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Abstract. We present a novel algorithm for approximating the param-
eters of a multivariate t-distribution. At the expense of a slightly de-
creased accuracy in the estimates, the proposed algorithm is significantly
faster and easier to implement compared to the maximum likelihood es-
timates computed using the expectation-maximization algorithm. The
formulation of the proposed algorithm also provides theoretical guidance
for solving problems that are intractable with the maximum likelihood
equations. In particular, we show how the proposed algorithm can be
modified to give an incremental solution for fast online parameter esti-
mation. Finally, we validate the effectiveness of the proposed algorithm
by using the approximated t-distribution as a drop in replacement for
the conventional Gaussian distribution in two computer vision applica-
tions: object recognition and tracking. In both cases the t-distribution
gives better performance with no increase in computation.

1 Introduction

Probability models are used in a wide range of applications in order to account
for the uncertainty of processes and observations in a principled way. Often the
true distribution underlying a process or observation is unknown or is difficult to
use. In these cases one option is to use a nonparametric distribution. However,
nonparametric distributions require a large amount of data to train, particularly
in high-dimensional spaces. A common alternative is to fit a generic parametric
probability model to the data.

By far the most commonly used parametric probability model is the multi-
variate Gaussian distribution. The Gaussian distribution is easy to use and has
a number of nice properties. Parameter estimation for the Gaussian distribution
is straightforward since its sufficient statistics are the parameters. Also, it is very
easy to compute the marginal and conditional distributions from the joint distri-
bution. However, for many applications the Gaussian distribution has tails which
are too light; it tends to underestimate the probability of rare events occurring,
which is unrealistic and can have a profound negative impact on performance.
[10, 14, 7). For example, in a tracking application a target may undergo a sudden
change in illumination or may be partially occluded by another target. If these
rare events are ignored the tracking algorithm will fail.



Several alternatives to the Gaussian distribution have been proposed in order
to avoid this issue. One such alternative is the multivariate t-distribution [7]. The
t-distribution has a similar shape as the Gaussian distribution but with much
heavier tails. Because of the heavy tails, the t-distribution is a better model for
situations in which rare events commonly occur. The t-distribution is particularly
better suited for high-dimensional spaces where all events are expected to be rare.
The heavy tails of the t-distribution also increase the robustness in parameter
estimation, since the outliers in the data naturally have little overall impact on
the parameters [5]. This is in stark contrast to the Gaussian for which a few
outliers can dramatically change the parameter estimates of the distribution.

Despite these attractive properties of the t-distribution, it has not been
widely used. We believe this can be attributed to the lack of good estima-
tion techniques (in an engineering sense) for the parameters of the distribution.
Numerous EM-based iterative algorithms have been developed to compute the
maximum likelihood estimates for the parameters of the t-distribution [8, 9, 10].
However, because of their iterative nature, these algorithms are computationally
expensive. Also, these algorithms work on the dataset as a whole and cannot be
incrementally updated as new data becomes available. This deficiency severely
limits their usefulness in real time applications.

This paper addresses the problem of parameter estimation for the multi-
variate t-distribution. We propose a new approximate algorithm which is both
computationally efficient and incrementally updateable. The proposed algorithm
provides comparable estimation accuracy compared to the EM-based algorithms
while achieving a significant improvement in the computation time. Using the
approximation formula, we then develop an approximate incremental probabilis-
tic PCA (PPCA) for the t-distribution. Previous work has extended the idea of
PPCA to the t-distribution [17], but with a focus on extending the EM-based
maximum likelihood techniques. As we mentioned, these EM-based iterative es-
timators are computationally expensive and cannot be updated incrementally,
posing severe limitations on the range of applications. We present an approxi-
mate incremental approach which has equivalent computational requirements as
the incremental PPCA approaches for the Gaussian distribution [16, 11].

2 Multivariate t-Distribution

In this section, we will present some useful properties of the t-distribution, many
of which come from the seminal work by Kotz and Nadarajah [6].

2.1 Basic Properties

The pdf of the p-variate t-distribution with v degrees of freedom is given by
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where ¢ € RP is the location parameter and S € RP*P is the positive definite
scale matrix. Notationally we will write x ~ t(c,S,v). The vector ¢ specifies
the location of the single mode of the distribution. The matrix S specifies the
relative width of the central mode along each dimension and also the correlation
between dimensions. The degrees of freedom v controls the heaviness of the tails
of the distribution. When v = 1 we have the Cauchy distribution which has very
heavy tails while v = oo gives the Gaussian distribution.

Many applications require the computation of the marginal distribution of
one or more random variables for which the joint distribution is known. This
is easily done with the multivariate t-distribution by simply partitioning the
parameters ¢ and S, i.e. if x ~ t(c,S,v) and we define
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then x; ~ t(c1,511,v) and x3 ~ t(co,S922,v). The conditional distribution
f(x2|x1) is unfortunately not a t-distribution and does not have a particularly
clean form. However, the expectation of x5 given x; does have a nice form

E{X2|X1} = 82181_11 (X1 — Cl) + Co (5)

2.2 Sampling from the Multivariate t-Distribution

Generating samples from a multivariate t-distribution is fairly straightforward.
If y ~ N(0,I) and v ~ x?(v) then the random vector

X = \/zTTy +c (6)

is distributed as x ~ t(c, TTT,v). Note that every entry in the random vector
x is scaled according to the same value . Because of this, even if the scale
matrix is diagonal the entries in x will not be independent. This is an important
limitation of the multivariate t-distribution.

3 Batch Parameter Estimation

3.1 Maximum Likelihood Estimator

The maximum likelihood estimates for the parameters of the t-distribution based
on sample data X = [x1 X2 ... X,,] must satisfy the following equations [10]
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These equations cannot be solved to give closed form estimates for the parame-
ters. An EM-based approach can be used to iteratively estimate ¢, S, and v which
satisfy these constraints [8, 9, 12]. While some variations of the implementation
may achieve a faster parameter estimation than others, fundamentally they are
all iterative algorithms, thus computationally expensive. More importantly, none
of these methods can be extended to efficiently update the estimates as new data
becomes available. All of the algorithms are based on computing weighted means
and covariances. Since the weight for each sample is a function of ¢, S, and v,
the weights on old data will change as new data becomes available and hence
the old data must be included in the computation.

3.2 Approximate Algorithm

Special Case To develop an approximate algorithm for computing the param-
eters we begin by considering the special case x ~ ¢(0, al, v) for some constant
«a > 0. In this special case the pdf of the norm of x is given by
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where B(z,y) = T'(z)T'(y)T~(z +y) is the beta function. The goal is to estimate

v and a given sample data X = [x1 X2 ... X,]. This can be done by considering
the following results
v
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where 1y(z) is the digamma function and ¢, (z) is the trigamma function.
Let z; = log||x;||? = logx!x;. To estimate v we need to solve for  which
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where z = L 3" | z;. Unfortunately we cannot directly solve Eq. (13). However,

by using the approximation
z+1
P1(z) m —5— (14)
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we can compute the estimate

14+v1+4b

with



08 0.85 0.9 0.95 1 1.05 11 1.15 1.2 . 0.95 1 1.05 1.1 1.15
Estimated c / True (tr{S)/p) Estimated v/ True v

Fig. 1. An experimental evaluation of Egs. 15 and 17 when applied to samples from
general t-distributions. Each figure is a normalized histogram over 10000 trials. For
each trial we set v = 10* where u ~ U(—1,1) is a uniform random variable. The scale
matrix for each trial was a random positive definite matrix drawn from a Wishart
distribution and p was set to 50. The left figure compares  computed using Eq. 15 to
the true value v. The right figure compares & computed using Eq. 17 to the mean of
the diagonal entries of the scale matrix.

Finally, we use Eq. (11) to compute an estimate for the scaling
&exp{210g13+1/)0 <;> — 4o (72’)} (17)

General Case We now consider the general case when x ~ t(c,S,v). The
location vector ¢ can be estimated by considering each dimension of the data
separately and computing either the sample median or the mean of the center
25% of the data [13]. We will use ¢ to denote the estimate of the location vector.

Since our goal is a computationally efficient approximation rather than an
exact solution to the parameters we begin by estimating v and « using the equa-
tions of the preceding section, i. e. we assume for the purpose of approximation
that S = al for some . This can be done by first computing z; = log ||x; — ¢||?
and then directly applying Egs. (15) and (17). In practice, the estimate 7 is a
good approximation to v regardless of the structure of S as is shown in Fig. 1.
The slight positive bias may be due to the error in the approximation for the
trigamma function given in Eq. 14. The scaling estimate & also provides a good
estimate for the mean of the diagonal entries of S, as illustrated by the results
shown in Fig. 1. Hence all that remains is to estimate the relative scaling of the
elements of S.

To estimate the relative scaling of the elements of S we use the auxiliary
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which is similar to the sample covariance except that each sample is first scaled
by the norm raised to a constant power 8. We have experimentally validated
that a good choice for 8 can be given by

2log, p
= == 19
h 2 4 log, p (19)
Note that for many applications p is large and # is small so we can directly use
B = 2. The scaling term in the denominator of Eq. 18 is necessary in order to
give a good approximation when v is small. We can now apply the estimated
mean of the diagonal entries & to obtain an estimate for S

~ dp _
S = —S
tr (S)
This completes the development of the approximation algorithm which is given
in succinct form in Fig. 2.
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Fig. 2. Batch Approximation Algorithm
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3.3 Comparative Evaluation of Maximum Likelihood and
Approximation Algorithms

To evaluate the accuracy of the approximation algorithm we performed several
experiments on synthetic data. In three experiments we varied separately the
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Fig. 3. Comparison of the accuracy of the maximum likelihood and approximation
algorithms for estimating the parameters of a multivariate t-distribution. The accuracy
of the maximum likelihood Gaussian distribution is provided for comparison.

dimensionality p, the degree of freedom v, and the number of training sam-
ples N. In each case we generated synthetic data using the sampling technique
described in section 2.2 and then computed the KL divergence from the true
distribution for both the maximum likelihood parameter estimates (computed
using the method in [9]) and the approximate parameter estimates. We also com-
puted the KL divergence from the true distribution for the maximum likelihood
Gaussian distribution in order to give a basis for comparison. The results are
shown in Fig. 3. As expected, the KL divergence of the approximation algorithm
is higher than that of the maximum likelihood algorithm. However, the approx-
imation algorithm is nearly as good across a broad range of parameter settings
and in particular it is significantly better than the maximum likelihood Gaussian
in every case.
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Fig. 4. Training time on 200 samples as a function of p for the maximum likelihood
and approximate algorithms.

The maximum likelihood estimator has slightly better accuracy but in many
other ways the approximate algorithm is superior. The primary advantages of
the approximate algorithm are

— Computational Efficiency: Fig. 4 shows the running time for both meth-
ods as a function of the dimensionality p of the data based on a MATLAB im-
plementation. The approximate algorithm is consistently 50-100 times faster.

— Easy Implementation: Because the approximate algorithm is directly
computed there is no need for iterative looping in the code. This also elimi-
nates the need to check for convergence.

— Useful Theoretical Tool: We can use the approximate parameter estima-
tion equations as a basis for developing additional algorithms which would
not be possible with the maximum likelihood estimator, e.g. incremental
algorithms.

4 Incremental Parameter Estimation

Many real-time applications require online updating of the parameters of the
distribution. To handle this situation we present two incremental approaches
which can be used with the t-distribution based on the batch approximation
algorithm of the preceding section. The first approach is essentially a direct
extension of the batch algorithm. The second approach uses PPCA to estimate
the parameters under the assumption that the underlying dimensionality of the



model is much lower than the true dimensionality. Note that for both algorithms,
we can incrementally estimate ¢ without needing to store previously seen data
by using an online quantile estimator [15, 2].

4.1 Direct Incremental Algorithm

In order to convert the batch algorithm to an incremental algorithm we need to
rewrite Egs. (15), (17), and (18) to be incremental. To compute © and & we need
to incrementally update estimates for the mean and variance of z = log ||x — ¢||%.
After the kth sample, the mean z and variance v, are updated by

k—1 1
k) — M~ o(k=1) 4 21
z oz + 2k (21)
k-1 k-1 2
(k) _ B 2 (k=1) , M 2 _ k-1
vy U + 2 (Zk z ) (22)

where zj, = log ||x; — ¢ ||?, i.e. we use the best available estimate for ¢ for each
incremental update. Because the estimate for ¢ changes with each sample these
incremental update formulas will not give exactly the same results as the batch
algorithm. In practice this is typically not a problem. However, when k is very
small we must be careful to ensure that ||x; — ¢®*)||2 # 0. One way to do this is
to store the first few samples and use these to compute a batch estimate before
switching to the incremental estimator.

We can now directly use Eq. (15) to conclude that the estimate for v after
the kth sample is given by

NG 1+ V1 -+ 4b(k)

7 ) (23)
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Similarly, the estimate for « is given by
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The last step is to compute an estimate for S. Under the assumption that p
is large and v is small (and hence 8 = 2 in Eq. (19)) we use the estimate
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where again we use the best available estimate for ¢ for each update. Again we
must be careful to ensure that |x; — ¢)||? # 0. This is most likely to occur
when k is very small and as a solution, as already stated, we use the first few
samples to compute a batch estimate of S before switching to the incremental
algorithm.



4.2 PPCA for t-distribution

Although PPCA was originally developed in the context of the multivariate
Gaussian distribution the idea has been extended to the t-distribution [16, 17].
The idea behind PPCA is to model the scale matrix in the following way

S =sI+WW7 (27)

where s > 0 captures the general level of uncertainty in the random variable
while W € RP*? q < p, captures the correlation between dimensions. Since we
typically have ¢ < p, this model for S can be trained with significantly fewer
data samples while still providing a powerful model.

The maximum likelihood estimates for W and s can be obtained through
an iterative EM-based approach [17]. Once again, this approach is too slow for
practical use in many computer vision problems. As an alternative, we present
an incremental algorithm based on the approximate incremental estimator of the
preceding section. The key is to note that the incremental equation for & given
in the preceding section is still applicable and so instead of directly modeling S
as in Eq. 27 we can instead model S. Specifically, the goal is to find estimates
for § and W such that

JOPCHD) IR0 (WW)T (28)

Since S is in essence a weighted covariance matrix the incremental update
formulas for PPCA with the multivariate Gaussian distribution can be used as
a template for how to estimate § and W [11]. The idea is to use

Wk — y&) (A(k) _ A(k)1)1/2 (29)

where A®) is a diagonal matrix of the ¢ largest eigenvalues of S*) and the
columns of V(¥) € RPX4 are the corresponding eigenvectors.
The first step is to rewrite the incremental update equation for S as
k—1

q(k) _ G(k—1) T
S 2 (S +yy ) (30)
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Let L = [W(k_l) y} and let Q = LTL. Compute an eigen decomposition of
Q € R1%1 s.¢.

(31)

Q=uruv? (32)

where I = diag(v1, . - -, Vg+1)- Then the first ¢ + 1 eigenvalues of S*) are given
by

(e
Ai = m[s(k R (33)



and the corresponding eigenvectors are given by the columns of
V=LUr—2 (34)

Note that we keep only the first ¢ eigenvalues and eigenvectors in order to com-
pute W), Finally, we update 3

s — " [W + §(k1)} (35)
n+1|p—gq

5 Application to Computer Vision

5.1 Classification

A common task in computer vision is to determine which object from a set
of possible choices is visible in a small subsection of the image. One way to
solve this problem is to first train a probability model for each possible choice
based on training data. The best estimate for which object is visible in a small
subsection of the image is then given by the probability model which assigns the
highest probability to the subsection. This method of classification is known as
the generative approach.

Fig. 5. Objects from the Amsterdam Library of Object Images (ALOI). [3]

In order to compare the power of the Gaussian and t-distributions for solving
the classification problem, we analyzed ten objects (shown in Fig. 5) from the
Amsterdam Library of Object Images [3]. For each object, there are 72 images
taken in 5° increments around the object. We randomly split these images into
36 training images and 36 testing images for each object. For each image, we
then extracted the brightness of the pixels from 100 non-overlapping 10 x 10
squares and used these as the data samples. The data samples from the training
images were used to obtain the maximum likelihood Gaussian distribution and
the approximate t-distribution using the proposed batch algorithm. The prob-
ability models that had been learned for all of the objects were then used to
classify the samples from the testing images.



Under these conditions, the Gaussian distribution led to a classification ac-
curacy of 51% while using the t-distribution significantly improved the accuracy
to 68%. The reason for this can be seen by considering Table 1 which gives indi-

Table 1. Object classification rates in %. Each entry gives the percentage of samples
that were correctly classified for that object.

| [t [2]3]4[5[6[]7]8]9][10]
t-distribution || 74 | 66 | 66 | 90 | 61 | 97 | 47 | 62 | 43 [ 71
Gaussian 74 | 25 | 44 | 91 | 43 [ 80 | 63 | 24 | 8 | 55

vidual results for each object. The Gaussian distribution gives very poor results
for objects 2, 8, and 9; each of which has substantial changes in brightness due
to the design, specular highlights, and shadows. These changes represent out-
liers and are poorly handled by the Gaussian model, resulting in a very broad
distribution with poor discrimination. Objects 4 and 6 on the other hand, which
give good results with a Gaussian distribution, are mostly uniform in brightness
and do not undergo significant changes from frame to frame.

The parameter estimation algorithm for the t-distribution automatically in-
cludes robustness against outliers and so large changes in brightness have little
effect on the overall parameter estimation. The result is a tighter distribution
compared to the Gaussian. Because of this the t-distribution more effectively
models each object and hence gives better discrimination. Note that the al-
gorithm also performs very well when no outliers are present, giving excellent
results for objects 4 and 6. It is this flexibility to handle a wide range of data
types which makes the t-distribution an ideal choice for many applications.

5.2 Tracking

Tracking is another very important application in computer vision. The goal
in tracking is to identify which pixels in each frame of a video sequence were
generated by one or more targets. This can be done by training a probability
distribution over the brightness of the pixels making up each target. The joint
distribution is used to identify where a target is located in a given frame. The
marginal distributions can then be used to determine for each pixel if it was
generated by the target or something else, effectively segmenting out the target
from its surroundings.

Using a tracking algorithm based on PPCA for the Gaussian distribution
as a basis we modified the algorithm to use the t-distribution instead [1]. Both
algorithms were tested on a video sequence from PETS2006 [4]. The results for
three frames of the video sequence are shown in Fig. 6. The complete video se-
quence is included with the supplementary material. Although the overall results
are similar regardless of which distribution is used, the t-distribution does show
improved performance. The t-distribution is much less susceptible to shadows
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Fig. 6. Tracking results using the Gaussian distribution and the t-distribution.

which can be seen by looking at the gray target in the second and third frames.
The t-distribution also handles overlapping targets more cleanly. Because of this
it is able to properly distinguish between the orange and cyan targets in the final
frame while the Gaussian distribution confuses them.

6 Conclusions

The Gaussian distribution is by far the most commonly used parametric prob-
ability model mainly because it is simple to use and computationally tractable
even for high dimensional data. The light tails of the Gaussian distribution, how-
ever, make it a poor model for the randomness present in many sources of data.
We believe the t-distribution represents a viable replacement for the Gaussian.
By developing an approximate algorithm to compute the parameters, we have
shown that the t-distribution can be made as computationally efficient as the
Gaussian. Furthermore, we show that the proposed algorithm can be updated
online for real time applications. Even though the parameter estimation is only
approximate, the results show that the t-distribution outperforms the Gaussian
for two important applications in computer vision. We expect future research
along these lines to touch a large spectrum of domains in computer vision.
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