
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOI. 19. NO 6 . NOVEMBER/D~C~.MBFR 1989 1535

A Robot Vision System for Recognizing
3-D Objects in Low-Order

Polynomial Time
c. H. CHEN AND A. c. U K , MEMBER, IEEE

Ahsrrucr -The two factors that determine the time complexity associ-
ated with model-driven interpretation of range maps are: 1) the particular
strategy used for the generation of object hypotheses; and 2) the manner in
which both the model and the sensed data are organized, data organization
being a primary determinant of the efficiency of verification of a given
hypothesis. 3D-POLY, a working system for recognizing objects in the
presence of occlusion and against cluttered backgrounds is presented. The
time complexity of this system is only O(n *) for single object recognition,
where 17 is the number of features on the object. The most novel aspect of
this system is the manner in which the feature data are organized for the
models; we use a data structure called the feature sphere for the purpose.
Efficient constant time algorithms for assigning a feature to its proper
place on a feature sphere and for extracting the neighbors of a given
feature from the feature sphere representation are present. For hypothesis
generation, we use local feature sets, a notion similar to those used before
us by Rolles, Shirai and others. The combination of the feature sphere idea
for streamlining verification and the local feature sets for hypothesis
generation results in a system whose time complexity has a low-order
polynomial bound.

I. INTRODUCTION

HE TASK at hand is to locate and identify instances T of known model objects in a range image. The objects
are assumed to be rigid. This task can, in general, be
accomplished by matching features extracted from the
image (scene features) with those describing models (model
features). We will assume that the features are geometric in
nature and can be characterized by shape, position and
orientation; such features may include surfaces, edges,
points, etc.

What are the desirable traits of a good system for object
recognition and location? Clearly, it should be robust
enough to work in multiobject scenes where the objects
may be occluding one another. The complexity of the
system should exhibit a low-order polynomial dependence,
on, say, the number of features involved. The system
should also be easy to train, meaning that it should be

Manuscript received September 20, 1988; revised March 30, 1989.
This work was supported by the National Science Foundation under

Grant CDR 8803017 to the Engineering Research Center for Intelligent
Manufacturing Systems.

C. H. Chen was with the Robot Vision Lab, School of Electrical
Engineering, Purdue University, West Lafayette, IN 47907. He is now
with SRI International. Menlo Park, CA.

A. C. Kak is with the Robot Vision Lab, School of Electrical Engineer-
ing, Purdue University, West Lafayette, IN 47907.

IEEE Log Number 8930355.

Fig. 1. Scene consisting of pile of objects

amenable to “learning by showing.” In our context, that
means that if we showed the system an object in all its
external entirety then the system should automatically
extract the relevant information that it would subsequently
use for recognition and determination of pose.

A system with these traits is in operation in the Robot
Vision Lab at Purdue. The system, called 3D-POLY, has
been tested on scenes consisting of mutually occluding
objects.’ Fig. 1 is an example of such a scene which is
made of two different types of objects shown in Fig. 2.
Evidently, these objects. whose surfaces are of planar and
conical types in convex and concave juxtapositions. do not
exemplify the most difficult that can be found in the
industrial world; however, their recognition in occluded

‘The major modules of 3D-POLY are 1) a calibration module based on
the principles described in [13], 2) a range data pre-processor, 3) a
recognition system, and 4) a module for automatically building models by
showing. All the modules are described in detail in [12].

0018-9472/89/1100-1535$01 .OO 01989 IEEE

Before we formally state the problem of object recogni-
tion, we would like to define the more important symbols

environments represents a significant advance in our opin-
ion. The various frames in Fig. 3 illustrate a successful
determination of pose and identity of one of the objects
whose surfaces are sufficiently visible in the scene of Fig.
1, and the manipulation of this object by the robot. For
the objects in the heap, the models were automatically
generated by the model-building module of 3D-POLY by
placing each object in a computer controlled scanner; each
object was shown in many different configurations so that
the system could build an integrated “whole view” model
of the object.

Although we prefer to think of the our work as a major
development in 3-D robot vision;’ more objectively, 3D-
POLY should only be perceived as an evolutionary step of
progress founded upon the research reported by other
workers in the past [2]-[4], [6], [9], [ll], [14]-[161, [18]-[21],

survey of this previous research appears in [12].3
The aim of this paper is not to describe all those aspects

of 3D-POLY that result in the type of sensor-guided
manipulation shown in Fig. 3, but only those that deal
with strategies for hypothesis generation and the manner
in which the model information is organized to facilitate
verification. In the next section, we state more formally the
problem of determining the identity and location of an
object. Against a background of this problem statement, in
Section I11 we describe features, their attributes, and crite-
ria for feature matching. Section IV then presents the main
points of our hypothesis generation and verification strat-
egy and provides a rationale for the reduction of the
computational complexity involvqd. In Section V, we then
discuss the data structure used for representing objects and
show how this data structure makes it possible for 3D-
POLY to access features and their neighbors in constant
time. Section VI describes how the strategy expounded in
the previous section can be applied to objects in the
presence of occlusions. Finally, we discuss experimental
results in Section VII.

[23]-[26], [29], [30], [32], [36]-[38], [41], [42]. A critical

used in our presentation.

S or Si: A scene feature will be denoted by S. When
more than one feature is under discussion, the ith

consists of a-single object. However, as will be pointed
out in Section VI, the entire method is easily general-
izable to multiobject scenes. (Of course, its success in
multiobject scenes would depend upon the extent to
which an object is visible.)
0, will denote a candidate model object. Selection
of a model object from the library of objects avail-
able to the system is part of hypothesis generation.
n will denote the number of features extracted from
the scene object.
m will denote the number of features in the model
object.
Tr will represent the location (orientation and posi-
tion) of the scene object; it is in fact a transforma-
tion consisting of a rotation R and a translation t.4
The transformation takes the object from the model
coordinate system to its actual location in the world
coordinate system (see Fig. 4). Actually, the model
coordinate system is the same as the world coordi-
nate system, the only difference being that in the
former all model objects are supposed to reside at
the origin in some standard orientation. When we
say a model object resides at the origin, we mean
that some reference point on the object is coincident
with the origin.
c will denote a one-to-one mapping function from
scene features to model features. Although there can
certainly be situations where a one-to-one mapping
may not be appropriate-for example, when scene
edges are broken, one may have to map more than
one scene edge to the same model edge-our seg-
mentation algorithms do manage to produce features
at almost the same level of connectivity as the model
features, at least for the types of scenes depicted in
Fig. 1. For example, Fig. 5 shows the edge and
surface features of the objects in a heap. In our
implementation, a one-to-one mapping from scene
features to model features is guaranteed by insisting
that a model feature be used only once in the map-
ping process. This point should become clearer in - _ _

’Consider that on a Sun3 workstation, starting from the preprocessed
range map of Fig. 5 it takes 3D-POLY less than 9 s to generate and refute
about 156 pose/identity hypotheses for the scene of Fig. 1 before a
verifiable hypothesis is found.

3The manuscript as originally submitted did include this survey of
previous work, however this survey was later dropped in response to
referees’ demands that the manuscript be shortened.

our discussion in Section VI.

We will also use Tr to denote the set of all possible solutions for the
location of an object given the currently known constraints. The type of
usage should be clear from the context.

1537

Fig. 3. Scqucncc or frame\ s h m s robot \ucce\\full\ picking up rccognircd object

(a)
I ~

' Fig. 4. Transformation Tr takes (a) model object into (b) scene object

With this notation. a scene object may be represented by
Os = { S,li =I; . . . H)

and a model object by a

o,= { ~ , l j = l :... m }

'where the ordering of the features is unimportant at this
t . time; we will have more to say about the subject of
< . ordering later, since i t plays an important role in the
1 ' interpretation of multiobject scenes.

Since all objects will be assumed to be rigid. if object 0,
is an instance of model 0, placed at location Tr in 3-D i

space. then every observed scene feature of 0, must be an
instance of some model feature of 0, transformed by the
rotation and translation specified by Tr. One may now
state our problem more formally by saying that the aim of
our system is to find a model object, 0,. determine its
position and orientation transform Tr and establish a
correspondence c: 0, -+ 0, such that

S, CJ Tr.M,.,,, (1)

for all S, E 0,. Here symbolizes a match between the
two features S, and M C (,) . The criteria under whch two
features may be considered to match will. in general,
depend on factors such as the types of features used.
capabilities of the sensor. occlusion, noise. etc.. and will be
addressed later. Equation (1) provides a framework for
discussing the problem of feature matchng in general
terms.

The problem of recognition and localization of a scene
object may be decomposed into the following three sub-
problems:

Select a candidate model 0, from the library; t h s
generates the object identification hypothesis.

a)

'We do not wish to give the reader an impression that strategies for
range image interpretation must be founded on the problem decomposi-
tion shown here. onl! that i t is the preferred approach for us (and a few
other researchers in other laboratories) Approaches that do not conform
to our problem decomposition do exist and some of these have been
extensivelv investigated. See the critical survey of the literature in [12].

1538 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 1 9 , NO. 6 , NOVEMBER/DECEMBER 1989

-
p i le5

Fig. 5. This preprocessed range map for scene of Fig. 1 shows segmented regions. Needle orientations show computed local
orientations of surfaces in scene.

b) Determine (estimate) the location Tr; this is the
location hypothesis.

c) Establish a correspondence c between Os and OM
that satisfies (1). Such a correspondence constitutes
verification of the hypothesis.

The size of the solution space for the first subproblem is
proportional to the number of model objects in the model
library. For the second subproblem, one has to contend
with the six degrees of freedom associated with the trans-
formation Tr, three of these being associated with the
position vector t and the other three with the orientation
matrix R. If we use RTr to denote the solution space
associated with the second subproblem, it is given by

WT'= w3 x [0,27r] x [0,27r] x [o, 7r]

where W stands for the real line, and, therefore, W 3 stands
for the solution space corresponding to all possible solu-
tions for the translational vector t. The solution space
associated with the third subproblem is obviously of size
m", since, in general, one must allow for all possible ways
in which the n scene features can be matched with the m
model features. Therefore, we can write the following
expression for the solution space associated with the prob-
lem represented by (1):

-of-models x W T r X m"

In general, any solution to the problem of matching a
scene object Os with a candidate model OM can, for the

f i ' t ri f i ' t B L',c: \
Fig. 6. Data driven tree search where s is scene feature and rn is model

feature.

purposes of analyzing complexity and efficiency related
issues, be conceived of as a tree search, as for example
shown in Fig. 6. A traversal through the search tree may be
referred to as a recognition process, each arc in the traver-
sal representing an attempt at scoring a match between a
scene feature and a model feature. Each node in a traversal
may be considered to represent the current state of the
recognition process, where the current state is specified by
(c * , Tr*) with c* being a partial correspondence list estab-
lished so far and Tr* representing the partial solution to
the determination of object location. Clearly, the initial
state of tree search, represented by the root, should be
(c* = 0, Tr* = W T r) . Through the tree search, we incre-
mently construct the correspondence c* on the one hand

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1539

and contract the solution space of Tr* on the other. A
model object is considered to be an acceptable interpreta-
tion of a scene object if the traversal reaches one of the
terminal nodes. Since reachng a terminal node merely
means that all of the n scene features have been matched,
it clearly does not constitute a sufficient condition for
object recognition; all that can be said is that the model is
an acceptable interpretation. If no traversal in the tree
search is able to arrive at a terminal node then the candi-
date model object must be rejected. Note that the tree
search depicted in Fig. 6 represents a data-driven approach
to the recognition process, the search being data driven
because the sequence of matches is controlled by the order
of the scene features. Alternatively, the recognition process
may be cast in a model-driven framework, as shown in Fig.
7, where the sequence of matches is controlled by the order
in which the model features are invoked. The time com-
plexity associated with model-driven search is O(n m) . For
recognizing isolated single objects, n must be less than m;
for the sake of argument, if we assume that the objects are
shaped such that only half the features are visible from the
viewpoint used, n will be approximately equal to m/2.
Since m("'I2) is less than (m/2)", one could therefore
argue that for such cases a data-driven search would be
more efficient than a model-driven search.

Going back to the data-driven tree search shown in Fig.
6, since each path in the tree corresponds to a possible
solution to the correspondence c, and since in the worst
case the search may have to sweep through the entire space
(via, say, backtracking), and since the total number of
nodes in the space is of the order of m", the time complex-
ity of an exhaustive search on the tree is equal to O(m").
This exponential complexity, which is unacceptable for
practically all applications, can be substantially reduced by
using hypothesize-and-verify approaches. In t h s paper, we
will show that it is possible to establish a hypothesize-
and-verify approach in such a manner that the time com-
plexity reduces from exponential to a low-order polyno-
mial.

111. FEATURES FOR OBJECT RECOGNITION

The concept of a feature normally implies some saliency
which makes it especially effective in describing objects
and in matching. Since the recognition of objects will be
solely based on shape, of primary interest are geometric
features, such as edges, vertices, surfaces together with
their mathematical forms, etc. Such features specify three
dimensional shape, in contrast with features like surface
texture, color, etc. These latter features, although impor-
tant for recognition of objects by humans, will not be
addressed in this paper, since they can not be detected in
range images. In 3D-POLY we consider only those geo-
metric features with which we can associate positions or
orientations. For example, a vertex feature has associated
with it a position vector, which is the vector from the
origin to the vertex. Similarly, a cylindrical-surface feature
has associated with it an orientation, which is the unit

Fig. 7. Model driven tree search where s is scene feature and RI is
model feature.

vector parallel to the axis of the cylinder. We will catego-
rize the geometrical features into three different classes:
primitive surfaces, primitive edges, and point features.

Primitive surfaces include planar surfaces, cylindrical
surfaces and conic surfaces, which are three special cases
of quadric surfaces. Primitive edges refer to straight-line
features or ellipsoidal-curve features. Point features consist
mainly of object vertices and those surface points that
have distinctive differential-geometrical properties; surface
points falling in the latter category exhibit maximal or
minimal curvatures or can be saddle points. These three
classes of features are effective in describing the shape of
an object, and, what is more, they can be reliably extracted
from range images. Note that we are only using simple
geometrical features, as compared to more complex ones,
like generalized cylinders [31] and primitive solids [34],
that are often difficult to extract from range imagery.

A . Attributes of Features

We represent a feature by a set of attribute-value pairs,
each pair being denoted by (a : U), where a is the name of
the attribute and U its value. The value of an attribute can
be a number, a symbol, a set of labels of other features, or
a list of some of these, depending on the nature of the
attribute. For example, the surface feature s2 of the model
object in Fig. 8 may be described by

(surface-type: cylindrical)
(number-of-pixels:)
(radius: 3)
(normal:)
(axis: (O.O,O.O,l.O))
(area: 3)
(moment-direction:)
(point-on-axis: (O.O,O.O,O.O))
(number-of-adjacent-regions: 3)
(types-of-edges-with-adjacent-regions: (convex, con-

(adjacent-regions: { sl, s3,s4}) . . .
vex, convex))

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6 , NOVEMBER/DECEMBER 1989 1540

\ s2 I

(4
Fig. 8. Labels of primitive surfaces, primitive edges and vertices of

object shown in Fig. 4. (a) Model object. (b) Scene object.

As the reader can see, not all the attributes may be
instantiated for a given feature. For the cylindrical feature
shown here, the attributes normal, moment-direction, etc.,
are undefined and are therefore left uninstantiated. The
attributes of a feature, according to their geometric and
topological characteristics, can be categorized on the bases
of shape, relations and position/orientation. Each of these
categories will be discussed in greater detail as follows.

Shape Attributes: A shape attribute, denoted by sa, de-
scribes the local geometric shape of the feature. For exam-
ple, “surface-type”, “radius”, and “area” are some of the
possible shape attributes of surface feature s2. Ideally, a
shape attribute should be transformation invariant, i.e.,
independent of the object’s position and orientation, in
practice when a feature is seen through a sensor, some of
its shape attributes may “look” different from different
viewpoints. Therefore, we make a distinction between two
different types of shape attributes, those that are viewpoint
independent and those that are not. For example, the area
of a surface and the length of an edge are viewpoint
dependent, because they may vary with viewing direction
due to occlusion. On the other hand, the attributes
surface-type and radius are viewpoint independent. (Of
course, we do realize that in high-noise and high-occlusion
situations, a precise estimation of, say, the radius of a
cylindrical surface may be difficult and may even become
viewpoint dependent.) Clearly, when comparing shape at-
tributes for matching a scene feature to a model feature,
we should take this viewpoint-dependency into considera-
tion.

Relation Attributes: A relation attribute, denoted by ra,
indicates how a given feature is topologically related to
other features. For example, for the surface feature s2, the
attribute “(adjacent-to: { sl, s3, s4))” indicates its adja-
cency with three other surfaces. Relation attributes should
also be independent of transformation. An attribute
“(on-top-of: sl)” is not a proper relation attribute for
feature s2 because it depends on the pose of the object.

Position /Orientation Attributes: A position/orientation
attribute, denoted by la, specifies position and/or orienta-
tion of a feature with respect to some coordinate system.
In general, the position/orientation attributes of a scene
feature are measured with respect to a world coordinate
system, and those of a model feature are measured with
respect to a model-centered coordinate system. As with
shape attributes, some position/orientation attributes may
be viewpoint-dependent, such as the centroid of a surface,
or the midpoint of an edge; while others may be view-
point-independent, as with the attributes surface-normal of
a planar surface or the axis of a cylindrical surface, etc.
The viewpoint-dependent position/orientation attributes
should be avoided in the estimation of Tr during hypothe-
sis generation (see next section), however, they can be
useful for rapidly eliminating the unmatched features dur-
ing the verification process.

Since a feature may possess more than one shape at-
tribute-for example, the feature s2 in Fig. 8 possesses the
shape attributes surface-type, area, radius, etc.-we will
use the symbol SA to denote the set of shape attributes
associated with a feature. Similarly, we will use symbols
RA and LA to denote the sets of relation and position/
orientation attributes of a feature, respectively. Therefore,
the feature edge e2 of the object in Fig. 8 may be de-
scribed by

SA(e2) = {(shape:straight),(length: 3);.- },
LA(e2) = {(direction: (O.O,l.O,O.O)),

RA(e2) = {(end-vertex:ul);.-}.

(point-on-edge: (1.0,0.0,3.0)), . . . }, and

In practice, we may not need to use all the three categories
of attributes but only those useful for a particular applica-
tion. For example, Faugeras and Hebert in their geometric
matching approach [16] have used only shape and posi-
tion/orientation attributes. The set of attributes used in
describing features should also depend on the sensor capa-
bility and the performance of the feature extractors. Using
attributes which can not be reliably detected or measured
by a sensor will not contribute much to solving the prob-
lem of object recognition. In any event, a minimal require-
ment in deciding which attributes to use for describing
features is that no two features in an image or in a model
be allowed to have the same set of attribute-value pairs.
This, of course, does not imply that a model or a scene not
contain multiple instances of a particular feature type. To
elaborate, the vertex features u l and u2 for the model
object in Fig. 8 are identical, but their attribute-value pairs
will be different because of the differences in their posi-
tion/orientation attributes.

B. Principal Directions of Model Features

Empirical observations show that an important charac-
teristic associated with an object feature is what we call its
principal direction. In an object-centered coordinate sys-
tem, the principal direction of a feature gives us a fix on

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3 - 0 OBJECTS 1541

the directional position and/or orientation of the feature
with respect to the other features on the object. Since, one
must first establish an object-centered coordinate frame, a
principal direction can only be assigned to a model object
feature, or to a scene object feature if the scene object has
been embedded in an object-centered coordinate frame via
prior matches of some of its features with model features.

In Section V, we show how a useful data structure-we
call them feature spheres-can be defined using the con-
cept of principal directions. Here, we will define the princi-
pal directions more formally and make the reader aware of
the fact that the manner in which such definitions are
made is different for different classes of features, and
within each class, for different types of features. As was
mentioned before, different classes of features correspond
to primitive surfaces, primitive edges and primitive points.
Within the class primitive surfaces, we may have different
types of features such as cylindrical, planar, spherical
surfaces, and so on. While for some class and type of
features, the principal direction represents their orienta-
tions, for others it represents their directional position on

cludes the cases of planar, cylindrical and spherical sur-
faces defined above, the definition of the principal axis
here must be used with care. The quadric definition is used
only if a surface cannot be classified as being either planar,
cylindrical or spherical.

2) Primitive Curves

Straight line: iP = line direction. The 180" ambiguity
associated with the direction of a line is resolved using the
same criterion as for the axis of a cylinder.

surface normal of the
curve's plane. The 180" ambiguity here, too, is resolved as
for the case of a cylinder.

Circular or ellipsoid curve: '9

3) Point features

Let p be the position vector of a point feature with
respect to the object-centered coordinate system. The prin-
cipal direction is defined by normalizing the position vec-
tor

P a=- .
IPI

the object.
We will now formally define the principal direction,

denoted by '9, for the three classes of features and for
types within each class.

The important thing to note is that the parameters used
in the definitions of principal directions are all extracted
with relative ease from range maps. For example, if from a
given viewpoint in a range map only about 40 percent of

1) Primitive Surfaces the round part of a cylindrical surface is visible, in most
cases it would be possible to make a good estimate of the
direction of the axis of the cylinder. Planar surface: '9 = The direction of the outward sur-

face normal.
Cylindrical surface or conic surface: CP = The direction

of the axis. The 180" ambiguity associated with this direc-
tion is resolved by choosing that direction which subtends
an acute angle with the positive z-axis. For axes that are
perpendicular to the z-coordinate, that direction is re-
tained that is closest to the x-coordinate. And, if the axis is
perpendicular to both z and x, then we choose the + y
direction.

Spherical surface: Let o be the position vector to the
center of the sphere in the object-centered coordinate
system. The principal direction is defined by the normal-
ized form of this position vector

0
@E-.

Note that this principal direction is different in character
from that defined for a cylindrical surface. We choose ths
form for @ because it is not possible to associate an
orientation vector with a spherical surface.

Quadric surface: A quadric surface has the form x'Ax
+ x - B + c=o

lo1

@=a,
la,l

where u p is the principal eigenvector of the matrix A .
In general, the eigenvector associated with the largest

eigenvalue is the principal eigenvector of A and the direc-
tion associated with this eigenvector usually defines the
major axis of a surface. Since a quadric description in-

C. Criteria for Feature Matching

We will now provide matching criteria for the matching
problem represented by (1) and express the criteria sepa-
rately for each of the three attribute classes. In other
words, we will express the conditions for each attribute
class, conditions that must be satisfied for a scene object to
match a model object. Our conditions are applicable strictly
only under the noiseless case. For actual measurements,
the comparisons implied by our conditions would have to
treated in relation to some user specified thresholds, the
magnitudes of the thresholds depending upon the extent of
noise and other uncertainties in the system.

Matching Criteria for Shape Attributes: The reader will
recall that we have two different types of shape attributes,
those that are viewpoint independent and those that are
not. A viewpoint independent shape attribute sa of a scene
object feature is said to match the corresponding shape
attribute of a model object feature if

where the function sa(.) returns the value of the attribute
sa for the feature that is its argument; S, is a feature from
the scene and Mc(,) is the candidate model feature that is
under test for matching with the scene feature. The afore-
mentioned equality must be satisfied for each sa E S A (&) .
For viewpoint dependent shape attributes, clearly we can-
not insist upon an equality in the previous equation. In

1542 IEEE TRANSAC~ONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6 , NOVEMBER/DECEMBER 1989

general, for such attributes, we require6

Note that since all the viewpoint dependent shape at-
tributes are numerical in nature, we only have to use
numerical inequalities and not, say, subsets, as would be
case for symbolic features. For example, we would expect
the length of a scene edge to be equal to or less than the
length of the corresponding model edge due to possible
occlusion. Therefore, the matching criterion for this at-
tribute can only be expressed as

edge-length(S ,) G edge-length(M,,, ,) .

Matching Criteria for Relation Attributes: Relation at-
tributes are also transformation invariant; thus if a scene
feature S, has relation ra with, say, scene feature S,, then
the model feature Mc(,) must have the same relation ra
with the model feature Mc,1).7 More precisely, for every
ra E RA(&)

(3)
To justify the nature of this comparison, consider that the
model object is as shown in Fig. 8. Further, suppose that
in the scene the model surfaces s2 and s3 are visible and
have been labeled as, say, Sa and S,, respectively. Then,
from the model description, we have

adjacent~o(s3) = { s2, s4)

and, from the scene information,

adjacent-to(Sb) = { S a }

Let’s say that during the hypothesis generation phase, an
estimate was made for the transformation that takes the
model objeet into the scene object. Let’s further say that
using this transformation, we have already established the
correspondence of the scene surface Sa with the model
surface s2, and, now, we are testing the correspondence of
the scene surface Sb with the model surface sj. We see that
since adjacent-to(&,) = Sa, and since c (Sa) = s2, a substi-
tution in (3) yields for ra = adjacent-to

which being true implies that the scene surface sb can
indeed be matched with the model surface s3, at least from
the standpoint of satisfying relational constraints. The
point to note is that in the matching criterion of equation
(3) the features participating in a relation at a given scene

6The reader beware that it is possible to define attributes that would be
viewpoint dependent and whose values may actually increase with occlu-
sion. As was pointed out to us by one of the reviewers, one such attribute
would be compactness, calculated by using the formula perimeter*/area
No such attributes are used in 3D-POLY.

’The reader might question our assertion by saying that in the presence
of occlusions, adjacent surfaces in an image of a scene may actually not
be adjacent at all in the model space. But note that 3D-POLY uses range
maps for input and wherever there are self or other kinds of occlusions,
there will also be jump discontinuities in the data Two scene surfaces are
not allowed to satisfy adjacency relationship if they are connected by
only a jump discontinuity in the range map.

feature S, should be a subset of the features participating
at corresponding model feature Mccl,; it is not possi.ble to
replace the “subset” comparison wth a strict equality
because not all of the model surfaces may be visible in the
scene.

Matching Criteria for Position /Orientation Attributes:
For a viewpoint independent position/orientation at-
tribute la, such as the location of a vertex or the direction
of an edge, the matching criterion is described by

l a (S ,) = R . l a (w (, ,) if la is an orientation vector,

(4 4

(4b)

l a (S ,) = Rela(M, , , ,) + t if la is a position vector.

for every la E LA(S,) . These criteria play a vital role in the
localization of a scene object. Recall that the matching
process starts with Tr = W T r and should end up with a
unique solution which is the location of the scene object,
else it should fail. Before Tr has converged to a unique
solution, (4a) and (4b) provide a system of equations to
solve for Tr, but after that, they are nothing but two
predicates which confirm or reject a match between the
scene and the model features.

Many important position attributes are not viewpoint
independent, yet they are important. For example, the
position attributes point-on-axis and point-on-edge
shown in Section 111-A are both viewpoint dependent since
these points can be at arbitrary locations along their
respective directions. Despite their arbitrary locations,
these points play a vital role during the verification phase
of matching. To illustrate, let’s say a scene edge is under
consideration for matching with a model edge under a
given pose transformation. Now, if the directions of the
two are identical, that’s not a sufficient criterion for the
match to be valid, since the identity of directions merely
implies that the scene edge is parallel to the model edge.
To impose the additional constraint that the two edges be
collinear, we need the point-on-edge attribute even if the
point is arbitrarily located on the edge in the model space.
The point-on-edge attribute is used in the following fash-
ion: First the difference vector between the vector to point
-on-edge and a vector to some arbitrary point on the scene
edge is computed. Then the cross-product of the difference
vector with the direction attribute of, say, the model edge
is calculated. The magnitude of this cross-product should
be close to zero for the match to be acceptable. Note that
while the cross-product being zero guarantees the
collinearity of the model and scene edges, it still allows one
degree-of-freedom between the two. It is impractical to
completely constrain this remaining degree-of-freedom
since in the presence of occlusions the model edge may not
be completely visible in the scene.

Before concluding this subsection, we should mention
that, in a manner similar to edges, the position attribute
associated with a planar surface, specified by giving the
coordinates of an arbitrary point on the surface, can be

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1543

TABLE I
SUMMARY OF HGF SETS

Configuration of Features Position/Orientation Attributes

Three unique, noncollinear
points. points.
One straight edge and one non-
collinear point.

The three positions vectors associated with the three

The orientation attribute associated with the direction
of the edge, the position attribute associated with a
point on the edge, and the position attribute associated
with the noncollinear point.
The orientation attribute associated with the edge, the
position attribute associated with a point on the axis of
the ellipsoidal edge, and a position attribute associated
with the noncollinear point.
The two principal directions associated with the two
surfaces, and a position attribute associated with the
extra point.
The orientation attributes associated with any two of
the surfaces, and three position attributes associated
with some three points, one on each surface.

One ellipsoidal edge and one
noncollinear point.

Two primitive surfaces and
one point.

Three noncoplanar primitive
surfaces.

used to make sure that a model surface is coplanar with
the corresponding surface from the scene; again, the iden-
tity of surface orientations is not sufficient, and to cope
with occlusions, it is not possible to constrain the two any
further.

IV. MATCHING STRATEGY

As mentioned in the introduction, the recognition
method employed in 3D-POLY is based on hypothesis
generation and verification. In this section, we will explain
how hypotheses are generated and then how each hypothe-
sis is verified.

In what follows, we will first show that if hypotheses are
generated by exhaustive search, meaning that a scene
feature is tested against every possible model feature,
then the time complexity of the recognition procedure is
O (n x m (h + l)) , where n is the number of scene features, rn
the number of model features, and h the number of
features used for hypothesis generation. Unfortunately,
this complexity reduction is not sufficient for most practi-
cal purposes. We then proceed to show how by using the
notion of local feature sets for generating hypotheses and
using the feature sphere data structure for verification, the
complexity can be improved to O (n X m X h!) . Finally, we
will show that when we use vertex features to organize the
local feature sets, the complexity is further improved to
O (n 2) .

A . Hypothesis Generation and Verification

It is rather well known that only a small number of
features is necessary to estimate the transformation matrix
Tr that gives the pose of a scene object in relation to the
corresponding model object [SI, [37]. In our work, this
small number of features will-be referred to as a hypothesis
generation feature set (HGF). Clearly, it is the position/
orientation attributes for the features in an HGF that must
be used for the estimation of Tr. We have shown some
possible HGF sets and the position/orientation attributes
used for determining Tr in Table I. Note that the table is
not an exhaustive listing of all possible HGF sets, but only

those which are rather frequently used. How exactly a Tr
may be constructed from the position/orientation at-
tributes of the different possible HGF sets may, for exam-
ple, be found in [SI, [16], [21], [37]; each of these references
discusses the method used to calculate a Tr for the type of
HGF used.

The reader might like to note that for each HGF set in
Table I, the position/orientation attributes shown consti-
tute the least amount of information that is required for
the calculation of the pose transform using that set. That
t h s is so should be obvious for the first set. For the second
set, we need to know the coordinates of at least one point
that is arbitrarily located on the straight edge. Without this
extra information, the rotation transform computed from
just the edge directions would not also “move” the edge
from its model space to the scene space; the point on the
straight edge helps us make the model edge become
collinear with the scene edge. Then, we can use the extra
noncollinear point to constrain the rotation of the object
around the edge. The same argument applies to the third
HGF entry. The attributes listed for the fourth HGF set
should be obvious. Finally, for the last HGF set, while two
orientation vectors are sufficient to give us the rotation
transform, coordinates to three points, located on each of
the surfaces, are needed to constrain the translation vector.
Note that these three points can be at arbitrary locations
on the surfaces in the model space, the same being true in
the scene space.

Let’s assume that a recognition procedure needs a maxi-
mum of h features to construct a hypothesis for the pose
transform Tr for a candidate model object. We will further
assume that we have somehow selected a subset of cardi-
nality h of the scene features, this subset will constitute the
HGF set and will be represented by { S,, S,; . ., S,}; we
wish to generate hypotheses by using the features in this
subset. We may then divide the search tree in Fig. 6 into
two parts as shown in Fig. 9, the division occurring at level
h on the tree. Note that at the first level of the tree, we try
to match the scene feature S, against all possible model
features from the candidate object. Then, at the second
level, at each node generated by the first level, we try to

1544 IEEE TRANSACTTONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6 , NOVEMBER/DECEMBER 1989

h

lcyel h

sur1 (b d 0)

n-h

Iailcd lealure match _ - - _ _ _
- st-srui realm match - backtracking I r a n verification IO hypocheris generation

Fig. 9. Data driven search tree is divided into two parts at level h of tree. First part represents hypothesis generation stage
while the second part represents verification stage.

match the scene feature S, with every possible model
feature; and so on.

As depicted in the figure, after a hypothesis is formed
with h features, we use the remaining n - h features for
verification. In principle, if a hypothesis is correct, i.e., the
scene object 0, is indeed an instance of the candidate
model 0, at location Tr, we should then be able to find
all the remaining n - h matched feature pairs using the
transformation Tr. This implies that in the verification
phase the scene feature at each level will match with
exactly one model feature. This uniqueness is guaranteed
by the requirement that no two features of a model have
the same description. To reiterate what was said in Section
111, on account of the different position/orientation at-
tributes this requirement is easily met even for those
features that might otherwise be identical, say, by virtue of
their similar shapes.

On the other hand, if any one of the remaining n - h
features can not be matched to a model feature, that
implies the current hypothesis is invalid, because either 0,
is not the right object model or Tr is not the correct
transformation. Therefore, when a scene feature, say, S,,
k > h, does not match any model features under the candi-
date Tr, it serves no purpose to backtrack to level k - 1 or
higher. Instead, the system should go back into the hy-
pothesis generation phase, and by backtracking over the
first h levels, try to generate another hypothesis for Tr, as
illustrated by arc A in Fig. 9. Clearly, if repeated back-
tracking over the first h levels fails to produce a valid Tr,
the candidate model object should be discarded and new

This search process is exhaustive over the model features
in the sense that at every node shown in Fig. 9, a scene
feature must be compared with all the unmatched features
of the candidate model object. Therefore, at each node, the
complexity is equal to O (m) , where m is the number of
features in the model object. The number m is also the
fan-out at each node encountered during the hypothesis
generation phase, i.e., in the first h - 1 levels of the search
space.!-? However, the fan-out in the verification phase
equals 1 because of our requirement that a match failure
during verification implies going back into hypothesis gen-
eration.

Since backtracking is allowed to be exhaustive during
the hypothesis generation phase, the time complexity asso-
ciated with hypothesis generation is O(mh) . The time
complexity associated with the worst case verification sce-
nario can be estimated by noting that each verification
path has at most n - h nodes, and, since at each node we
must make m comparisons, the complexity of verification
is O(m x n). Therefore, the overall complexity associated
with this recognition process is

O (m h) x U (m x n)

which is the same as

~ (n x m h + l)

For rigid objects, h will typically be equal to 3, although
its precise value depends upon how carefully the HGF sets
are constructed. Therefore, the expression for the complex-

tree’search begun with a new candidate object. In the rest

associated with this type of search.
Strictly speaking, the fan-out will be m at the root node during

Of this subsection’ we the time hypothesis generation, m - 1 at the next level, and so on. Notwithstand-
ing this fact, our complexity measures remain valid.

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1545

Fig. 10. Two-dimensional range image of hypothetical polygon. Range
values are proportional to perpendicular distance from line A B . For
example, range corresponding to scene point 1 is equal to distance d l .

ity function becomes

O(n x m4)

Although one may consider this complexity function to be
a substantial improvement over the O(m") function asso-
ciated with the search tree of Fig. 6, it is still not accept-
able for practical applications. In the next subsection, we
will show how by constraining the selection of model
features for matching we can make further reductions in
the complexity.

B. How to Constrain the Selection of Model Features

In this subsection, we will explore the question of what
constraints one should invoke to select model features for
matching with a scene feature. Given that the comparison
of attribute values plays a central role in the matchng
process, the constraints we are looking for should be
derivable from the attributes. But, since we have three
different kinds of attributes, namely, shape, relation, and
position/orientation, the question that arises is whch of
these attributes are best suited for the required constraints.

To answer this question, we will take the reader through
a two-dimensional (2-D) example shown in Fig. 10. With
the help of this example we will convince the reader that
the attributes used for constraining the selection of model
features should depend upon whether or not we know the
transform Tr. In other words, the constraints used in the
hypothesis generation phase must, of necessity, be differ-
ent from those used in the verification phase. We will show
that for the hypothesis generation phase, we must take
recourse to an idea suggested and used by other re-
searchers: the model feature that is invoked for compari-
son against a scene feature should depend upon its rela-
tions with the previous model features in the path
traversed so far in the search space of Fig. 6. And, for the
verification phase, we will show that remarkable reduc-
tions in computational complexity can be achieved by
using constraints derived from the principal directions of

i n

Fig. 11. Model of polygon whose 2-D range map is shown in Fig. 10.

features-recall that the principal direction of a feature is
derivable from its position/orientation attributes. We will
then show that the invocation of constraints on the princi-
pal directions is greatly facilitated if the features are orga-
nized according to a special data structure we call the
feature sphere.

To help explain our points, in Fig. 10 is shown a 2-D
range image of a polygonal object. The viewpoint is from
the top, as illustrated. Range mapping is orthogonal,
meaning that the lines of sight for the determination of
range values are parallel; for example, the range at scene
point 1 is equal to the distance d l , and d l is parallel to
d2, the range at scene point 2. The model polygon is
shown in Fig. 11. The problem is to recognize and locate
the polygon in Fig. 10 given its model in Fig. 11. We will
assume that the recognition system is using only vertex
features (an example of primitive point feature type). Scene
vertices will be denoted by integers 1,2,3,. . . , and those of
the model by letters, a, b ,c , From the viewpoint
shown, only the model vertices a , b, c, d , e , f , g , h , k, I are
visible to the sensor. For the sake of argument, we will
assume that of these vertices, the model vertex d is not
detectable; therefore, its correspondent in Fig. 10 has not
been given a label. The undetectability of d in the sensor
data could be due to the fact that the angle defining that
vertex is not very sharp. As a result, feature extraction
from the sensor data will only yield the vertices
1,2,3,4,5,6,7,8,9. For the viewpoint shown, we must fur-
ther assume the unavailability of angle measurements at
vertices 1, 7, and 9.

We will subject the recognition of the polygonal object
in Fig. 10 to the kind of hypothesis and verify approach
depicted in Fig. 9, except that we will add constraints on
the selection of model features at each node. We will first
examine the possibility of using constraints derived from
shape attributes.

1) Using Constraints Derived from Shape Attributes: Let
us say each scene feature is characterized by the following
set of shape attribute-value pairs:

SA= (s a , , u ,) .

1546 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6, NOVEMBER/DECEMBER 1989

In the absence of uncertainties, perhaps the most straight-
forward way of constraining the selection of model fea-
tures in the matching process is to invoke only those model
features whose sa, values are the same as U , . For the 2-D
example, say that at a node in the search space the scene
vertex 2 is under consideration. Now, a possible shape
attribute for a 2-D vertex is the dihedral angle 8 shown for
one of the vertices in Fig. 11. Let’s say the measured
dihedral angle at the scene vertex 2 is 8,. Given this shape
information, it should be necessary to invoke only those
model vertices whose dihedral angles, denoted here by ex,
satisfy the constraint

{ x : l 4 -4<4,
where c represents the uncertainty in angle measurement.
Given a judicious choice for E, such a constraint might
only invoke the model vertices b and k-a considerable
improvement over having to compare, in the worst case, of
course, the scene vertex 2 with all the 16 model vertices.

A practical implementation of the above idea would
require that we organize the model features according to
the shape attributes. One could do so, for example, by
sorting the model features by the values of the attributes.
Then given a desired attribute value for a scene feature,
the candidate model features could be retrieved by a
binary search. Another way is to use an array with each
array cell representing an interval of the attribute value; a
model feature could then be assigned to an appropriate
cell on the basis of the value of the attribute. The latter
method would, in general, be more demanding on memory
requirement, but the retrieval of candidate model features
for a given scene feature attribute value would be more
efficient .

Although, in some cases, it would certainly be possible
to benefit from the ideas outlined in the previous two
paragraphs, we have chosen to not use shape attributes for
constraining the selection of model features. Our most
important reasons are that the viewpoint independent
shape attributes, for the most part, do not contain suffi-
cient discriminatory power for adequately constraining the
selection of model features; and the viewpoint dependent
shape attributes are too prone to getting their values
distorted by occlusion and, of course, the change in view-
point.

For example, planarity of a surface is a viewpoint inde-
pendent shape attribute. Now consider the example illus-
trated in Fig. 8 and assume that we are matching scene
surfaces with model surfaces using planarity as a shape
attribute. Clearly, all the model surfaces but s2 would
become candidates for scene surface s,,, and there would
be almost no gains in the computational complexity. On
the other hand, a viewpoint dependent shape attribute, like
the area of a surface would obviously be useless because
the problems that could be caused by occlusion. For
another illustration of the difficulties caused by using
viewpoint dependent shape attributes, let’s go back to the
matching of vertices in Fig. 10. Although it may not seem
so, the dihedral angle is viewpoint dependent, as, for

example, evidenced by the vertices 1, 7, and 9. The dihe-
dral angles at these vertices can not be measured from the
viewpoint shown in Fig. 10 because of self-occlusion.
Therefore, it would be impossible to use the most obvious
shape attribute-the dihedral angle-for constraining
search, as any of the nodes could suffer from self-occlu-
sion, depending upon the pose of the object.

2) Using Constraints Derived from Relation Attributes:
Let’s say a scene feature S has the following relation
attribute-value pair (ra: { S,, S,, ., S k }) , meaning that
the scene features S,, S,; . -, S, are participating with S
in the relation named ra. We will assume that of
S1,S2;.., S,, the features S, through Sp, p < k, have
already been matched with model features. Then we may
consider only those model features for matching against S
that enter into relation ra with the model features that
match S, through Sp. More formally, a model feature M
will be selected for matching with S provided one of the
relation attribute for M is (ra: { Mc(!,, Mc(2,,. * * , M c C p , }) .
Remember, the mapping function c gwes us the correspon-
dences between the scene features and the model features.

In the example of Fig. 10, assume that the scene vertices
4 and 5 have already been matched with the model vertices
e and f, and that the scene vertex 6 is now under test for
possible match with a model vertex. Since vertex 6 has
relation attribute (adjacent-to: {5,7}), a candidate model
feature for matching with vertex 6 should possess the
relation attribute (adjacent-to: { f, *}), where we have
used an asterisk to act as a place-holder for the yet
unknown corresponding model vertex of vertex 7. For
symmetric relations, such as adjacent-to, a search for those
model features that satisfy the desired constraint can be
easily conducted by examining the relations at the vertex
f ; we may thus conclude that the model vertex g is a
candidate model feature for the scene vertex 6. For non-
symmetrical relations, unless care is exercised in organiz-
ing the model feature with respect to their relations, in the
worst case one may have to search through all the model
features to determine those which satisfy the required
constraints. However, even with such a search, one would
gain from the subsequent savings in not having to match
all the model features with a scene feature. In addition to
having to search for the model features, there are other
issues that play an important role in matching scene fea-
tures with model features under relational constraints,
especially when one also has to contend with the uncer-
tainties associated with real data. Over the years, much has
been done in this area and the reader is referred to [7], [27],
[35], [39] for further details.

Although what we have said so far in this subsection
may be construed as implying the appropriateness of rela-
tional constraints, the reader beware: We will now show
that there can be situations when relational constraints
may not help at all with the pruning of model features,
and, further, in some cases they can lead to results that
may be downright incorrect.

Going back to our example of Fig. 10, we just showed
how the prior matches at scene vertices 4 and 5 help us

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS

constrain the search at vertex 6. One may similarly show
that the matches at the vertices 5 and 6 help us with the
selection of candidate model vertices at 7. Now, let's say,
that the scene vertex 7 has been successfully matched with
the model vertex h. Our next task is to find a list of
candidate model vertices for the scene vertex 8. However,
because of self-occlusion, there does not exist at vertex 8
the relation attribute (adjacent-to: .., 7,..). This means that
prior matching history along the path being traversed in
the search space would not help us at all at the scene
vertex 8.

Now to show that relational constraints may lead to
erroneous matches, consider the scene vertex 3, where we
have the relation (adjacent-to: 2,4). We will assume that
the vertex 4, being closest to the viewpoint line AB, has
already been matched with model vertex e. The candidate
model vertices for the scene vertex 3 must satisfy the
relation (adjacent-to: *, e) , since e is the correspondent of
4 and since the vertex 2 has not been matched yet. This
constraint would cause 3 to be matched with the model
vertex d -an obviously incorrect result which would even-
tually cause an erroneous rejection of the model object.

3) Using Constraints Derived from Position /Orientation
Attributes: If a scene feature possesses a position/orienta-
tion attribute-value pair (l a : U) , then it follows from (4a)
and (4b) that a potential candidate model feature must be
characterized by the either or both of the following posi-
tion/orientation attribute-value pairs

(l a : R- ' . U) if U is an orientation vector (sa)

(l a : R- ' . (U - t)) if U is a position vector (5b)

where R and t are the rotation and translation compo-
nents, respectively, of the transformation Tr that takes the
model object into the scene object. Clearly, an estimate of
the transformation Tr is required before a position/orien-
tation constraint can be invoked.

We must again address the issue of how one might
organize model features in order to efficiently invoke the
position/orientation constraints. One approach would be
to partition the space of all possible positions and orienta-
tions into cells and to assign model features to appropriate
cells. Since it takes three parameters to specify an orienta-
tipn, two to specify the direction of the axis of rotation
and another one to specify rotation around this axis, the
space of all possible orientations will consist of either the
volume of a unit sphere, or, using the quaternion notation,
the surface of a four-dimensional unit sphere. On the other
hand, the space of all possible positions will be the 3-D
Cartesian space; note that by positions we mean trans-
lations.

While it would indeed be possible to use the position/
orientation constraints in this manner to prune the list of
candidate model features, difficulties arise in practice on
account of the fact that it may not be possible to develop a
unified organization of model features on the basis of
position/orientation information, since some features may

Fig. 12. Vertices of model polygon are pushed out to unit circle; we call
this circle the feature circle of the model.

have only position attributes, others only orientation at-
tributes, and still others both.

Fortunately, there is a way out of this impasse, by the
use of principal directions defined in Section 111. For every
feature, as shown in that section, we can derive its princi-
pal direction from either the position information or the
orientation information. The principal direction can then
be used, by the method discussed below, to organize the
model features for efficient retrieval subsequently. In the
rest of this subsection, we will use the 2-D example of Fig.
12 to introduce the idea of a feature circle, which is a
means to organize, on the basis of their principal direc-
tions, the model features for the 2-D case.

For the 2-D example, we first compute the principal
direction of each model vertex according to the definition
in Section 3.2. Since the space of direction vectors in 2-D
space is a circle, we organize the model vertices along a
unit circle as shown in Fig. 12. This constitutes the feature
circle for the model object. Suppose that the orientation R
and position t of the scene polygon have been hypothe-
sized by matching vertices 4 and 5 to model vertices e and
f , respectively. Now, suppose we want to find the candi-
date model vertices for the scene vertex 3. Using (5b), the
position vector of a candidate model vertex for possible
matching with the scene vertex 3 should be

P3 - t . i j = R - ' .

The principal direction associated with this position vector
is

IPI
We can then access the feature circle of Fig. 12 and pull
out those motel fe$ures whose principal directions lie in
the interval [a - 6 , CP + e], where e depends upon the mag-
nitude of uncertainty in the sensed data.

1548 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6 , NOVEMBER/DECEMBER 1989

Of course, for the 3-D case, the organization of the
model features would not be as simple as what is shown in
Fig. 12, since the features would now have to be mapped
onto the surface of a sphere on the basis of their principal
directions. To handle the resulting complications, in Sec-
tion IV-D, we will introduce the notion of a feature sphere
which use a special indexing scheme for the tessellations
on the surface of the sphere. The indexing scheme chosen
reduces the complexity associated with finding the neigh-
bors of a particular cell on the surface of a sphere, and for
assigning a cell to a given principal direction.

4) Conclusion Regarding the Choice of Constraints: Be-
fore we present our complete feature matching strategy, we
would like to summarize the conclusions that can be drawn
from the preceding three subsections.

Relatively speaking, shape attributes are not that
useful for the purpose of selecting candidate model
features because, when they are view independent,
they often do not carry enough discriminatory power,
and, when they are view dependent, they cannot be
used for obvious reasons.
When the pose transformation Tr is unknown, rela-
tion attributes can provide strong constraints for
selecting model features; however, the extraction of
relation attributes may be prone to artifacts.
When the pose transformation Tr is given, the prin-
cipal direction attribute, which can be derived from
the position/orientation attributes, probably pro-
vides the best constraint for selecting model features.
We use the adjective “best” to emphasize, in a quali-
tative sense admittedly, that this attribute can be
calculated in a fairly robust manner for most fea-
tures, and, to emphasize its ability to provide strong
discrimination amongst competing model features.

These conclusions form the foundation of our overall
matching strategy, which we now present:

During hypothesis generation:
In this phase, we will use constraints on relation attributes to
prune the list of model features. To get around the problems
associated with exhaustive backtracking in the upper h levels
of the search space shown in Fig. 9, we will group immedi-
ately related model features into sets, to be called local
feature sets (LFS). Each LFS will be capable of generating a
value for the transformation matrix Tr. The idea of using
feature sets for constructing hypotheses about pose transfor-
mations is akin to the local feature focus idea used by Bolles
and Cain [5] for the 2-D case and to the notion of kernel
features used by Oshima and Shirai [32] for the 3-D case.

During verification :
In this phase, we will use the principal direction constraint
to select model features. For efficient retrieval on the basis
of their principal directions, the model features will be
organized on feature spheres.

In the next subsection, we will elaborate on the notion of
local feature sets for hypothesis generation. We will subse-
quently present a formal definition of the feature sphere

TABLE I1
LFS OF THE OBJECT IN FIG. 13

Vertex Surfaces

a 1,10,2
h L2,8
c 2,10,3
d 2,3,8
e 3,10,4

3,4,8
7,12,8

f
g
h 7,10,12
i 4,10,7
j 4,7,8
k 1,879
I 9,8,12

m 1,9,10
n 10,9,12

data structure and present expressions for the complexity
functions associated with our matching strategy.

C. Local Feature Sets for Hypothesis Generation

Ideally, an LFS is a minimal grouping of features that is
capable of yielding a unique value for the pose transform
which takes the model object into the scene object. The
features in such a minimal grouping could, for example,
correspond to one of the rows in Table I.

More practically, it is desirable that the features in an
LFS be in close proximity to one another, so that the
probability of their being simultaneously visible from a
given viewpoint would be high. In our implementation, we
have found useful the following variation on the above
idea, which seems to lead to particularly efficient hypothe-
sis generation strategies for objects that are rich in vertices,
such as the objects of Fig. 2. We allow our LFS’s to be
larger than minimal groupings and insist that each group-
ing contain a vertex and all the surfaces meeting at that
vertex. [It would be equally easy to use edges in place of
surfaces.] In Fig. 13, we have shown the labeled features
for one of the objects of Fig. 2. For this object, the LFS’s
generated with the specification that all the surfaces meet-
ing at a vertex be included are shown in Table 11. To
explain the advantages of our approach, consider the LFS
corresponding to the vertex c of the object in Fig. 13. The
data record for this LFS will look like the following.

Vertex c
flag: - 1

surfaces: 2 10 3
adjacent-vertices: a e d
edge-type: v v c

xyz: # #

The flag value of -1 means that one of the three edges
meeting at the vertex is concave. The variable xyz is
instantiated to the coordinates of the vertex in the model
coordinate system. In edge-type, U denotes convex and c
concave, as there are two convex and one concave edges
meeting at this vertex. This LFS subsumes at least three
minimal feature groupings that are also capable of generat-
ing a unique value for the pose transform. For example,

CHEN AND K A K : ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS

k

1549

a

Fig. 13. Labels of surfaces and vertices of object in Fig. 2(a).

the grouping consisting of the surfaces 2 and 10, together
with the coordinates of the vertex a , can yield a unique
value for Tr. To answer the question why we use this
particular construction for LFS’s, we will first define a
completely visible vertex.

In the scene, a vertex will be called completely visible if
no occluding edges meet at the vertex. An example of a
completely visible vertex is shown in Fig. 14(a), while (b)
shows the same vertex when it is not completely visible.
Note that occluding edges in a range map are character-
ized by range discontinuities.

We believe that a completely visible vertex in a scene
provides the strongest constraints for calculating the Tr
associated with an object in a scene. Of course, theoreti-
cally, any two of the non-parallel surfaces coming together
at a vertex, in conjunction with the vertex itself, are
capable of specifying uniquely the Tr associated with a
scene object. Therefore, theoretically at least, for the vertex
labeled in Fig. 14(a), any two of the surfaces, together with
the coordinates of the vertex, can yield Tr. However, in
practice, it is difficult to calculate with great precision the
position of the vertex itself, primarily because of the
nature of discontinuities of some of the spatial derivatives
at such a point. Therefore, our approach is that if a
completely visible vertex can be found in a scene, it should
immediately be used to calculate a Tr.

Of course, it is entirely likely that we may not find any
completely visible vertices in a scene, meaning that all the
visible vertices may be like the one labeled in Fig. 14(b) for
which we are able to see only two of the three surfaces due
to self-occlusion. In such a case, the LFS for a model
vertex can still be used by assigning appropriate labels to
the scene surface. In general, if h surfaces meet at a vertex
in the model and only k of these are visible in the scene,
then there are only h possibilities for matching the k scene
surfaces, this happens because of the rotational adjacencies
that have to be maintained. For example, as illustrated in
Fig. 14, the vertex a is formed by three surfaces 1, 10 and
2; if we see only two of the surfaces a and p as in (b),

Fig. 14. Completely visible vertex of (a) object in one view. such as
vertex labeled on left-hand side, becomes only partially visible in (b)
another view.

there are only three different labeling patterns for the two
scene surfaces, namely,
((1 -+a, 10 - p , 2 -nil), (10 - + a , 2 +/3,1 +nil),

(2 + a, I - /3, 10 - nil)}.
In each of these patterns, the labels must maintain the
same adjacencies that are in the model. Therefore, we can
say that in matching k scene features meeting at a scene
vertex with the h features of an LFS, the overhead is k ,
which is incurred in matching the k scene features with the
potential correspondents from the LFS. Since this can only
be done in h ways, the overall complexity associated with
matching with an LFS is O(h X k) .

Therefore, the complexity associated with generating
hypotheses for an object which has NLFs LFS’s is NLFS X
O (h X k) . In practice, NLFs = O (m) , where m is the total
number of model features. Therefore, the overall complex-
ity associated with generating all the hypotheses is

O (r n X h x k) = O (m) .
Before we conclude this subsection, we would like the
reader to note that the gains acheved with the use of
LFS’s as nonminimal feature groupings is at the cost of a
more complex flow of control during hypothesis genera-
tion. While with minimal groupings, it is possible to insti-
tute uniform control, with nonminimal groupings special
cases must be handled separately depending upon how
many of the features in an LFS can be matched with the
scene features.

Also, we have said nothing about the mathematics of
how to actually compute a Tr given that we have a match
between some scene features and model features. For lack
of space, this mathematics can not be presented here.
However, the interested reader might wish to go through
what we believe is a very readable derivation in Appendix
A of [12] which employs quaternions to demonstrate that
an optimum Tr can be computed by solving an eigenvalue
problem. This derivation is based on the principles first
advanced by Faugeras and Hebert [17].

D. Feature Sphere for Verification

We want to organize model features oflan object such
that, given a candidate principal direction (D computed for

1550 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6, NOVEMBER/DECEMBER 1989

a scene fe:ture, all the model features with the principal vl

direction a can be accessed efficiently. Since a particular
direction corresponds to a unique point on the surface of a
unit sphere, in a manner similar to the organization of
model vertices on a circle in the previously discussed 2-D
example, a natural way is to record the model features on a
unit sphere as a function of their principal directions. We
shall call such a sphere a feature sphere. There can, of
course, be multiple number of features corresponding to a
given point on the feature sphere, especially if more than
one feature class is used for describing models. In our
experience, programming becomes more efficient if a sepa-
rate feature sphere is used for each class, meaning that we
represent all the primitive surface features on one sphere,
all the primitive edge features on another sphere, and all
the primitive point features on yet another. Fig. 15 shows
the vertex feature sphere and the surface feature sphere for
the 3-D model object in Fig. 8.

After a pose transform hypothesis Tr is generated, we
want to verify or reject the hypothesis by matching the rest
of the scene features to the rest of the model features
under Tr. Of the different scene features which will be
used for verification, consider a scene feature S. According
to (4a) and (4b), a model feature that is a candidate for
matching with the sceneAfeature S should be characterized

the different types of S.
by a principal direction Q that is equal to the following for (b) (c)

Fig. 15. (a) Model object. (b) Surface feature sphere. (c) Vertex feature
sphere.

sake of argument we may assume that at most there will be
k features for each principal direction, where k -x m. Then

If S is a primitive surface (spherical surface ex-
cluded) or a primitive curve:

6 = R-'* u (S) , (6 4

where R is the rotation component of Tr, and u (S)
is the orientation direction of feature S, defined
similarly as its principal direction but with respect to
the world coordinate system.
If S is point feature or a spherical surface:
Let p (S) be the position vector of feature S with
respect to a world coordinate system.

@ = Tr - ' * p (S) = R - ' * (p (S) - f) ; (6b)

where t is the translation component of Ti-.

As previously mentioned, principal directions provide a
very strong constraint for the selection of candidate model
features, i.e., each candidate principal directidn computed
from (6a) or (6b) will lead to a small number of candidate
model features. This is especially true for point features as
should have been apparent from the 2-D example dis-
cussed previously. For primitive surfaces or primitive edges,
the discrimination provided by principal directions de-
pends on the configuration of object surfaces. In general,
we may assume that the principal directions of a model's
features are randomly distributed over the unit sphere.
Although, the probability of any two features occupying
the same spot on the unit sphere will be very low, for the

the worst case time complexity for matching for verifica-
tion will be O(n X k) = O(n). When combined with the
complexity of hypothesis generation, as discussed in Sec-
tion IV-C, this implies an overall complexity level of
O(mn). Since, m = O(n) , we can conclude that with our
approach the overall complexity for single object recogni-
tion is o(n2).

In the next section we will discuss in detail the feature
sphere data structure implemented in a computer. It is
interesting to note that if a model object is a convex
polyhedron then its surface feature sphere representation is
equivalent to its EGI (extended Gaussian image) [24], [26],
and if a primitive curved surface is allowed to be added to
a polyhedron then the surface feature sphere is similar to
CSG-EESI representation proposed by Xie and Calvert
[40]. In addition, if every surface point is regarded as a
point feature, then the point feature sphere of a star-shape
object is equivalent to the well-tessellated surface represen-
tation proposed by Brown [lo].

V. A DATA STRUCTURE FOR REPRESENTING
FEATURE SPHERES

In order to implement feature spheres in a computer, we
first need to tessellate the sphere and then create an
appropriate data structure for representing the tessella-
tions. In our case, each cell on the sphere will be repre-

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1551

(b)

Fig. 16. (a) Directional uncertainty cone associated with principal direc-
tion W . (b) Sampling points of sphere that lie withincone.

sented by its center point, and the purpose of the data
structure will be to allow us to efficiently access these
points. In what follows, we will use the term tessel to refer
to both a cell created by tessellating a sphere and to the
central point of the cell. Before a data structure can be
created for representing the tessels, we must bear in mind
the following two kinds of operations that will be per-
formed on the data structure for the purpose of feature
matching.

First, during the model building process model features
must be assigned to their respective tessels on the basis of
their principal directions. Clearly, it is unlikely that the
direction corresponding to one of the tessels would corre-
spond exactly to that of a feature. For a given model
feature, we must, therefore, locate the nearest tessel. In
other words, we need a tessel assignment function, which
will be denoted by L (@) , that should return the label of a
tessel to which a model feature with principal direction @
is assigned.

Second, given a scene feature S during the verification
stage, we want to examine whether there is a correspond-
ing model feature with direction @* = T r - l (@ (S)) in the
model under consideration. Assuming the hypothesis is
correct, ideally, we should be able to find such a model
feature at L(@*) on the feature sphere of the model.
However, due to noise and other artifacts associated with
the estimation of Tr, a* will only be accurate to within
some uncertainty interval. This directional uncertainty as-
sociated with @* can be expressed as a cone whose axis is
the computed direction itself, as shown in Fig. 16. This
implies that potential model features for matching with S

should be all those that are within this cone. If we could
assume the error processes associated with the uncertain-
ties in @* to be of zero-mean type, from within the cone
one would first select that feature that is closest to L (@*),
and, if that match were to fail, select the next closest, etc.
Clearly, this is a breadth first search rooted at L (@ *) , and
the depth of search (the farthest neighbors to examine)
should correspond to the maximal allowable direction un-
certainty.

It should be obvious that for implementing the above
strategy for the selection of model features, we need a
function that would be capable of directly accessing the
immediate neighbors of a given tessel; we consider two
tessels to be neighbors if they share a common edge in the
tessellation. This function will be called find-neighbors
function and will be denoted by N . So, we want

where L,, L,; . ., L, are the labels of the immediate
neighbors of the tessel labeled Lo.

A . Previous Approaches To Data Strucluring of Sphere
Tessellations

In their work on EGI representation, Horn [24] and
Ikeuchi [26] have discussed a hierarchical tree structure for
representing a tessellated sphere based on icosahedron or
dodecahedron. A drawback of this hierarchical data struc-
lure is that the adjacency relationship between neighboring
tessels is not preserved. To get around this difficulty,
Fekete and Davis [18] used a fairly complex labeling
scheme, in this scheme each tessel is labeled by the path-
name of its corresponding node in the tree. The neighbors
of a tessel within one of twenty main icosahedral triangles
are found by examining the pathname of the tessel, symbol
by symbol, and synthesizing the pathnames of its neigh-
boring tessels by the use of complicated state-transition
rules and lookup tables. This procedure requires at least
O (n) operations, where n is the number of levels in the
hierarchy. When the neighbors lie in an adjacent triangle, a
different procedure is needed. Korn and Dyer [29] have
also proposed a data structure for a tessellated sphere with
a fixed number of subdivision levels. Twenty 1-D arrays,
each of size 4", are used to represent the sampling points
on the sphere, which implies that a sampling point is
labeled by a number from 0 to 4" - 1. Their find-neighbors
algorithm is essentially the same as that of Fekete and
Davis. In another approach that allows for a quick deter-
mination of adjacencies in a spherical tessellation is by
Goad [19] who projects a cube onto a sphere. A disadvan-
tage of the Goad method is the unevenness of the resulting
tessellations.

In this section we will present a new data structure for
representing a tessellated sphere based on the icosahedron.
Its main merit is that logical adjacency between elements
of the data structure corresponds to physical adjacency
between sampling points on the sphere. We will show that

1552 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 1 9 , NO. 6, NOVEMBER/DECEMBER 1989

the neighbors of a given tessel can be found with a
constant time complexity algorithm, regardless of the sam-
pling resolution. Furthermore, via the find-neighbors func-
tion, the tessel-assignment function L can be implemented
efficiently, too.

B. Tessellating a Unit Sphere

In this subsection, we will present the tessellations on
which our data structuring is based. Subsequently, it should
become evident to the reader that the regularity of the
neighborhood patterns in the tessellations used allows us
to devise a simple scheme for neighbor finding. However,
first we will quickly review the considerations that go into
the design of tessellations.

When a sphere is tessellated into cells, ideally we would
like the cells to be symmetrical, be identical in shape, and
possess equal areas; also, ideally, the tessellation scheme
should maintain these attributes over a wide range of cell
resolutions. However, it is well known that a tessellation
scheme with these attributes does not exist. The best one
can do is to use the techniques of geodesic dome construc-
tions [28], [33]; these techniques lead to triangular cells
that are approximately equal in area and shape. The
geodesic tessellations are obtained via the following three

Choose a regular polyhedron, which usually is an
icosahedron or a dodecahedron, and inscribe it in a
sphere to be tessellated. If a dodecahedron is used,
each of its pentagonal faces is divided into five
triangular faces around its center to form a pentakis
dodecahedron. Thus each face of the regular polyhe-
dron will be a triangle.
Subdivide each triangular face of either the icosahe-
dron or the pentakis dodecahedron into subfaces by
dividing each edge of a triangular face into Q sec-
tions, where Q is called the frequency of geodesic
division. Using these sections, each triangular face is
divided into Q triangular subfaces. Finer resolu-
tion can be obtained simply by increasing the fre-
quency of geodesic division. Usually, Q is a power
of two.
Project the subdivided faces onto the sphere. In
order to make the projected triangle sizes more
uniform, the edges of the triangles of, say, the
icosahedron should be divided into sections such
that each section subtends the same angle at the
center of the sphere; as a consequence the lengths
will be the same for the edge sections after they are
projected onto the sphere [28].

To generate the tessellations used in 3D-POLY, we start
out by implementing the above approach with an icosahe-
dron. The geodesic polyhedron thus produced contains
20 X Q 2 cells and 10 X Q 2 + 2 vertices. Fig. 17 shows an
icosahedron and a geodesic polyhedron for Q = 4.

Our next step, for the purpose of delineating cells that
would contain pointers to feature frames on the basis of
their principal directions, is to construct a dual of the

(b)

derived from icosahedron.
Fig. 1 7 . (a) Icosahedron, and (b) frequency four geodesic polyhedron

geodesic polyhedron produced by the above method. The
dual of a polyhedron is defined as a polyhedron obtained
by connecting the centers of the adjacent cells of the
original polyhedron, as shown in Fig. 18. For example, a
dodecahedron is the dual of an icosahedron. The dual of a
frequency Q geodesic polyhedron derived from an icosahe-
dron consists of 10 X Q2 + 2 cells, of which 10 (e2 - 1) are
hexagonal and the remaining twelve pentagonal. The twelve
pentagonal cells of the dual polyhedron correspond to the
twelve vertices of the original icosahedron. This dual poly-
hedron is then projected onto the unit sphere to produce
the desired tessellations. It is important to note that the
cells of the dual polyhedron are used, in a sense, as bins
for principal directions and that the centers of these
cellscorrespond to the vertices of the geodesic polyhedron
derived originally from the icosahedron.

As illustrated by the dashed lines in Fig. 18, our tessels
can be either pentagonal or hexagonal, the former has five
neighbors, and the latter six. The average area of a tessel is
given by 41~/(10 X Q 2 + 2). The radial angle between adja-
cent sampling points, which is an indication of sampling
resolution, can be roughly estimated by

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS

\
\

I I
I I
I I

1553

- -

I
I

Fig. 18. Dashed lines define celis on feature sphere; these cells consti-
tute a tesselation that is generated by dual polyhedron. Centers of cells,
called sampling, correspond to vertices of geodesic tesselations, shown
by solid lines, derived from icosahedron.

Fig. 19. Original icosahedron is flattened out to form five connected
parallelograms, each of them consisting of four triangular faces.

where atan(2) is the angular spread of an icosahedron’s
edge.

C. A Spherical Array for Representing the Tessellation

We will now present a spherical array data structure for
the computer representation of the tessellation. This array
will lead to easy and efficient implementations of the
find-neighbors function N and tessel-assignment function
L . The data structure will be constructed by noting that
the vertices of the underlying geodesic polyhedron, shown
in Fig. 17 for the case of Q = 4, are the sampling points of
the dual polyhedron whose cells are the “bins” for princi-
pal directions. As was mentioned before, in our case the
underlying geodesic polyhedron is built from an icosahe-
dron.

We note that when an icosahedron is flattened out, we
obtain five connected parallelograms, each parallelogram
consisting of four triangular faces (Fig. 19). We have
indexed four of the triangular faces in the icosahedron
shown in Fig. 17(a) and their correspondents in the flat-
tened out version shown in Fig. 19 to help the reader
visualize the process of flattening out.

i=3

Jo
i=4

0

i=5

0

Fig. 20. Flattened-out spherical array representation using indices i, j ,
and k .

The flat representation of a frequency Q geodesic poly-
hedron may now be constructed by subdividing each
parallelogram of Fig. 19 into 4X Q2 triangular cells. The
vertices thus obtained, as shown in Fig. 20 for the case of
Q = 4, correspond to the vertices of the geodesic polyhe-
dron. In other words, the vertices shown in Fig. 17b
correspond to the vertices obtained in the flat representa-
tion if we were to divide all the parallelograms in a manner
similar to what was used for the leftmost parallelogram in
Fig. 20. Therefore, the sampling points shown in Fig. 20
correspond to the centers of the cells used for discretizing
the space of principal directions. The flattened-out repre-
sentation, of which Fig. 20 is an example, will be referred
to as the spherical array.

Each parallelogram in a spherical array consists of (Q +
1) X.(2Q + 1) vertices. Obviously, the vertices in each paral-
lelogram separately could be represented by a two dimen-
sional array; however, note that the vertices on the borders
of the parallelograms are shared, meaning, for example,
that the vertices a and a’ on the edges A and A’, respec-
tively, are really the same vertex on the geodesic polyhe-
dron. In other words, before the icosahedron is unfolded
to form the spherical array, edge A is connected to edge
A’, edge B to edge B’, edge E to edge E’, and so on (Fig.
19).

The fact that each border vertex should appear only
once in an overall indexing scheme for the vertices in a
spherical array implies that the size of the index array for
representing each parallelogram need only be Q X 2Q. For
example, for the case shown in Fig. 20, each parallelogram
need only be represented by a 4 X 8 array. The assignment
of array indices for the parallelograms is depicted in Fig.
20 for the Q = 4 case. The index i specifies a parallelogram
and the indices j and k specify a vertex within the
parallelogram. Clearly, we have five Q X2Q arrays, for a
total of 10 X Q2 indexed points on the spherical array, this
number being two less than the total 1OX Q2 +2 vertices
on the geodesic polyhedron. The two missing vertices
correspond to the two common vertices of the five parallel-
ograms, one at the top and the other at the bottom. We
shall allocate two additional distinguished sets of indices
to represent these two vertices and refer to them as the

1554 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6, NOVEMBER/DECEMBER 1989

zenith and the nadir (see Section V-C-2) for explanation)
of the tessellated sphere.

i , j and k: and

five neighbors for the zenith and the nadir are

The proposed indexing implies the following ranges for [i , l , l] i = 1 ; - - , 5

[i , j , k] l d i d 5 , l < j < Q , 1 < k < 2 Q .

The zenith and the nadir are assigned the distinguished
[i , Q , 2 Q] i = l ; . , 5

indices [0, 0, 01 and [- 1,0,0], respectively.
1) The Find-Neighbors Function: As pointed out before,

the simplicity of the proposed data structure lies in its

respectively.

finding scheme. The examples are for the case of Q = 4.
The following two examples will illustrate the neighbor

Example 1:
Find the neighbors of tessel [l, 3,1]

preserving the physical adjacencies between the tessels. We
will now show that simple relationships exist that yield a
tessel's neighbors, regardless of the location of the tessel,
and, more important, regardless of whether the tessel pos-
sesses six or five neighbors. Most tessels possess six neigh-
bors, except for the twelve that correspond to the twelve
vertices of the original icosahedron, each of latter type
possessing five neighbors only. In general, the six neigh-
bors of a tessel [i, j , k] that is not on the border of any of
the five parallelograms are given by:

Therefore, for the set of indices in (7) to give us the
neighbors, the indices j and k must obey the constraints
1 < j < Q and 1 < k < 2Q. If also used to find the neigh-
bors of a border tessel, some of the above indices would
take out-of-range values, implying that those neighboring
tessels are vertices shared by another parallelogram and

Example 2:
Find the neighbors of tessel [2,4,5]

is worth noting kat [2,4,5] happens to Ne a vertex of the
should really be assigned to the array for that parallelo-
gram. To convert the out-of-range labels to the legitimate
ones, we apply the following substitution rules:

original icosahedron and has only five neighboring tessels,
exactly what the rules returned.

2) Directions of Sampling Points: In order to specify the

[i , j , 0 1 - [i - - l m 5 , 1 , j]

[i , Q +1, k] - [i -lm5, k - Q,2Q]

j = 1 , . . . , Q
, Q

k = Q +1; - , 2 Q
[i , Q + l , k] * [i - l m 5 , 1 , Q + k] k = 0,. . .

[i , O , k] - [i +lm5, k -1,1] k = 2 , . .
[i , O , k] 3 [i + l m 5 , Q , k - Q]

[i , j , 2 Q +1] - [i +lm5, Q, j + Q +1]
[i,O,1] - [O,O,ol
[i , Q , 2 Q + l] * [-1,O,O]

k = Q + 1 ; . * , 2 Q +1

j = 1 ; * * , Q - 1

for i = 1 , . . . , 5 , where im5 = (i - 1) mod (5) + 1.
Except for the zenith and the nadir tessels, it can be

verified that (7) and (8) are also applicable to ten of the
twelve five-neighbor tessels. At a five-neighbor tessel, two
of the six labels returned by (7) will turn out to be
identical after applying the substitution rules in (8). The

tessel-assignment function, we will need formulas for the
directions of the tessels, meaning the directions associated
with each of the vertices on the spherical array. For that
purpose, we will take advantage of the symmetry of the
icosahedron and use a sphere-centered coordinate system
whose positive z axis passes the zenith at ([O,O,O]) and

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS

Fig. 21. Spherical coordinate system defined for original icosahedron.

whose z-x plane passes the icosahedral vertex [l , Q , 11, as
shown in Fig. 21. The direction of each tessel, denoted by
@ [i , j , k] , in this coordinate system will be expressed in
terms of the longitude and latitude angles (+, e). Because
of the symmetry of the icosahedron, we have

8 [i , j , k] = O [i - l , j , k]

for i = 2 , . - . , 5 , j = l ; . . , Q , k = 1 , - - . , 2 Q . Therefore
we only need to compute the direction of the tessels in the
first parallelogram (array).

It is easy to see that the direction of the five vertices of
the first parallelogram are:

@[1,0 ,1] '= (0, -)

@ [I , Q , 1] = (atan(2),0)

@ [l , O , Q + l] ' = (atan(2), :)

@ [l , Q , 2 Q + l] ' = (r,-).

Recall that in the derivation of the geodesic polyhedron,
we subdivided each edge of the triangles of the inscribed
icosahedron into Q sections of equal radial angle. When
Q = 2', the result is equivalent to recursively subdividing r
times a triangle into four triangles. Therefore, we can
compute the direction of a new tessel by taking the aver-

'Note that these labels are not legitimate in the spherical array data
structure; we use them just to make the derivations clearer. The legitimate
versions of these labels can be obtained by using the substitution formu-
las in (8).

1555

ages of the known directions of the two tessels that are the
end-points of the edge whose division led to the formation
of the new tessel. This procedure can be applied recur-
sively to compute the direction of every tessel. As an
example, the three tessels that are the midpoints of the
three edges of the upper triangle have directions:

@ 1 , - , l = m i d (@ [l , O , l] , @ [l , Q , l] > [: I
@ [1 , - E - + 1 1 =mid(@[l ,O,Q+l] ,@[l ,Q, l])

@ 1 , 0 , - + 1 =mid(@[l,O,Q+l],@[l,O,l]). [: I
Here mid(@,, means the average of the two directions
9, and on the unit sphere. To save runtime computa-
tion, we may precompute the directions for all the tessels
and store them in a lookup table.

3) The Tessel-Assignment Function: Given a particular
direction @, its corresponding tessel in the spherical array
should be the one whose direction is closest to @. In other
words, for a given @, we want that index triplet L that
satisfies

max (@ . @ [L]) .
L

The finding of the tessel L would thus involve a search for
the maximal dot product. Because the dot product is a
monotonically increasing function toward the desired tes-
sel, a local maximum must also be the global maximum.
The local maximum can be found by an iterative climbing
method from any tessel guessed initially. Since a good
initial guess can reduce considerably the computations
required to reach the maximum, we have provided in the
Appendix a linear approximation that translates a given @
into a triple (i , j , k) . This approximation has proved to be
fairly good, and the resulting indices are quite close to
their actual values. Starting with these indices, one can
then find the actual ones by conducting local search, as
depicted by the following algorithm.

assign-tessel(@){
Lo = get-initial-guess(@)
L = get-closer(Lo, @)
return L}

among 511 L' in N (L)

if (@(I,).@* > @(L) .@)

else return L}

get-closer(L, @){

find ,L that maximizes (@ (L') @)

get-closerii,

4) Building Feature Spheres on the Spherical Array: Note
that a feature is described by a list of attribute-value pairs;
this list is referred to as a feature frame, an example of
which was shown in Section 111-A. Each such frame struc-
ture is identified by a pointer that is stored at the corre-
sponding tessel in the spherical array. The tessel address,
as represented by the indices i, j , and k, is computed by

1556 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6 , NOVEMBER/DECEMBER 1989

applying the tessel-assignment-function to the principal
direction of the feature. It may happen that two or more
neighboring features, neighboring in the sense of their
possessing nearly identical principal directions, may have
their pointers assigned to the same tessel. This conflict can
be resolved by recording in the first registered feature a list
of pointers for the features that share the same tessel
address.

VI. RECOGNITION OF OBJECTS IN THE PRESENCE
OF OCCLUSIONS

The discussion presented so far could be used directly
for the recognition of single isolated objects. However, our
main interest in 3D-POLY lies in recognizing objects un-
der occluded conditions, as would be the case when objects
are presented to the sensory system in the form of heaps.

In general, when the range images to be interpreted are
of scenes containing piles of overlapping objects, one has
to contend with the following two problems: 1) The num-
ber of features extracted from a scene will usually be very
large; and, 2) since different objects may be made of
similar features, it would generally not be possible to set
up simple associations between the scene features and the
objects. To get around these problems in dealing with
multiple object scenes, researchers previously have either
performed object segmentation by exploiting range discon-
tinuity information [15], or have used a model driven (to be
contrasted with the data driven procedure to be described
in this section) approach to group together scene features
belonging to single objects [6], [16]. However, the former
approach usually fails to work especially when the juxta-
positions of multiple objects are such that there are no
range discontinuities between them; and the latter is ineffi-
cient for reasons described in Section 11.

We will now present a data-driven approach for aggre-
gating from a complex scene those features that belong to
single objects. The cornerstone of our approach is the idea
that only physically adjacent scene features need be in-
voked for matching with a candidate model object. For
this purpose, the notion of physical adjacency will be
applied in the image space as opposed to the object space,
implying, for example, that two surface regions sharing a
common boundary, even if it is a jump boundary, will be
considered adjacent to each other. Using this idea, we will
now describe the complete method:

The algorithm uses two sets, UMSFS and MSFS, the
former standing for the unmatched scene feature set and
the latter for matched scene feature set. Initially, the
algorithm assigns all the scene features to the set UMSFS.
The process of object recognition starts with a local feature
set (LFS) extracted from the UMSFS. The matching of
this scene LFS with a model LFS generates a hypothesis
about object identity and a pose transformation. The fea-
tures in the scene LFS are then taken off from the UMSFS
and assigned to MSFS; note that MSFS keeps a record of
all the scene features matched so far with the current
candidate model. Then during the verification stage, only

those scene features in the UMSFS that are adjacent to the
features in MSFS are selected for matching with the candi-
date model. During the verification state, if a UMSFS
feature does match the candidate model feature, the scene
feature is taken out of the UMSFS and added to the
MSFS; otherwise the feature is marked as tested under the
current hypothesis and left in the UMSFS.

The verification stage terminates when MSFS stop grow-
ing. Once the verification process terminates, the algorithm
determines whether or not the features in the MFS consti-
tute enough evidence to support the hypothesis on the
basis of some predefined criterion. This criterion may be
as simple as requiring a percentage, say, 30 percent, of
model features to be seen in the MSFS; or, as complicated
as requiring a particular set of model features to appear in
the MSFS; or, at a still more complex level, some combi-
nation of the two. If a hypothesis is considered verified,
the features currently in MSFS are labeled by the name of
the model and taken out of further consideration; other-
wise, the hypothesis is rejected and every feature in the
MSFS is put back into the UMSFS and the process
continued with a new LFS. The entire process terminates
after all the LFS's have been examined. The algorithm is
presented as follows in pseudo C language:

Interprete-scene (I) {
extract feature set { S } from I
UMSFS = { S }
while (there exists a local feature set LFS, in

UMSFS)
for each LFS, in the model library

if (LFS, matches LFS,){
estimate Tr by matching LFS, with
LFS,
candidate model OM is the model
corresponding to LFS,
MSFS = LFS,
mark every MJ in LFS matched
Verify (OM, MSFS, UMSFS, T r) } }

Verify (OM, MSFS, UMSFS, Tr){
tag for each untested S, in UMSFS adjacent to MSFS{

compute principal direction of Tr-'(SZ)
for each unmatched MJ registered in the neigh-
borhood of L(@) on the feature sphere of 0,

if (Tr-'(S,) matches MJ){
add S, to MSFS
mark MJ matched
go to tag}

mark S, tested
else

if (MSFS satisfies the recognition criterion){
UMSFS = UMSFS - MSFS
label every S in MSFS by the name OM
write-result (OM, Tr)
unmark every MJ
return (true)}

else {unmark every MJ

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1557

Fig. 22. Structured light image of scene #1 (pile 5).

In our current implementation of this algorithm, the
recognition criterion requires that at least 33 percent of a
candidate model’s features be present in the MSFS for a
hypothesis to be considered valid. Note that the accep-
tance threshold can be no greater than 50 percent for most
objects, especially those that have features distributed all
around, since from a single viewpoint only half of an
object will be seen. Therefore, 50 percent is a loose upper
limit on the acceptance threshold. On the lower side, the
threshold can not be set to be too low, since that would
cause misrecognition of objects. We have found 33 percent
to be a good compromise.

VII. EXPERIMENTAL RESULTS

This section presents experimental results obtained with
our matching strategy; the results will also demonstrate in
action the algorithm for recognizing objects in heaps.
Although we have done experiments on a large number of
scenes with 3D-POLY, only two such experiments will be
presented to discuss the behavior of the algorithms.

A . The Models

The model library used consisted of two object models
shown in Fig. 2. The object in Fig. 2(a) is given the name
“square” and the one in 2(b) “round.” The model knowl-
edge was obtained by a “learning system” consisting of a
special scanner in which the object is automatically rotated
while illuminated by a number of translating laser beams.
The data thus generated from many viewpoints is inte-
grated and directly transformed into a feature sphere rep-
resentation. Further details on the methods used for view-
point integration and the transformations involved are
presented in [12]. For the two experiments discussed here,
model data was generated by integrating six views for

“square” and five for “round.” For “square” object this
resulted in a feature representation consisting of 14 vertex
and twelve surface features. The model representation
derived for “round” object consisted of twelve vertices and
ten surfaces.

Two feature spheres were derived for each model, one
for surface features and the other for vertex features. The
frequency of geodesic division, Q, of the spherical array
discussed in Section V-C was chosen to be 16; this gave a
resolution of about 4” per tessel in the spherical array
representation. The vertex and surface features were used
for the generation of hypotheses, while only the surface
features were used for verification.

As described in Section IV-C, each object model must
be associated with a list of LFS’s for the purpose of
hypothesis generation, an LFS being a set of surface
features meeting at a vertex. In this prototype system, we
have chosen to organize LFS’s around convex vertices
only, that is those whose edges are all convex. For “square”
object, there are 12 LFS’s that correspond to the twelve
convex vertices, and for “round” object there are only four
LFS’s corresponding to the convex vertices.

B. The Data

For the results that will be shown here, we had 10
overlapping objects, five of each type, in each of the two
scenes. The objects were placed in a tray and, before data
collection, the tray shaken vigorously to randomize the
object placements. A typical scene was as was shown
earlier in Fig. 1. Range images of the two scenes, shown in
Figs. 22 and 23, were acquired by using a structured-light
range sensing unit that is held by a PUMA robot for
dynamic scanning; these images will be referred to as
stripe images. Each stripe image consists of 150 stripes,
with the inter-stripe spacing being 0.1”; this spacing is the

1558 IEEE TRANSACTTONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6, NOVEMBER/DECEMBER 1989

Fig. 23. Structured light image of scene # 2 (pile 4).

\ ._ -

Fig. 24. Result on feature extraction from stripe image of scene #2.

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1559

distance the robot end-effector travels between successive
projections.

Range maps for the scenes are obtained by converting
each stripe point, which exists in image coordinates, into
world coordinates using a calibration matrix by the method
discussed in [13]. Features are extracted from the range
maps by a battery of low level procedures developed
specifically for this research project. These procedures
carry out surface normal computations, segmentations of
surfaces of different types, surface classifications, etc., and
are discussed in greater detail in [12]. The output of
preprocessing for the range map corresponding to the
stripe image of Fig. 22 is shown in Fig. 5 in the form of a
needle diagram and segmented surfaces. Fig. 24 shows the
results for the stripe image of Fig. 23. Figs. 5 and 24 also
display the labels given to the different surfaces.

C. Hypothesis Generation

For the purpose of hypothesis generation, each detected
vertex in a scene is given a rank depending upon the
number of surfaces meeting at the vertex and the convex-
ity/concavity of the edges convergent at the vertex. The
rank is greater, the larger the number of surfaces meeting
at a vertex. Also, since we only use convex vertices for
constructing the LFS’s of a model, if a concave edge is
found to be incident at a vertex, the rank of the vertex is
made negative.

To generate hypotheses, the system first chooses the
highest positively ranked vertex and then constructs an
LFS by collecting all the surfaces meeting at the vertex.
The scene LFS thus generated is matched with the LFS’s
of all the models, one by one. This matching between a
scene LFS and a model LFS is camed out by a special
procedure that tests the compatibility of the shape and
relation attributes of the corresponding features in the two
LSF‘s. Note that the maximal number of surfaces in an
LFS for the objects in the experiments reported here is 3,
thus there are three possible ways of establishing the
correspondences between a scene LFS and a model LFS;
all the three possibilities must be tested, each accepted
possibility will lead to a different pose hypothesis.

For a given match between a scene LFS and a model
LFS, the viewpoint independent position/orientation at-
tributes of the features in the two LFS’s are used for
generating a candidate pose Tr for the scene object; fur-
ther details on how exactly t h s is done can be found in
[12]. For a candidate pose to translate into a pose hypothe-
sis, the system checks the fitting error computed from the
estimation of Tr; the error must be less than a predefined
threshold.

In the preprocessed output shown in Fig. 5, there are 68
vertices, but only 36 of them are of convex type; in the
output shown in Fig. 24 there are 22 convex vertices out of
a total of 49 vertices. So, supposedly, in the worst case one
would have to check 36 LFS’s in the former case, and 22 in
the latter. Since there are a total of 16 LFS’s in the model
library, 12 for “square” and 4 for “round”, in the worst

case one would have to carry out 16 X 36 x 3 = 1728 LFS
matches for the scene of Fig. 5, where the number 3 takes
care of the aforementioned different ways of establishing
correspondences between a model LFS and a scene LFS.
Similarly, in the worst case situation, there may be 16 X 22
X 3 = 1056 LFS matchings to be tested for the scene of
Fig. 24. In practice, however, the number of LFS matches
actually carried out is far fewer on account of the follow-
ing reason: An object hypothesis can be generated by any
one of many LFS’s, and when a hypothesis thus generated
is verified, the system does not need to invoke any of the
other LFS’s for that object.

To give the reader an idea of the number of hypotheses
generated, the system generated 156 hypotheses for the
scene of Fig. 5, and 75 for the scene of Fig. 24.

D. Verification

Given the pose transformation Tr associated with a
hypothesis, verification is carried out by computing the
feature sphere tessel indices of those scene features that are
“physically adjacent” to the LFS features, the notion of
physical adjacency being as explained before, and match-
ing each such scene feature with a model feature assigned
to that tessel, assuming such a model feature can be found.
[If more than one model feature is assigned to a tessel, the
scene feature must be matched with all of them.] Of
course, since measurement noise and other artifacts will
always be present to distort the attribute values of a scene
feature, the scene feature must be matched with all the
model features belonging to tessels within a certain neigh-
borhood of the tessel computed from the scene feature
principal direction. The size of the neighborhood reflects
the uncertainty in the feature measurements. For most of
our experiments, we use all the model features within two
tessels of the tessel assigned to a scene feature, correspond-
ing approximately to a directional uncertainty of 8.0”.

To illustrate the behavior of the algorithm, Table I11
shows the hypothesis generation and verification proce-
dure in action. Each line entry, printed out upon the
formation of a hypothesis, identifies the LFS used by the
vertex chosen, and shows the surface correspondences es-
tablished when the scene LFS was matched with a model
LFS. For example, for the first hypothesis, marked hyp#Z
in the table, the LFS matching established correspon-
dences between scene surface 7 and model surface 2; and
between scene surface 5 and model surface 1. (See Fig. 13
for a labeling of the surfaces of the model object “square.”)
The number 2 at the end of the line in the table indicates
that the first hypothesis was failed during the verification
stage after failures along two different paths in the search
space, each path involving only one feature test that failed,
each failure caused by a mismatch of a scene feature that
was physically adjacent to one of the hypothesis generating
LFS features, and the model feature located within the
uncertainty range of the tessel corresponding to the scene
feature. This is not to imply a fan-out of only 2 at the end
of the hypothesis generating segment for hyp# 1; only that

1560 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6, NOVEMBER/DECEMBER 1989

TABLE 111
OUTPUT LISTING OF THE INTERPRETATION OF SCENE #2

Verify hyp #1 Model: square Vert: 12 Reg: (7 + 2)(5 + 1). . . failed-2
Verify hyp #2 Model: square Vert: 12 Reg: (7 + 1)(5 + 2). . . failed-2
Verify hyp # 3 Model: square Vert 12 Reg: (7 + 10)(5 + 4). . . failed-2
Verify hyp #4 Model: square Vert 12 Reg: (7 + 4)(5 + 8). . . failed-1
Verify hyp #5 Model: square Vert: 12 Reg: (7 + 10)(5 + 12). . . failed-1
Verify hyp #6 Model: square Vert: 12 Reg (7 + 4)(5 + 10). . . failed-1
Verify hyp #7 Model: square Vert: 12 Reg (7 + 12)(5 + 9). . . failed-1
Verify hyp # 8 Model: square Vert: 12 Reg (7 + 9)(5 + 10). . . failed-1
Verify hyp #9 Model: square Vert: 12 Reg: (7 + 9)(5 + 12). . . failed-1
Verify hyp # 10 Model: square Vert: 12 Reg: (7 -+ 12)(5 + 10). . . failed-1
Verify hyp # 11 Model: square Vert: 12 Reg: (7 -+ 10)(5 + 9). . . failed-1
Verify hyp # 12 Model: round Vert: 18 Reg: (17 + 9)(11+ 7). . . failed-0
Verify hyp #13 Model: round Vert: 18 Reg: (17 + 9)(11+ 1). . . failed-0
Verify hyp # 14 Model: round Vert: 18 Reg: (17 -+ 7)(11+ 9). . . failed-0
Verify hyp # 15 Model: round Vert: 18 Reg: (17 + 1)(11+ 6). . . failed-0
Verify hyp #16 Model: round Vert: 18 Reg: (17 + 6)(11+ 7). . . failed-0
Verify hyp #17 Model: round Vert: 18 Reg: (17 + 7)(11+ 6). . . failed-0
Verify hyp #18 Model: square Vert: 18 Reg: (17+ 2)(11+1) ... failed-0
Verify hyp #19 Model: square Vert: 18 Reg: (17 + 1)(11+ 10)

scene region 18 matched to model region 4. . . failed - 2
Verify hyp #20 Model: square Vert: 18 Reg: (17 + 10)(11+ 2). . . failed-0
Verify hyp #21 Model: square Vert: 18 Reg: (17 + 8)(11+ 1). . . failed-0
Verify hyp #22 Model: square Vert: 18 Reg: (17 + 1)(11+ 2). . . failed-0
Verify hyp #23 Model: square Vert: 18 Reg: (17- 2)(11+ 8)

scene region 18 matched to model region 4
scene region 21 matched to model region 5. . . SUCCEED!!!-2

Verify hyp #24 Model: square Vert: 26 Reg: (19 + 4)(13 + 3). . . failed-0
Verify hyp #25 Model: square Vert: 26 Reg: (19 + 3)(13 -+ 4). . . failed-0
Verify hyp #26 Model: square Vert: 26 Reg: (19 + 7)(13 + 4). . . failed-0
Verify hyp #27 Model: square Vert: 27 Reg: (13 + 4)(19 + 3). . . failed-0
Verify hyp #28 Model: square Vert: 27 Reg: (13 + 3)(19 + 4). . . failed-0
Verify hyp #29 Model: square Vert: 27 Reg: (13 + 7)(19 + 4). . . failed-0
Verify hyp #30 Model: round Vert: 36 Reg: (24 + 7)(20 + 10). . . failed-0
Verify hyp #31 Model: round Vert 36 Reg: (24 + 10)(20 + 9). . . failed-:!
Verify hyp # 32 Model: round Vert 36 Reg: (24 + 9)(20 + 7). . . failed-0
Verify hyp #33 Model: round Vert 36 Reg: (24 + 9)(20 + 1). . . failed-0
Verify hyp #34 Model: round Vert: 36 Reg: (24 -+ 1)(20 + 7). . . failed-2
Verify hyp #35 Model: round Vert: 36 Reg: (24 + 7)(20 -+ 9). . . failed-0
Verify hyp # 36 Model: round Vert: 36 Reg: (24 + 7)(20 + 1). . . failed-0
Verify hyp #37 Model: round Vert: 36 Reg: (24 + 1)(20 -+ 6). . . failed-2
Verify hyp #38 Model: round Vert: 36 Reg: (24 + 6)(20 + 7). . . failed-0
Verify hyp #39 Model: round Vert: 36 Reg: (24 + 6)(20 + 10). . . failed-0
Verify hyp #40 Model: round Vert: 36 Reg: (24 -+ 10)(20 + 7)

scene region 28 matched to model region 4.. . failed-3
Verify hyp #41 Model: round Vert: 36 Reg: (24 + 7)(20 + 6) . failed-0
Verify hyp #42 Model: square Vert: 36 Reg: (24 + 2)(20 + 1). . . failed-0
Verify hyp #43 Model: square Vert: 36 Reg: (24 + 1)(20 + 10). . . failed-0
Verify hyp #44 Model: square Vert: 36 Reg: (24 + 10)(20 + 2). . . failed-0
Verify hyp #45 Model: square Vert: 36 Reg (24 + 8)(20 -+ 1). . . failed-0
Verify hyp #46 Model: square Vert: 36 Reg (24 + 1)(20 + 2). . . failed-0
Verify hyp #47 Model: square Vert: 36 Reg (24 + 2)(20 + 8). . . failed-0
Verify hyp #48 Model: square Vert: 36 Reg: (24 + 3)(20 + 10). . . failed-0
Verify hyp #49 Model: square Vert: 36 Reg: (24 + 10)(20 + 4). . . failed-0
Verify hyp #50 Model: square Vert: 36 Reg: (24 + 4)(20 + 8). . . failed-0
Verify hyp #51 Model: square Vert: 36 Reg: (24 -+ 8)(20 + 3). . . failed-0
Verify hyp # 52 Model: square Vert: 36 Reg: (24 + 12)(20 + 7). . . failed-0
Verify hyp #53 Model: square Vert: 36 Reg: (24 + 7)(20 + 10). . . failed-0
Verify hyp #54 Model: square Vert: 36 Reg: (24 + 10)(20 + 12). . . failed-0
Verify hyp # 55 Model: square Vert: 36 Reg: (24 + 4)(20 + 10). . . failed-0
Verify hyp #56 Model: square Vert: 36 Reg: (24 -+ 10)(20 + 7). . . failed-0
Verify hyp # 57 Model: square Vert: 36 Reg: (24 + 9)(20 + 1). . . failed-0
Verify hyp #58 Model: square Vert: 36 Reg: (24 + 1)(20 + 8). . . failed-0
Verify hyp #59 Model: square Vert: 36 Reg: (24 + 8)(20 + 9). . . failed-0
Verify hyp #60 Model: square Vert: 36 Reg: (24 + 12x20 + 9). . . failed-0
Verify hyp #61 Model: square Vert: 36 Reg: (24 + 9)(20 + 8). . . failed-0
Verify hyp #62 Model: square Vert: 36 Reg: (24 + 8)(20 + 12). . . failed-0
Verify hyp #63 Model: square Vert: 36 Reg: (24 + 10)(20 + 1). . . failed-0
Verify hyp #64 Model: square Vert: 36 Reg: (24 + 1)(20 -9). . . failed-0
Verify hyp #65 Model: square Vert: 36 Reg: (24 + 9)(20 + 10). . . failed-0
Verify hyp #66 Model: square Vert: 36 Reg: (24 + 9)(20 + 12). . . failed-0
Verify hyp #67 Model: square Vert: 36 Reg: (24 -+ 12)(20 + 10). . . failed-0
Verify hyp #68 Model: square Vert: 36 Reg: (24 + 10)(20 + 9). . . failed-0
Verify hyp #69 Model: round Vert: 37 Reg: (20 + 7)(24 + 10). . . failed-2
Verify hyp #70 Model: round Vert: 37 Reg: (20 + 10)(24 + 9). . . failed-0

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1561

TABLE I11 (CONTINUED)

Verify hyp #71 Model: round Vert: 37 Reg: (20 + 9)(24 -+ 7). . . failed-0
Verify hyp # 72 Model: round Vert: 37 Reg: (20 -+ 9)(24 -+ 1). . . failed-2
Verify hyp #73 Model: round Vert: 37 Reg: (20 + 1)(24 + 7). . . failed-0
Verify hyp #74 Model: round Vert: 37 Reg: (20 -+ 7)(24 --f 9). . . failed-0
Verify hyp #75 Model: round Vert: 37 Reg: (20 + 7)(24 -+ 1)

scene region 28 matched to model region 4
scene region 31 matched to model region 2
scene region 25 matched to model region 8.. . SUCCEED!!!-6

Total number of feature matchng tests for verification: 37
Process completed
Recognized-objects:

square
round

for the other branches the scene features, again physically
adjacent to one of the LFS features, had no corresponding
model features on the feature sphere. This is also the
reason for 0 at the end of many of the line entries in the
table.

As mentioned in Section VI, the acceptance of a hypoth-
esis is predicated upon our finding at least 33 percent of
the model features from amongst those that are adjacent to
the features in an LFS. As shown in the table, from among
the 75 generated hypotheses only the hypotheses #23 and
75 are verified and lead to the recognition of an instance
of “square” in the first case, and to that of “round” in the
other. During the verification of hypothesis #23, scene
surface 16 fails to match model surface 3 of the square
model, although scene regions 18 and 21 do match model
regions 4 and 5, respectively. As is evident from the stripe
image of Fig. 23, the difficulties with scene surface 16 are
due to problems with the robust detection of stripes over
that surface; these problems are probably caused by the
rather very acute angle between the stripe projection direc-
tion and the surface. It is entirely possible that the surface
labeled 16 in the scene is made of reflections of the stripes
seen in adjoining surfaces. In other words, surface 16 is
most likely a spurious surface and not matchable with its
potential candidate model surface 3. During the verifica-
tion of hypothesis 75, scene region 23 is not matched to
any model region. This is because only a small portion
(less than 25 percent) of the cylindrical surface is visible in
the scene, and the computed radius is off too much from
its correct value to match to the candidate model region 5.

Note from Table I11 that most of the 75 hypotheses are
rejected immediately during verification, without the com-
putational burden of any feature matching. For each line
entry in the table that ends in a 0, no features had to be
matched during the verification stage; the hypothesis failed
simply because no model features could be found in the
vicinity of the tessels for the scene features used during
verifications. In fact, as depicted at the end of the table,
for the scene of Fig. 24, only 37 feature matching tests had
to be carried out during the entire verification process. So,
on the average, the system had to match only 0.49 features
during each hypothesis verification. The largest number of
features invoked for matching during any verification was

6, of these only three proved successful, as shown in Table
I11 for hypothesis #75, confirming our O (n) measure for
the time complexity of verification.

This prototype system is programmed in C language
and runs on a Sun-3 workstation. The CPU time for
interpreting a processed range image was 9 sec. for the
scene of Fig. 5 and 4 sec. for the scene of Fig. 24. The
CPU time is approximately proportional to the number of
generated hypotheses, which in turn depends on the com-
plexity of the scene.

VIII. CONCLUSION

In this paper, we have presented feature matching and
recognition strategies in 3D-POLY. For recognition, the
system used an approach based on hypothesis generation
and verification. The strategies used in the system lead to a
polynomial time algorithm for the interpretation of range
images.

The polynomial bound on the time complexity was
made possible by two key ideas, one for hypothesis genera-
tion and the other for verification. The key idea in the
former was the use of special feature sets, the spatial
relationships between the features in these sets being such
that the number of possible ways in which the scene
features could be matched to those in the sets was substan-
tially curtailed. The key idea in the verification stage was
the association of a principal direction with a feature and,
after the establishment of a pose transform, comparing a
scene feature with a model feature only if the two agreed
on the basis of their principal directions. This sharply
reduced the number of scene and model features that had
to be actually matched, leading to great savings in the
computations involved.

To embed the notion of feature principal-direction in a
computationally efficient framework, we represented model
features on a feature sphere. We advanced a data structure
for feature spheres and presented efficient algorithms for
finding neighborhoods on the sphere and for assigning a
tessel on the sphere to a measured principal direction.

We showed how our object recognition framework
should be applied to scenes consisting of multiple objects
in a heap. Finally, we discussed experimental results vali-
dating our complexity measures.

1562 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 19, NO. 6, NOVEMBER/DECEMBER 1989

APPENDIX
INITIAL GUESS FOR TESSEL ASSIGNMENT

Given a principal direction @, in this appendix we show
how its corresponding tessel indices (i, j , k) can be com-
puted from a linear approximation. Note that the indices
thus computed are only supposed to place us in the vicin-
ity of the true tessel. As explained in Section VI-C-3, the
approximately located tessel is used as a starting point for
getting the exact tessel corresponding to a.

We will present our approximation for the first of the
parallelograms shown in Fig. 20, the approximations for
the other parallelograms are identical in their j and k
dependences by virtue of symmetry; the dependence on i
is different and will be shown below.

The approximation for the first parallelogram in Fig. 20
actually consists of three separate approximations, one for
each of the three zones that we will now identify. The first
zone consists of the triangle marked 1 in Fig. 19, the
second zone of the triangles marked 2 and 3, and the last
zone of the triangle marked 4.

According to (9) in Section VII, the index i is indepen-
dent of indices j and k in the computation of 8 and + for
a given triplet (i , j , k) . For a given (e, +), we can therefore
separate the determination of index i from that of j and
k . The procedure that follows consists of three steps:

First determine the identity of the zone to which the
direction belongs.
Next, determine the index i corresponding to the
parallelogram in which the direction (8 , +) lies.
Estimate the indices j and k.

1)

2)

3)

For the first two steps, the following formulas are used:
(Let K = (2n/5), r = atan(2) and assume 0 Q 8 d n and
0 < + Q 277.)

if (0 Q 8 < r) /*a E zone 1*/

else if (r Q 8 <IT - r) /*@ E zone 2*/

else /*@ E zone 3*/

For step 3, we will allow j and k to take non-integer
values in the following formulas. During computations, the
non-integer values are truncated to yield the integer values.
First, let

If @ E zone 1,
+’= + - (i - 1) X2K.

(e x Q / d +1 k = + ’ x
K

j = 8 x Q / r - k +1.

If @ E zone 2. assume

8 = aj+ bk + c

+ ’ = d j + e k + f.

Solving for a, b, c
have

e =

d , e , f at the four comers of zone 2, we

n -27
j + k - 1) - + 3 r - n

Q
K K

+ ‘ = (k - j - 1) - + - .
2Q 2

Then j and k can be obtained by

k = j + l + Q x (T - l)]

And for zone 3, we use formulas similar to those for zone
1, except that j and k are swapped, and angles 8 and +
are appropriately offset.

ACKNOWLEDGMENT

The authors would like to thank Matt Carroll and
Jeffery Lewis, both research engineers in the Robot Vision
Lab at Purdue University. Without their support, many
experimental and software development aspects of the
research reported here would not have been possible.
Thanks are also owed to Whoi-Yul Kim for many valuable
discussions on many aspects of range data processing and
to Seth Hutchinson for his valuable contributions to our
knowledge of robot manipulation.

REFERENCES

[l] K. S. Arun, T. S . Huang, and S. D. Blostein, “Least-squares fitting
of two 3-D point sets,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 9, no. 5, pp. 698-700, 1987.

[2] P. J. Besl and R. C. Jain, “Invariant surface characteristics for 3D
object,” Computer Vision, Graphics, and Image Processing, 33, pp.

-, “Three-dimensional object recognition,” Computing Survey,
vol. 17, no. 1, pp. 75-145, Mar. 1985.
B. Bhanu, “Representation and shape matching of 3-D objects,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 6, no. 3, pp.

R. C. Bolles and R. A. Cain, “Recognizing and locating partially
visible objects: the local-feature-focus method,” In?. J . Robotics
Res., vol. 1, no. 3, pp. 57-82, 1982.
R. C. Bolles and P. Horaud, “3DPO: a three-dimensional part
orientation system,” Int. J . Robotics Res., vol. 5 , no. 3, pp. 3-26,
Fall 1986.

[7] K. L. Boyer and A. C. Kak, “Structural stereopsis for 3-D Vision,”
IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-10, no. 2,
pp. 144-166, Mar. 1988.

[8] B. A. Boyter, “Three-dimensional matching using range data,” in
Proc. 1st Conf. Artificial Intell. Appl., Dec. 1984, pp. 221-216.

[9] R. A. Brooks, “Model-based three-dimensional interpretations of
two-dimensional images,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 5 , no. 2, pp. 140-149, 1983.

33-80, 1986.
[3]

[4]

340-350, 1984.
[5]

[6]

CHEN AND KAK: ROBOT VISION SYSTEM FOR RECOGNIZING 3-D OBJECTS 1563

C. M. Brown, “Fast display of well-tessellated surfaces,” Computer
& Graphics, vol. 4, pp. 77-85, 1979.
I. Chakravarty and H. Freeman, “Characteristic views as a basis
for three-dimensional object recognition,” in Proc. SPIE Conf.

C. H. Chen and A. C. Kak, “3D-POLY: A robot vision system for
recognizing objects in occluded environments,” Dept. Elec. Eng.,
Purdue Univ., Tech. Rep. 88-48, 1988.
-, “Modeling and calibration of a structure light scanner for
3-D robot vision,” in Proc. IEEE Intl. Conf. Robotics and Automa-
tion, pp. 807-815, Apr. 1987.
R. T. Chin and C. R. Dyer, “Model-based recognition in robot
vision,” Computing Survey, vol. 18, no. 1, pp. 68-108, Mar. 1986.
T. J. Fan, F. Medoni and R. Nevatia, “Matching 3-D objects using
surface descriptions” in Proc. IEEE Int. Conf. Robotics and Au-
tomation. pp. 1400-1406, Apr. 1988.
0. D. Faugeras and M. Hebert, “The representation, recognition,
and locating of 3-D objects,” Int. J . Robotics Res., vol. 5, no. 3, pp.

-, “A 3-D recognition and positioning algorithm using geomet-
rical matching between primitive surfaces,” in Proc. 8th Int. Joint
Conf. Artificial Intell., pp. 996-1002, 1983.
G. Fekete and L. S. Davis, “Property spheres: A new representa-
tion for 3-D object recognition,” IEEE Workshop on Computer
Vision, pp. 192-201, 1984.
C. Goad, “Special purpose automatic programming for 3D model-
based vision,” in Proc. DA RPA Image Understanding Workshop,
June 1983, pp. 94-104.
W. E. L. Grimson and T. Lozana-Perez, “Localizing overlapping
parts by searching the interpretation tree,” IEEE Trans. Pattern
Anal. Muchine Intell., vol. 9, no. 4, pp. 469-482, 1987. -. “Model-based recognition and localization from sparse range
or tactile data,” Itit. J . Robotics Res., vol. 3, no. 3, pp. 3-35, Fall
1984.
W. R. Hamilton, Elements of Quaternions. New York: Chelsea
Publishing Co., 1969.
C. Hansen and T. Henderson, “ CAGD-based Computer Vision,”
IEEE Workshop on Computer Vision, pp. 100-105, 1987.
B. K. P. Horn, “Extended Gaussian image,” Proc. I E E E , vol. 72,
no. 12, 1984, pp. 1671-1686.
K. Ikeuchi. “Generating an interpretation tree from a cad model
for 3D-object recognition in bin-picking tasks,” In?. J . Computer
Vision. vol. 1, no. 2. pp. 145-165, 1987.
-, “Determining attitude of object from needle map using
extended Gaussian image,” MIT AI Lab Memo no. 714, Apr., 1983.
A. C. Kak, A. J. Vayda, R. L. Cromwell, W. Y. Kim, and C. H.
Chen. “Knowledge-based robotics,” in Int. J. Production Res., vol.
26, no. 5, pp. 707-734. 1988.
H. Kenner, Geodesic Math and How to Use it. Berkeley, CA: Univ.
California Press, 1976.
M. R. Kom and C. R. Dyer, “3-D multiview object representations
for model-based object recognition,” Pattern Recognition, vol. 20,
no. 1, pp. 91-103, 1987.

Robot Visiotl, vol. 336, pp. 37-45, 1982.

27-52. 1986.

[30] Y. Lamdan and H. J. Wolfson, “Geometric hashing: a general and
efficient model-based recognition scheme,” in Proc. 2nd Int. Conf.
Computer Vision. pp. 238-249, Dec. 1988.

[31] R. Nevatia and T. 0. Binford, “Description and recognition of
curved objects,” Artificial Intelligence, vol. 8, no. 1, pp. 77-98,
1977.
M. Oshima and Y. Shirai, “Object recognition using three-dimen-
sional information,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 5 , no. 4, pp. 353-361, 1983.

[33] A. Pugh, Polyhedra: A Visual Approach. Berkeley, CA: Univ.
California Press, 1976.

[34] A. A. Requicha, “Representations for rigid solids: theory, methods,
and systems,” Computing Surveys, vol. 12, no. 4, pp. 437-465, 1980.

[35] L. G. Shapiro and R. M. Haralick, “Structural descriptions and
inexact matching,” IEEE Trans. Pattern Anal. Machine Intell., vol.
3, no. 5, pp. 504-519, 1981.

[36] Y. Shirai, Three-Dimensional Computer Vision. Berlin: Springer-
Verlag, 1987.

[37] G. Stockman, “Object recognition and localization via pose cluster-
ing,” Computer Vision, Graphics, and Image Processing, vol. 40, pp.

[38] F. Tomita and T. Kanade, “A 3D vision system, generating and
matching shape descriptions in range images,” in Proc. 2nd Int.
Symp. Robotics Res., pp. 35-42, 1984.

[39] A. K. C. Wong and S. W. Lu, “Representation of 3-D objects by
attributed hypergraphs for computer vision,” in Proc. Int. Conf.
Syst. Man Cybern., pp. 49-53, 1983.
S.-E. Xie and T. W. Calvert, “CSG-=SI: a new solid representa-
tion scheme and a conversion expert system,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 10, no. 3, pp. 221-234, 1988.
H. S. Yang and A. C . Kak, “Determination of the identity, position
and orientation of the topmost object in a pile,” Computer Vision,
Graphics, and Image Processing, 36, pp. 229-255, 1986.

[42] -, “Determination of the identity, position, and orientation of
the topmost object in a pile: Some further experiments,” in Proc.
I986 IEEE Int. Conf. Robotics and Automation, 1986, pp. 38-48.

[32]

361-387, 1987.

[40]

[41]

C. H. Chen was born in Kaohsiung, Taiwan, in
1960. He received the M.S. degree from the State
University of New York at Stony Brook in 1984
and the Ph.D. degree from Purdue University,
West Lafayette, IN, in 1988, both in electrical
engineering.

He is currently with the Robotic Laboratory at
SRI International, Menlo Park, CA. His areas of
research interest include computer vision and
sensor-based robotics.

A. C. Kak (M’71). for photograph and biography please see page 810 of
the July/August 1989 issue of this TRANSACTIONS.

