1988

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

A Subsumptive, Hierarchical, and Distributed
Vision-Based Architecture for Smart Robotics

Guilherme N. DeSouza, Member, IEEE, and Avinash C. Kak

Abstract—We present a distributed vision-based architecture for
smart robotics that is composed of multiple control loops, each with
a specialized level of competence. Our architecture is subsumptive
and hierarchical, in the sense that each control loop can add to
the competence level of the loops below, and in the sense that the
loops can present a coarse-to-fine gradation with respect to vision
sensing. At the coarsest level, the processing of sensory informa-
tion enables a robot to become aware of the approximate location
of an object in its field of view. On the other hand, at the finest end,
the processing of stereo information enables a robot to determine
more precisely the position and orientation of an object in the co-
ordinate frame of the robot. The processing in each module of the
control loops is completely independent and it can be performed at
its own rate. A control Arbitrator ranks the results of each loop ac-
cording to certain confidence indices, which are derived solely from
the sensory information. This architecture has clear advantages re-
garding overall performance of the system, which is not affected
by the “slowest link,” and regarding fault tolerance, since faults in
one module does not affect the other modules. At this time we are
able to demonstrate the utility of the architecture for stereoscopic
visual servoing. The architecture has also been applied to mobile
robot navigation and can easily be extended to tasks such as “as-
sembly-on-the-fly.”

Index Terms—Assembly-on-the-fly, automation, computer vi-
sion, distributed architectures, robotics, vision-based architecture,
visual servoing.

I. INTRODUCTION

A. Architectures for Robotic Systems

N THE past fifteen years, since the work of [1]-[3], re-
searchers in robotic systems have begun to realize the impor-
tance of decomposing a vertically-sliced, single-threaded con-
trol architecture into smaller, horizontal, and independent units.
These new multilayered architectures became widely accepted
[4]-[6], and since then much work has been carried out to refine
the output from each layer and to combine these outputs at the
highest level of the architecture [3], [5], [7]-[9], [10]. Basically,
two divergent streams of research appeared: the fop-down con-
trol and the bottom-up control.
In a strictly hierarchical architecture, or top-down control, all
input parameters must be taken into consideration before a com-
mand output can be decided. This decision-making process runs

Manuscript received September 22, 2003; revised March 12, 2004. This work
was supported by the Advanced Manufacturing Technology Development,
Ford Motor Company. This paper was recommended by Associate Editor
F. Hoffmann.

G. N. DeSouza is with the School of Electrical, Electronic, and Computer
Engineering, University of Western Australia, Crawley 6009, Australia (e-mail:
gdesouza@ee.uwa.edu.au).

A. C. Kak is with the School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN 47907 USA (e-mail: kak@purdue.edu).

Digital Object Identifier 10.1109/TSMCB.2004.831768

from the top-layer tasks down to the bottom-layer tasks. Each
task in a higher layer decides which task in the lower layer will
execute subsequently. Only one task is active at a given time
and the whole process can fail if the appropriate tasks are not
selected by the top layers. Besides, when the execution of a com-
mand does not succeed, a complete cycle starting from the very
top has to be re-evaluated, so that the higher-layer tasks can par-
ticipate in the decision-making process again [11].

On the other extreme of the spectrum of multilayered ar-
chitectures we find the bottom-up approaches, including the
subsumption and behavior-based architectures. In these imple-
mentations, all behaviors are active all the time, and it is not
uncommon for the more competent behaviors to completely
subsume the function of the behaviors that are less competent.
This calls for an interaction of all behaviors during the decision
process. In fact, the interaction of behavior itself can be seen
as a behavior. However, the modeling of such interaction is
a nontrivial problem and in a large, real-life scenario this
problem can become intractable. That difficulty led some
researchers to recently claim that “the strict computational
behaviorist position for the modeling of intelligence does not
scale to human-like problems and performance” [12]. Other
researchers tried to minimize this problem by layering reactive
behaviors onto deliberative behaviors (or components) and by
constraining the contexts in which they are active [8].

Yet, in another attempt to reduce the interaction between be-
haviors, Rosenblatt proposed a centralized arbitration of votes
from independent decision-making processes [6]. In this model,
self-contained behaviors are made simple enough so they can
be implemented in a very straightforward way. Moreover, a be-
havior is not aware of the command outputs from other behav-
iors, and therefore, the burden of evaluating each output and to
combine them in a more appropriate way is transfered to the
arbiter (or voting scheme). The arbiter has to determine what
command, or combination of commands [13], should be issued
to the robot.

Another frequent problem in behavior-based architectures is
that outputs from all behaviors must be available at all times
so that a decision regarding the next state of the system can be
made. That is, if for some reason a behavior fails to provide its
output, the decision-making process may be compromised, and
an undesired state of the system may be reached.

B. Vision-Based Robotics and Automation

While researchers were debating what architecture was
best for the development of vision-based robotic systems, the
actual application of such systems to automation was limited

1083-4419/04$20.00 © 2004 IEEE

DESOUZA AND KAK: SUBSUMPTIVE, HIERARCHICAL, AND DISTRIBUTED VISION-BASED

Fig. 1.

Example of assembly cells in the automotive industry.

to tasks that could be naturally adapted to suit robotic con-
straints. Welding of fixed targets, painting of large targets, and
bin-picking of objects resting on conveyor belts that moved at
constant speed were determined to be examples of manufac-
turing tasks for which robotic systems were perfectly suited.
If the task to be automated required many changes in the
environment, or the way the task was carried out, usually only
simple parts of the task could be automated [14].

This picture is dramatically changing due the increase in
computer processing power and the low prices of cameras,
image grabbers, CPUs, and computer memory. These devel-
opments make it possible to address the kind of automation
problems illustrated by the example shown in Fig. 1. This
example, of great relevance to automobile industry, requires a
wheel to be mounted onto a hub on a car chassis that is hanging
by four chains attached to a moving track. The car swings in
almost every direction, and its position in three—dimensional
(3-D) space can only be estimated within some uncertainty.
Nevertheless, for this task to be successfully automated the
holes in the wheel must be precisely aligned with the lugs in
the hub, which are only a few millimeters more narrow than
the holes.

In order to satisfy these tight constraints, a visual servoing
system must run at its highest possible rate. That means that
the time spent in image processing and all other intrinsic delays
must be minimized. One way of reducing these delays is by
separating the processing into modules and running the modules
in parallel. In this case, the total delay of the system becomes the
delay of one module, rather than the summation of all delays.

Another important requirement regarding the automation of
manufacturing tasks is safety and availability of the system. An
effective autonomous system must present fault tolerance. That
means that, in the presence of temporary or permanent failures
of its parts, the system must continue to provide valid control
outputs—outputs that allow the robot to perform its task or that
move the robot into safe states, where the robot and the as-
sembly parts cannot be damaged. As it is the case for many other
computer-based control systems, a fault tolerant system must be
designed with enough redundancy and independence in its dif-
ferent modules so that, in the case of failures, the overall avail-
ability of the system is not affected.

Therefore, by decoupling and paralyzing the execution of
modules in the control loop, not only are the delays minimized
such that the vision constraints can be satisfied, but also the
system can be made fault tolerant. In this case, independent
modules can run in parallel and can subsume or replicate the
functionality of other modules, improving the availability of the
system.

1989

In this paper, we present such a control software architecture
for visual servoing. This architecture, which is depicted in Fig. 2
and will be explained in detail in the next few sections, is com-
posed of independent and distributed control loops that concur-
rently provide control for the robotic system. As we will demon-
strate, our vision-based architecture is efficient, flexible, and it
satisfies all the requirements of today’s automation processes,
including fault-tolerance.

II. NEW SOFTWARE ARCHITECTURE

The resources necessary to implement distributed architec-
tures (over a computer network) have been available for a long
time and have even become part of most operating systems
today [15]. However, many of the early implementations of
robotic control architectures did not take advantage of these
resources [1]-[3], [5]-[10], [16]. Consequently, most of these
implementations lack modularity, portability, encapsulation,
and parallelism (distributed processing), trades that are essen-
tial for achieving speed, fault tolerance, availability, etc.

In [17], we introduced the basic software infrastructure for
the visual servoing architecture presented in this paper. This
infrastructure combines concepts such as threads, processes,
pipes, and software wrappers in order to provide a portable and
modular environment for experimenting with robotic control
architectures. The infrastructure allows a system’s resources
(motors, cameras, etc.) to be accessed concurrently by the
different application modules! operating in a distributed net-
work of processors. All those considerations—use of pipes,
message structure, and atomic message passing—provide
fault-tolerance, flexibility, efficiency, portability, modularity,
and encapsulation to any robotic system.

With regard to message passing needed for a distributed
architecture, not much has been done previously in the do-
main of robotic systems. Of course, there are general purpose
tools available today for the design of distributed software
systems—Common Object Request Broker Architecture
(CORBA) by the Object Management Group? being the best
known of these—but they are not suitable for implementing
real-time vision-based control loops.?

Despite the fact that our visual servoing architecture could
sit on top of any package that provides inter-process commu-
nication, distributed processing, etc., the use of a communica-
tion middleware such as CORBA cannot be as efficient as a
client/server infrastructure mounted directly on top of the op-
erating system and the TCP/IP protocol.

A. Control Software Architecture

Now, we will discuss how the various elements of the soft-
ware infrastructure presented in [17] can be combined to create
a control software architecture that can be applied in any vi-
sual servoing system. The next section presents one specific

A module in our architecture is a program that can be executed on a stand-
alone basis. As we explain in Section V, control performance can be maximized
by implementing the modules in different computers.

2See http://www.corba.org.

3Some ostensibly “real-time” implementations of CORBA are not real-time
in the sense demanded in vision-based robotic control for manufacturing appli-
cations.

1990

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

Fig. 2. Generic organization of control loops used in our visual servoing architecture.

instance of this software architecture that was developed for
the Ford Line Tracking project. Another application of the ar-
chitecture—for mobile robot navigation—can be found in [18].

1) Multiloop Control Architecture: For the reasons that we
have already mentioned—fault tolerance, redundancy, avail-
ability, etc.—our architecture for visual servoing systems is
composed of a stack of independent, redundant control loops. In
Fig. 2 we depict such structure. The idea behind this structure is
to create autonomous loops that can subsume each other and/or
compete for the control of the robot. These loops are composed
of different sets of modules, each of which may implement
one of the several possible approaches for visual servoing:
image-based look-and-move, position-based look-and-move,
etc. [14]. Also, for reasons involving redundancy, fault toler-
ance, etc., the modules in one control loop may implement
the exact same approach as the modules in another control
loop. The differences in such cases can be, e.g., the cameras
that different modules use to sense the robot position. These
cameras could be oriented and positioned in various ways to
minimize occlusions. Another difference between similar loops
can be in their degrees of competence, that is, the level of
detail and accuracy the control is performed. The modules in
a particular control loop can be implemented only to provide a
safe state for the system, and in that case, they may realize a
much simpler visual servoing approach (e.g., servoing in XY
space only; obstacle avoidance; etc.).

2) Independence of the Control Loops: As it should be clear
now, one may draw parallels between the control loops in our
architecture and the behaviors in a subsumptive, behavior-based
architecture. In both cases, the task performed by a certain loop
(or a behavior) can be subsumed by another, more complex loop

(or behavior). However, as we mentioned before, one of the most
important aspects of our architecture is the independence of the
visual-servoing loops. Therefore, unlike other subsumptive ar-
chitectures where the subsumption of one behavior by a more
competent one requires an intricate exchange of context and in-
formation between behaviors, in our system two loops never
communicate with each other. Each control loop performs in
a completely independent fashion. In fact, even the coordinate
systems and the space in which the error functions are calculate
may be different, as Fig. 2 illustrates.

The modules in each control loop send concurrent commands
to the robot through a module called Arbitrator. It is the Arbi-
trator that decides which loop or loops have control of the robot
at any given moment. This decision is based on criteria imposed
mainly by the application. For example, in the manufacturing
case there may be a loop that is regarded as more important than
the others: e.g., a loop that actually controls the assembly versus
loops that take the robot to the initial/safe position. This loop has
a higher priority and whenever it can track the part to be assem-
bled—its cameras are not occluded, the image processing algo-
rithm is running correctly, etc.—the loop has Arbitrator-granted
control over the robot.

As we explain in [18], for the case of the mobile robot, a
path planner must indicate which loop has the highest priority
at each moment. This decision depends upon the current navi-
gation mode of the mobile robot: hallway following, person fol-
lowing, tracking, and servoing with respect to an object in the
environment, etc.

Also, the decision regarding which loop, or loops, are in con-
trol can be based upon how fast each loop sends commands to
the Arbitrator. A loop that becomes slow in sending command

DESOUZA AND KAK: SUBSUMPTIVE, HIERARCHICAL, AND DISTRIBUTED VISION-BASED

While (1) {
grab and process image

GotFrame if shared_memory—>request is set {
write data to shared_memory
reset shared_memory—>request
set shared_memory—>written}

}
Shared
Memory
While (1) {
set shared_memory—request
wait until shared_memory—>written is set
ProcessedFrame read data from shared_memory

transmit information to next module
reset shared_memory—>written}

}

Fig. 3. Image processing and communication threads in the image feature
module referred in Fig. 2.

updates may be considered faulty by the Arbitrator and there-
fore, should be ignored.

Finally, each control loop decides whether its vision module
has none, partial, or complete sight of the target, and whether its
image processing algorithms are running correctly. This fact is
indicated by a confidence index which is assigned to the control
loop command sent to the Arbitrator. Based on the confidence
index, the Arbitrator can also decide if the control of the robot
should be transferred to another loop.

3) Decoupling Application and Communication
Tasks: Unfortunately, one aspect of the communication
between modules has a more conceptual consequence. One of
the reasons to encapsulate tasks into modules and distribute
the modules over a network of interconnected computers is to
provide independence between the tasks. This way, it becomes
easy to design modules that can be replicated or have their
tasks subsumed by other modules in case of failure. That is,
modules that can be replaced by redundant or more generic
ones. However, if a module happens to waste time or possibly
block trying to communicate with a slower or faulty module,
the whole idea of having the modules independent and running
at their fastest possible rates is violated.

In order to solve this problem, we designed every module as
composed of at least two threads. The first thread is the applica-
tion thread. It only performs the application task for which that
module was created: e.g., the imaging processing task in the
Image Feature Extraction module (Fig. 2). The second thread
is the communication thread and it implements the client or
server side of the communication with the other modules: for
the same example, the communication with the Pose Estima-
tion module in Fig. 2. These two threads run asynchronously, but
they share information that must be produced (written) and con-
sumed (read) in an organized way using a nonblocking shared-
memory access algorithm.

For example, the two threads in the Image Feature Extraction
module that we mentioned above can be visualized as shown in
Fig. 3. The image processing thread (GotFrame) is responsible
for extracting image features of the tracked object and for
passing the pixel coordinates of these features to the Pose
Estimation module. That is done through the communication
thread (ProcessedFrame). GotFrame writes the coordinate
values in a data structure that can be accessed (shared) by

1991

both threads, while ProcessedFrame reads this information
and communicates with the Pose Estimation module. Since
GotFrame may write new information while ProcessedFrame
may still be reading the previous one, a locking of the data must
be set before the write operation.

The locking mechanism is a single-version two-phase locking
algorithm and it consists of two locking variables, or members,
of a single data structure. These variables can be reset (or set)
by the producer of the information, while they can be set (or
reset, respectively) by the consumer of the information. The
first locking variable is called “request” and the second is called
“written.” The producer of the information, GotFrame, checks
constantly if the consumer, ProcessedFrame, requested the in-
formation—by checking the locking variable request (Fig. 3).
If there is a request pending, the data is written to the shared
memory, the written locking variable is set, and the request
locking variable is reset. On the other side, ProcessedFrame sets
the request variable whenever it needs the information, and it
awaits for the data to be written. Once the data is available (in-
dicated by the status of written), ProcessedFrame transmits the
data, resets written, and initiates a new loop (sets request and
waits for a new value to be written).

This mechanism allows GotFrame to run as fast as pos-
sible—without blocking—and provides ProcessedFrame with
the latest information extracted from the image. At the same
time, ProcessedFrame can take as long as necessary to pass
the information forward, or even timeout and start sending the
information to another module that replaces the next module in
the loop (in case of failure of that module).

Another subtle but very important advantage of this mecha-
nism is in the design of each module. Since the performance
of each module does not depend on other module’s timings
or delays, each design can be done separately. For example,
to improve the performance of the visual tracking of a target
object, GotFrame must be designed with a search window—a
subwindow of the image plane where the object is expected to
be found in the next frame. The size of this search window is
greatly affected by the time GotFrame takes to process an image.
If the performance of GotFrame were dependent upon the tim-
ings and delays of ProcessedFrame, it would become virtually
impossible to design GotFrame.

III. IMPLEMENTED APPROACHES TO VISUAL-SERVOING

As explained in [14] and [19], a control system using
visual-sensory feedback loops usually falls into one of the
following categories: position-based look-and-move, posi-
tion-based servo, image-based look-and-move, image-based
servo, and various hybrid combinations. These categories,
or approaches to visual servoing, are derived from choices
made regarding two criteria: the coordinate space of the error
function and the hierarchical structure of the control system. In
this section, we will present the implementation details of two
of these approaches chosen for our system.

For simplicity of design and because the Kawasaki PC-Con-
troller used with our UX120 robot provides a set of commands
to control velocity and position of the end-effector in carte-
sian space, we decided that our system should fall in the

1992

look-and-move category.* As for the second criterion, we will
discuss the implementation of both approaches: image-based
and position-based. As we will explain next, despite the fact
that the position-based approach requires camera calibration,
hand-eye calibration, and the calculation of the robot inverse
kinematics, in our method it leads to a simpler control plant. On
the other hand, while the image-based approach eliminates the
errors from camera and hand-eye calibration, it requires a linear
approximation of a nonlinear and highly coupled control plant.

A. Notations

1) Homogeneous Vectors and Transformations: Unless oth-
erwise specified, we will always assume a total of six different
coordinate frames to represent points (vectors) in space. Each of
these coordinate frames is attached to one of six different refer-
ence points or origins in our system. An origin may be indicated
by the letters: B, E, W, O, L, and R; corresponding, respectively,
to the origins at: the robot Base; the robot End-effector; the
World; the Tracked Object; Left-camera; and Right-camera. In
the remainder of this paper, we will follow the Denavit-Harten-
berg (D-H) notation [20]. Also, in this notation, a homogeneous
transformation matrix (HTM) H is a 4 x 4 matrix that relates a
homogeneous vector represented in one coordinate frame with
its representation in terms of another coordinate frame. The su-
perscript before the letter H stands for the new frame the vector
is to be converted into, and the subscript after the H indicates
the frame in which the vector was originally represented. For ex-
ample, *H,, is the HTM that transforms a 4 x 1 homogeneous
vector from the World coordinate frame into the Base coordi-
nate frame. The inverse of this matrix is denoted by * H}, and it
represents the transformation of a vector in the Base coordinate
frame into the World coordinate frame. The same notation is ap-
plied for the rotational part of the HTMs. For example, * R, is
the rotation of a vector from the World frame into the Base co-
ordinate frame. The inverse of this matrix is denoted by ' Ry,

In contrast, a vector P is expressed in homogeneous coordi-
nate form and is given by

~ ZX
P—[l}— iy 6]
1

where 7 denotes one of the reference frames listed above (Base,
End-effector, etc.).
AnHTM " H; is composed of a rotational part * I; and a trans-

lational part * T"; as follows:

HJ:[?]3} @

The translation part is simply a vector i ; that points to the
origin of the j coordinate frame. The inverse of a HTM *H; is
denoted by 7 H; and can be obtained by the expression
ipT i pT i

R{ 'Rj x T]}

3)

. = | .
' [OT 1

4Most of the systems implemented and reported in the literature fall in this
same category and for these same reasons [14]

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

Model Features

Object Reference Frame

Fig. 4. Three model features of the target object and the coordinate frame
defined by them.

where the superscript T' denotes the transpose of a vector or
matrix.’

2) Target Object Coordinate Frame: In order to servo the
robot with respect to a target object, the system needs to locate
and track the object in the image sequence. There are many ways
to do that, ranging from appearance-based methods to the use
of detailed computer aided design (CAD) models of the target
object. However, most methods degrade quickly with the use of
extra cameras or the increase in the level of detail and number
of features in the model. In [22] for example, a CAD model is
employed and good results are reported, but the authors report
a reduction of the system performance from 25 fps to as low as
14 fps due to the use of multiple cameras—not to mention that
the system requires manual initialization.

An advantage of a distributed, modular, and fault-tolerant
architecture as we propose here is to allow for the deployment
of several redundant algorithms running on multiple computers
at the same time, which also allows for an experimentation with
computer-intensive tracking algorithm. In particular, because
of distributed processing, the current implementation of our
system can process almost 140 fps, derived from five cameras,
with virtually no limit for these numbers. Also, besides the
geometric-based method reported here and in [23], we have
developed other computer-intensive approaches for image
tracking such as using Active Appearance Models (AAM) [24].

For the modules of the system that processes stereo images
at frame rate (2 x 30 fps), we implemented an effective geo-
metric-based method to determine the object coordinate frame.
This method uses only three points and the cross-product among
them (Fig. 4). The method relies on finding three particular cir-
cular features in the left and right images. Based on some un-
mistakable characteristic of these feature points—in our case,
their size and relative pose in the model—our stereo algorithm
can obtain the correspondence between these points in the left
and right images instantaneously. Once the correspondence is
known, all that is left to be done is the 3-D reconstruction of
these points, which is explained in details in [23]. This method
is very simple, fast, and accurate: in [23] we reported the calcu-
lation of the target pose with an uncertainty of only 2.4 mm.

5Since any rotation matrix can be represented by quaternions, and vice versa
[21], our system stores and manipulates HTMs in their quaternion forms.

DESOUZA AND KAK: SUBSUMPTIVE, HIERARCHICAL, AND DISTRIBUTED VISION-BASED

Fig. 5. Alignment between object and end-effector coordinate frames. The
circular features can be used to determine the actual pose of the engine cover.

B. Control Law

The task of a visual servoing system is to perform the posi-
tioning of the robot’s end-effector with respect to a target ob-
ject while keeping track of the error in this positioning. But be-
fore we can define a control law that realizes this task, we must
first formally define such task. This definition depends on the
approach used—position-based or image-based—and it will be
presented in the next two subsections.

1) Position-Based Visual Servoing:

Definition 1: A positioning task for a position-based visual
servoing is represented by a function Err : 7 = R™, where
m is the number of degrees of freedom. This function is called
the kinematics error function and it maps the task space 7 —the
set of all possible positions and orientations of the end-effector

P—into an error vector belonging to :*™. A positioning task is
—

fulfilled when Err(P) = 0.

There can be many variations in the design and implemen-
tation of a visual servoing system. For example, depending on
the application, the task space may be constrained by different
numbers of degrees-of-freedom (DOF): three translational DOF
[25], [26]; or three rotational [27]-[29]; or two translational and
one rotational [30]; etc.

Since in our system we want to control the robot’s end-ef-
fector so that its coordinate frame is aligned with respect to the
object’s coordinate frame for any pose the object, we assume
m = 6 (Fig. 5).

Given the definition above, we can now determine the control
law for our first choice of visual servoing: position-based.

One way of looking at the problem of aligning the two co-
ordinate frames in space is by defining a transformation matrix
that relates the end-effector’s kinematics, that is, the homoge-
neous transformation matrix ¢ Hy, and the object’s pose, given
by, say, ¢ Hy. In other words

“H, = Hyx (°Hy) ™! “)
where °H, is the pose of the end-effector (P, in Definition 1
above) and it can be regarded as the actual pose of the end-ef-
fector with respect to the object coordinate frame. Next, in order
to define an error function Err(P) and subsequently to define
a control law, we need a constant homogeneous transformation

1993

matrix that will represent the reference signal X * in Fig. 2. This
HTM can be arbitrarily chosen as, for example

-1 0 0 0

es | O 1 0 0

Hi=\y o -1 4 &)
0 0 0 1

In this case, “H was chosen so that the Y, axis and the Y,
axis have the same direction and orientation, while the other two
pairs of axes, X./X, and Z. /Z, have the same orientation, but
they point in opposite directions. Also, the origins of each frame
are apart from each other by d meters along the Z direction.

Given the above ®H,, and ¢ 1}, the error function Err(P) can
be defined as

Err(P)=*H,—"H]. (6)

Since in a visual servoing system the sensory information is
provided by cameras, this error function can be calculated by at-
taching a pair of stereo cameras on the robot end-effector. These
stereo cameras can directly measure the position of the object
with respect to the end-effector, © H,. However, since the cam-
eras’ coordinate frames are not defined at the same position and
with the same orientation as the end-effector’s coordinate frame,
¢ H, must be calculated in terms of two other HTMs. The first
HTM is referred to as the hand-eye transformation, H,., where ¢
stands for r or [—the right and left cameras, respectively—and
it is obtained through a hand-eye calibration (which we solve in
[31], [32]). The second HTM, © H,,, is the pose of the object with
respect to the cameras, which is obtained using 3-D reconstruc-
tion of object features (points in the object coordinate frame)
and the camera calibration matrices (left and right). These fea-
tures are used to determine the 3-D pose of the object’s coordi-
nate frame, as explained earlier in this section.

Given these matrices, (6) can now be written as

Err(P) =° H, « H, —° H*.)

One important observation must be made regarding the dif-
ference operator in the last equations. Since we expressed the
error function Err(P) as the difference between two HTMs, and
the arithmetic difference of such two matrices would not have
a physical interpretation, one must define this operation in the
correct manner. For HTMs, the difference or distance between
two coordinate frames—in this case the end-effector actual po-
sition ®H, and the end-effector desired position “H)—is the
direct transformation from the second coordinate frame into the
first coordinate frame. In other words, the difference operation
in (6) must be in fact expressed as

Bre(P) = “H, + (“H}) ™"
That is
Err(P)="H, «° H
or
Err(P) =°H,-. ®)

In words: the HTM representing the coordinate frame of the
end-effector at its desired position e* with respect to its coordi-
nate frame at the end-effector’s actual position e.

1994

Finally, our control law can be defined as a simple propor-
tional control

u=Kp,*® He. ©))

Once again, the arithmetic multiplication of an HTM by a
constant would result in a meaningless matrix in terms of the
rotation and translation necessary to reach the desired position
of the end-effector. In this case, since K, < 1, we interpret
this multiplication as a transformation that moves only a fraction
of the rotational and the translational components specified by
¢H.-. In order to calculate the fraction of the rotation, we con-
vert ® H .+ into its quaternion representation (s, '), and then we
multiply the rotation angle by K, while keeping the direction
of rotation @’. As for the translation part, we simply multiply it
by K.

2) Image-Based Visual Servoing: As we have shown in
the previous discussion, the position-based approach involves,
among other things: a) determining the 3-D pose of the object
using image features extracted from a pair of stereo images; and
b) deriving the end-effector’s 6 degrees of freedom, XYZOAT,
from the error function Err(P) = ©H,.. While the first step in-
volves 3-D reconstruction and therefore it requires camera and
hand-eye calibrations, the second step involves the solution of
the robot inverse kinematics. That is, the solution of a nonlinear
system of equations, using sines, cosines, arc-tangents, etc.
The accuracy of the results from either steps is highly affected
by numerical errors and by noise in the images, which is not
desirable. Therefore, a second way of looking at the alignment
problem of end-effector and target object is commonly used.
In this second approach, image-based approach, we derive an
image error function directly in terms of the pixel coordinates
of the object features—as opposed to spatial coordinates.

Definition 2: A positioning task for an image-based vi-
sual servoing is represented by an image error function
Err : f(T) = R*. Indirectly, this function maps the task space
T—the set of all possible positions and orientations of the
end-effector Ps—into an image feature error vector belonging
to R*. A positioning task is fulfilled when Err(P) = 0.

In order to do that, since it is not always possible to calculate
the function f [33], [14], we must assume that there exists such
a function relating the XYZOAT coordinates of the end-effector
with pixel coordinates of the object features as they are seen by
the cameras attached to the end-effector

’LLLO
Ur,
URO
’URO
uLl
'ULl
uRl

. (10)

[
=
=
[
Sy
N O N

UL
VLi
UR;
UR;

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

where ur;,vr;, UR;, Vr; are the image coordinates of each fea-
ture 7 on the left (L) and right (R) image planes. And f is the
mapping function that we want to find. This function, although
unknown, can be piece-wised linearized by its first-order term
in the Taylor series

- dULO -
dULO
duRO
d'URO
d’LLLl dX
dvg, dy
df (x) = ﬁgi = Jxdy=Jx% gg (11)
- dA
duLi dT
dULi
duRq.
dURq.

where .J is the Jacobian matrix. And as we have just mentioned,
the error function now is defined directly in terms of pixel coor-
dinates and the pseudo inverse of .J, J . That is

e=J7Pdf(x) =dx (12)
which can be approximated by
e=J PAf(x) = dAx. (13)

Since this linear approximation is only accurate in a small
vicinity of the 3-D region for which it is calculated, we must
constantly recalculate the Jacobian matrix .J. This process is
done by using the following updating equation:

(AY — Jp + Ax) = AxT
AxT x Ay ’

Finally, the control law for the image-based approach can be
defined as a simple proportional control

Tes = T+ (14)

u=Kpxe (15)
which is approximated by
e=K,+J Px AT = K, « J P (T"-T) (16)

where T* is the pixel coordinates of the object features as seen
by the cameras when the end-effector is at the desired position
and orientation.

3) Advantages/Disadvantages of Both Approaches: As we
mentioned earlier, the position-based approach to visual ser-
voing requires camera and hand-eye calibrations (or head-eye
calibration for the case of the mobile robot stereo head). It also
requires the calculation of the robot inverse kinematics in order
to obtain the end-effector’s pose in terms of XYZOAT coordi-
nates. While these procedures may introduce errors in the final
positioning of the end-effector, these errors can be minimized
by devising an accurate calibration procedure. In [31], we pre-
sented a fast and accurate method developed for hand-eye cal-
ibration (and in [32] for head-eye calibration for the case of
mobile robots). This method combined with a camera calibra-
tion algorithm derived from [34] provided us with a 3-D recon-
struction algorithm that can estimate points in space with error

DESOUZA AND KAK: SUBSUMPTIVE, HIERARCHICAL, AND DISTRIBUTED VISION-BASED

smaller than 1 mm in average for the Kawasaki robot (and 3 mm
for the mobile robot stereo head).

On the other side of the coin, it is well-known that the simple
control law that we used in the image-based approach does not
always converge [35]. Moreover, the Jacobian matrix in this ap-
proach may not always be invertible and the control law be-
comes unstable [14]. Therefore, a better implementation of the
image-based approach must be used in the future.

However, in spite of all the potential advantages and disad-
vantages of each approach, our goal here is not to advocate the
use of one over the other. Instead, we mentioned and imple-
mented both approaches only to stress the fact that the software
architecture presented works independently of what approach is
chosen.

IV. APPLICATION OF THE SOFTWARE ARCHITECTURE FOR
LINE TRACKING

Automatic tracking of objects using computer vision will play
an important role in further automation of vehicle assembly
lines. Such automatic tracking will permit robots to carry out as-
sembly operations without stopping the line, which moves at an
average speed of 4.4 in./s, with instant velocities ranging from
1 to 10 in./s and accelerations of at least 0.49 in./s?. Still, a typ-
ical assembly task may require an accuracy of 1/16th or even
1/32nd of an inch—which is equivalent to the distance traversed
in about 7 ms by a vehicle in the assembly line moving at av-
erage speed.

For the Line Tracking project, we have implemented a
three-loop approach to visual servoing. Ceiling mounted cam-
eras keep track of a vehicle on a global basis. As far as these
cameras are concerned, a vehicle is a large blob that needs to be
segmented out from the background using color, texture, and
motion cues. As a vehicle gets sufficiently close to an assembly
station, the control function is taken over by the stereo cameras
mounted on the robot end-effector. This control is in 3-D and in
real-time, meaning that all the 3-D pose parameters of the ve-
hicle are calculated at as close to the frame rate as possible. We
refer to the control loop accomplished with the ceiling-mounted
cameras as Coarse Control and to the control loop achieved by
the robot-mounted cameras as Fine Control. To demonstrate the
property of fault tolerance of our architecture, the system was
implemented using one Coarse Control loop and two redundant
Fine Control loops as depicted in Fig. 6.

A. Fine Control

The design of the tracking and control algorithms for Fine
Control is critically dependent on factors such as the following:

1) time to process enough visual cues in order to obtain a
sufficiently accurate 3-D-Pose Estimation of the target;

2) time it takes to compute the new coordinates of the ve-
hicle;

3) time it takes to predict the future motion of the vehicle
based on its current coordinates, its previous coordinates, the
noise in the system, the dynamics of the vehicle, and the dy-
namics of the line;

4) control law used for visual servoing; etc.

1995

Coarse Fine

Control Controls

Arbitrator

Robot
Controller

Fig. 6. Architecture for the Line Tracking project consisting of multiple Fine
Controls, Coarse Control, and Arbitrator.

We believe that all these issues are addressed by our dis-
tributed, hierarchical, subsumptive architecture. For example,
the success of a factory-deployable fine-control scheme depends
to a great degree on the magnitude of the control delays [36]. By
distributing modules among different computers in the network,
we assign all the computational resources of a computer to a
single module, allowing it to perform at its fastest possible rate.
Also, by designing the modules in a completely independent and
self-contained manner, we can explore different approaches to
visual servoing at the same time. Without affecting the imple-
mentation of each control loop, better camera and hand-eye cal-
ibration algorithms can be explored in order to improve the per-
formance of a position-based approach, while new Jacobian ma-
trix update methods can be tested for an image-based approach.
Finally, by paralyzing the control loops and directing the output
of each loop into the Arbitrator, we allow the modules to sub-
sume the functionality of others. As it is the case between the
Fine Control and the Coarse Control.

The Fine Control block in Fig. 6 above is in fact a collec-
tion of different modules. In reference to the diagram shown in
Fig. 2, the Fine Control corresponds to almost an entire loop,
starting at the cameras (grabbing) and ending at the control Ar-
bitrator. As pointed out before, we implemented two versions of
the Fine Control. The first one uses a position-based approach,
which requires the camera and head-eye calibration, [31], [32].
The second version uses an image-based approach using the
Jacobian matrix update rule discussed in Section III-B2. That
implies that for the position-based approach, the feature extrac-
tion block, the Pose Estimation block, and the Cartesian Control
Law block (refer to Fig. 2) are all included in what we call here
the first version of the Fine Control. On the other hand, for the
image-based approach, the same feature extraction block was
linked directly to the Feature Space Control Law block to form
the second version of the Fine Control.

In what follows, we will present the generic architecture of
the Fine Control, which applies almost indistinctly for both ver-
sions. We will point out the differences when necessary.

1) Internal Architecture of the Fine Control: As Fig. 7
depicts, the Fine Control is composed of two modules. The first
module implements the feature extraction block as we men-
tioned briefly in II.A3. The only difference here is that, since the

1996

Left Right
GotFrame GotFrame
Shared
emor
ProcessedFrame
Feature
Extraction
Module
|
)
VisualServo
Communicator
Shared
Memor
Update
Control Law
Shared
Memor
Arbitrator
Communicator Servo
Control
T Module

!

To the
Control Arbitrator

Fig. 7. Composition of the Fine Controller.

Fine Control must servo the robot in all six degrees of freedom,
we have two image processing threads: Left GotFrame and
Right GotFrame, for the left and right cameras respectively. The
second module encompasses one or two blocks following the
arrows in Fig. 2, depending on the version of the Fine Control.
For the version using image-based approach, the second module
includes only the Feature Space Control Law block, while for
the position-based approach it includes the Pose Estimation
and the Cartesian Control Law blocks. In either cases, we call
this the Servo Control Module.

The Servo Control Module provides XYZOAT coordinates of
the end-effector, which are transmitted to the Control Arbitrator.
Also, the two modules of the Fine Control communicate with
each other through a set of pipes encapsulated inside a wrapper
(as discussed in [17].) This communication through the wrapper
is represented here by the circle and arrows in Fig. 7.

One important observation regarding the construction of
these modules is that because of the concept of modularity and
encapsulation discussed in [17] (e.g., use of wrappers), many
of the threads and processes inside the Servo Control Module
are applied to both versions of the Fine Control (image-based

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

(a) (b)
Fig. 8. Image processing performed by the Feature Extraction Module of the
Fine Control. (a) The left image and (b) is the right image.

or position-based). Besides all the advantages already pointed
out, this characteristic of our software infrastructure also saves
us time during system development.

a) Feature Extraction Module: The Feature Extraction
module is the same for both versions of the Fine Control (posi-
tion-based and image-based). In either cases, it is composed of
three threads: LeftGotFrame, RightGotFrame, and Processed-
Frame. LeftGotFrame and RightGotFrame are identical threads
(almost identical source codes) whose basic algorithm is to
search for three circular features and determine the pixel (u,v)
coordinates of their center points, [23].

In order to find these center points, GotFrame resorts to a
model-based tracking algorithm where the model of the engine
used describes the position and size of three predefined circular
features. During the online tracking, the (u,v) coordinates of
each center and the apparent size of the circles are used to define
a search window where the circle will be searched for in the next
frame (see Fig. 8). This method allows the algorithm to adapt to
different positions of the camera with respect to the target, that
is, to adapt to different sizes of the circles in the image plane.

At the end of the processing, the two modules write the left
and right pixel coordinates of the circular features in a shared
memory, using the mechanism discussed in Section II-A3. Also
discussed in that section is the behavior of ProcessedFrame,
which reads the information from the shared memory and passes
it on to the next module: Servo Control Module.

b) Servo Control Module: The Servo Control module is
formed by three threads or processes. While two of these pro-
cesses, VisualServo Communicator and Arbitrator Communi-
cator, are the same for both versions of the Fine Control, the
third one, Update Control Law (UCL), is different depending
on the version used.

For the image-based version of the Fine Control, the Update
Control Law process implements the Jacobian matrix update
procedure discussed in Section III-B2. Its output to the next
module (Control Arbitrator) is a set of delta XYZOAT coordi-
nates of the end-effector with respect to the robot’s base. The
end-effector coordinate is calculated using a simple proportional
control law, also presented in Section III-B2.

The Fine Control version using a position-based approach has
an Update Control Law process that implements two functions.
First, from the (u,v) pixel coordinates provided by the Feature
Extraction Module, the UCL computes the 3-D coordinates of
the circular features (using 3-D reconstruction). Given these co-
ordinates, UCL computes a coordinate frame for the target ob-
ject. This is what before we referred to as the Pose Estimation
block. Next, as mentioned in Section III-B1, UCL determines
the error signal given by the desired pose and the actual pose of

DESOUZA AND KAK: SUBSUMPTIVE, HIERARCHICAL, AND DISTRIBUTED VISION-BASED

Duble—Buffering

Image Processing

Shared
Memory

Update
Ceontrol Law
&
Arbitrator Coarse
Communicator Control
Module

To the
Contrel Arbitrator

Fig. 9. Composition of the Coarse Control.

the end-effector and applies a proportional control law to deter-
mine the next motion command. This command is sent to the
Control Arbitrator as a set of incremental coordinates: delta XY-
ZOAT values.

Finally, VisualServo Communicator and Arbitrator Commu-
nicator shown in Fig. 7 implement the communication protocols
between the Servo Control Module and the two other modules
of the control loop: Feature Extraction Module and the Arbi-
trator Module, respectively.

B. Coarse Control

As a vehicle comes down the assembly line and approaches
the workecell, it is the job of the Coarse Control to detect the ve-
hicle and initiate the motion of the robot toward the assembly
part. This motion does not need to be fast or accurate regarding
the relative pose of vehicle and target object. All that is required
from the Coarse Control is to position the robot so that the cam-
eras attached to the robot end-effector can effectively see the
target object. Once the target is in the field of view of the stereo
cameras, the Control Arbitrator can switch mode, assigning the
control over the robot to the Fine Control.

As one can infer, the design of the tracking and control algo-
rithms for Coarse Control is dependent on simpler factors than
those for the Fine Control. For example, one such factor is the
object-to-background discrimination provided by the color of
a vehicle. Another factor is the use of color cues to segment
and track the image of the vehicle. Our current implementa-
tion has already demonstrated the effectiveness of using color
histograms for fast tracking of moving objects. But as we men-
tioned before, the design and implementation of the Coarse Con-
trol is not affected by, and it does not affect, the design of other
modules of the system. That is, again, in accordance with the
goals of this architecture.

1) Internal Architecture of the Coarse Control: As shown
in Fig. 9, the Coarse Control is formed by one single module,
which is divided into two threads. The first thread implements
the already discussed histogram-based tracking algorithm. This
algorithm is however slightly different from the one we de-
scribed above for the Fine Control. The first difference is re-
garding the dual-buffered storage method. In simple terms, that
means that two image buffers can be handled at the same time by

1997

Fig. 10. Image processing performed by the Coarse Control.

the image grabber (Matrox Genesis). While one buffer is being
used for storing the next image from the camera, the other buffer
can be used for the processing of the current image.

As for the histogram-based tracking algorithm itself in the
case of the Coarse Control, this algorithm is in fact much sim-
pler than the one in the Fine Control. One may say that this al-
gorithm is a subset of that in the Fine Control. That is, while
in the Fine Control six images of the circular features—three in
each camera—must be located and tracked, in the Coarse Con-
trol only one of the circular features, in the single camera image,
is tracked. In the future, a larger object, such as a car door, or
an entire car body, will be used instead of the circular feature
(Fig. 10). In either case, since the Coarse Control commands
the robot in only two degrees of freedom—parallel to the plane
in which the assembly line moves—any image blob can provide
the two coordinates necessary for Coarse Control.

Finally, the second thread in the Coarse Control Module per-
forms two functions: update of the control law and communica-
tion with the Control Arbitrator. Once again, finding the coor-
dinate of the end-effector for the Coarse Control is very simple.
The single camera hanging from the ceiling used in Coarse Con-
trol is calibrated within a scale factor (no depth). An arbitrary
plane of motion, parallel to the vehicle motion, is chosen and
the pixel coordinates (u, v) obtained from the image processing
thread is directly mapped into an XY coordinate in this plane.
The remaining four components (ZOAT) necessary to position
the end-effector are also arbitrarily chosen so that the end-ef-
fector always faces the target object. The full XYZOAT vector is
transmitted to the Control Arbitrator which decides whether to
use it or not.

C. Control Arbitrator

The Control Arbitrator is the subsystem of the Line Tracking
for visual servoing system that coordinates the execution of
commands that must be sent to the Kawasaki controller. It
would be easy to construct a larger implementation in which
the Control Arbitrator orchestrates multiple instances of the
Coarse Control and multiple instances of Fine Control at the
same time, each instance implementing a different approach
to visual servoing and/or using different stereo cameras (dif-
ferent views). Another possible implementation of the Control
Arbitrator would use the vision hierarchy of Dodds et al
[37] with a large number of gradations between Fine Control
and Coarse Control. However, in the current implementation,
the Control Arbitrator sits between two redundant instances
of the Fine Control and one instance of the Coarse Control.
The Control Arbitrator combines the commands from the two

1998

instances of the Fine Controls using a “weighted-average” of
the commanded coordinates multiplied by the confidence level
provided by each instance of Fine Control. The result of that is
used to subsume the control provided by the Coarse Control.
The Fine Control subsumes the Coarse Control in the sense that
the Coarse Control provides only a linear trajectory parallel to
the path of the target object, while the Fine Control provides
delta values which are added to these trajectory to provide a
full 6 DOF pose of the end-effector.

All the Control Arbitrator’s decisions are based on the coor-
dinates provided individually by the two instances of the Fine
Control and the Coarse Control and on how well they can visu-
ally track the target object (confidence level). The idea is that
both Fine and Coarse Controls concurrently run and compute
the motion commands that each subsystem believes should be
issued to the Kawasaki Controller. At the beginning, when only
the Coarse Control is expected to track the target, the Control
Arbitrator allows the Coarse Control to send commands to the
Kawasaki Controller. However, as the Coarse Control causes
the robot to move toward the target object and at least one of
the instances of the Fine Control becomes able to track the ob-
ject, the Fine Control informs the Arbitrator of this fact. Upon
receiving this information, the Arbitrator maintains the robot’s
last trajectory as provided by the Coarse Control and starts to
add the delta-motion commands provided by the Fine Control,
allowing the assembly task to be performed. It is important to
mention that in the event of one of the instances of the Fine Con-
trol losing track of the target object, the Control Arbitrator can
still use information from the second instance of the Fine Con-
trol, and if both instances of the Fine Control lose track of the
object, the Coarse Control is granted exclusive control of the
robot again. Also, if the Coarse Control loses track of the ob-
ject, the Control Arbitrator would stop commanding the robot to
move in the linear trajectory, but any instance of the Fine Con-
trol would still be able to control the robot in all 6 DOF using
only the delta-motion commands. Finally, if all loops lose track
of the target object, the Control Arbitrator moves the robot to a
safe position.

For obvious reasons, the implementation of the Control Arbi-
trator must depend on the specific application of visual servoing
being pursued. This domain-specific nature of the Control Arbi-
trator obviously makes it look ad-hoc. Nevertheless, we believe
our Control Arbitrator is based on sound reasoning given the re-
quirements of vision-guided assembly by robots. The challenge
of designing and implementing the Arbitrator resides in the fact
that the Fine Control and the Coarse Control subsystems are not
executing on the same CPU (same computer). In that case, the
Arbitrator must arrive to a decision based on the information
available in a distributed environment.

1) Internal Architecture of the Control Arbitrator: The
Control Arbitrator is composed of two modules that run on
different computers: PC-Controller Module and Arbitration
Module (Fig. 11). The PC-Controller Module is composed
of two threads: PC-Read and PC-Control. The purpose of the
PC-Read thread is to keep track of the current position of the
robot so it can be read by any module of the system. As for the
PC-Control thread, it executes the motion commands sent to the

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

Communication
Threads

l

Shared
Memory

l

Arbitration

Decision
Logic

Arbitration
Module

j
Q

AN

AN

PC—Read

PC—-Control

PC—Controller
Module

Fig. 11. Internal Architecture of the Control Arbitrator.

robot. It uses a preemptive algorithm that allows the current mo-
tion to be immediately interrupted as a new one is started. The
PC-Controller Module is installed on the Kawasaki PC-Con-
troller.6

The other module, the Arbitration Module, is the core of the
Control Arbitrator. It is mainly responsible for carrying out the
communication with the different control loops and deciding
how to combine that information.

The Arbitration Module is divided in two parts. One part
is formed by multiple communication threads. Each of these
threads works as a stub for a specific control loop. All stubs
are identical, except for the socket port (TCP/IP) [15] through
which they communicate. The function of each stub is, besides
the actual exchange of information over the network, to keep
track of a timestamp that describes the moment when the last
communication was exchanged with that control loop.

The main part of the Arbitration Module—the Arbitration
Decision Logic (Fig. 11)—is a single thread in which the var-
ious timestamps from the two control loops are analyzed, the
confidence indices of the commands issued by the two control
loops are compared, and the decision regarding the motion com-
mand to send to the PC-Control thread is taken. The Arbitration
Decision Logic sends motion commands and reads the current
position of the robot through wrappers for the PC-Control and
PC-Read, as explained in [17] and represented by a circle in
Fig. 11.

6The application program interface (API) to functions such as inverse kine-
matics, motion command, etc., for our Kawasaki robot is implemented in what
is called PC-Controller, which communicates with a multiprocessor servo con-
troller more immediate to the robot for joint level control.

DESOUZA AND KAK: SUBSUMPTIVE, HIERARCHICAL, AND DISTRIBUTED VISION-BASED

TABLE 1
OPERATIONAL MODULES AND THEIR EXECUTION RATES FOR OUR
DISTRIBUTED ARCHITECTURE WITH ONE COARSE CONTROL AND ONE OR
TwO INSTANCES OF THE FINE CONTROL

Distributed Configuration

Operational Modules] Execution Rates

1 Fine Control | 2 Fine Controls
(F}f;t:réi’;g‘}‘;m“ Module 2% 29.8 fips 4% 29.8 fps
(Slflrrreo C(E::ttrr(gl) Module 1,550 KHz 1,550 KHz
o P W
(Contl Arbriaton) 250 Hz 250 Hz

V. RESULTS AND DISCUSSION

We run the modules of our system for Line Tracking dis-
tributed over five different computers. The most compute-in-
tensive of the subsystems—the two instances of the Fine Con-
trol—are run on two Linux-based PCs with a 1.0 GHz Intel pro-
cessor and two Matrox Meteor image grabbers in each com-
puter. The Coarse Control runs on a different MSWindows-
based computer provided with a Matrox Genesis card. A fourth
computer—a Linux-based PC with a 1.0 GHz AMD Athlon pro-
cessor—runs the Arbitration Module of the Control Arbitrator,
while the PC-Controller Module of the same Control Arbitrator
runs on yet another computer—the Kawasaki PC-Controller, as
we explained in the previous section.

A. Fault-Tolerance

Recall that our implementation for Line Tracking has three
control loops that operate independently. To investigate the
fault-tolerance properties of our architecture with regard to fail-
ures in these control loops, we individually or simultaneously
decommissioned the control loops. For every sequence and
combination of faulty control loops, the Control Arbitrator was
able to determine how to use the controls from the remaining
operational control loops. That is: combine the operational
controls from Fine and Coarse loops; switch between two op-
erational Fine loops; or move the robot to a safe configuration.
Videos of such tests can be downloaded from our website at
http://rvll.ecn.purdue.edu/RVL/Projects/LineTracking.

Another important aspect of our architecture is in the inde-
pendence of each module in the control loop (encapsulation).
As we mentioned earlier, that independence not only makes it
easy to design the different modules, but most importantly, it
guarantees that the overall performance of the system is deter-
mined by the worst-case delays from the individual modules,
instead of the summation of the delays. In other words, our ar-
chitecture ensures superior performance while allowing for in-
dividual faulty modules or loops to be subsumed or replaced. So,
in order to validate these claims, we also decommissioned indi-
vidual modules in each control loop and we measured the max-
imum frequency or rate at which operational modules executed.
In order to test how the system scale with multiple competing
controllers, we repeated the measurement for a system config-
ured with one and two instances of the Fine Control. These re-
sults, shown in Table I, proved, as expected, that these times
were always the same, and that they were not affected by the

1999

TABLE 11
MOMENTARY AND PERMANENT LOSS OF CONTROL FOR OUR MULTILOOP
ARCHITECTURE VERSUS A SINGLE-LOOP IMPLEMENTATION IN THE PRESENCE
OF ERROR IN 5, 10, AND 20% OF THE FRAMES

[Multi-loop [Single-loop
Total: 200 trials | Momentary | Permanent Permanent
5% error 0 0 2
10% error 1 0 14
20% error 4 0 108
TABLE III

OPERATIONAL MODULES AND THEIR EXECUTION RATES FOR A CENTRALIZED
IMPLEMENTATION WITH ALL MODULES, EXCEPT COARSE CONTROL, RUNNING
IN THE SAME MACHINE

Centralized Configuration

Operational Modules] Execution Rates

. 1 Fine Control | 2 Fine Controls
(F;f‘r::rz (i’t‘;g‘})mon Module 2% 19.1 fps 4x 7.5 fps
(Slflr:: CC:;;;"II) Module 1,230 KHz 517 KHz
s Bt SO0 |y | o
R I N

number of loops or by the introduction of disturbance in the
system (decommission of modules).

Also, for fault-tolerance analysis, we performed a series of
200 tests simulating an assembly task, That is, the target ob-
ject traverses the assembly cell from left to right and the robot
end-effector must be controlled at every instant to keep its rela-
tive pose with respect to the target object. These tests were per-
formed for two versions of the system: our multiloop architec-
ture and a traditional single-loop implementation. In both cases,
we randomly generated errors in the image processing mod-
ules—for the multiloop case, we injected equal amount of error
in the image processing of both instances of the Fine Control
and of the Coarse Control. The idea was to simulate errors in the
tracking algorithms and to measure their effects in the overall
control system—that is, the effect of the errors in terms of mo-
mentary loss vs. permanent loss of control’. In Table I, we show
the results for random errors generated in 5%, 10%, and 20% of
the frames. The table shows that for any percentage of errors, our
multi-loop system always recovered, with very few momentary
losses of control. On the other hand, the traditional single-loop
implementation presented several situations from which it could
not recover—due to loss of sight of the target object.

B. Distributed versus Centralized Implementations

Fault-tolerance is only one of the advantages of distributing
modules over many computers. Another advantage is in im-
proving the performance of the system. In order to demonstrate
this advantage, we run all modules of the Line Tracking system
on the same machine—including one or two instances of the
Fine Control, but except the Coarse Control, which was devel-
oped for MSWindows and currently cannot be run on a Linux
machine. Table III shows the performance of the Line Tracking

7A momentray loss of control means that the Control Arbitrator lost com-
munication with all Fine Control loops and had to move the end-effector to a
standard configuration given by the Coarse Control, from which point, it could
recover the 6 DOF control of the robot. A permanent loss of control means that
the object left the field of view of all cameras and could not be tracked—no mo-
tion command could be sent to the Control Arbitrator thereafter.

2000

modules in a centralized configuration of the system. In this
experiment, one module in particular, the Fine Control’s Fea-
ture Extraction Module, presented a drop from the previous
4 % 29.8 fps (29.8 fps for the left and right images in each of
the two instances of the Fine Control) in a distributed configura-
tion (Table I) to only 4 x 7.5 fps in the centralized configuration
(Table III). The performance of the centralized system was also
affected by the number of instances of Fine Control: from 19.1
fps to 7.5 fps.

These changes in performance caused a devastating impact in
the system. As we mentioned in previous sections, the design of
many modules of the system take into account parameters such
as: the speed of the target object; the time required for image
processing; etc. For example, the size of the search window
in the tracking algorithm must be increased to permit a faster
moving target or a longer image processing time. By running
the system in a centralized manner, the image processing time
was greatly affected and the size of the tracking window had to
be increased to accommodate that change. Also, the nondeter-
minism of the time delays imposed by the centralization caused
the Arbitration Module to behave inconsistently: some times it
would switch between faulty modules in a promptly manner,
while other times it would switch too soon, and yet, some times
it could require a longer timeout to make the decision to switch.

As we mentioned earlier, the design of distributed and
self-contained modules allows for the design of each individual
module in an independent fashion, which is definitely a major
advantage in the design and implementation of complex control
systems.

C. Accuracy and Response Time

Finally, two additional aspects of our system are accuracy
and response time—in terms of time lags and other delays.
These two aspects are quite difficult to measure because of the
difficulty in obtaining the ground truth. That is, to measure
both accuracy and time lag between motion of the target object
and corresponding response of the end-effector we need to
know the exact pose of the object at each moment, which
is not available in our current setting. However, the superior
performance of our system with respect to both these aspects
can be seen in another set of MPEG movies available at
http://rvll.ecn.purdue.edu/RVL/Projects/LineTracking.

1) Response Time: The response time of our system is quan-
titatively shown in NewTrackingMPG1.mpg. For that experi-
ment, we attached a engine cover to a linear slide, and with the
help of two strings, we allow a human subject to rotate, shake,
and stop the engine cover at many positions and orientations.
We tried to reproduced the same characteristics of the actual line
dynamics, (Section IV), but in many occasions, the human sub-
ject was able to impose sharper changes and larger accelerations
to the target object than those actually observed in an assembly
line. Despite this fact, in the experiment, the system is able to
keep the robot end-effector at its relative pose with respect to
the target object.

2) Accuracy: We measured the accuracy of the system
using two different experiments, which can be seen in
Fine_AccuracyMPG1.mpg and Peg-n-HoleMPG1.mpg. For the
first experiment, we glued a 1 cm color sticker on the target

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

N

Fig. 12. Snapshot of the Peg-and-Hole Experiment in http://rvll.ecn.purdue.
edu/RVL/Projects/LineTracking/Peg-n-HoleMPG1.mpg.

object and we installed a laser pointer to the end-effector. The
video shows several runs of the Fine Control where the laser
dot always falls inside the color sticker, implying that the
translational component of the pose error in the plane of the
target object was smaller than 1 cm.

Fig. 12 shows the second experiment where a wooden cup
with a 1 1/2in. hole was mounted onto the engine cover and a
peg with an approximate diameter of 1 3/8" was attached to the
robot end-effector. The purpose of the experiment was to show
that the robot could be guided and the peg could be inserted in
the hole at the right angle and position, while the engine cover
moved down the line at varying position and orientation deter-
mined by the human subject.

VI. CONCLUSION

We have described a visual servoing system that was imple-
mented using a distributed, modular, and fault-tolerant software
architecture. The manner in which we have combined concepts
from distributed systems, computer vision, robotics, and con-
trol systems has yielded an architecture that offers reliability,
safety, and fault-tolerance. This architecture is composed of a
hierarchy of independent control loops that can subsume each
other (Fig. 2). For additional reliability and fault-tolerance, the
architecture can also accommodate duplicate versions of the
same control loop. All these characteristics together make our
architecture not only academically interesting, but also appli-
cable to “real-life” problems encountered in the automation of
industrial processes.

In summary, from a technical standpoint, we believe that our
architecture offers the following key advantages.

* It is composed of a multiple control loops for visual ser-
voing which allows algorithms (e.g., image processing) to
run at their fastest possible rates.

* It promotes the use of distributed systems techniques in
the context of visual servoing in order to achieve fault-tol-
erance, modularity, elasticity, and flexibility in the imple-
mentation and design of the visual servos (control loops).

* Itis based on a client/server infrastructure that permits the
distribution of modules over a network of computers and
that nevertheless meets the stringent constraints of vision-
based systems.

In other words, our software architecture differs from every
other architecture developed to date because it addresses at the
same time issues such as fault-tolerance, CPU-efficiency, dis-
tributed (parallel) processing, interprocess communication, and
modularity, while it still provides accuracy and speed in 6 DOF

DESOUZA AND KAK: SUBSUMPTIVE, HIERARCHICAL, AND DISTRIBUTED VISION-BASED 2001

visual servoing without any a priori information about the mo-
tion of the target.

The system has performed as expected. In all our tests con-
ducted so far, all modules and control loops executed at their
fastest possible rates even in the presence of deliberately intro-
duced system faults.

Finally, in several runs of the system—both in the “peg-n-
hole” experiment, and in the experiment using the laser pointer
directed to a target—we showed that the system can be em-
ployed for any assembly task where the accuracy required is
3/4 (laser-target experiment) or even 1/8 (peg-n-hole experi-
ment) of an inch.

There are many directions in which we are improving our
visual servoing system. For example, we are currently imple-
menting a predictive control scheme using extended Kalman
filtering, and a proportional, integral and derivative (PID) con-
troller using summation (integral) and difference (derivative) of
HTMs and their quaternion forms. Also, other implementations
of the Coarse Control using an illumination invariant algorithm
for tracking is being tested. Regarding the software architecture
itself, we plan to measure parameters such as mean time be-
tween failures (MTBF), availability, etc.

ACKNOWLEDGMENT

The authors wish to thank Ford Motor Company for sup-
porting this research. In particular, they are grateful to F. Maslar,
V. Bolhouse, and the staff of the Advanced Manufacturing Tech-
nology Development, Ford AMTD, for providing inspiration
and feedback in terms of what will be the requirements of the
automations of the future. The work reported here would not be
possible without the help of many of the past and present mem-
bers of the Purdue Group, including, but not limited to, Y. Yoon
and J. B. Park.

REFERENCES

[1] R. A. Brooks, “A robust layered control system for a mobile robot,”
1IEEE J. Robot. Automat., vol. RA-2, pp. 14-23, Mar. 1986.

[2] R. C. Arkin, “Motor schema-based mobile robot navigation: An ap-
proach to programming by behavior,” in Proc. IEEE Int. Conf. Robotics
Automation, 1987, pp. 264-271.

, “Motor schema-based mobile robot nabigation,” Int. J. Robot.
Res., vol. 8, no. 4, pp. 92112, 1989.

[4] A.A.D.de Medeiros, R. Chatila, and S. Fleury, “Specification and vali-
dation of a control architecture for autonomous mobile robots,” in Proc.
IEEFE Int. Conf. Intelligent Robots Systems, 1997, pp. 162-169.

[5] R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M.

Slack, “Experiences with an architecture for intelligent, reactive agents,”

in Proc. JETAI vol. 9, 1997, pp. 237-256.

J. Rosenblatt and C. E. Thorpe, “Combining multiple goals in a be-

havior-based architecture,” in Proc. IEEE Int. Conf. Intelligent Robots

Systems, vol. 1, Pittsburgh, PA, Aug. 5-9, 1995, pp. 136-141. Aug..

[7] H.C.J.Kosecka and R. Bajcsy, “Experiments in behavior composition,”
Robotics and Autonomous Systems, vol. 19, pp. 287-298, 1997.
[8] R. Simmons, “Structured control for autonomous robots,” IEEE Trans.
Robot. Automat., vol. 10, pp. 34-43, June 1994.
[9] R.C. Arkin, “Temporal coordination of perceptual algorithms for mobile
robot navigation,” IEEE Trans. Robot. Automat., vol. 10, pp. 276-286,
June 1994.
[10] R. C. Arkin and T. Balch, “Aura: Principles and practice in review,” J.
Exper. Theoretical Artif. Intell., vol. 9, no. 2-3, pp. 175-189, 1997.
[11] H. P. Moravec and A. Elfes, “High resolution maps from wide angle
sonar,” in Proc. IEEE Int. Conf. Robotics Automation, 1985, pp.
116-121.

(3]

[6

—

[12] J. K. Tsotsos, “Behaviorist intelligence and the scaling problem,” Artif.
Intell., vol. 75, no. 2, pp. 135-60, June 1995.

[13] J.Pan,D.J. Pack, A. Kosaka, and A. C. Kak, “Fuzzy-nav: A vision-based
robot navigation architecture using fuzzy inference for uncertainty-rea-
soning,” in Proc. IEEE World Congr. Neural Networks, vol. 2, July 1995,
pp. 602-607. July.

[14] S. Hutchinson, G. D. Hager, and P. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robot. Automat., vol. 12, pp. 651-670, Oct. 1996.

[15] W.R. Stevens, UNIX Network Programming: Interprocess Communica-
tions. Englewood Cliffs, NJ: Prentice-Hall, 1999, vol. 1.

[16] J.Rosenblatt and D. Payton, “A fine-grained alternative to the subsump-
tion architecture for mobile robot control,” in Proc. IEEE/INNS Int. Joint
Conf. Neural Networks, vol. 2, 1989, pp. 317-323.

[17] A.Jones, G. N. DeSouza, and A. C. Kak, “A multi-processing software
infrastructure for robotic systems,” in Proc. IEEE Int. Conf. Robotics
Automation, vol. 1, Seoul, Korea, May 2001, pp. 193-8.

[18] G. N. DeSouza, “A subsumptive, hierarchical, and distributed vision-
based architecture for smart robotics,” Ph.D. dissertation, Dept. Elec.
Comput. Eng., Purdue University, West Lafayette, IN, 2002.

[19] P. Corke, Visual Control of Robot Manipulators—A Review, in Visual
Servoing, K. Hashimoto, Ed, Singapore: World Scientific, 1994.

[20] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” J. Appl. Mechan., vol. 77, pp. 215-221,
1955.

[21] K. Shoemake, “Animating rotation with quaternion curves,” Comput.
Graph., vol. 19, no. 3, 1985.

[22] T. Drummond and R. Cipolla, “Real-time visual tracking of complex
structures,” IEEE Trans. Pattern Anal. Machine Intell., vol. 24, pp.
932-946, July 2002.

[23] Y. Yoon, G. N. DeSouza, and A. C. Kak, “Real-time tracking and pose
estimation for industrial objects using geometric features,” in Proc.
IEEE Int. Conf. Robotics Automation, Taiwan, R.O.C., May 2003, pp.
3473-3478.

[24] P. Mittrapiyanuruk and G. N. DeSouza, “Calculating the 3-D-pose of
rigid objects using active appearance models,” in Proc. IEEE Int. Conf.
Robotics Automation, New Orleans, LA, Apr. 2004, pp. 5147-5152.

[25] E. Grosso, G. Metta, A. Oddera, and G. Sandini, “Robust visual ser-
voing in 3-d reaching tasks,” IEEE Trans. Robot. Automat., vol. 12, pp.
732-742, Oct. 1996.

[26] B. Bishop, A. Castano, S. Hutchinson, R. Sharma, P. Shirkey, M. Spong,
and N. Srinivasa, “Some experiments in vision-based robotics at the uni-
versity of illinois,” in Proc. IEEE Int. Conf., 1995, pp. 3-8.

[27] A. Arsenio and J. Santos-Victor, “Robust visual tracking by an active
observer,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1997,
pp. 1342-1347.

[28] W. G. Yau, L. Fu, and D. Liu, “Design and implementation of visual
servoing system for realistic air target tracking,” in Proc. IEEE Int. Conf.
Robotics Automation, Seoul, Korea, May 2001, pp. 229-234.

[29] J.Batista, P. Peixoto, and H. Araujo, “Robust visual tracking by an active
observer,” in Proc. IEEE Int. Conf. Intelligent Robots Systems, 1997, pp.
1348-1354.

[30] G. N. DeSouza and A. C. Kak, “Vision for mobile robot navigation: A
survey,” IEEE Trans. Pattern Anal. Machine Intell.,vol. 24, pp. 237-267,
Feb. 2002.

[31] R. Hirsh, G. N. DeSouza, and A. C. Kak, “An iterative approach to the
hand-eye and base-world calibration problem,” in Proc. IEEE Int. Conf.
Robotics Automation, vol. 1, Seoul, Korea, May 2001, pp. 2171-2176.

[32] G. N. DeSouza, A. H. Jones, and A. C. Kak, “An world-independent
approach for the calibration of mobile robotics active stereo heads,” in
Proc. IEEE Int. Conf. Robotics Automation, Washington, DC, May 2002,
pp. 3336-3341.

[33] A.C.Sanderson, L. E. Weiss, and C. P. Neuman, “Dynamic sensor-based
control of robots with visual feedback,” IEEE Trans. Robot. Automat.,
vol. RA-3, pp. 404-417, Oct. 1987.

[34] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion
models and accuracy evaluation,” IEEE Trans. Pattern Anal. Machine
Intell., vol. 14, pp. 965-980, Oct. 1992.

[35] M. Jagersand and R. Nelson, “On-line estimation of visual-motor
models using active vision,” in Proc. ARPA Image Understanding
Workshop, 1996.

[36] P. Corke, “Dynamic issues in robot visual-servo systems,” in Proc. Int.
Symp. Robotics Research, Herrsching, Germany, 1995, pp. 488—498.

[37] Z. Dodds, M. Jdgersand, G. Hager, and K. Toyama, “A hierarchical
vision architecture for robotic manipulation tasks,” in Proc. Int. Conf.
Computer Vision Systems, 1999, pp. 312-331.

2002 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 5, OCTOBER 2004

Guilherme N. DeSouza (M’96) is with the faculty
of the School of Electrical, Electronic, and Com-
puter Engineering at The University of Western
Australia, Crawley. He worked for many years as an
Associate Research Scientist for the Brazilian Power
Systems Research Center, CEPEL, Rio de Janeiro,
Brazil, in areas such as real-time and distributed
systems, neural networks, fuzzy logic, etc. For the
past few years, he worked as a Principal Research
Scientist at Purdue University, West Lafayette, IN,
where this research was conducted. His research
interests lie generally in vision-guided and intelligent robotics, as for example:
feature-based and appearance-based tracking; mobile robotics; visual servoing;
object recognition; etc.

intelligence, especially robotic vision. He is the chief editor of the Journal
Computer Vision and Image Understanding published by Elsevier.

Avinash C. Kak is a Professor of electrical and
computer engineering at Purdue University, West
Lafayette, IN. He has coauthored the widely used
book Digital Picture Processing, (New York: Aca-
demic, 1982). He has also coauthored Principles of
Computerized Tomographic Imaging, (Philadelphia,
PA: SIAM, 1988). His latest book, Programming
with Objects: A Comparative Presentation of Ob-
Jject-Oriented Programming with C++ and Java,
(New York: Wiley, 2003). His current research in-
terests are focused on the sensory aspects of robotic

	toc
	A Subsumptive, Hierarchical, and Distributed Vision-Based Archit
	Guilherme N. DeSouza, Member, IEEE, and Avinash C. Kak
	I. I NTRODUCTION
	A. Architectures for Robotic Systems
	B. Vision-Based Robotics and Automation

	Fig.€1. Example of assembly cells in the automotive industry.
	II. N EW S OFTWARE A RCHITECTURE
	A. Control Software Architecture

	Fig.€2. Generic organization of control loops used in our visual
	1) Multiloop Control Architecture: For the reasons that we have
	2) Independence of the Control Loops: As it should be clear now,

	Fig.€3. Image processing and communication threads in the image
	3) Decoupling Application and Communication Tasks: Unfortunately
	III. I MPLEMENTED A PPROACHES TO V ISUAL -S ERVOING
	A. Notations
	1) Homogeneous Vectors and Transformations: Unless otherwise spe

	Fig.€4. Three model features of the target object and the coordi
	2) Target Object Coordinate Frame: In order to servo the robot w

	Fig.€5. Alignment between object and end-effector coordinate fra
	B. Control Law
	1) Position-Based Visual Servoing:
	Definition 1: A positioning task for a position-based visual ser
	2) Image-Based Visual Servoing: As we have shown in the previous
	Definition 2: A positioning task for an image-based visual servo
	3) Advantages/Disadvantages of Both Approaches: As we mentioned

	IV. A PPLICATION OF THE S OFTWARE A RCHITECTURE FOR L INE T RACK
	A. Fine Control

	Fig.€6. Architecture for the Line Tracking project consisting of
	1) Internal Architecture of the Fine Control: As Fig.€7 depicts,

	Fig.€7. Composition of the Fine Controller.
	Fig.€8. Image processing performed by the Feature Extraction Mod
	a) Feature Extraction Module: The Feature Extraction module is t
	b) Servo Control Module: The Servo Control module is formed by t

	Fig.€9. Composition of the Coarse Control.
	B. Coarse Control
	1) Internal Architecture of the Coarse Control: As shown in Fig.

	Fig.€10. Image processing performed by the Coarse Control.
	C. Control Arbitrator
	1) Internal Architecture of the Control Arbitrator: The Control
	Fig.€11. Internal Architecture of the Control Arbitrator.

	TABLE I O PERATIONAL M ODULES AND T HEIR E XECUTION R ATES FOR O
	V. R ESULTS AND D ISCUSSION
	A. Fault-Tolerance

	TABLE II M OMENTARY AND P ERMANENT L OSS OF C ONTROL FOR O UR M
	TABLE III O PERATIONAL M ODULES AND T HEIR E XECUTION R ATES FOR
	B. Distributed versus Centralized Implementations
	C. Accuracy and Response Time
	1) Response Time: The response time of our system is quantitativ
	2) Accuracy: We measured the accuracy of the system using two di

	Fig.€12. Snapshot of the Peg-and-Hole Experiment in http://rvl1.
	VI. C ONCLUSION
	R. A. Brooks, A robust layered control system for a mobile robot
	R. C. Arkin, Motor schema-based mobile robot navigation: An appr
	A. A. D. de Medeiros, R. Chatila, and S. Fleury, Specification a
	R. P. Bonasso, R. J. Firby, E. Gat, D. Kortenkamp, D. Miller, an
	J. Rosenblatt and C. E. Thorpe, Combining multiple goals in a be
	H. C. J. Kosecka and R. Bajcsy, Experiments in behavior composit
	R. Simmons, Structured control for autonomous robots, IEEE Trans
	R. C. Arkin, Temporal coordination of perceptual algorithms for
	R. C. Arkin and T. Balch, Aura: Principles and practice in revie
	H. P. Moravec and A. Elfes, High resolution maps from wide angle
	J. K. Tsotsos, Behaviorist intelligence and the scaling problem,
	J. Pan, D. J. Pack, A. Kosaka, and A. C. Kak, Fuzzy-nav: A visio
	S. Hutchinson, G. D. Hager, and P. Corke, A tutorial on visual s
	W. R. Stevens, UNIX Network Programming: Interprocess Communicat
	J. Rosenblatt and D. Payton, A fine-grained alternative to the s
	A. Jones, G. N. DeSouza, and A. C. Kak, A multi-processing softw
	G. N. DeSouza, A subsumptive, hierarchical, and distributed visi
	P. Corke, Visual Control of Robot Manipulators A Review, in Visu
	J. Denavit and R. S. Hartenberg, A kinematic notation for lower-
	K. Shoemake, Animating rotation with quaternion curves, Comput.
	T. Drummond and R. Cipolla, Real-time visual tracking of complex
	Y. Yoon, G. N. DeSouza, and A. C. Kak, Real-time tracking and po
	P. Mittrapiyanuruk and G. N. DeSouza, Calculating the 3-D-pose o
	E. Grosso, G. Metta, A. Oddera, and G. Sandini, Robust visual se
	B. Bishop, A. Castano, S. Hutchinson, R. Sharma, P. Shirkey, M.
	A. Arsenio and J. Santos-Victor, Robust visual tracking by an ac
	W. G. Yau, L. Fu, and D. Liu, Design and implementation of visua
	J. Batista, P. Peixoto, and H. Araujo, Robust visual tracking by
	G. N. DeSouza and A. C. Kak, Vision for mobile robot navigation:
	R. Hirsh, G. N. DeSouza, and A. C. Kak, An iterative approach to
	G. N. DeSouza, A. H. Jones, and A. C. Kak, An world-independent
	A. C. Sanderson, L. E. Weiss, and C. P. Neuman, Dynamic sensor-b
	J. Weng, P. Cohen, and M. Herniou, Camera calibration with disto
	M. Jagersand and R. Nelson, On-line estimation of visual-motor m
	P. Corke, Dynamic issues in robot visual-servo systems, in Proc.
	Z. Dodds, M. Jägersand, G. Hager, and K. Toyama, A hierarchical

