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ABSTRACT 

In this report  we  have  used projectivity theory to model  the 
process  of  structured light scanning for 3D robot vision. The 
projectivity formalism is used  to  derive  a 4x3 transformation 
matrix that converts  points in the  image  plane into their 
corresponding 3D world  coordinates.  Calibration of the 
scanner  consists  of  computing  the coefficient of this matrix 
by  showing  to  the  system  a set of lines generated  by suitable 
object  edges. We end this paper  by  showing  how  the  matrix 
can  be  used to convert  image  pixel  locations into the  world 
coordinates of the  corresponding  object  points using two dif- 
ferent  scanning strategies. 

1. INTRODUCTION 
Structured light scanning is a  rugged  approach  to  range 

mapping  a  scene for 3D robot vision. In  order to take full 
advantage  of  the flexibility for viewpoint selection made  pos- 
sible by a  six-degree-of-freedom robot, we  use  a  portable 
structured light unit  that  can  be  picked  up  by  the  robot  when 
it wants to gather 3D vision  data (Fig. 1). Within  the  con- 
straints imposed  by  manipulator  kinematics,  the  unit  can  then 
be  oriented in any direction deemed  desirable by the  robot 
for the  task at hand,  and  scanned either in a translational or a 
rotational mode for data collection. 

A  structured light unit  consists  basically of a light pro- 
jector  and  a  camera. The light projector  throws  a  plane of 
light in the  direction  of  the  scene. The intersection of this 

vision scanner 

Fig. 1: Robot  engaged in scanning  a  scene  with  a  detach- 
able structured-light scanner. 
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plane  with  an  object  creates  a stipe of illuminated  points on 
the  object surface, the stripe being  recorded in the  camera 
image  plane.  If  the  unit is properly calibrated, the  world 
coordinates  of  the  illuminated  points  can  be  calculated  by 
using triangulation formulas, as has  been done by  Agin 
Cagin821. Agin  used  a 4x3 collineation  matrix to write  down 
a  geometric  relationship  between  the  illuminated  pixel cmr- 
dinates  and  the  world  coordinates  of  the  corresponding  object 
points. The coefficients of this matrix are explicit functions 
of the  camera  and  projector  parameters.  Calibration  of  the 
system  implies  determination  of  the coefficients of this 
matrix,  which  requires that the  camera  and  the  projector 
parameters be precisely  known -- these  parameters  being 
positions  and  orientations of the  camera  and  the projector, 
and the internal magnifications of the  camera  lens  system. 
Because of the explicit dependence  of  the  matrix coefficients 
on  such  parameters,  Again  had  to  first calibrate the  robot 
joints so that the  required  positions  could  pinned  down  pre- 
cisely, and  then  he  had to individually calibrate the  camera 
aim,  camera  scale  and  the  projector  aim. 

In this report, we  look at the calibration problem  from  a 
different point  of  view. The basic  goal of structured-light 
calibration is to find  a  formula that converts  the 2-D coordi- 
nates  of  a  recorded  pixel in the  image  plane to the world 
coordinates of the  corresponding  object  point.  Our  position is 
that it should  be  possible  to  obtain this relationship for a 
structured light system  without  having to worry  about  such 
low-level details as the  precise  locations and aiming  vectors 
for the  camera  and the projector. However,  we do not  believe 
that it is possible to  do away  with  the  requirement that the 
robot itself be  mechanically  calibrated  before it can be used 
in  conjunction  with  a  structured light system. In fact, the 
accuracy  of  the  methods to be  proposed in this report will be 
no better than  the  absolute  accuracy  of  the  robot. 

Note that the  problem  of  deriving  formulas  that  take us 
from 3-D world  coordinates to 2-D image  coordinates  and 
vice  versa  also arises in straightforward  camera  imaging.  As 
is well  known [5 ] ,  it is possible to write  down  a 3x4 homo- 
geneous  transformation  matrix that for a  given  object  point 
yields  uniquely its corresponding  image point; but, if we 
desire a transformation in the  reverse direction, viz, from  the 
image to the  world, it  is only  possible to calculate  the direc- 
tion to the  object  point -- and  not its location -- by  using a 
similar  matrix. 

In  Section 2, we will show that for the case of structured 
light imaging if we  apply  the  theory of projectivity to relate 
the  points in  the light plane  with  the  corresponding  points in 
the  image  plane, it is indeed  possible to derive  a 4x3 homo- 
geneous  transformation  matrix that is reversible. This 
implies  that for each  object  point of a priori known location, 
we  can  uniquely  determine its camera  image  plane  coordi- 
nates;  and for each  image  point we can  uniquely  determine 
the  world  coordinates  of  the  corresponding  object point. 
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As  we will show,  the  transformation  matrix  derived 
from  the projectivity theory  makes  unnecessary  the  precise 
calculations  of  the  locations of  the  camera  and  the  projector 
and their aiming angles. Therefore, it is  no  longer critical 
that the  robot joints  be calibrated precisely, at least from  the 
standpoint  of  enhancing  the  accuracy of range  mapping. 

We will also  show that although  from a purely theoreti- 
cal standpoint  only  four  object  points at known  locations are 
required for calibration -- meaning  the  computation of the 
elements  of  the  transformation  matrix -- the practical 
difficulty consisting of knowing  where  exactly  the  object 
points are located  has  caused us to seek  other  approaches. 
We will describe  our  procedure  which consists of showing to 
the  robot at least six lines generated by suitable object  edges 
in the  scene. In this procedure, it is not  necessary to know  the 
exact  locations  of  the  beginnings  and  the  ends of the lines, as 
long as their relative separations are known.  Section  3 
presents a procedure for computing  the  optimum  values of 
the calibration matrix  when  more  than six lines are  shown to 
the robot. 

Once a  structured light system is calibrated, the  process 
of  scanning for the  purpose of range  mapping  a  scene  can 
take  various  forms. We will talk  about  two  methods: rota- 
tional scanning  and linear scanning.  In  Section 4, we will for- 
mulate  coordinate  transformations for both  methods. 

Finally, in Section 5, we will show  some calibration 
results and  compare our technique  with  the  two-plane cali- 
bration  method. 

2. PROJECTIVE  GEOMETRY 

First, we will define  the  notation  used in this report. 

An italic upper  case letter refers to a  point  which  may 
be on  a line, on a  plane, or in 3D  space.  Usually, 
X, Y ,  2 are points in space,  and U ,  V are  points in the 
image  plane. 

An italic upper  case letter with a subscript also refers to 
a point, but in this case the  homogeneous  coordinates of 
the  point are also  specified.  The  subscript  denotes  the 
coordinate  frame in which  the  point is defined. 

Bold italic upper case letters with subscripts are used  to 
denote  the  regular  coordinates of a point. 

A  bold italic lower  case letter is used to denote a line or 
a  plane. 

Letter F with  a  subscript is used for representing  a  coor- 
dinate  frame. The subscript 2 specifies  a  two  dimen- 
sional  coordinate  frame. 

Letter T with  a  subscript  represents  a  transformation 
from  one coordinate  system to another.  The  first letter 
of  the  subscript  denotes  the original coordinates  system, 
while  the  second letter denotes  the  destination  coordi- 
nate  system. 

One Dimensional Projectivity 
On  a  plane,  given  a  center of projection P and  any two 

lines s and r not  passing  through P ,  as shown in Fig. 2, a 
one-dimensional projectivity is defined as follows:  Let X be 
a  point on line s, its projective  image X ’  on line r is the 
intersection of line PX with r . Let A ,B ,C ,D be any  four 

X , U , P , A ; . .  

X b J s , . ‘ .  

X b z S , ’ ‘ ’  

r , s , r ; . -  

F2s,Fb,“ ‘ 

T & , . ‘ ’  

P 

Fig. 2: One  dimensional projectivity is illustrated here. 

distinct points  on line s , the cross  ratio of A ,  B with  respect 
to C ,  D is 

( A , B ; C , D ) = - . -  AC BD 
BC AD 

Let A ’,B ’,C’,D ’ on line r be, respectively, the  image  points 
of A ,  B , C ,  D  under  the projectivity shown.  An  important 
property that follows  from projectivity is the  invariance of 
the cross-ratio. This  invariance  can  be  expressed as 

(A,B;C,D)=(A‘,B’;C’JI’) ( 1-4 
or 

AC  BD A‘C’ BID’ 
BC  AD B’C‘  A’D’ 
--=-- (1-b) 

With this relation established  between s and r , we can  find 
the  image  point X ’  of  X  under this projectivity by substitut- 
ingX  forD,  andX’forD’: 

(A,B;C,X)=(A’,B’;C’,X’) (2) 
It  is obvious that the  two  corresponding  sets of triplets, 

{ A ,  B , C ] and [ A  ’, B ’, C’},  completely  describe  the  projec- 
tivity on s and r from  the  projection  center P .  One  may 
raise the  following  questions at this point:  Can  we  always 
find  a projectivity on  a  plane  which  converts  a set of points 
on one line to a set of points  on  another line ? Is this projec- 
tivity unique?  Answers to these  questions,  which are crucial 
to the  main  theme  of this paper,  are  provided by the  follow- 
ing  theorem  [Ayres 671: 

The Fundamental  Theorem of One  Dimensional  Projec- 
tivity 
Given  three distinct points  on  a line and  another  three 

points  on  a  second line, there is one  and  only  one pro- 
jectivity which carries the first three points  respectively 
into the  second three points. 

To illustrate the  theorem,  we  first  locate three points A , B , C 
.at arbitrary places  on  a line s and  another three points 
A’ ,  B ‘,C’ on  a line r (Fig 3a). For  finding  the  unique  projec- 
tivity, we will fix the line s in the  plane  and  move  around  the 
line r on  the  plane until the three lines AA ’, BB ’, CC ‘ meet 
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A B  C . - -  .s 

A B‘ C’ . b r  

Fig.  3a: Three points  defined on each  of  the  two  lines  that 
will  be  used  for demonstrating 1-D projectivity. 

P 

Fig.  3b: If we  fix line s of (a) and  move  around line r shown 
there,  there  will  exist  only  one  projectivity for 
which h i ’ ,  BB’ and CC‘ will  meet  at a point. 

A B C 
4 + S  

B’ C ‘ A  
4 + r  

Fig.  4a: An example similar  to  that of  Fig.  3a except that 
the order of the  three  points on line r is opposite to 
the order on  line s. 

/ r  
I 

B’ Y 
Fig.  4b: The unique  projectivity  that corresponds to  the 

case shown in (a). 

at one point (Fig 3b);  this  common point of intersection is the 
projection center of the  projectivity. A more  difficult case  is 
shown  in  Fig. 4a, in  which  the corresponding points on lines 
s and r are ordered differently. The projectivity for this case 
is shown  in Figure 4b. 

For representing a point on a line, we need  to  define a 
coordinate system to express its position  on  the  line. The 
familiar coordinate system  on a line is established by select- 
ing on the  line a point 0 from  which  all measurements along 
the  line  are  made, a unit of measure,  and a sense of direction. 
Essentially,  this  consists of selecting a point 0, called  the 
origin, and U ,  called  the  unit  point;  to  these  two  points  we 
assign  the coordinate values 0 and 1 respectively.  The coor- 
dinate x of a point X on the line is  then  the  directed  distance 
of X from 0. If on the other hand, a homogeneous  coordi- 
nate system is desired,  that  can be done by assigning coordi- 
nates (0,l) to 0 ,  (1,l) to U ,  and ( x 1 , x 2 )  to any pointX such 
that x 1  I x 2  =x.  It is obvious that a point  does  not  have a 
unique  representation  in a homogeneous coordinate system. 

Let’s say  that  we  have  chosen an origin 0 and a unit 
point U to  define a coordinate system for  a line s. Also, let 
0’ and U‘ define a coordinate system for another line r . We 
do not  require  that  the  unit length OU on line s be equal to 
the  unit length 0 ’U‘ on line r .  We  also do not  require  that 
the points 0 ’ and U‘ be  the  images of the  points 0 and U 
under  any  projectivity. In fact, equation (2) is independent of 
the coordinate systems defined  on  either  lines in the  projec- 
tivity;  this is  a consequence of the following theorem  that we 
present without proof: 

Theorem of Cross Ratio 

The cross  ratio of  any four points on a  line is indepen- 
dent of  the coordinate system established on the  line. 

Given a point x on, say,  the  line s , it is a simple matter 
to derive a formula for the corresponding point on line r .  
With  respect  to  the coordinate system  on line s , let the points 
A ,  B ,  C, X have coordinates a ,  b ,  c ,  x respectively. Simi- 
larly on line r , let the  points A ’, B ’, C ’, X’ have coordinates 
a ‘, b ’, c ’, x ’ respectively.  Then  equation (2)  can be rewrit- 
ten as: 

( a  - c )  (b - x )  - ( a ’ -  c’) (b ’ -x ’ )  
(b - c )  (a - x )  (b’-c’) ( a ’ - x ’ )  

- (3) 

w e  now solve (2)  for x’  in  terms  of x .  Setting = a 

and - - p, we  have ( a ’ -  c’) - (b -c) 

(b ’ -  c‘) 

x ’ =  a11x +a12 

a21 x + a22 
where 

a11=aa’-pb’,a12=ab’p-a’ba,a21=a-p,a22=aP-ba. 
In  terms  of  homogeneous  Foordinates,  we  have, by setting 
x = x 1   l X 2 , a n d x ’ = x ’ 1   l x  2,  

or 

In mamx form, we  have 
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Note that the  existence of the free variable p, Since a point 
in homogeneous  coordinates does not  have  a  unique  expres- 
sion, that is, x ‘ = x I x = px I px 2.  With  the  help of this 
free variable, we are ensured that regardless of  the  homo- 
geneous  coordinates  chosen,  the  above  expression for the 
projectivity solution will always satisfy equation (4). Also 
note that the roles of X and X ’ are exchangeable. We could 
consider X as the  image of X ‘, and  we will get  the  same  form 
of  matrix  equation as (3). 

Two Dimensional Projectivity 
We can establish a  formalism for two  dimensional  pro- 

jectivity in 3D space  that is similar to the  one  dimensional 
projectivity in  a  plane.  Let s and r be  two  planes in space 
and let there be  a  point P , which is neither on s nor  on r , to 
be  used as the  center of projection (Fig. 5). For  each  point X 
on s , its image  point X ’ on r is the intersection of line PX 
with  plane r . It is obvious that the  invariance of the cross- 
ratio  is still valid for any four collinear points  on s and  their 
images  point on P. Also, for any collinear points  on s i  their 
image  points are also collinear. Extending  the  fundamental 
theorem of one  dimensional projectivity, we  have: 

The Fundamental  Theorem of Two Dimensional  Projec- 
tivity 

Given  four distinct non-collinear  points on a  plane  and 
another  four distinct non-collinear  points  on  the  other 
plane,  there is one  and  only  one projectivity which car- 
ries the  first four points  respectively into the  second 
four points. 

A homogeneous  coordinate  system  can  also be esta- 
blished  on  a  plane  by  a  simple  extension of what  was  done 
for line projectivity. Suppose  we  choose  a  point (0, 0, 1) as 
the  origin in a  plane  and  use  two  orthogonal  unit points, 

(1,0, 1) and (0, 1, l), to lay  out  a  coordinate  frame in the 
plane. The homogeneous  coordinates of  any point in the 
plane  are  given  by ( x 1 x z x 3 )  withx3zO; (x1Ix3,x2/x3) are 
the  regular  coordinates of the point. Analogous to the 
derivation of equation (4), we can  get a 3x3 conversion 
matrix  which  converts  a  point X on  plane s to its image 
point X‘ on  plane r , both  points  being  expressed  using 
homogeneous  coordinates: 

a l l  a12 a13 

P x’2 = a21 a22 u23 [I:] I a 2 I  u22 a 3 ]  ’ I:] 
It is easy to verify that this equation  preserves collinearity 
and  invariance of the cross-ratio. Again,  if  we  switch  the 
roles of X and X’, the  above  generic  equation is still valid, 
1.e., 

(5)  

A  structured light scanner  can  be  modeled by using 2D 
projectivity as follows.  We  use  the  camera-focus as the 
center of  projeceion P ,  and treat the light stripe plane as 
plane s and  the  camera  image  plane as plane r . [This  model 
is only  valid  under  the  condition that it be  possible  to  use  the 
pin-hole  model for the  camera (Fig. 6).] Although  the  coor- 
dinate  system on the  image  plane  can be arbitrary, a 
convenient definition consists of using  the  row  index u and 
column  index v of the digitized image as its two  coordinates, 
and  choosing  the  center of image  plane as the origin. We 
will denote this coordinate  frame on the  image  plane by F2c .  
A  point U in  the  image  plane  then has coordinates (u ,  v )  or, 

t I P 

Fig. 5: Elements of two dimensional projectivity. 

projector I 
image  plane 

I P  

Fig. 6: This figure  shows  that  the structured light imaging 
process  can  be fit precisely into 2-D projectivity. 
We can  consider  the light stripe plane  as  plane s 
and  the  camera  image  plane as plane r in  drawing 
correspondence  with  Fig. 5. The camera focus 
center  becomes  the  center of projection. 
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in a homogeneous coordinates system, (u , v , 1) with respect 

We also need  to  define a coordinate system  on  the  light 
stripe  plane.  By  virtue of the previous theorem,  which  says 
that  the  cross-ratios  are independent of the choice of  the 
coordinates system, we have considerable latitude  in  how  we 
go about setting up this coordinate frame. We  therefore 
choose one  that  can be easily  related  to  the  three dimensional 
base coordinate frame F b  for the  robot.  We  will  use x ,  y ,z 
to represent the  three orthogonal axes in Fb . Then a point x b  
defined in the  frame F ,  will  have  homogeneous coordinates 
w (x, y , z , 1) = (wx , wy , wz w ). Imagine a translation  and a 
rotation that brings F ,  to a coordinate frame F ,  whose center 
is  on  the plane s and  whose xy plane is aligned with  the 
plane s . Since F ,  is defined  with  respect to the  base  coordi- 
nate frame F ,  , F, contains all  the  information regarding the 
translation  and  rotation.  Inheriting  the coordimte system 
deiined on the xy plane of the frame F,, we can define a two 
dimensional coordinate frame F2s on  the  plane s . Suppose a 
point X oa plane s is assigned  homogeneous coordinates 
(x1, x 2 , ~ ? )  with  respect to F2, ,  where x3 f 0. With respect 
to ttc frame F,T, which is three dimensional, the  homogene- 
ous coordinates of the  same  point are (xlt x2, Q,xg). The 
conversion of X from i t s  two dimensional homogeneous 
coordina~es in F~ to its three dimensional homogeneous 
coo;.dinates in F, c a ~  then  be  written  as 

to F , .  

ix1I 11 c 01 r 1 
- 7  

Now ].et X ,  be  the  homogeneous coordinates of X with 
respect to the frame F,. We can convert X, to the  homo- 
geneous coordinares representation X b  with  respect  to  the 
base frame Fb by multiplying X, with F, , that  is 

.xb = F ,  .xs (7) 
Here F,  is a 4x4 matrix. 

Substituting (u,v,I) for (X'~J',X'~) in  equation (5) and 
combining equations (6) and (7), we  get a 4x3 conversion 
matrix Tcb that converts a point U in  camera  image plane to 
a light  stripe point X b  in  the robot base coordinate frame. 

X, =Tcb ' u 
or 

i- 

Note  that  we  use  subscript b to denote that x b  is in homo- 
geneous coordinates with  respect  to  the  base coordinate 
frame F b .  Again, we  use  the  free  variable p to accmnt  for 
the non-uniqueness of homogeneous coordinate expressions. 

3. SOLVING FOR THE CONVERSION MATRIX 

We have  shown  that  eq. (5) captures the general essence 
of two dimensional projectivity. For our particular case of 
transformations between  the camera image plane and  the 
light  plane,  the  relationship represented by eq. (8) is however 
more  suitable. 

Obviously, the conversion matrix Tcb in eq. (8) depends 
upon  both  the  positions  and  the  orientations of the  camera 
and  the light plane projector.  The purpose of calibration is to 
find  this  matrix  without recourse to  actually measuring these 
positions  and  orientations.  Note  that  because  of  the free  vari- 
able p in equation (8), we  can set t43 in Tcb equal to-1 and 
the equation still  holds.  Our  calibration is to determine the 
eleven unknown  coefficients  in Tcb . 

We cany out our calibration by finding  the 2-D projec- 
tivity  that exists between  the  camera image plane and  the 
light  plane.  By  the fundamental theorem presented in Sec- 
tion 2.2, we can find  this  projectivity -- in  principle  at  least -- 
by using four coplanar but non-collinear points  in  the light 
plane and  their corresponding points in the image plane. By 
choosing four illuminated object  points as calibration  points, 
assuming that  their 3-D coordinates and  their cooresponding 
image coordinates can  be  measured  correctly, we  should  be 
&le to solve for the  matrix Tcb. We  will  now  show  how one 
might  set up equations for this  purpose.  Wewriting equation 
( 8 )  as 

- . .  

L i 

and eliminating the  free  variable p, we have 

or  equivalently, 

Thus each calibration  point produces a set of three 
linear equations in terms of the eleven coefficients of Tcb. 
Four  calibration  points  would  therefore lead to a set of 
twelve equations for the eleven unknowns.  This  number is 
one more  than  what  we  need. Since we could pick  any 
eleven equations out of  the  twelve  and  get a solution  for Tcb, 
we could ostensibly  get  different Tcb's depending on  the 
choice of the eleven equations; this would evidently be in 
contradiction  to  the uniqueness implied by the fundamental 
theorem of projectivity.  However,  we  should  note  that the 
fundamental theorem requires  the four calibration  points to 
be coplanar. Therefore, the twelve 3-D coordinate values of 
the four points are  not independent of one  another, and, in 
fact, they  obey  the  constraint  of  the co-plane equation: 

det [X;  X: X:  X: ] = 0 

That  is, one of  the twelve coordinates is determined by  the 
other eleven values. Since the  above co-plane constraint is in 
fact implicit in equation (8), one of the twelve equations gen- 
erated by the four calibration  points is redundant.  As a 
consequence, we  can  use  any eleven equations and  arrive at 
the same unique solution for Tcb . 
A  Procedure for Automatic Calibration 

In practice,  using four object points  at 0 priori known 
locations for computing the  matrix Tcb is beset  with 
difficulties for  the following reasons: 
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There are always  some errors associated  with  the  meas- 
urement of locations of the  four calibration points in the 
robot  base  frame. On account of  such errors, their 
coplanarity  can  not  be  completely  guaranteed. 
It is unrealistic to assume that the  camera  can  be 
modeled  perfectly by a  pin-hole.  A  pin-hole  model is of 
questionable validity, especially  when  zoom  lenses  are 
used. When  the  pin-hole  approximation  breaks  down, 
there  may  be  no  unique  center  of projection. 
Because of the  non-zero  thickness of the illumination 
stripe and  other digitization aspects of camera  imaging, 
there will always  be  some  non-zero error associated 
with  the  location of the  image  point  corresponding  to an 
object  point. 
Since for these  reasons T,+ can  not  be  found exactly, 

our best  hope is to estimate it 6i minimizing  some error CG- 
tenon in an  over-determined  system of linear equations.  In 
other  words,  given  more  than 4 calibration points, we  want  to 
find  the Tcb which  best fits those calibration points  in  equa- 
tion (10). This is equivalent to a linear least square  problem, 
which  can be solved  simply  by calling appropriate IMSL 
subroutines. 

At this point  the  reader  probably  has  the  impression 
that, in order to calibrate a  structured light system, one must 
first install in the  robot  work  area  a set of object  points at a 
apriori known locations. However, that is not  the case in 
practice. Since  the  robot is programmed  to  move  the 
structured-light unit in discrete steps, it is possible  that  the 
light planes  emitted  from  any of the  allowed  positions of the 
scanner will not  illuminate  the  object points. One  way to get 
around this difficulty is to use  extended  objects in the  work 
area, the  objects  being of such  a  shape  that  at least four  non- 
collinear points  are  illuminated  by  the light plane  emitted 
from  the projector. After  the  vision  data is collected, the 
world  coordinates of these  object  points are measured by 
moving to their locations  the  robot end-effector. Clearly, this 
method  would  only  work if the  mechanical calibration of the 
robot is accurate. This method is hard to automate,  By 
automating  a  vision calibration procedure  we  mean  the fol- 
lowing:  We  want to place certain objects at strategic loca- 
tions in the  robot  work area; then by simply  having  the  robot 
record structured-light data  on  these  objects  at  any  time  a 
calibration is desired, it should  be  possible for the  associated 
computer to figure  out  the calibration parameters. 

We will now  propose  a  procedure  that is easier to auto- 
mate. A flat  trapezoidal  object is located  permanently in the 
work  area. The object is shaped in such  a  manner  that  no two 
edges  of  the  top-surface  are parallel to each other. The end 
coordinates of the  top  edges  of  these  objects  are  known to the 
robot; therefore, one  might  say  that  the  equations that define 
the lines corresponding  to  these  edges are known.  Consider 
one  such line: Since  a line can  be  defined  as  the intersection 
of two  planes, it  is described by the  following  two  equations 
corresponding  to  the two planes. 

I alx +b,y   +c1z   =dl  

U ~ X  + b g  + C ~ Z  = d 2  (1 1) 

When  the  scanner  projects  a smpe intersecting this cali- 
bration line, it generates an illuminated  point  whose  image 
coordinates  are  given  by, say, U .  While, of course,  we  can 
record  the  image  coordinates  of U ,  its world  coordinates  are 
unknown.  In  the  procedure  being  described,  we  have  no  need 
for the  world  coordinates of the  illuminated  object  point on 
the line. By substituting the right hand side of equations (9) 
for the x ,y ,z in (1 l), we  have 

a1 T,.U + b l  T2.U + c 1  T3-U = d l  T4.U 

a 2  T,.U + b 2  T2.U + c2 T3.U = d2 T4.U 
It shows that each calibration line is capable of producing  a 
set of two  equations in terms of the 11 coefficients of Tcb . 
Therefore,  if we use at least six calibration lines, we will 
have  a  system  of  over-determined linear equation to estimate 
the  conversion  matrix.  As  we will describe  below, it is not 
necessary to use six different calibration lines, although  one 
could certainly do so. 

In  our  current  implementation of this procedure,  we  use 
only  two distinct object  edges,  which are not parallel, for 
generating two calibration lines from  any single viewpoint. 
By  moving  the  structured light unit to different heights  above 
the table, we  can  record  the  image  coordinates of the  same 
two  edges for generating as many  equations  as we  like.  We 
will now  describe a step-by-step  description of the  procedure. 
First note  though  that  mounted  in  the  robot  work  area is a flat 
object  whose  top  surface is not parallel to  the  light  plane of 
the  scanner.  After this initial setup, each  time a calibration is 
carried  out by the robot, it automatically carries out  the fol- 
lowing steps: 

The robot  moves  the  scanner  to  an initial position. The 
coordinate  frame of  the  robot  tool  center is recorded. 
The  scanner  makes  projects  a light plane  onto  the Cali- 
bration  block.  This  generates  on  the  block  a  segment of 
the light stripe, whose  two  end  points  must lie on  the 
two calibration lines respectively. 
From  the digitized image,  record  the  image  coordinates 
of the  illuminated  points  corresponding  to  the  two cali- 
bration lines. Substitute  these  image  coordinates for U 
in the  two line equations; this gives us four linear equa- 
tions. 
To acquire  more calibration lines, use  the  robot to move 
the  scanner by (dx,dy,dz) to a new  position.  Now  the 
line equations will become 

I 

1 a l T l ~ U + b l T 2 ~ U + c , T , ~ U  = 

(d , -a ldx   -b ldy   -c ldz)T4 .U 

a z  T,.U f b2  T2.U f c z  T3.U = 

(dz  -a2dx - b2dy - c2dZ) T4.U 

Go back to step 2). 
Call  the IMSL subroutine llbqf to find  the  best  estimate 
Of T c b .  

Note that the  estimated  conversion  matrix i s  with 
respect  to  the  scanner  at  the initial position only. We will 
remove this constraint in the  next section. 

[ a l  Tl.U + b l  Tz.U + c l  T3.U = d l  T4.U 

It shows that each calibration line is capable of producing  a 
set of two  equations in terms of the 11 coefficients of Tcb. 
Therefore, if  we use at least six calibration lines, we will 
have  a  system of over-determined linear equation to estimate 
the  conversion  matrix.  As  we will describe  below, it is not 
necessary to use six different calibration lines, although  one 
could certainly do so. 

In  our  current  implementation of this procedure, we use 
only  two distinct object  edges,  which  are  not parallel, for 
generating  two calibration lines from  any single viewpoint. 
By  moving  the  structured light unit to different heights  above 

812 



the table, we can  record  the  image  coordinates of the  same 
two  edges for generating as many  equations as we  like.  We 
will  now  describe  a  step-by-step  description  of  the  procedure. 
First note  though  that  mounted in the  robot  work  area is a  flat 
object  whose  top  surface is not parallel to the light plane of 
the  scanner.  After this initial setup, each  time  a calibration is 
carried  out  by  the robot, it automatically carries out  the fol- 
lowing steps: 

The robot  moves  the  scanner to an initial position. The 
coordinate  frame of the  robot  tool  center is recorded. 
The scanner  makes  projects  a light plane  onto the cali- 
bration  block.  This  generates  on  the  block  a  segmect of 
the light stripe, whose  two end points  must lie OI? the 
two  calibration lines respectively. 
From  the digitized image,  record  the  image  coordinates 
of the  illuminated  points  corresponding to the  two cali- 
bration lines. Substitute  these  image  coordinates for U 
in  the  two line equations; this gives us four linear equa- 
tions. 
To acquire  more calibration lines, use  the  robor  to  move 
the  scanner by (d,,dy,dz! to a  new  position  (Fig. 7). 
Now  the line equations will become 

r 

i a l  T,.U + b ,  T2,U + c 1  T3.U = 

(d , -a ldx   -b ldy   -c ,dz )T4 .U 

a2 T,.U + b 2  T2.U + c2  T3-U = 

(d2 - a2dx - b2dy - c2dz) T4.U 

Go back to step 2). 
Call  the IMSL subroutine llbqf to find the  best  estimate 
of Tcb. 

calibration 

4 7 k - T -  calibration 

image  plane 

scanner 

5 

image plane 

Fig. 7: To acquire  more calibration lines, the  robot  moves 
the  scanner  by (d,,dy,dz) to a  new  position  and 
makes projection. 

Note  that  the  estimated  conversion  matrix is with 
respect to the  scanner at the initial position  only. We will 
remove this constraint  in  the  next section. 

4. LINEAR  AND ROTATIONAL SCANNING 

Formulation 
If  the  range  map  of  a  scene is desired, the  scene  must be 

scanned  in  some  manner  with  the structured-light unit. 
Linear  scanning  and rotational scanning  are  the  two  schemes 
used in our lab. In linear scanning,  the  orientation of the 
scanner is fixed, only its position is changed  equally  between 
successive light smpeprojections,  as shown in Figure 8. In 

Fig. 8a: In linear scanning  shown here, the  orientation of 
the  scanner is kept  fixed  while  the  scanner is 
translated along  a line. 

Fig.  8b: In rotational scanning,  while  holding  the  scanner at 
a  fixed  position  the  robot rotates the  scanner in 
equal  angular  increments  about  the  axis  of  the  wrist 
joint. 

rotational scanning,  the  robot  holds  the  scanner at a  fixed 
position, but rotates the  scanner  in  equal  angular  increments 
about  the axis of the  wrist joint. The movement of the 
scanner is specified by the  position  and orientation of its end 
effector on which  the  tool-center is defined.  Let  us  define  the 
coordinate  frame  of  the  tool-center as F, such that the z axis 
of F, aligns  with  the axis of the robot's wrist joint. For the 
case of linear scanning,  we  will  express  the translational 
movement  from  projection to projection  by D = (d, ,dy ,f2). 
This movement  can  be  written as a translation transformation 
matrix: 

l O O d ,  

O I O d y  
H d =  0 0 1 d, 

- 0 0 0 1 .  
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Similarly, for rotational scanning,  if  the  angular  increment 
between  successive rotational positions of the  scanner is 6 ,  
we  can  write  down  the  following for a rotational transforma- 
tion  matrix 

cos6 -sin6 0 0 
sin6  cos6 0 0 

R S =  0 0 1 0 
0 0 0 1  

The conversion  matrix Tcb, as obtained  from  the cali- 
bration  process, is defined in the  base  coordinate  frame F ,  
with  the  scanner  at  a specific position. Let  the tool-center 
coordinate  frame  used for calibration be F ,  . When  scanning 
a  scene,  the  position  and  orientation of  the  scanner will differ 
from  those  used  during calibration. Therefore,  during  scan- 
ning,  the  tool-center  coordinate  frame, as represented by F,  , 
will be different from F,,. As  a result, the Tcb matrix 
obtained  from calibration can  not  be  plugged directly in 
equation (8) for the  purpose of computing  the  range  map of a 
scene. 

To get  over this problem,  we  can  convert  the  mamx Tcb 
to a  matrix Tct , which is defined in the  tool-center  coordinate 
frame Ft,. This is done by 

Tct = (F,c)-l ' Tcb (12) 
This relation is depicted in Fig. 9. Thus T,, converts  an 
image  point U into the  corresponding  object  point in homo- 
geneous  coordinates  with  respect to frame F ,  , Let Fro be the 
tool-center  coordinate  frame at the  beginning of a scan  and 
let j denote  the j f h  projection in a scan. In linear scanning, 
we  have 

Ftj = Fto ' ( H d  Y 
Therefore,  we  get 

X b  = FIj ' Tct . U 

= F,, . ( H d y '  . TCt . U (13) 

Similarly, for rotational scanning,  we  have 
x&, = F," . (R S y '  ' Tc, ' u (14) 

Fig. 9: Relation  among  coordinate  frames for linear scan- 
ning. 

Analysis of a Range Map 
Equations (13) and (14) provide us with  formulas for 

computing  the  range  map of a scene. For  each light stripe 
projection  during  scanning,  we  record  the  column  index v of 
the  sampled  illuminated  object  point in each  row of the  cam- 
era  image.  By  applying  equation (13) or (14), for each  row 
indexed  by u we have  the 3-ID coordinates 
[ x @ ) ,  y ( u ) ,  z ( u ) ]  of the  object point. These 3-ID coordi- 
nates  are  then  collected into a  range  map. 

At this time,  a  few  comments  about  the  parametrization 
of the  object  surface  are in order. Let  row  index of the  scene 
range  map  be  the  same  as  the  row  index u of camera  image 
plane;  and let its column  index  he  the  index j associated  with 
successive  projections of the light stripes. Thus the  range 
map  can  be  expressed as [n(u, j ) ,  y(u  j ) ,  z (u , j ) ] .  For 
example, if the  camera  image  plane is of 480x512 resolution, 
and there are 80 projections in a scan, we  will  have  a  range 
map of size 480x80. Now consider  the  range  map of a  scene 
as the  sampling of a visible surface, and  assume  that  the sur- 
face is expressed as f = vx,  f ,   , f , ] .  Its range  map 
f ( u , j ) = I f x ( ~ , j ) , f ~ ( u , j ) , f , ( ~ , ~ ) l  is the  quantized 
parametrization of this visible surface.  Note  that  the direc- 
tion  represented by the j index is directly related to  the 
movement of the  scanner  from  projection to projection. We 
want this "movement direction" to be  perpendicular to the 
column direction of the  camera  image  plane so that ( u , j )  
will form an orthogonal  parametrization of the surface. This 
can  be  important for later processing of the  range  map.  For 
example,  most  3-D  edge  detection  operators are derived  with 
the  assumption  of  orthogonal  parametrization. 

5. EXPERIMENTAL RESULTS AND CONCLUSION 

The structured light scanner  used in our  experiment 
consists of a  Sony  DC-37  CCD  camera  and  an infrared pro- 
jector. For  conducting  a calibration experiment,  the calibra- 
tion  block is placed  on  the  table  and  the  scanner is moved to 
its initial position, which is about 20 inches  above  the  table. 
A scan is then  conducted  along  a line that is horizontal  with 
respect to the  work table; during  the  the calibration block is 
illuminated by three stripes. This process is repeated at four 
different heights, -- 20, 14, 8 and 2 inches -- above  the  work 
table, leading to range  data  on  a total of 12 stripes. This  data 
leads to 48 linear equations for the  computation of the 
conversion  matrix.  The total time  expended  in  the collection 
of calibration data is about  a  minute  and  the  computer  time 
for processing this information is about 3 seconds. 

Although  ultimately  the  evaluation of a calibration pro- 
cedure  must be carried  out by determining  the  absolute  accu- 
racy of the  system, for many  purposes it is sufficient to com- 
pute  the relative accuracy. By absolute  accuracy  we  mean 
the  precision  with  which  the  system  Iocates a point  with 
respect to the  origin in the  robot  base  coordinate  system;  and 
by relative accuracy  we  mean  the  precision wirh  which  the 
system  makes  a  dimensional  measurement of an  object 
feature  located in the  robot  area.  In  our  experimental  evalua- 
tion  of  the  procedure  described in this paper, we  will  only 
use relative accuracies.  This is primarily  owing to the fact 
that  absolute  accuracy  tends to be  a  function of the  accura- 
cies of both  the  vision calibration and  the  robot arm calibra- 
tion, meaning  that  a  measurement of absolute  accuracy  may 
or  may  not tell us about  the  performance of a  vision calibra- 
tion  technique. 

After calibration, the relative accuracy of  the  procedure 
is evaluated by the  computing  the  dimensions  W  and PI of a 
block, like the  one  shown in Fig. 10. As expected,  our  exper- 
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Fig.  10: The width  and  the  height of the  block  are com- 
puted from the range data in order to test  the  rela- 
tive accuracy of calibration. 

Table 1. Relative accuracy test  results 

W = 5.66 inch H = 6 inch 
d 20 inch 14 inch 8 inch 
WE -- <0.05 inch <0.04 inch 
H6 <0.30 inch ~ <0.14 inch <0.03 inch 

d: distance form the scanner to the  block 
W6 : difference between  the computed width  and  the  real  width 
Hg : difference  between  the computed height  and  the  real height 

imental results show  that  the accuracies with  which  these two 
measurements can be made  depend upon the  distance of the 
block  from  the smctured-light unit  and  the  orientation  of  the 
block  with respect to the  scan  direction. For the results 
reported here,  the long axis of  the  block  was  kept approxi- 
mately  parallel to the  scan  direction. The results  are  shown 
in Table 1. 

The reader might note  that  we  have  not  taken into 
account any nonlinear lens distortions  in our development of 
the  calibration procedure. We have  seen  that  these  distortions 
become important for object points that  are far away from the 
camera lens, usually farther  than  two  feet. Lens nonlinearities 
may  be  taken into account by a variety of techniques 
presented by Tsai [tsai861. 
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