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Abstract—One challenge in multimodal interface research is the
lack of robust subsystems that support multimodal interactions.
By focusing on a chair—an object that is involved in virtually
all human–computer interactions, the sensing chair project
enables an ordinary office chair to become aware of its occupant’s
actions and needs. Surface-mounted pressure distribution sensors
are placed over the seatpan and backrest of the chair for real
time capturing of contact information between the chair and its
occupant. Given the similarity between a pressure distribution
map and a grayscale image, pattern recognition techniques
commonly used in computer and robot vision, such as principal
components analysis, have been successfully applied to solving
the problem of sitting posture classification. The current static
posture classification system operates in real time with an overall
classification accuracy of 96% and 79% for familiar (people it
had felt before) and unfamiliar users, respectively. Future work
is aimed at a dynamic posture tracking system that continuously
tracks not only steady-state (static) but transitional (dynamic)
sitting postures. Results reported here form important stepping
stones toward an intelligent chair that can find applications in
many areas including multimodal interfaces, intelligent environ-
ment, and safety of automobile operations.

Index Terms—Haptic sensing, posture classification, pos-
ture-based interface, pressure-distribution sensors, sensing chair.

I. INTRODUCTION

A S COMPUTING becomes more ubiquitous and dis-
tributed, there is a growing need for human–computer

interfaces that support a new interaction paradigm. Efforts
are currently underway to develop a novel haptic interface
system around an object that is involved in virtually all
human–computer interactions, yet has so far remained sensory
and information deprived—a chair. The chair is said to be
sensory deprived because it can not sense the actions of its
occupant and therefore can not interpret the user’s intentions.
The chair is said to be information deprived because it does not
provide any useful information to its occupant. The chair that
is available today is, therefore, a passive object that does not
respond to its user’s needs.

To enable a chair to sense and interpret its occupant’s ac-
tions, pressure distribution sensors are surface-mounted on the
seatpan and backrest of asensing chair. To enable a chair to de-
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liver useful information to its occupant, vibrotactile stimulators
are embedded in achair display[27], [28]. This paper reports
our work on the sensing chair. Our work is motivated by the de-
sire to transform ordinary chairs intoperceptualandmultimodal
human–computer interfaces.

A. Why Perceptual User Interfaces?

Because a computer can not act intelligently or be helpful if
it is not aware of its user [20]. Today’s computers are blind,
deaf, and deafferented (except for their awareness of keystrokes
and mouse clicks). Tomorrow’s computers will be able to see,
hear, and touch the environment, as well as people who interact
with them. Only then can a computer become situation aware
and helpful—like an invisible butler [20]. Numerous systems
have been developed that explore the idea of perceptual intelli-
gence where computers are equipped with sensory mechanisms
similar to our own (for example, vision through cameras, and
hearing through microphones) [4], [8], [9], [15], [22], [29]–[31].
Among those, very few employ touch-based sensory informa-
tion. The sensing chair project is conceptualized to explore the
use ofdistributedpressure information, from sensors that are
analogous to artificial skin, to achieve perceptual intelligence.

Perceptual intelligence for a computer can not be achieved
by merely collecting and displaying sensory information, like
what most webcams do. Perceptual intelligence results from an
understandingof what the sensory data reveal about thestate
of the environment and people. The key research problem to
be addressed with the sensing chair, therefore, is the automatic
processing and interpretation of touch sensor information, and
the modeling of user behavior leading to such sensory data. We
envision tomorrow’s computing environment where all objects
are outfitted with a layer of artificial skin (for example, a sensing
chair, a sensing floor, a sensing file folder). We expect the algo-
rithms and behavior models that we develop with the sensing
chair to be extensible to large-scale distributed haptic sensing
and interpretation.

B. Why Multimodal Interfaces?

Because humans naturally employ multimodal information
channels for communication, and because multimodal inter-
faces have been demonstrated to be effective [19]. Cognitive
research has shown that multimodal communication results in
increased amount of transmitted information [14]. It has been
shown that a signal with a single varying attribute can at most
transmit 2–3 bits to a human observer (for example, we can
only identify about 5–7 loudness levels of a fixed-frequency
pure tone). However, greater information transmission can
be achieved by employing signals with multiple attributes
(for example, one can easily identify hundreds of faces at
a glance of a person or a photograph, because many facial
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features contribute to the overall appearance of a face). This
increase in transmitted information can be obtained whether
multiple modalities convey different information or encode
the same information redundantly [14]. Therefore, multimodal
interfaces facilitate more natural and efficient human–computer
interactions.

One challenge in multimodal interface research is the lack
of multimodal interface systems. Robust systems for applica-
tions such as speech recognition or gesture interpretation require
long-term research and development efforts from a multidisci-
plinary team of investigators. True multimodal interactions can
not take place until problems in each of these application do-
mains are solved. Our work focuses on the development of a
single-modality (haptic) interface system that can be integrated
with other state-of-the-art interface systems to enable the next
generation of computer users to interact naturally with com-
puters.

Our long-term goal with the sensing chair project is to de-
velop a chair-based haptic sensing system that is robust enough
to drive many real-time applications. In the case of an intel-
ligent environment, for example, a sensing chair can allow a
seated participant to use sitting postures to directly control a
video camera in the remote conference room. Imagine zooming
in on the remote speaker by leaning forward, or panning the re-
mote camera by rotating the chair! With regard to ergonomics,
a sensing office chair can gather the information needed by a
“virtual posture coach” to help a computer user maintain proper
sitting postures. This can be especially helpful when long-term
monitoring is required due to previous ailments such as neck or
back injuries. Our sensing chair system can also help furniture
designers evaluate their new chairs by observing how people
sit in the chairs over an extended period of time. In the area
of rehabilitation, a sensing wheelchair can monitor the pressure
buildup in the chair, and trigger mechanisms such as surface air
bladders to redistribute pressure distribution on the chair sur-
face. A system like this can be especially beneficial to individ-
uals with impaired mobility. Finally, a sensing driver’s or pas-
senger’s seat can automatically adjust an airbag’s deployment
force according to the estimated weight and size of the driver,
or disable the airbag if an infant car seat is detected in the front
seat.

II. RELATED WORK

In the interest of space and due to a body of literature that is
scattered in many disciplines, a full review is not presented here.
Instead, we contrast our sensing chair with projects on chair-
based systems and on the use of pressure distribution sensors.

A. Chair-Based Systems

Many systems have been developed around the structure of a
chair. The British Telecom SmartSpace, for example, is a con-
cept personal working environment of the future, built around a
swivel chair.1 It is equipped with a horizontal LCD touchscreen,
video projection, and 3-D sound space. In contrast, the goal of
our sensing chair is to achieve information extraction and dis-
play by instrumenting the chair itself.

1http://www.bt.com/innovation/exhibition/smartspace/index.htm.

BCAM International (Melville, NY) has developed a recliner
with pneumatically controlled air bladders placed near the
surface of the recliner that can be inflated to “hug” and support
the body.2 This technology, called the “intelligent surface,” has
recently been implemented in the United Airline’s connoisseur
class seats [7], [24]. It should be pointed out that the air bladder
activation patterns are based on ergonomic considerations,
rather than on the needs of its occupant. The sensing chair
can provide the needed intelligence to such mechanisms so
that surface distribution can be alteredin response tothe
real-time pressure distributions in the chair in an ergonomically
beneficial manner.

B. Pressure Sensing

Pressure distribution sensors have been widely used for the
evaluation of weight supporting surfaces in shoes, chairs, and
beds. Examples of shoe studies include the assessment of seven
types of shoes with regard to their ability to reduce peak pres-
sure during walking for leprosy patients [2], the evaluation of
the generalizability of in-shoe peak pressure measures with data
collected from numerous subjects over a period of time using
two calibration schemes [16], and the validation of the use of
total contact casts for healing plantar neuropathic ulcerations
through reduction of pressure over the ulcer [6]. Studies of seats
include the development of a measurement protocol and anal-
ysis technique for assessing pressure distribution in office chairs
[23], the use of body pressure distribution measures as part of
a series of tests for assessing comfort associated with five au-
tomobile seats [12], and an interesting review of how objective
pressure measures can lead to improved aircrew seating with
more evenly distributed pressure patterns, thereby potentially
improving a pilot’s task performance by reducing or eliminating
pain endured during high-acceleration maneuvers of the aircraft
[5]. Examples of bed studies include an investigation of support
surface pressure and reactive hyperemia (the physiological re-
sponse to pressure) in older population [1], and a recent devel-
opment of body posture estimation system for sleepers based on
pressure distribution measures and a human skeletal model [11].
Our sensing chair project is similar to the last study cited [11] in
that we focus on the automatic processing and interpretation of
contact sensor information, whereas the other studies reply on
expert analysis of pressure distribution measures. Of particular
importance is the development of real-time systems that can be
used to drive other processes such as the automatic control of
airbag deployment force based on the size, weight, and sitting
posture of a driver or passenger.

III. T HE SENSING CHAIR SYSTEM

A. Overview

To begin with, we are interested in modeling the sitting pos-
tures of the person occupying the sensing chair (Fig. 1). As
shown in Fig. 2, the sensing chair project is further divided
into the two components of static posture classification (iden-
tification of steady-state sitting postures), and dynamic posture
tracking (continuous tracking of steady state, as well as transi-

2The first author was given a demo of a prototype at BCAM International.
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Fig. 1. The sensing chair.

Fig. 2. Overview of the sensing chair project.

tional sitting postures). In each case, we start with a single-user
system and proceed to a multiuser system. Our goal is a ro-
bust, real-time, and user-independent3 sitting posture tracking
system.

This paper presents our approach and results on a static pos-
ture classification system. Given the similarity between a pres-
sure map and an 8-b grayscale image (see Fig. 3), it is spec-
ulated that pattern recognition algorithms developed for com-
puter vision would be applicable to the interpretation of sitting
postures from pressure distribution data. There are two major
approaches to object representation and recognition in computer
vision: model-based (for example, [3]) and appearance-based
(for example, [17]). The latter is considered more applicable
since the concept of object model does not apply directly to pres-
sure maps. Our work is based primarily on the technique of prin-
cipal components analysis (PCA), also known as “eigenspace
methods,” “eigendecomposition,” or “Karhunen–Loeve expan-
sion” [10]. It has been successfully applied to the problem of
computer face recognition (e.g., [21], [32]). Our algorithm is
presented in Section IV.

3By user independence, we refer to a system that works for people who have
not contributed to a training database, but whose anthropometry is well repre-
sented by the database.

Fig. 3. A full pressure map for the posture “left leg crossed” shown as a 2-D
grayscale image. The top, bottom, left, and right sides of the map correspond
to the shoulder area, knee area, right side, and left side of the occupant,
respectively.

B. Hardware Configuration and Preprocessing of Pressure
Data

Our sensing chair is equipped with a commercially available
pressure distribution sensor called the body pressure measure-
ment system (BPMS) manufactured by Tekscan, Inc. (South
Boston, MA). The office chair shown in Fig. 1 is fitted with
two sensor sheets (hidden inside the protective pouches) on the
seatpan and the backrest. The BPMS system has been selected
for: 1) its high resolution (10-mm interelement distance); 2)
the flexibility of the sensor sheets (0.10 mm in thickness) so
they can conform to the shape of a chair; 3) its usage by major
research and industry laboratories including Natick Army Re-
search Lab (for design of army boots) and Steelcase NA and
Herman Miller (for chair evaluation); and 4) most importantly,
Tekscan’s willingness to provide an API that made it possible
for us to access and manipulate pressure distribution data in
real time. Each sensor sheet has an array of 42-by-48 pressure
sensing elements. Each sensing element outputs an 8-bit dig-
ital value proportional to the local pressure. Although the sensor
sheets can be calibrated to display pressure readings in PSI or
other standard units, the raw digital data are used since we are
only interested in therelativepressure distribution patterns on
the chair surfaces.

The image in Fig. 3 is a full pressure map for the static sit-
ting posture of left leg crossed (after noise removal), shown as a
2-D grayscale image. The top and bottom halves of the pressure
map correspond to the pressure distribution on the backrest and
seatpan, respectively. To understand the orientation of the pres-
sure map, imagine standing in front of the chair and its occupant,
and unfolding the chair so that the backrest and the seatpan lie in
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Fig. 4. 3-D views of a pressure map for the posture “seated upright,” before (left) and after (right) smoothing.

the same plane. Therefore, the top, bottom, left and right sides
of the pressure map shown in Fig. 3 correspond to the shoulder
area, knee area, right, and left sides of the occupant, respectively.
The size of each full pressure map is 84-by-48 (242-by-48),
or 4,032 pixels.

The raw pressure distribution map is typically noisy (spikes
in the left image of Fig. 4). The noise is removed by convolving
the pressure map with a 3-by-3 smoothing kernel

The smoothed pressure map (right image of Fig. 4) contains
pressure artifacts (at the top left and right corners of the image)
due to the corners of pressure sensor sheets being wrapped
around the chair. Since these artifacts are common to all
pressure maps, their removal is not necessary. Finally, the
values of pressure readings are normalized, separately for the
seatpan and the backrest maps. The rest of this paper assumes
that all pressure maps have gone through the aforementioned
preprocessing procedures.

IV. STATIC POSTURECLASSIFICATION

A. Overview of PCA-Based Classification Algorithm

The key to a PCA-based approach is to reduce the dimension-
ality of data representation by finding the principal components
of the distribution of pressure maps, or equivalently, the eigen-
vectors of the covariance matrix of a set of training pressure
maps. Our PCA-based static posture classification algorithm in-
volves two separate steps: training and posture classification. In
the first step, training data for a set of predefined static pos-
tures are collected. Pressure maps corresponding to the same
posture are used to calculate the eigenvectors that best repre-
sent the variations among them. This eigenspace, termedeigen-
posture spacein this paper, is analogous to theview-based or
modulareigenspace for face recognition in [21]. Fig. 5 illus-
trates the process of computing one such eigenposture space.
Each of a total of training pressure maps is raster-scanned to
form a vector of 4032 elements . These
vectors are first de-meaned whereis the average of the
vectors. The mean-adjusted vectors, , are
then used to compute the covariance matrix, from which a

Fig. 5. A diagram for eigenposture space calculation.

set of eigenvectors are calculated4

such that their corresponding eigenvalues
are monotonically decreasing . These
eigenvectors can be thought of as forming an -dimen-
sional eigenposture space where a 4032-element pressure map
can be represented by the weights of its projection onto this
eigenspace. We have thus effectively reduced the representa-
tion of each pressure map from a 4032-dimensional space to
an -dimensional space. Furthermore, we can choose to use
only the first eigenvectors whose eigenvalues
are the largest to further improve computational efficiency (see
Section V). The process shown in Fig. 5 is repeated for all static
postures. Note that the calculation of eigenposture spaces is per-
formed off line.

Given a test pressure map, the second step of posture clas-
sification proceeds as follows in real time (Fig. 6). The test map

is first projected onto the eigenposture spaces calculated
during the training step. This is done by subtracting the average

4It is computationally more feasible to first compute the eigenvectors ofC ,
and then convert them to the corresponding eigenvectors ofC (see [32] for
details). Alternatively, the method of singular value decomposition (SVD) can
be used, recognizing the fact that the eigenvectors ofC are the left singular
vectors of the training data matrixX = [� � � � �� ] (see [18] for details).
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Fig. 6. A diagram for pressure map classification.

pressure map for each posture from , and
finding the inner dot product of the mean-adjusted posture map

with each of the eigenvectors in the corre-
sponding eigenposture space. The result is a point inth eigen-
posture space specified by the weights , where

denotes theth eigenvector in the th eigenposture space.
These weights are used to calculate the reconstruction ofin
each of the eigenposture spaces as . The
distances between and its reconstructions, the so-called
distance from posture space (DFPS), can then be computed as

. To the extent that is well represented by
one of the eigenposture spaces (as indicated by a minimum

), the corresponding posture label is used to classify .

B. A Single-User Static Posture Classification System

As a proof of concept, a single-user static posture classifi-
cation system was implemented on a Pentium PC in Windows
3.11 environment (required by the hardware driver) [26], [27].
Training data on a total of sitting postures, and
pressure distribution samples per posture were collected on the
first author. The postures were: 1) seated upright; 2) leaning
forward; 3) leaning left; 4) leaning right; 5) right leg crossed
(with knees touching); 6) right leg crossed (with right foot on
left knee); 7) left leg crossed (with knees touching); 8) left leg
crossed (with left foot on right knee); 9) left foot on seatpan
under right thigh; 10) right foot on seatpan under left thigh; 11)
leaning left with right leg crossed; 12) leaning right with left
leg crossed; 13) leaning back; and 14) slouching. These pos-
tures were considered to be representative of the typical sitting
postures that can be found in an office environment [13]. During
the training step, eigenposture spaces were calculated,
each from pressure distribution samples. During clas-
sification, a new pressure distribution map was first tested for
“empty seat” by comparing the sum of all pixel values with a
preset threshold. Once a pressure map passed this initial test, it
was projected onto the 14 eigenposture spaces and the smallest
DFPS, , was found. If was below a preset threshold
value, then the corresponding eigenposture space was used to

Fig. 7. Classification accuracy for “familiar” subjects.

label the new pressure map. Otherwise, the system declared the
posture to be “unknown.”

This single-user system was able to classify sitting postures
of the first author with an average accuracy of over 95%. En-
couraged by this result, but realizing that the system had to be
retrained for each new user, we quickly moved to a multiuser
static posture classification system.

C. A Multiuser Static Posture Classification System

Our current multiuser static posture classification system has
been implemented on a Pentium PC in Windows 98 environ-
ment [25]. In order to facilitate the training and evaluation of
this system, a static posture database has been collected on 30
subjects (15 females and 15 males) for sitting postures.
The subjects are selected with the goal to cover a wide distribu-
tion of anthropometric measurements. The ranges of subject’s
height, weight, and age are 152–191 cm, 45.5–118.2 kg, and
18–60 years old, respectively. Each subject has contributed five
pressure distribution samples per posture. There are therefore

training samples per posture, and the training data-
base consists of a total of 1500 pressure distribution maps.5

5Our static posture database is available [online] at
http://www.ece.purdue.edu/HIRL/projects_chair.html.
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Fig. 8. Classification accuracy for “familiar” and new subjects. Solid, dashed and dotted lines correspond to accuracies associated with the smallest" value, first
two smallest" values, and the first three smallest" values, respectively.

The postures contained in the Static Posture Database are: i)
seated upright; ii) leaning forward; iii) leaning left; iv) learning
right; v) right leg crossed; vi) left leg crossed; vii) leaning left
with right leg crossed; viii) leaning right with left leg crossed;
ix) leaning back; and x) slouching. These postures are similar
to the 14 postures utilized in the single-user system with two
exceptions. First, the two types of leg crossing (one with knees
touching, the other with a foot on the other knee) have been com-
bined, thus postures 5) and 6) are now v), and postures 7) and 8)
are now vi). Second, the two postures that require a subject to
sit on a foot, namely 9) and10), have been eliminated because
some subjects are unable to do so.

The training of a multiuser static posture classification system
is essentially the same as that of a single-user system, except that
the pressure maps used to calculate each eigenposture
space (Fig. 5) contain samples from 30 subjects instead of one.
The classification step is identical for the single- and multiuser
systems. With the implementation of this multiuser static pos-
ture classification system, it is now possible to systematically
evaluate its performance, and to investigate issues such as the
user-independence of such a system.

V. PERFORMANCEEVALUATION

Accuracy of our static posture classification system has been
evaluated with additional pressure maps collected from two
groups of subjects. First, an additional 200 pressure distribution
maps have been collected from 20 of the 30 subjects who
contributed to the static posture database (one sample per
posture per subject). These pressure maps are then labeled with
respect to their corresponding postures by the static posture
classification system. Fig. 7 shows the classification accuracy
in terms of percent-correct scores averaged over postures, as a
function of the number of eigenvectors that are used in
the classification algorithm. As expected, overall classification
accuracy increases as a function of the dimension of eigenpos-
ture space . The curve shown in Fig. 7 has a knee point at

with a corresponding average accuracy of 96%.
Classification accuracy by posture (averaged across subjects)

ranges from 90.3% (for posture “leaning back”) to 99.8% (for
“slouching”). The system is also able to discern among pos-

tures that have very similar pressure distribution maps (for ex-
ample, 95.2% for “leaning left,” 95.1% for “right leg crossed,”
and 93.5% for “leaning left with right leg crossed”).

Secondly, a total of 400 pressure distribution maps have been
collected from eight new subjects (five samples per posture per
subject) who did not contribute to the static posture database.
The ranges of subject’s height and weight are 160–191 cm and
65.9–93.6 kg, respectively. These anthropometric values are
within those represented in the static posture database. Shown
in Fig. 8 (solid line in the right graph) are the classification
accuracies averaged over postures as a function of number of
eigenvectors used in classification. Compared with Fig. 7, it
is clear that classification performance is better with subjects
the system is “familiar with.” In an effort to locate the sources
of error, we examined the posture labels associated with not
only the minimum DFPS, (the first choice), but also
those with the next two smallestvalues (the second and third
choices). The results are shown as dashed lines in the right
graph of Fig. 8 for new subjects. The middle and top curves
(dashed and dotted lines, respectively) reveal the classification
accuracies that can be potentially achieved if the correct posture
label is associated with the first two or three smallestvalues,
respectively. The corresponding results for the pressure maps
collected from “familiar” subjects are shown on the left of
Fig. 8. Note that the top curves in both graphs of Fig. 8 are in
the upper nineties, indicating that similar performance levels
with both “familiar” and new subject groups can be achieved
if the correct posture label can be derived from the first three
smallest values.

Execution time for the classification subroutine as a function
of number of eigenvectors used has also been measured, with
source codes that have yet to be optimized for speed. This is an
important parameter for any real-time application of our system.
The average classification time for 5, 10, 15, or 20 eigenvec-
tors is 62.1, 107.8, 168.1, or 241.0 ms, respectively. The cor-
responding average classification accuracy (for “familiar” sub-
jects) is 88, 95, 96, or 96%, respectively. In view of these mea-
surements, (out of ) eigenvectors corre-
sponding to the 15 largest eigenvalues are used for the static
posture classification system.
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VI. SUMMARY

We have described a static posture classification system based
on a sensing chair that monitors the pressure distribution pat-
terns on its surfaces in real time. The PCA technique, com-
monly used in computer and robot vision, has been successfully
applied to the problem of posture classification from pressure
maps. A PCA-based algorithm has the advantage of being very
fast. Its disadvantage is the lack of physical interpretations as-
sociated with eigenposture spaces. Our current system runs in
real-time (with an update rate of roughly 6 Hz) on a Pentium
PC in Windows 98 environment. Average classification accu-
racy is 96% for subjects the system had felt before, and 79%
for those who are new to the system. We are currently investi-
gating ways to improve the system’s accuracy for new subjects
by taking into account the first three eigenposture spaces that are
closest to the test pressure map. Future work is aimed toward a
dynamic posture tracking system that continuously tracks not
only steady-state (static) but transitional (dynamic) sitting pos-
tures.
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