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Abstract

Most tracking algorithms implicitly apply a coarse seg-
mentation of each target object using a simple mask such as
a rectangle or an ellipse. Although convenient, such coarse
segmentation results in several problems in tracking—drift,
switching of targets, poor target localization, to name a
few—since it inherently includes extra non-target pixels if
the mask is larger than the target or excludes some por-
tion of target pixels if the mask is smaller than the tar-
get. In this paper, we propose a novel probabilistic frame-
work for jointly solving segmentation and tracking. Start-
ing from a joint Gaussian distribution over all the pixels,
candidate target locations are evaluated by first comput-
ing a pixel-level segmentation and then explicitly including
this segmentation in the probability model. The segmen-
tation is also used to incrementally update the probabil-
ity model based on a modified probabilistic principal com-
ponent analysis (PPCA). Our experimental results show
that the proposed method of explicitly considering pixel-
level segmentation as a part of solving the tracking prob-
lem significantly improves the robustness and performance
of tracking compared to other state-of-the-art trackers, par-
ticularly for tracking multiple overlapping targets.

1. Introduction

This paper addresses two closely related problems in
computer vision, tracking and segmentation. The tracking
problem consists of determining the location of all objects
of interest in each frame of a video sequence. This is a
core problem in the area, often serving as a preprocessing
step for applications such as automated video surveillance.
The segmentation problem is to determine which pixels in
an image frame were generated by each target of interest.
This is also an important problem with applications such as
object identification and activity recognition.

While these two problems may seem to be independent,
they are in fact inseparable and, in practice, any approach to
solving one of the problems typically involves solving the
other either implicitly or explicitly. It is clear that by solving
the segmentation problem, we can easily obtain a solution to
the tracking problem. Although the segmentation algorithm
may not explicitly contain a tracking component, we can,
for example, find the centroid of the pixels returned by the

algorithm and use that as a measure of the target’s location.

While not as obvious, it is also true that to solve the
tracking problem we must provide at least a crude solu-
tion to the segmentation problem. During tracking it is the
location of each target’s projection onto the image that is
tracked. We assume that in every frame the appearance of
some subset of the image pixels was generated by the target
and that it is these pixels we use for tracking. However, we
cannot say a priori which pixels in a new frame will be gen-
erated by a particular target and which will be generated by
another target or the background. Hence, some method for
determining which pixels are generated by the target must
be included as part of every tracking algorithm. This is the
segmentation problem.

Many tracking algorithms implicitly or explicitly use a
coarse segmentation of each target object using a simple
mask such as a rectangle or an ellipse. We begin by showing
that this coarse segmentation results in several problems in
tracking. We will then present a probabilistic framework for
jointly solving tracking and fine, pixel-level segmentation .
Finally, we will present experimental results that demon-
strate the performance improvement achieved by explicitly
considering the segmentation compared to other state-of-
the-art tracking algorithm that employ implicit segmenta-
tion.

2. Background

Numerous algorithms have been developed to address
the tracking problem [19], and we will not attempt an ex-
haustive review. Tracking methods may be broadly catego-
rized by the types of features used for tracking, e. g., bright-
ness, edges, colors, etc. and whether the method supports
multiple targets. We now consider approaches relevant to
the current work, focusing on the implicit or explicit seg-
mentation employed by the method and how this segmenta-
tion affects the tracking results.

Early multi-target tracking algorithms such as multiple
hypothesis tracking [15] and the joint probabilistic data as-
sociation filter [9] were developed in the context of radar
and sonar tracking. In this context, there is no segmentation
problem to solve since each target is in a sense one “pixel”
in size.

More recently, particle filters have been widely used in
tracking algorithms [10]. Khan et al. [1 1] give an interesting
extension to the multi-target case, which is particularly rele-
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vant to the current discussion. The tracking uses a multivari-
ate Gaussian over the brightness of the pixels contained in
the target. The segmentation is a rectangle of fixed size. As
the authors show in their results, the tracking breaks down
when the targets overlap. This is to be expected since, under
fixed segmentation, the same pixels are in a sense claimed
by multiple targets when they overlap. The resulting ambi-
guity may cause track failure or switching of targets.

Another recent multi-target tracking algorithm based on
Bayesian inference is given in [14]. Again a fixed rect-
angular segmentation is used. The appearance model is a
multivariate Gaussian which is updated using probabilistic
principal components analysis (PPCA). Our algorithm uses
a similar probabilistic framework, but with a critical differ-
ence of incorporating fine segmentation into the tracking.
A direct comparison of results between the method of [14]
and ours is given in section 6.

The segmentation problem has also been extensively
studied. A comparison of many methods is given in [13].
One common method is background subtraction. Under
this framework, a model for the background is learned a
priori and used to identify pixels that do not belong to the
background and hence belong to one of the targets. An
effective technique for doing this is based on training a
mixture of Gaussians for each pixel [17]. A complement
to background subtraction is appearance based methods,
which learn an appearance model for each target and use
this model to decide which pixels come from the target. Co-
maniciu et al. [8] use a color histogram as the model for the
target. The method proposed in section 4.1 takes advantage
of the appearance model already learned as part of tracking
for computational efficiency.

Some effective tracking algorithms have used segmenta-
tion as the primary vehicle for tracking. In the CAMSHIFT
[5] algorithm, a probability model is learned over various
local image features (e. g. hue, gradient, etc.) for target pix-
els. This model is then used in the next frame to identify
which pixels have a high probability of being part of the
target. These probabilities are in turn used to simultane-
ously find both the center of the target and its approximate
size. The ensemble tracker [3] is based on a similar idea but
uses an AdaBoost classifier instead of a probability model
to determine which pixels make up the target. Both the
CAMSHIFT and the ensemble tracker use a single model
across all pixels for determining which pixels make up the
target, thus they work best when the appearance is fairly
uniform within each target but at the same time distinctive
against other targets. For some applications, e. g. face track-
ing, a single model for all pixels can work quite well. How-
ever, in a general tracking context, these methods may not
be effective. Some recent work has used a bag of pixels
approach to help compensate for this deficiency [4].

While outside of the scope of this work, a related tech-
nique for combined tracking and segmentation is based on
contour tracking [7, 16]. While these approaches seem best
suited for single target tracking, Bugeau and Peréz give a
multi-target version in [6]. However, it is difficult to deter-
mine the robustness of their technique for splitting merged
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Figure 1. Comparison of coarse and fine segmentation. Blue pixels
represent the target with a semi-transparent red overlay indicating
the segmentation (best viewed in color). (a) target; (b) coarse seg-
mentation with extra pixels; (c) coarse segmentation with missing
pixels; (d) fine segmentation.

targets—a major concern for all contour based algorithms.

3. Coarse Segmentation and Its Problems

Recall that the segmentation problem consists of deter-
mining which pixels were generated by a particular target
in each frame. One easy way to handle the segmentation
problem is to perform a very coarse segmentation based on
a mask with a fixed shape. To further simplify the problem,
a simple geometric shape such as a rectangle or an ellipse
can be used. In each frame the mask is applied (often im-
plicitly) around a candidate target location, and the result-
ing pixels are used to evaluate if the location is suitable for
tracking. A variation on this method is to support scaling of
the mask in the  and y directions as is done in CAMSHIFT
[5]. Often the same mask is used to determine which pixels
should be included when updating the model of the target.

Unfortunately, using a fixed shape mask for segmenta-
tion results in several tracking problems. Allowing scaling
of the mask mitigates these problems to some extent, but
does not address the fundamental issues. Figure 1 high-
lights some of the difficulties in using a fixed shape mask
with complex targets, such as the walking person shown in
(a). First, the mask will, under any realistic scenario, in-
clude some extra pixels that are not part of the target as
shown in Figure 1(b). As the tracking algorithm attempts to
track all of the pixels indicated by the segmentation, these
extra pixels will introduce drift since the background and
target do not move together. Also, if another moving object
passes in front of the target, then the combination of occlu-
sion of the target being tracked and a significant number of
extra pixels from the occluding object can cause the tracker
to switch targets.

Another difficulty in using a coarse segmentation in
tracking arises from the fact that the segmentation, in gen-
eral, will miss some pixels that belong to the target as shown
in Figure 1(c). The result is less robust tracking since some
of the useful information available is being ignored. This
can be particularly important in the case of occlusions since
a partial occlusion of the target could be a full occlusion
of the pixels within the tracker window. Furthermore, the
pixels in the center of the target in general have a simi-
lar appearance. Therefore, a tracker that includes also the
boundary pixels of the target will achieve more precise lo-
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Figure 2. Target representation. The red pixel labelled x; is an
arbitrary reference pixel. The opacity of the blue pixels represents
the segmentation information (best viewed in color).

calization.

It should be noted that both of the problems associated
with coarse segmentation have serious effects on tracking ,
particularly for multiple nearby or overlapping targets as we
will show in Section 6. For this reason we propose a method
which combines both tracking and fine segmentation of the
targets, as illustrated in Figure 1(d).

4. Joint Segmentation and Tracking

As shown in Figure 2, each target is represented by two
pieces of information: the location x; = [x;,v;]7 of a ref-
erence pixel on the target and the segmentation of the target
(the probability for each pixel in the image that it was gener-
ated by the target). The reference pixel could be initialized
by a user click or an initial object detection algorithm. The
absolute location of the reference pixel is not particularly
important; however, the shift in x; from frame to frame is
indicative of the general shift of all pixels making up the
target. Also, x; provides a point of reference on the target
for defining the coordinates of pixels relative to the target.
The segmentation encodes the shape and size of the target.
Furthermore, the centroid of the segmentation is taken to
indicate the center of the target and is used for comparison
against ground truth target centers in Section 6.

We address both tracking (updating the reference loca-
tion for all targets) and segmentation jointly as follows:

1. Propose a candidate solution for the target locations
X = [x1 X2 ... x| where M is the number of targets

2. Using the proposed solution X, compute the segmen-
tation for each target and the background using the
method described in Section 4.1

3. Compute the probability of X given the input image z,
P{X|z}, as explained in Section 4.2

4. Repeat the process from step 1, keeping the locations
X which maximize P{X|z}

Mathematically, our estimate for the target locations X in
the kth frame is given by

X*) = argm)z(ixP{X|z} (1)

Note that throughout this paper a superscript will be used,
when necessary, to denote the frame number. This formu-
lation is referred to as a maximum a posteriori (MAP) esti-
mator.

Alternatively, instead of choosing the value of X which
maximizes P{X|z}, we could update the full probability
distribution for each frame using, for example, a particle
filter. However, P{X|z} is a joint distribution over the loca-
tion of multiple targets and hence lies in a high dimensional
space. Consequently a large number of particles may be re-
quired for an accurate characterization of the distribution.
Therefore we follow the method of a similar multi-target
tracker in Nguyen et al. [14] and use a MAP estimator for
simplicity and computational efficiency.

4.1. Segmentation

The goal of segmentation is to determine for each pixel
the probability that it was generated by each of the targets
and the background, given a set of target locations X. This
can be done using Bayesian inference. Let ¢;(p) be the
event that the pixel located at p was generated by the ith
target. Taking the pixel brightness z as the evidence and
conditioning on X throughout, the probability distribution
for the parameter g;(p) is given by

P{z|g:(p), X} P{g:(p)|X}
S P{z|g;(p), X} P{g;(p)|X}

where target O represents the background.
The prior distribution P{g;(p)|X} is defined to be

P{gi(p)lz, X} =

kbackground 1=20
P{g;(p)|X .
{9:(p)IX} o {sgk U(p — Ax;) + ktarget, else
3)
where sgk_l) (p — Ax;) is the posterior probability from the

preceding frame with Ax; = x; —xkD

i accounting for the
shift in the target location. The constants kyqckground and
ktarget are included in the prior as regularization terms to
control how easy it is for a pixel to switch from the target to
the background and vice versa.

The likelihood distribution P{z|g;(p), X} is defined to

be a Gaussian distribution
P{z|gi(p), X} £ N (1,6?) @)

where i is the mean and 62 is the variance. The values of
[ and 62 are obtained by marginalizing the full multivari-
ate Gaussian distribution over the appearance of the target
which is computed using the techniques described in Sec-
tion 5.

Although at first glance the need to recompute
P{g;(p)|z, X} whenever one of the targets changes posi-
tion may seem to be an excessive computational burden, in
practice the computation can be made more efficient by en-
forcing a simple constraint. Note that both the likelihood
distribution (Eq. (4)) and the prior distribution (Eq. (3)) de-
pend only on the location of the associated target, i. e. they



are independent of the other targets. Hence by considering
a change in the location of only one target at a time, the
likelihood and prior for the other targets remain unchanged
and only the denominator of Eq. (2)—which is common be-
tween all targets—will change for these targets.

It is important to note that the sum of P{g;(p)|z, X}
over all targets and the background is unity for each pixel.
This has two important effects. First, every pixel must be
accounted for by one or more targets. Because of this, track-
ing failures in which multiple trackers jump to the same tar-
get are naturally avoided. If multiple trackers jump to the
same target then the background is left to account for the
pixels of the remaining targets. Since it is very unlikely
that the background model will match the appearance of the
targets, such an arrangement will not maximize P{X|z}.
Second, multiple targets cannot fully claim the same pixel.
As will be seen in the next section, this means that disputed
pixels have a less of an impact in determining the target lo-
cations, thus improving robustness.

4.2. Tracking

Recall that the tracking solution is obtained by maximiz-
ing P{X|z}. By applying Bayes’ theorem we obtain

Piz[X}P{X}
P{z}

Noting that P{z} is independent of X, we replace Eq (1) by
the equivalent expression

P{X|z} = 4)

X*) = arg max P{z|X}P{X}. (6)

Eq. (6) depends on two probability distributions, the likeli-
hood distribution P{z|X} and the prior distribution P{X}.
Note that because we are using a MAP approach, we do not
need to normalize Eq. (6). This simplifies the definition of
the likelihood and prior distributions.

4.2.1 Prior Distribution

The prior distribution P{X} in Eq. (6) has two roles in the
optimization problem. First, it allows us to incorporate prior
knowledge about where the targets may be located. Second,
it allows us to constrain the space of possible positions X,
reducing the computational load on the tracker and improv-
ing robustness. Under the assumption that the target has a
limited maximum speed but can change direction arbitrar-
ily, a suitable prior for each target is a uniform distribution
over a fixed radius from the location of the target in the pre-
ceding frame. Specifically the prior is defined as

M
P{X} 2 [ P{xilx""} 7
=1

with

(k=1)

d(x;, %x;

®)

P{xﬂxgkil)}oc {17 . )<

0, otherwise
where d() is the Euclidean distance and r is a fixed parame-
ter which must be specified. Note that for the sake of defin-
ing the prior, we have considered the location of each target
to be independent of the others.

4.2.2 Likelihood Distribution

The likelihood distribution P{z|X} specifies the probability
of observing a particular set of intensity values in the image
conditioned on the positions of the targets. Assuming that
the appearance distribution is proportional to a product of
multivariate Gaussian distributions, we have

M
P{z[X} oc [TV (ir 20).- )
i=0
Using the techniques outlined in Section 5, we can com-
pute a multivariate Gaussian distribution over pixel intensi-
ties for each target. with an associated mean vector p; and
covariance matrix ;. The mean vector is used directly in
Eq. (9), but the covariance matrix is modified to account for
the segmentation information. We wish to modify the co-
variance matrix for each Gaussian so that the following two
conditions are met:

1. With respect to the ith target, if the segmentation for a
particular pixel is close to 0, then this pixel should have
no effect on the estimated location of the th target;

2. With respect to the ith target, as the segmentation for a
particular pixel goes to 0, this pixel becomes uncorre-
lated from all other pixels.

These conditions can be met by weighting the diagonal
entries of the covariance matrix. Specifically if we have
Y, = [ojx]) and X; = [6,] then

G = {?i"j’f’ 91: F (10)
ks else

with 1
w; = . (11)
(P{gi(pj)lz, X})
where we assume that the probability the ¢th target gener-
ated any given pixel is always greater than O, which prevents
w; from being unbounded. This choice for 3, is very effi-
cient to compute and ensures that the conditions specified
above are satisfied.
We now show that ¥J; satisfies the two conditions given
above. For the first condition, note that as the segmentation

for a pixel goes to 0, the corresponding diagonal entry in 3,
goes to 0co. Also, it can be shown that the corresponding row

and column of i‘,; ! g0 to 0. Hence the value of the quadratic




form in the exponent of N (u;, ;) will be independent of
the intensity of the pixel.

For the second condition, we simply need to write out
the expression for the correlation coefficient between two
pixels. The correlation coefficient between the jth and kth
pixels is given by

&
Pjk = %]i (12)
TjjOnk
Oik
{9i(pj)l25, X} P{gi(pk)|2k, X} o

Thus, as either P{g;(p;)|z;, X} or P{g;(px)|zk, X} goes
to 0, the correlation coefficient p;; goes to 0, and hence the
jth and kth pixels become uncorrelated.

Note that the individual target probability distributions
are typically only defined over a small set of pixels around
the target location x;. Theoretically we can imagine simply
adding extra pixels to the distribution with the correspond-
ing segmentation set to 0 in order to account for all of the
pixels in z. In reality, because these pixels do not contribute
to tracking, they can be ignored in the implementation, and
only a subset of the pixels in z are considered when evalu-
ating the target probabilities.

The product in Eq. (9) includes a target O which repre-
sents the background. We can use any background train-
ing and update method which gives a multivariate Gaus-
sian distribution over the pixel intensities. For ease of im-
plementation, we imposed two constraints although these
constraints are not a requirement of the proposed tracking
method. First, the covariance matrix is assumed to be a
scaled identity matrix. Second, the model is determined a
priori and is not updated during tracking.

5. On-line Update of the Probability Model

As explained in section 4.2.2, our model for the likeli-
hood distribution of each target used in tracking is given
by a modified multivariate Gaussian over the intensity of
the pixels generated by the target with parameters p and X
(which shoulfi not be confused with the modified covari-
ance matrix X presented in Section 4.2). These parameters
must be updated in an on-line manner in order to take into
account all of the available information for each target. Fur-
thermore, the update should take into account the probabil-
ity that each pixel within the image was generated by the
target, i.e. the segmentation information. If a pixel has a
low probability of being generated by the target, then the
statistics associated with it should not change significantly.

5.1. Updating .

The mean vector (i is easily updated in a way consistent
with the segmentation information using a simple modifi-
cation of the sample mean. Note that the sample mean can
be expressed as a weighted average with all samples given
the same weight. To take into account the segmentation in-
formation, we perform a weighted average using the proba-
bility it was generated by the target. Specifically, we define

the update for the ¢th entry of p as follows

k—1

1 - .

p e (Y s | a3)
Zj:l S j=1

where sgj) € [0, 1] is the probability the pixel was generated
by the target in the jth frame, and b, is the intensity of the
pixel in the current (kth) frame. Note that if a pixel has no
probability of being generated by the target, i.e. sl(-k) =0,
then ,uz(.k) = ,ul(-kfl). Furthermore, if the segmentation SZ(-] )
is the same for all j, then Eq. (13) reduces to the sample

mean.

5.2. Updating

To reduce the computational burden of determining and
using the covariance matrix required by this distribution, we
use probabilistic principal component analysis (PPCA) to
approximate the covariance [18]. In PPCA the covariance
matrix is approximated by

T
20 = 621, + W (W(’“)) (14)

with W) € R™*4 where n is the number of pixels be-
ing considered and d is small. The user specified param-
eter o2 represents the variance which is not captured in

W) (W(k))T. In practice, we set o2 to the variance ob-
served in the intensity of background pixels, reasoning that
a similar noise level should apply to both the targets and the
background. Decomposing the covariance matrix according
to Eq. (14) has several important advantages. First, because
we typically have d < n, we can use the Woodbury formula
to efficiently compute the inverse of X, which is required
to evaluate the multivariate Gaussian distribution. Second,
there are fast ways to incrementally update W which can be
modified to take into account the segmentation information.

Lin et al. [12] provide a method for on-line updating
of the W matrix in Eq. (14). With a modification to their
method, we can also incorporate the segmentation informa-
tion into the update.

We begin by noting that if V(*~1) ¢ R”*4 is a matrix
whose columns are eigenvectors of X(*~1) and A*~1 is a
diagonal matrix of the corresponding eigenvalues, then

Wk=1) _ k-1 (A(k‘—l) — azld)1/2. (15)

Because of this, we can update W and hence ¥ by simply
updating the eigenvalues and eigenvectors of ¥ to account
for the new data z(*). We first form

W= (I, - QY wkD (16)
v o= (L-QQ" %y a7



where Q is a diagonal matrix with entries given by

g
Qii = W (18)
1= 7
and
y=2z® — b (19)

Intuitively we may think of W as a weighted version of
the information in the current covariance matrix and y as
a weighted version of the new data. We next compute the
SVDof E = [Wy]s.t.

E =UDTT. (20)

where U is orthonormal and D is a diagonal matrix. The
first d columns of U are the updated eigenvectors of X(¥).
The corresponding eigenvalues \; can be obtained from D
as follows:

N\ =d? +o? 1)

where d; is the ith diagonal entry of D.

5.3. Adding and Removing Pixels

To account for the dynamic size and shape of the target,
we need to add or remove pixels as part of the model up-
date. To identify new pixels to be added to the target, we
first compute the probability that pixels near the target were
generated by the background. If this probability is below
a threshold, the pixel is added to the target. Adding a new
pixel to the probability model can be accomplished as fol-
lows. First, we append the mean vector with the brightness
of the pixel. Second, we append a O to each of the eigen-
vectors (since we do not yet know how this pixel may be
correlated with the other pixels in the target). Using this
technique, we are able to perform single click target initial-
ization by starting with a small square of pixels around the
selected point and adding pixels until the target is covered.

If the target shrinks in size over time, then there will be
many extra pixels included in the probability model. An ex-
tra pixel is defined as one which is consistently unlikely to
be generated by the target. While these extra pixels have
almost no impact on the tracking performance, they do add
to the computational requirements so it is convenient to re-
move them. A pixel can be removed from the model by
simply removing its entry from the mean vector and from
each of the eigenvectors of the covariance matrix.

6. Results

We present results for the tracker on one sequence
from the PETS2001[2] data set and two video sequences
from the CAVIAR [1] data set. The chosen sequences
have multiple interacting targets in order to highlight the
advantages of combining tracking with fine segmenta-
tion. It is important to note that, unlike many recent
tracking algorithms, the method proposed in this paper
is a generic technique not tailored towards people track-
ing. Despite this fact, as the results show, the method

works well for this kind of application. Furthermore, be-
cause the proposed method is a generic tracking algo-
rithm we also show results for an outdoor environment
with a person and a car interacting. Complete results for
these example videos can be seen at the following URL:
http://rvl.ecn.purdue.edu/RVL/Research/JointSegTrack/

Table 1 gives quantitative results for the proposed
method and for the method of [ 14], which we will refer to as
the fixed segmentation method. The proposed method suc-
cessfully tracks all targets with a high degree of accuracy
for the full length of each video sequence while achieving
a reasonable average frame rate for each sequence of 3.5-
5.5 frames per second on a 2.7GHz processor. The fixed
segmentation method was not able to track the targets for
the full length of each sequence due to occlusions and drift.
Therefore, the quantitative results reflect up until the first
track failure. Even when considering only the frames for
which the tracker was successfully tracking the targets, the
fixed segmentation method gives a mean pixel error that is
2.5 times larger than the proposed method. By explicitly
considering segmentation, we are able to significantly im-
prove the localization of the targets.

Figure 3 shows four frames from the Meet_WalkSplit
video sequence. The top row shows the center of each target
from the published ground truth. The second row gives re-
sults of the fixed segmentation method using a 15x 10 fixed
segmentation, which includes only the center pixels of the
target. Notice that as a result of ignoring many of the target
pixels, there is some ambiguity when the targets are close
to each other, causing both trackers to jump to a single tar-
get. The third row shows the results when using a larger
segmentation window in which some pixels that do not be-
long to the target are included in the tracking. Again there
are difficulties with the target ambiguity when the targets
interact. Furthermore, because of drift, by the end of the
sequence neither target is being tracked. The fourth row
gives results for the ensemble tracker [3], which performs
similarly as the fixed segmentation method. In particular,
there is significant ambiguity between the targets when they
overlap, resulting in both trackers jumping to a single target.
Since the ensemble tracker does not include any global in-
formation about the targets, it is unlikely the method could
be modified to avoid this problem.

The bottom row of Figure 3 shows the results for the pro-
posed method, with the intensity of each pixel indicating
the probability that pixel was generated by the target. The
problems we encountered when using the fixed segmenta-
tion and ensemble tracking methods have been avoided. As
can be seen in the second and third columns, even when one
of the targets is partially occluding the other, correct track-
ing and segmentation is maintained, eliminating the target
ambiguity. Comparing the first and last columns, the size
of both targets changes dramatically, which shows the ro-
bustness of the proposed method against changes in scale.
These results do show one of the weaknesses of the current
approach to segmentation in that shadows and encoding ar-
tifacts are included as part of the target since they have low
probability of being generated by the background.



Table 1. Quantitative evaluation against published ground truth data. The mean pixel error was computed only for the frames for which the
fixed segmentation method was able to track all the targets. Note that the proposed method was able to track all targets for the full length
of each video sequence. Average frame rate is for the proposed method and includes only the frames in which tracking was occurring.

. . Average Mean Pixel Error
Video Sequence #Targets | Image Size Frame I§ate Fixed Seg. [14] | Proposed Method
Meet_WalkSplit 2 384 <288 3.811ps 6.01 pixels 2.25 pixels
Meet_Split_3rdGuy 3 384 %288 4.16fps 8.55 pixels 2.94 pixels
PETS2001 2 768x576 5.47fps 13.51 pixels 4.94 pixels

Figure 4 shows results for the proposed method on the
Meet_Split_3rdGuy video sequence. Of particular interest
is the tracking of the person who enters from the bottom of
the video sequence. As he passes through the area of bright
sunlight, his appearance changes dramatically. However,
since only a portion of the pixels change in any particular
frame the remaining pixels can still be tracked resulting in
accurate tracking of the target. The fixed segmentation and
ensemble tracker methods were not able to maintain track-
ing through the appearance change.

As mentioned, the proposed method is not tailored to
people tracking. Because of this it also works effectively on
outdoor scenes with vehicles and people interacting. Fig-
ure 5 shows results from the PET2001 data set in which a
vehicle passes in front of a person. This sequences demon-
strates the flexibility of the approach to tracking a variety of
targets.

7. Conclusions and Future Work

By jointly considering both tracking and segmentation,
we are able to robustly track a variety of targets in diffi-
cult scenarios. In particular we show improved performance
compared to other techniques when there are multiple over-
lapping targets. There are also some weaknesses in the cur-
rent approach which we hope to address in the future. First,
the probability model could be extended to include more
than just intensity, e. g. adding features like color and local
gradients. Also, we would like to move away from a static
background model to increase the range of applications in
which this tracking method can be applied.

Acknowledgement

The authors want to thank Sierra Nevada Corporation for
their support with special thanks to Glenn Boudreaux and
Trei Gilbert for many useful discussions related to object
tracking.

References

[1] http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. 6

[2] http://www.cvg.cs.rdg.ac.uk/PETS2001/. 6

[3] S. Avidan. Ensemble tracking. IEEE transactions on pattern
analysis and machine intelligence, 29(2):261, 2007. 2, 6

[4] C.Bibby and I. Reid. Robust real-time visual tracking using
pixel-wise posteriors. In ECCV, pages 831-844. Springer,
2008. 2

[5] G. Bradski. Computer vision face tracking for use in a per-
ceptual user interface. Intel Technology Journal, 2(2):12-21,
1998. 2

[6] A.Bugeau and P. Pérez. Track and cut: simultaneous track-

ing and segmentation of multiple objects with graph cuts. In

Proceedings of the 3rd International Conference on Com-

puter Vision Theory and Applications (VISAPP’08), pages

1-8, 2008. 2

P. Chockalingam, N. Pradeep, and S. Birchfield. Adaptive

fragments-based tracking of non-rigid objects using level

sets. In Proceedings of the International Conference on

Computer Vision, 2009. 2

[8] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based ob-

ject tracking. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25(5):564-577, 2003. 2

T. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking

of multiple targets using joint probabilistic data association.
IEEE Journal of Oceanic Engineering, 8(3):173-184, 1983.
1
[10] M. Isard and A. Blake. Contour tracking by stochastic prop-
agation of conditional density. Lecture Notes in Computer
Science, 1064:343-356, 1996. 1

[11] Z.Khan, T. Balch, and F. Dellaert. An MCMC-based particle
filter for tracking multiple interacting targets. Lecture Notes
in Computer Science, pages 279-290, 2004. 1

[12] R.Lin, D. Ross, J. Lim, and M. Yang. Adaptive discrimina-
tive generative model and its applications. Advances in neu-
ral information processing systems, pages 801-808, 2004. 5

[13] T. Moeslund, A. Hilton, and V. Kriiger. A survey of ad-
vances in vision-based human motion capture and analy-
sis. Computer vision and image understanding, 104(2-3):90—
126, 2006. 2

[14] H.Nguyen, Q.Ji, and A. Smeulders. Spatio-temporal context
for robust multitarget tracking. IEEE transactions on pattern
analysis and machine intelligence, 29(1):52, 2007. 2, 3, 6, 7

[15] D. Reid. An algorithm for tracking multiple targets. [EEE
Transactions on Automatic Control, 24(6):843-854, 1979. 1

[16] Y. Shi and W. Karl. Real-time tracking using level sets. In
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, volume 2, page 34. Citeseer, 2005. 2

[17] C. Stauffer and W. Grimson. Adaptive background mixture
models for real-time tracking. In Computer Vision and Pat-
tern Recognition, 1999. IEEE Computer Society Conference
on., volume 2, 1999. 2

[18] M. Tipping and C. Bishop. Probabilistic principal compo-
nent analysis. Journal of the Royal Statistical Society. Series
B, Statistical Methodology, pages 611-622, 1999. 5

[19] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-
vey. ACM Computing Surveys (CSUR), 38(4), 2006. 1

[7

—

[9

—



Ground
Truth

Fixed
Segmentation
15x10

Fixed
Segmentation
36x20

Ensemble
Tracker
40x25

Proposed
Method

Ground Truth

Joint Segmentation
and Tracking

Ground Truth

Fixed Segmentation|
Walker: 8x30
Car: 80x40

Joint Segmentation
and Tracking

Figure 5. Results for a video sequence from the PETS2001 data set (best viewed in color). The frames have been cropped to show detail.



