumes
that all pressure maps have gone through the aforementiondd”"
preprocessing procedures.

Eigenposture Space

-

A diagram for eigenposture space calculation.

set of M eigenvectorw;, ¢ = 1,...,M) are calculated
such that their corresponding eigenvaldes ¢ = 1,..., M)

IV. STATIC POSTURE CLASSIFICATION
A. Overview of PCA-Based Classification Algorithm

The key to a PCA-based approach is to reduce the dimensi
ality of data representation by finding the principal componen
of the distribution of pressure maps, or equivalently, the eig
vectors of the covariance matrix of a set of training pressu
maps. Our PCA-based static posture classification algorithm
volves two separate steps: training and posture classification
the first step, training data for a set &f predefined static pos-
tures are collected. Pressure maps corresponding to the s
posture are used to calculate the eigenvectors that best re
sent the variations among them. This eigenspace, teeiged-
posture spacén this paper, is analogous to theew-based or
modular eigenspace for face recognition in [21]. Fig. 5 illus
trates the process of computing one such eigenposture sp

Each of a total of\/ training pressure maps is raster-scanned 10

form a vector of 4032 eIemen(st_,, m=1,...,M). These
vectors are first de-meaned whefeis the average of thé/
vectors. The mean-adjusted vectobs, (m = 1,..., M), are

then used to compute the covariance ma€ixfrom which a

“lio

a

are monotonically decreasingy > Az--- > Ap). These
eigenvectorgu; ) can be thought of as forming alY-dimen-
sional eigenposture space where a 4032-element pressure map

on-

gn be represented by thé weights of its projection onto this
eigenspace. We have thus effectively reduced the representa-
n of each pressure map from a 4032-dimensional space to
an M-dimensional space. Furthermore, we can choose to use
0|rr|]Iy the firstM’ (M’ < M) eigenvectors whose eigenvalues
are the largest to further improve computational efficiency (see
Section V). The process shown in Fig. 5 is repeated for all static

Ostures. Note that the calculation of eigenposture spaces is per-

i

re

re- )
rmed off line.

Given a test pressure map, the second step of posture clas-
sification proceeds as follows in real time (Fig. 6). The test map

u

égé) is first projected onto the eigenposture spaces calculated

fing the training step. This is done by subtracting the average

41t is computationally more feasible to first compute the eigenvecto€af
and then convert them to the corresponding eigenvectofs ¢see [32] for
details). Alternatively, the method of singular value decomposition (SVD) can
be used, recognizing the fact that the eigenvector€ afre the left singular
vectors of the training data matriX = [®, P, - - - ® 5] (see [18] for details).
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Fig. 6. A diagram for pressure map classification.

pressure mapF;, k = 1,... K) for each posture fron#;, and
finding the inner dot product of the mean-adjusted posture map
(®r, k = 1,... K) with each of the eigenvectors in the corre-
sponding eigenposture space. The result is a poikithireigen-
posture space specified by the weightg(i) = &} - u;, where

u,; denotes thé&th eigenvector in théth eigenposture space.
These weights are used to calculate the reconstructidfy of

each of the eigenposture spacestgs= 3w (i) - u;. The
distances betweeR,; and itsK reconstructions, the so-called
distance from posture space (DFPS), can then be computed as
2 = ||®), — ¥, |°. To the extent thaP, is well represented by

one of theK eigenposture spaces (as indicated by a minimum 0035 50 735 100 15 150
£3,), the corresponding posture lal§él) is used to classify’;.

Accuracy (%)

Dimension of Eigenposture Space

. . o Fig. 7. Classification accuracy for “familiar” subjects.
B. A Single-User Static Posture Classification System

As a proof of concept, a single-user static posture classifdbel the new pressure map. Otherwise, the system declared the

cation system was implemented on a Pentium PC in WindoR@Sture to be “unknown.” o

3.11 environment (required by the hardware driver) [26], [27].. 1S Single-user system was able to classify sitting postures
Training data on a total & = 14 sitting postures, and/ = 10 of the first auth_or with an average accuracy of over 95%. En-
pressure distribution samples per posture were collected on §g&raged by this result, but realizing that the system had to be
first author. The postures were: 1) seated upright; 2) Ieaniﬁ‘?r?"”ed for each new user, we quickly moved to a multiuser
forward; 3) leaning left; 4) leaning right; 5) right leg crossed!@tic Posture classification system.

(with knees touching); 6) right leg crossed (with right foot o
left knee); 7) left leg crossed (with knees touching); 8) left leg _ _ N
crossed (with left foot on right knee); 9) left foot on seatpan Our. current multiuser static posture c_:Iass.|f|cat|on system has
under right thigh; 10) right foot on seatpan under left thigh; 19¢€n implemented on a Pentium PC in Windows 98 environ-
leaning left with right leg crossed:; 12) leaning right with leffnent [25]. In order to facilitate the training and evaluation of
leg crossed; 13) leaning back; and 14) slouching. These pgpgs system, a static posture database has been collected on 30
tures were considered to be representative of the typical sitti#lgPiects (15 females and 15 males) 6= 10 sitting postures.
postures that can be found in an office environment [13]. Durinig'e Subjects are selected with the goal to cover a wide distribu-
the training stepK = 14 eigenposture spaces were calculate§On of anthropometnc measurements. The ranges of subject’s
each fromM = 10 pressure distribution samples. During clasb@ight, weight, and age are 152-191 cm, 45.5-118.2 kg, and
sification, a new pressure distribution map was first tested f&p—60 years old, respectively. Each subject has contributed five
“empty seat” by comparing the sum of all pixel values with réssure distribution samples per posture. There are therefore
preset threshold. Once a pressure map passed this initial test/ it= 150 training samples per posture, and the training data-
was projected onto the 14 eigenposture spaces and the small@gg consists of a total of 1500 pressure distribution raps.
DFPS, emin, Was found. Ife,,;i, was below a preset threshold so;;  static posture  database is available [online] at
value, then the corresponding eigenposture space was uselttpo/www.ece.purdue.edu/HIRL/projects_chair.html.

. A Multiuser Static Posture Classification System
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Fig. 8. Classification accuracy for “familiar” and new subjects. Solid, dashed and dotted lines correspond to accuracies associated witt thessduea ifiest
two smallest values, and the first three smallestalues, respectively.

The postures contained in the Static Posture Database ar¢uiigs that have very similar pressure distribution maps (for ex-
seated upright; ii) leaning forward; iii) leaning left; iv) learningample, 95.2% for “leaning left,” 95.1% for “right leg crossed,”
right; v) right leg crossed; vi) left leg crossed; vii) leaning lefaand 93.5% for “leaning left with right leg crossed”).
with right leg crossed; viii) leaning right with left leg crossed; Secondly, a total of 400 pressure distribution maps have been
ix) leaning back; and x) slouching. These postures are similasllected from eight new subjects (five samples per posture per
to the 14 postures utilized in the single-user system with tvgubject) who did not contribute to the static posture database.
exceptions. First, the two types of leg crossing (one with kne€he ranges of subject’s height and weight are 160-191 cm and
touching, the other with a foot on the other knee) have been co%.9-93.6 kg, respectively. These anthropometric values are
bined, thus postures 5) and 6) are now v), and postures 7) anev@hin those represented in the static posture database. Shown
are now vi). Second, the two postures that require a subjectiioFig. 8 (solid line in the right graph) are the classification
sit on a foot, namely 9) and10), have been eliminated becaageuracies averaged over postures as a function of number of
some subjects are unable to do so. eigenvectors used in classification. Compared with Fig. 7, it

The training of a multiuser static posture classification systeis clear that classification performance is better with subjects
is essentially the same as that of a single-user system, exceptthatsystem is “familiar with.” In an effort to locate the sources
the M = 150 pressure maps used to calculate each eigenpostafeerror, we examined the posture labels associated with not
space (Fig. 5) contain samples from 30 subjects instead of oaely the minimum DFPSmin « (the first choice), but also
The classification step is identical for the single- and multiusénose with the next two smallestvalues (the second and third
systems. With the implementation of this multiuser static poshoices). The results are shown as dashed lines in the right
ture classification system, it is now possible to systematicaliyaph of Fig. 8 for new subjects. The middle and top curves
evaluate its performance, and to investigate issues such as(tfeshed and dotted lines, respectively) reveal the classification
user-independence of such a system. accuracies that can be potentially achieved if the correct posture

V. PERFORMANCE EVALUATION label is associated with the first two or three smallegalues,
respectively. The corresponding results for the pressure maps

Accuracy of our static posture classification system has beewnllected from “familiar” subjects are shown on the left of
evaluated with additional pressure maps collected from tvikig. 8. Note that the top curves in both graphs of Fig. 8 are in
groups of subjects. First, an additional 200 pressure distributithe upper nineties, indicating that similar performance levels
maps have been collected from 20 of the 30 subjects wiith both “familiar” and new subject groups can be achieved
contributed to the static posture database (one sample ifehe correct posture label can be derived from the first three
posture per subject). These pressure maps are then labeled gnthllests values.
respect to their corresponding postures by the static posturé&xecution time for the classification subroutine as a function
classification system. Fig. 7 shows the classification accuragf/number of eigenvectors used has also been measured, with
in terms of percent-correct scores averaged over postures, as@rce codes that have yet to be optimized for speed. This is an
function of the number of eigenvectofd/’) that are used in important parameter for any real-time application of our system.
the classification algorithm. As expected, overall classificatioPhe average classification time for 5, 10, 15, or 20 eigenvec-
accuracy increases as a function of the dimension of eigenptess is 62.1, 107.8, 168.1, or 241.0 ms, respectively. The cor-
ture spaceV!’. The curve shown in Fig. 7 has a knee point atsponding average classification accuracy (for “familiar” sub-
M’ = 15 with a corresponding average accuracy of 96%. jects) is 88, 95, 96, or 96%, respectively. In view of these mea-

Classification accuracy by posture (averaged across subjesiglements}M’ = 15 (out of M = 150) eigenvectors corre-
ranges from 90.3% (for posture “leaning back”) to 99.8% (faponding to the 15 largest eigenvalues are used for the static
“slouching”). The system is also able to discern among pogesture classification system.
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VI. SUMMARY [16]

We have described a static posture classification system based
on a sensing chair that monitors the pressure distribution patt’]
terns on its surfaces in real time. The PCA technique, compg;
monly used in computer and robot vision, has been successfully
applied to the problem of posture classification from pressuré1
maps. A PCA-based algorithm has the advantage of being vegy
fast. Its disadvantage is the lack of physical interpretations as-
sociated with eigenposture spaces. Our current system runs
real-time (with an update rate of roughly 6 Hz) on a Pentium
PC in Windows 98 environment. Average classification accu{22]
racy is 96% for subjects the system had felt before, and 79%
for those who are new to the system. We are currently invest{— !
gating ways to improve the system’s accuracy for new subjects
by taking into account the first three eigenposture spaces that
closest to the test pressure map. Future work is aimed toward a
dynamic posture tracking system that continuously tracks not
only steady-state (static) but transitional (dynamic) sitting pos[26]
tures. [27]
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