
www.elsevier.com/locate/cviu

Computer Vision and Image Understanding 99 (2005) 1–57
A multi-Kalman filtering approach for
video tracking of human-delineated objects

in cluttered environments

Jean Gao*, Akio Kosaka, Avinash C. Kak

Robot Vision Lab, School of Electrical and Computer Engineering, Purdue University,

West Lafayette, IN 47907, USA

Received 12 November 2002; accepted 27 October 2004
Available online 30 December 2004
Abstract

In this paper, we propose a new approach that uses a motion–estimation based framework
for video tracking of objects in cluttered environments. Our approach is semi-automatic, in the
sense that a human is called upon to delineate the boundary of the object to be tracked in the
first frame of the image sequence. The approach presented requires no camera calibration;
therefore it is not necessary that the camera be stationary. The heart of the approach lies in
extracting features and estimating motion through multiple applications of Kalman filtering.
The estimated motion is used to place constraints on where to seek feature correspondences;
successful correspondences are subsequently used for Kalman-based recursive updating of the
motion parameters. Associated with each feature is the frame number in which the feature
makes its first appearance in an image sequence. All features that make first-time appearances
in the same frame are grouped together for Kalman-based updating of motion parameters.
Finally, in order to make the tracked object look visually familiar to the human observer,
the system also makes its best attempt at extracting the boundary contour of the object—a
difficult problem in its own right since self-occlusion created by any rotational motion of
the tracked object would cause large sections of the boundary contour in the previous frame
to disappear in the current frame. Boundary contour is estimated by projecting the previous-
1077-3142/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.cviu.2004.10.005

* Corresponding author. Fax: +1 817 272 3784.
E-mail addresses: jgao@ecn.purdue.edu (J. Gao), kosaka@ecn.purdue.edu (A. Kosaka), kak@ecn.

purdue.edu (A.C. Kak).

mailto:jgao@ecn.purdue.edu
mailto:kosaka@ecn.purdue.edu
mailto:kak@ecn.

2 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
frame contour into the current frame for the purpose of creating neighborhoods in which to
search for the true boundary in the current frame. Our approach has been tested on a wide
variety of video sequences, some of which are shown in this paper.
� 2004 Elsevier Inc. All rights reserved.

Keywords: Tracking; Kalman filtering; Object tracking; Normalized cross-correlation; Perspective; Seg-
mentation; Motion estimation; Recursive motion estimation; Feature extraction; Correspondence probl-
em; Extended Kalman filtering; Boundary extraction; Region growing; Semi-automatic segmentation;
Human-in-the-loop segmentation; Video surveillance; Video tracking
1. Introduction

Object tracking has received considerable attention during the past several years
[28,40,17,16,23,6,30,36,38]. Applications of object tracking can be found in areas as
diverse as video editing for publishing and entertainment, video surveillance, object-
based coding for MPEG-4, query formation for MPEG-7, etc.

The approaches suggested so far for object tracking can be classified into auto-
matic and semi-automatic categories. The fully automatic approaches, such as those
proposed by [27,19,15,5,21], work mostly for simple objects executing simple mo-
tions against clutter-free backgrounds. An example would be a bright light source
moving against a uniform dark background. Tracking under such conditions is rel-
atively easy for the obvious reason that the object can be trivially segmented from
the background. Automatic methods are not the focus of this paper, since we are
specifically interested in complex objects executing complex motions against clut-
tered backgrounds.

The semi-automatic methods are all based on the rationale that if the human
could help out with the initial segmentation of the object to be tracked, the computer
could then be relied upon to track the extracted form in subsequent frames. This
rationale underlies the many contributions in the semi-automatic category. The pub-
lished literature on such semi-automatic methods uses two different approaches for
motion estimation. While some researchers, such as [6,23,28], perform motion esti-
mation by establishing feature correspondences between the frames of a video se-
quence, others do motion estimation by first calculating optical flows.

The optical-flow based and the feature-correspondence based methods for motion
estimation have their own advantages and disadvantages. Optical flow based meth-
ods theoretically treat tracking as a segmentation of the flow field and group together
the optical flow vectors that exhibit the same motion [34,41,1]. The tracking perfor-
mance of these methods depends on the accuracy of the estimated motion field which
is error-prone in the vicinity of intensity discontinuities in images [3,41,18,11]. Addi-
tionally, tracking can often require dense optical flow fields, which may result in bur-
densome computations.

With regard to the feature-correspondence based approaches for motion estima-
tion, it is possible to use color, texture, contour, edge, illuminance, etc., for establish-
ing correspondences between successive frames and to then determine the motion
model parameters that best fit the entire set of observations [23,40,28,6].

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 3
There are, obviously, two issues here to deal with: the accuracy of feature correspon-
dences, and the accuracy of motion estimates as obtained from the feature correspon-
dences. The problem of feature correspondence is, in general, ill-posed due to the
presence of either multiple candidates within a search region or no candidates because
of occlusion and other factors. Using various assumptions—such as the correspond-
ing features in two consecutive frames must be each other�s nearest neighbors when
one frame is projected into the other—several approaches have been proposed for
establishing feature correspondences [43,10,45]. For example, Weng et al. [43] have
proposed a multi-attribute image matching method that creates a vector of attributes
for each pixel—in other words, every pixel becomes an image feature—and then seeks
matches on the basis of the similarity of these vectors. Since this process is carried out
at every pixel, the result is a dense motion map. For rigid motion, the attributes in-
cluded in the vector are the intensity, the edgeness, and the cornerness. For another
contribution related to feature correspondences, Cox [10] has surveyed different sta-
tistical data association methods, such as nearest neighbor, tracking-split, joint like-
lihood algorithms, etc., as strategies for establishing the correspondences.

After feature correspondences are established, motion estimation can be carried
out using either a non-recursive approach or a recursive approach. Whereas the for-
mer processes all the correspondences all at once for the motion estimate, the latter
processes one correspondence at a time that is then recursively updated by process-
ing the next correspondence. It was shown by Tekalp [39] and Alon and Sclaroff [8]
that non-recursive estimators are more stable and converge faster than recursive esti-
mators especially when the motion model used is non-linear. On the other hand,
recursive estimators tend to be computationally simpler, which can be a most impor-
tant consideration for real-time motion estimation.

With regard to recursive methods, various authors have shown motion tracking re-
sults using the Kalman filter—more precisely, the extended Kalman filter (EKF). For
some of the more prominent examples, see [7,23,29,8,45,20,9,46,47]. By using different
motion and/or camera models, or by applying different constraints, the authors have
shown different formulations of the EKF in the context of motion estimation. All of
these contributions include a feature extraction stage, and the accuracy of the EKF
algorithms depends considerably on the feature detection method used.

The work described in this paper is based on the feature-correspondence ap-
proach. Feature correspondence in our work takes place inside a feedback loop that
projects uncertainties into the images to place bounds on where to look for a feature.
Motion estimation then becomes an automatic by-product of the feature correspon-
dence step.

Unlike previous work, we do not decompose the feature-correspondence based
approach into two disjoint sub-problems—first establishing the feature correspon-
dences and then estimating motions. On the other hand, we use a single integrated
approach that uses feedback loops to simultaneously establish the feature correspon-
dences and to perform motion estimation.

Many of the previously cited contributions on semi-automatic tracking use affine
motion models, which implies (implicitly) that those methods are limited to the
tracking of planar surface patches. Our work makes no such assumptions; the

4 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
motions are allowed to be arbitrary rigid-body motions. Our framework is formu-
lated to recover from the monocular image sequences the relative depth values of
the features used for tracking at any given time. Furthermore, our system works
for any previously recorded video because no camera calibration is needed [44]. Addi-
tionally, no restriction is applied to either the camera or the background movement.

Feature correspondences in our approach are established via normalized cross-
correlation within bounded regions defined by the uncertainties associated with
the estimated motion vector. A candidate feature X in the current frame is accepted
as a correspondent for a feature Y in a previous frame provided the motion vector
that incorporates the X-to-Y correspondence says that X is within one unit of Mah-
analobis distance of Y. The problem of occlusion is taken care of by keeping track of
the lifetime of each feature—from the frame in which it makes its first appearance to
the frame in which it eventually disappears due to occlusion. The beginning frame
for a feature is called its genesis frame. For motion estimation in the current frame,
all of the features with the same genesis index are grouped together and used jointly
for Kalman-based updating of the motion vector.

Since boundary contours play a critical role in humans� perception of objects, our
system also makes a best attempt at extracting the object boundary during the track-
ing process. But, as is well known, when objects are allowed to undergo rotational
motions or when the view angle changes significantly, the problem of boundary
extraction is exceedingly difficult. For a best-attempt solution, our system carries
out a previous-frame to next-frame projection of the bounding contour in order to
create neighborhoods in which to search for the true boundary. The search process
presented in this paper uses a combination of growing and shrinking of the inner and
the outer bounds of such neighborhoods for the discovery of the real bounding con-
tours. The procedure is not fool-proof.

The paper is organized as follows. Section 2 gives an overall description of our sys-
tem. Then Section 3 presents feature correspondence matching through feature uncer-
tainty modeling, prediction, and extraction. How Kalman filter is initially applied to
motion estimation, and how motion estimation feedback is used in establishing fea-
ture correspondence are described in Section 4. Section 5 elaborates our multi-frame
based motion estimation method. How motion estimation is achieved when some of
the features get lost due to self-occlusion will also be described in Section 5. Section 6
discusses the topic of boundary extraction of an object that is being tracked. In
Section 7, we test the accuracy of our approach, first with synthetic data, and then
with real video sequences. Section 7 also presents the result of a comparison between
our approach and a traditional implementation of Kalman filter based object tracking
in which one simply uses correlation based feature selection, but no motion estima-
tion feedback to improve on feature correspondences.
2. The motion tracking framework—an overview

As we mentioned earlier, ours is a semi-automatic approach to the tracking of ob-
jects in video sequences. To get around the difficulty of segmentation, the human

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 5
must specify what to track in the first image of the sequence. Specification of what to
track obviously calls for a graphical interaction module that is not demanding on the
user. In our system, this problem was solved with a specially designed image editor
module, called the color-interactive segmentation editor (CISE) that is described
elsewhere [14]. The editor calls for minimal user interaction for specifying semanti-
cally significant boundaries. The degree of human interaction is reduced by giving
the user tools to delete/merge the regions produced by a split-and-merge segmentor
so that the final boundaries are appropriate for the object to be tracked. The editor
incorporates smart heuristics for edge-linking, together with boundary smoothing
through an energy-minimization algorithm. The role of the editor is made clear in
the overview schematic of Fig. 1. The box labeled ‘‘Object Initial Definition’’ stands
for the user using CISE to specify a Region of Interest for tracking. Since the focus
of this paper is specifically on Kalman filtering for tracking, we will not delve any
further into the details of CISE. The reader is referred to [14] for further details.

The rest of the flow diagram of Fig. 1 deals with the tracking of 3D objects. As
implied by the figure, the tracking process begins with an automatic selection of fea-
ture points inside and on the boundary of the object, this function being performed
by the Feature Selection module. As we will explain later, the boundary points are
not used for tracking—since their visibility cannot be relied upon when objects are
rotating—but only for maintaining an internal representation of the object being
tracked. The interior points, on the other hand, are the ones that are tracked.

The interior points form a second internal representation of the object, this one
purely for the purpose of tracking. We will show in the next section that all of the
interior points taken together can be used to construct a motion vector (MV) and
a shape vector (SV) that are subject to Kalman filtering for motion and pose
prediction.

For the initially registered interior feature points, we keep tracking them until
they disappear due to self-occlusion or feature mis-match, and in the meantime,
new features are registered as time goes on. The basic tool for establishing a feature
correspondence is the normalized-cross-correlation (NCC) within a neighborhood
bounded by the Kalman-predicted motion of the object. The resulting feature corre-
spondences are used to update the motion vector associated with the object. The up-
dated motion vector is then used to test again the appropriateness of the feature
Fig. 1. Overall architecture for motion tracking.

Fig. 2. Interior feature points flow, where feature i starts in frame 0 and disappears in frame k + 1, and
feature j starts in frame k + 1 and is still active in current frame n.

6 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
correspondences, or to predict new neighborhoods in which to seek the correspond-
ing features points.

Fig. 2 depicts a feature i that initially appears in frame 0, but disappears in frame
k + 1. Also depicted is feature j that first appears in frame k + 1 and is still active in
the current frame n. Frame 0 is the genesis frame for feature i and frame k + 1 is the
genesis frame for feature j. All of the features in the current frame are grouped on the
basis of their individual genesis frame index. The Two-Frame Motion Estimation

module carries out motion estimation using groups of features, all the features in
the same group having the same genesis frame. Therefore, if a group of features in
the current frame n has a genesis index k, the Two-Frame Motion Estimation module
will update the motion vector of the object by applying the Kalman filter to the
frame-k and frame-n data.1

While the Two-frame Motion Estimation module updates the motion vector in the
current frame on a feature-grouping by feature-grouping basis, each grouping char-
acterized with the same genesis index, we also need a mechanism to combine all of
these updates into an overall single update for the motion vector of the object. This
is accomplished by the Multi-Frame Motion Estimation module shown in Fig. 1.

Subsequently, the Boundary Updating module makes a best effort for delineating
the boundary of the object. It is critical to note here that the output of this module
only secondarily affects the overall tracking performance of our system. As was men-
tioned earlier, the boundary points are not used directly for tracking, since they are
highly susceptible to occlusion in the presence of object rotations. Yet, humans wit-
nessing the tracker like to see the boundary of the object being tracked. Hence this
module.

The behavior of the Boundary Updating module affects the tracker in the sense
that it circumscribes the region in which the system should look for additional
new feature points if too many of the old disappear on account of occlusion.
1 Note that this module carries out motion estimation not just from the last frame to the current frame
(unlike many other implementations of Kalman filtering for tracking), but from the frame in which a
feature first makes its appearance to the current frame. We believe that this approach results in more
robust motion estimation. When a feature first pops up in a new frame, the system associates by default a
large value of uncertainty with the feature. Subsequently, as this feature is tracked from frame to frame,
the Kalman filter reduces that initial uncertainty.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 7
The selection of the additional feature points when needed is carried out by the Se-

lect Additional New Features module shown in the figure.
3. Extraction of feature points, their representations, and uncertainty modeling

We will address in this section the core issue of how we find correspondences in
frame n for the new features discovered in frame k, k < n. Fundamental to this process
is the estimation of motion from frame k to frame n and the calculation of motion
uncertainties in frame n. The uncertainty parameters in frame n will be obtained by
a two-step procedure: prediction based on the uncertainty values in frame n � 1
and update based on the frame-k to frame-n correspondences deemed appropriate
in frame n. So, on the one hand, the correspondences established will help us update
the motion uncertainties, and, on the other, the estimated motion uncertainties will
help us determine the correspondences. While on the face of it, this sounds circular,
but, as we will show, when motion between successive frames is small, this logic yields
good estimates of motion. Section 5 will then show how to use the frame-k to frame-n
motion estimation framework of Section 4 to estimate motions in frame-n using all of
the genesis frames. The frame-k to frame-n correspondence problem addressed in this
section presents motion estimation formulas using the m interior feature points that
make their first appearance in frame k, the current frame being frame n.

3.1. Automatic selection of feature points for tracking and for boundary description

Before we talk about feature correspondence for a group of features with genesis
index k from frame-k to frame-n, we will first show how feature points are selected
automatically in the very first frame at the beginning of tracking process. This cor-
responds to the Feature Selection module in Fig. 1. But before we do so, we need to
mention that object feature points serve two distinct purposes in our work: (1) Those
that are on the boundary of the object are used for maintaining a description of the
object being tracked; and (2) Those that are interior to the object, in the sense of not
being on its boundary as projected on the camera plane, are used for actual tracking.
It should be obvious that in the presence of both translations and rotations, espe-
cially the latter, it would not be wise to use the boundary points for tracking, since
the rotation would cause some of them to become invisible to the camera. However,
since we do need to maintain a representation of what is being tracked, the boundary
points are still important.

We will now describe how the feature points are chosen automatically in the first
frame after a human has delineated an ROI. In what follows, we will first describe
how the boundary points are chosen by the system. Next, we provide a description
of how the interior points are chosen for tracking.

Boundary point selection is based on marking an initial point on the boundary by
raster scanning the ROI and choosing for the first boundary point the first intersec-
tion of a raster line with the human-delineated boundary. The other points are
extracted by the following recursive procedure:

8 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
Let the current point be denoted Pi. Now

1. Starting from Pi, visit each consecutive point on the ROI boundary. Let the cur-
rent point be P0. Construct a chord from Pi to each P0 and determine the maximal
perpendicular distance between the chord and the boundary between Pi and P0.

2. If the perpendicular distance exceeds a threshold, make P0 the next Pi and go back
to step 1.

3. If P0 goes past the original starting point, stop.

We denote the set of M boundary points thus extracted by B ¼ f~b0; . . . ;~bM�1g.
Fig. 3A is a pictorial depiction of the algorithm. Of course, to achieve minimum
boundary approximation error, a user can use pixel-wise representation of ROI
boundary, i.e., select every single point on ROI boundary by restricting the maxi-
mum Euclidean distance between adjacent points to be 1.

The interior feature points are obtained by first calculating the edge maps of the
R, G, B components of ROI by Canny edge detector. Next, an overall edge map is
obtained by taking a logic OR of the three edge maps. Feature points are then se-
lected by sub-sampling the edge points in the overall edge map. Let
E ¼ f~q0; . . . ;~qN�1g represent the set of selected interior feature points. Fig. 3B is
the original image and Fig. 3C is the overall edge map. Fig. 3D shows the human-
Fig. 3. (A) Selection of boundary points by thresholding chord lengths. (B) First image in the video
sequence. (C) Edge map of the first image. (D) Segmented object region and selected feature points.
The interior points are marked + and the boundary points ·.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 9
delineated object using CISE. Within Fig. 3D, the ‘‘·’’s are the selected boundary
points, and the ‘‘+’’s are the interior feature points.

3.2. Object representation for tracking and uncertainty modeling

In this subsection, we will show how the rigid-body motion constraint can be
used to specify a unique representation for the interior points that works well
for tracking. This representation consists of two vectors: a shape vector and a mo-
tion vector.

Using a pinhole camera model for a monocular sequence of images, we will as-
sume that the center of projection coincides with the origin of the world coordinates
and the XY plane of the world coordinates is parallel to the uv image plane. The rela-
tionship between an object point (X, Y, Z) in the world coordinates and its corre-
sponding point (ũ,~v) in the image plane is described by the following perspective
transformation in homogeneous coordinates [12]:

~uw

~vw

w

264
375 ¼

au 0 u0 0

0 av v0 0

0 0 1 0

264
375

X

Y

Z

1

26664
37775; ð1Þ

where (u0,v0), au and av are the intrinsic parameters of the camera. Note that the ũ
axis is parallel to the X axis, and the ~v axis is parallel to the Y axis.

By normalizing (ũ,~v) using u0, v0, au, and av, i.e.,

u ¼ ~u� u0
au

; v ¼ ~v� v0
av

ð2Þ

Eq. (1) becomes

Z

u

v

1

264
375 ¼

X

Y

Z

264
375: ð3Þ

When the object is in motion and the transformation between the frame k and
frame n is specified by the rotation matrix R and the translation vector T, then

X 0

Y 0

Z 0

264
375 ¼ R

X

Y

Z

264
375þ T; ð4Þ

where (X0,Y0,Z0) represent the new coordinates in the world coordinate frame, R is
the rotation matrix with elements rij, i, j = 0, 1, 2 defined by rotation angles /x, /y,
and /z with respect to X, Y, and Z axes and T is the translation vector defined by tx,
ty, and tz. We define the homogeneous transformation H as

H ¼
R T

0 1

� �
: ð5Þ

10 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
If we observe this point (X0,Y0,Z0) in the normalized image coordinates, then

Z 0
u0

v0

1

264
375 ¼ ZR

u

v

1

264
375þ T; ð6Þ

where (u0,v0) represents the image coordinates in the normalized camera image frame
at time n. The above equation can be rewritten in the form of the following con-
straint that must be satisfied by each feature point i:

f i ¼
f1
f2

� �
¼ 0; ð7Þ

which is the same as saying

f i ¼
u0 � r11uþr12vþr13þtx

Z
r31uþr32vþr33þtz

Z

v0 � r21uþr22vþr23Þþ
ty
Z

r31uþr32vþr33Þþtz
Z

264
375 ¼ 0: ð8Þ

Combining the rotation angles, translation vector, and depth values, we now de-
fine a motion vector (MV) npk and a shape vector (SV) w as

npk ¼ ð/x;/y ;/z; tx; ty ; tzÞ
T
; ð9Þ

w ¼ ðZ0; Z1; . . . ; Zm�1ÞT; ð10Þ
where m is the number of feature points first appeared in frame k. The vector npk en-
codes the motion-induced change in the pose of the object from frame k to frame n.
Central to our motion tracking scheme is the estimation of this vector. Since this vec-
tor is inherently a random entity, for the purpose of estimation it will be represented
by its mean vector n�pk and by its covariance matrix nRk. We represent the motion
uncertainty from frames k to n as nUk : ðn�pk; nRkÞ.

While the motion vector represents a global property of the entire object that is
being tracked, the shape vector is a collection of depth attributes, each local to a fea-
ture point. This calls for a different way of representing the uncertainty in the shape
vector. Each element of the shape vector will be represented separately by its mean �Zi

and its standard deviation rZi .
Without loss of generality, here we assume that the uncertainties in both the mo-

tion vector and the shape vector are Gaussian, implying that the means and the
covariances are sufficient for their representation. In the context of uncertainty mod-
eling, there is a respectable tradition for this assumption in computer vision, in gen-
eral [37,7,8], and in vision-based motion tracking in particular [29].2
2 As stated in [12], the Gaussian assumption is not necessary for Kalman based estimation to be
optimum when the system measurements are linear functions of the state variables. This linearity
assumption does not strictly apply in our case since our state equations are fundamentally non-linear,
although we do linearize in the vicinity of the operating point for Kalman estimation.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 11
3.3. Feature prediction and finding correspondences

The solution to the frame-k to frame-n correspondence problem is illustrated by
part of the block diagram in Fig. 4, which is an expansion of the single block labeled
Two-Frame Motion Estimation module of Fig. 1.

In Fig. 4, the prediction is carried out by the Motion nUk Prediction module that
predicts the mean n�pk and error covariance matrix nRk of the motion vector (MV)
associated with the m points using the frames k and n. The motion vector prediction
is used by the Feature Prediction and Extraction module to first predict the locations
of the m features points in the current frame n; to surround these locations with
appropriate uncertainty regions; and, finally, to extract from the uncertainty regions
thus delineated the new locations of the m feature points by using normalized cross-
correlation (NCC). Within each uncertainty region, the system retains the feature
point with the highest value yielded by NCC. If this highest value does not exceed
a preset threshold, the feature point is discarded, in which case a given feature point
in frame k may not possess a corresponding point in frame n. In the following para-
graphs, we will technically present how the above steps are carried out.

3.3.1. Motion uncertainty nUk prediction

As defined already, nUk is the pair ðn�pk; nRkÞ, the first element of which is the mean
value of the motion vector, meaning the mean change in the pose of the object from
frame k to frame n, and the second element the covariance associated with this pose
change. Given the m feature points in frame k, we want to estimate nUk. What that
means is that we want to use the m features of frame k and their corresponding
points in frame n to estimate the new mean and the new covariance of the motion
vector in frame n.

The estimate nUk is formed by first making its prediction nUek, then using the pre-
dicted motion to find frame-n correspondences for the m features of frame-k, and fi-
nally updating the prediction into the desired estimate based on the correspondences.
Fig. 4. Feature correspondence and motion estimation in frame-n for a group of feature points born in
frame-k.

12 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
The prediction nUek can be obtained by using the previously computed estimate

n�1Uk and a reasonable initial guess about the motion uncertainty nUn�1. The pre-
dicted (meaning guessed) pose change statistics from frame n�1 to n are given by

nUen�1 : ðn�pen�1; nRen�1Þ and the already computed estimate for frame k to frame
n � 1 by n�1Uk : ðn�1�pk; n�1RkÞ. Let nHen�1 be the predicted homogeneous transforma-
tion from frame n � 1 to frame n, and n � 1Hk be the one from frame k to frame
n � 1. We can therefore write the predicted homogeneous transform nHek from
frame k to frame n as

nHek ¼ nHen�1 � n�1Hk: ð11Þ
Based on the assumption that motion between two adjacent frames is small and
bounded by some threshold, we can initialize n�pen�1 by

n�pen�1 ¼ 0; 0; 0; 0; 0; 0½ �T; ð12Þ
which says that mean change in pose between from frame n � 1 to frame n can be
expected to be zero for the purpose of initialization of the motion vector.

Again for the purpose of initialization, for the guessed error covariance matrix

nRen�1 we assume that the small standard deviation associated with the pose change
from frame n � 1 to frame n is the same for all three translational dimensions and is
represented by rt. We make a similar assumption for the rotational dimensions of
pose and represent that uncertainty by r/. We will also assume that the uncertainties
along the different dimensions are uncorrelated for the purpose of initialization. This
implies the following diagonal structure for nRen�1:

nRen�1 ¼

r2
/ 0 0 0 0 0

0 r2
/ 0 0 0 0

0 0 r2
/ 0 0 0

0 0 0 r2
t 0 0

0 0 0 0 r2
t 0

0 0 0 0 0 r2
t

26666666664

37777777775
: ð13Þ

The predicted mean value of motion vector n�pek can be obtained by directly
expanding of Eq. (11). But the calculation for the predicted covariance matrix

nRek is not straightforward. The mathematical details are presented in Appendix
A.

For the video sequences we have experimented with, we have typically used 2� for
r/ and 0.02m for rt. Obviously, the values chosen for these two standard deviations
would depend on the nature of motion. If the motion between two consecutive
frames is large, these values would need to reflect that.

3.3.2. Projecting predicted motion uncertainty into image space

So far we have talked about motion uncertainty modeling and prediction. Given
the predicted motion uncertainty nUek in the current frame n, we will now discuss
how this prediction can be used to place bounds on feature location uncertainties
in the current frame n. This we will do by projecting the predicted motion uncer-

Fig. 5. Uncertainty prediction for feature extraction.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 13
tainty into the image frame and then using the uncertainty bounds in the image space
for locating the correspondents of the feature points in frame k.

Calculation of the predicted feature location uncertainty in the current frame n is
carried out by projecting ðn�pek; nRekÞ into the image frame. More specifically, for each
feature point qi = (ui,vi)

T in the image frame k, we have the prediction mean �qei and
prediction error covariance R

qei in the current frame n, which are obtained by:

�qei ¼ �Ziðr11uiþr12viþr13Þþtx
�Ziðr31uiþr32viþr33Þþtz
�Ziðr21uiþr22viþr23Þþty
�Ziðr31uiþr32viþr33Þþtz

24 35; ð14Þ

R
qei ¼ Efðqei � �qeiÞðqei � �qeiÞTg; ð15Þ

¼ oqei
oðnpkÞ

����
npk¼n�pek � nRek � oqe

oðnpkÞ

����
npk¼n�pek

" #T
; ð16Þ

¼ of i

oðnpkÞ

����
npk¼n�pek � nRek � of i

oðnpkÞ

����
npk¼n�pek

" #T
: ð17Þ

When all pose random variables are in the vicinity of their means, the derivative
matrix of i

oðnpkÞ
as computed at the expected values of the random variables is sufficient

to convert the motion uncertainty into feature uncertainty in the image plane [29,37].
Fig. 5 shows the propagation of motion uncertainty into feature location uncer-

tainty. In Fig. 5, the ‘‘+’’ at frame n represents the predicted mean value, �qe, and
the ellipse represents the uncertainty region defined by R

qe. This propagation greatly
helps the feature extraction by reducing the search space for feature correspondence.

3.3.3. Feature extraction using predicted uncertainty

Feature extraction is done by template matching within the predicted uncertainty
regions of the image space as bounded by the parameters �qe and R

qe. We search for

14 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
the largest peak after we have correlated this uncertainty region with a 15 · 15 tem-
plate, modified as described below, that defines the feature in frame k. The output of
the correlator is subject to non-maximum suppression to sharpen up the peaks. We
refer to the output of the correlator as the Normalized Cross Correlation (NCC)
map of the predicted uncertainty region.

To elaborate, extraction of candidates in the current frame n for a particular fea-
ture in frame k consists of the following steps:

� Optimize in frame k the 15 · 15 template window used for NCC calculation by
deleting pixels that are not on the object being tracked. As we mentioned earlier,
in each frame we keep track of the boundary pixels that are used to modify the
template in this manner. This is important for correlation based tracking in the
presence of motion because of the ever-changing background. In Fig. 6A, the
white polygons show the trimmed templates for the different feature points A
and B represented by ‘‘+’’.

� Compute the NCC values within the predicted uncertainty region in frame n. The
NCC is computed by
Fig. 6. (A) Original registered feature points represented by white ‘‘+’’s in frame k, and the white polygons
show the optimized matching templates. (B) Corresponding feature match in frame n, where the ellipses
stand for predicted search regions and white polygons show NCC calculation at different candidate
positions. (C) Calculated NCC map of the search region for point A. (D) NCC map after non-maximum
suppression from (C).

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 15
NCC¼
P

ðuþDu;vþDvÞ2Template Ikðu;vÞ� �Ikð Þ InðuþDu;vþDvÞ� �Inð ÞffiP
ðu;vÞ2Template Ikðu;vÞ� �Ikð Þ2

P
ðuþDu;vþDvÞ2Template InðuþDu;vþDvÞ� �Inð Þ2

q ;

ð18Þ
where Ik() represents the intensities in frame k, In() the intensities in frame n, (u,v)
the pixel coordinates of the original feature in frame k, and (u + Du,v + Dv) the
coordinates of a possible candidate within the predicted region in frame n.

This can be seen in Fig. 6B where the white dotted ellipses depict the feature
uncertainty regions. To simplify the computation, during implementation, the
rectangular regions specified by the long and the short axes of the ellipses are
used. Fig. 6C shows the calculated NCC map for feature point A.

� Apply eight neighborhood non-maximum suppression to the NCC map. The
NCC map after non-maximum suppression will be composed of 0s and 1s where
the 1s stand for the peaks. Fig. 6D is the result obtained after non-maximum sup-
pression from Fig. 6C.

� If the highest NCC peak exceeds a certain threshold, record the corresponding
position as a valid correspondent for the frame-k feature; otherwise, label that fea-
ture point as an outlier which means none of the peaks within the predicted uncer-
tainty region can be used as possible candidates for the frame-k feature. In Fig.
5D, the point marked ‘‘q̂�’’ symbolizes the largest peak that is a valid measure-
ment in the NCC map.
4. Two-frame motion estimation

In the above section, we showed how to find in the current frame n the correspon-
dents of the features that make their first appearances in frame k. We will now show
how these correspondences can be used to update the predicted motion uncertainty

nUek into a new estimate nUk.
After previous Feature Prediction and Extraction submodule as shown in Fig. 4,

the m interior features in frame n are classified into two categories: Observable

and Unobservable. Only the features declared to be observable are retained. Using
Kalman filtering, the observable features in frame n are used for updating the motion
vector (MV). Unobservable features are simply discarded. (It is possible that an
unobservable feature would become observable again in a later frame. If that hap-
pens, it can be treated like a new feature if chosen for tracking in that frame.) When
a feature is discarded on grounds of observability, the system tries to find a new fea-
ture in order to keep the total number of features the same. This new feature gets
used subsequently the way we are using the m features from frame k in this
discussion.

Motion nUk Updating submodule in Fig. 4 uses the retained features to update nUk

by extended Kalman filtering, as discussed in Section 4.1. The initially updated mo-
tion parameters are used to test the validity of the feature correspondences using

16 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
Mahanalobis distances, which is done in Feature Evaluation submodule; this is dis-
cussed in Section 4.2. If a correspondence gets invalidated, we then temporarily dis-
card that feature and update the Motion uncertainty by using only those features
which satisfy both NCC and Mahanalobis distance constraints. This constitutes
the second visit of Kalman filtering.

For those invalid feature measurements produced by the Mahanalobis distance
pruning process and the NCC thresholding, the system tries to regenerate correspon-
dences as shown in the right branch of the flowchart of Fig. 7. To be more specific,
the feature correspondences are re-selected based on NCC from a smaller uncer-
tainty region that is the result of the second visit of Kalman filtering. The uncertainty
is finally updated by incorporating these new correspondences. This constitutes the
third visit of the Kalman filter.
Fig. 7. Flowchart for feature correspondence matching.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 17
As shown in Fig. 7, the updating of the motion uncertainty takes place at three
different points during the processing of the pixel data in the current frame n. We
use Kalman filtering for all three updates, and refer to the individual updates as
the ‘‘First Visit of the Kalman Filter,’’ the ‘‘Second Visit of the Kalman Filter,’’
and the ‘‘Third Visit of the Kalman Filter.’’ These three applications of the Kalman
filter are clearly marked in Fig. 7.

4.1. Updating motion uncertainty from initial feature correspondences

The first Kalman updating of motion uncertainty is derived from the feature
points in frame k and their initial correspondents discovered in frame n based on
the NCC threshold. The problem addressed can be stated formally as: given image
feature positions (ui,vi) (i = 0, 1, . . ., i 6 m � 1) in frame k, their initial correspon-
dents ðu�i ; v�i Þ in frame n, and the predicted motion uncertainty nUek : ðn�pek; nRekÞ,
we want to find a first estimate nU

þ
k : ðn�pþk ; nRþ

k Þ.
As we mentioned earlier in Section 3.2, the Kalman estimate nU

þ
k can be derived

from the motion constraint equation

f iðnpk; riÞ ¼ 0 ð19Þ
by forming its linearized approximation around the current best available estimate of
the state parameter npk—its best current estimate being the mean n�pk—and the best
available measurement r̂�i ¼ ðu�i ; v�i ; �ZiÞT of ri ¼ ðu0i; v0i; ZiÞT as follows:

0 � f iðn�pk; r̂�i Þ þ
of i

oðnpkÞ

����
npk¼n�pk

ri¼r̂�
i

ðnpk � n�pkÞ þ
of i

ori

����
npk¼n�pk

ri¼r̂�
i

ðri � r̂�i Þ: ð20Þ

Rewriting the above equation, we have

�f iðn�pk; r̂�i Þ þ
of i

oðnpkÞ

����
npk¼n�pk

ri¼r̂�
i

n�pk ¼
of i

oðnpkÞ

����
npk¼n�pk

ri¼r̂�
i

npk þ
of i

ori

����
npk¼n�pk

ri¼r̂�
i

ðri � r̂�i Þ: ð21Þ

The linearized observation equation can be written as

~zi ¼ Mi npk þ vi; ð22Þ
where

~zi ¼ �f iðn�pk; r̂
�
i Þ þ

of i

oðnpkÞ

����
npk¼n�pk

ri¼r̂�
i

n�pk; ð23Þ

Mi ¼
of i

oðnpkÞ

����
npk¼n�pk

ri¼r̂�
i

; ð24Þ

vi ¼
of i

ori

����
npk¼n�pk

ri¼r̂�
i

ðri � r̂�i Þ: ð25Þ

18 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
The mathematical calculation of matrix Mi can be seen in Appendix B. In the
context of Eq. (22), the covariance matrix Gi of observation noise sequence vi is
given by

Gi ¼
of i

ori

����
npk¼n�pk

ri¼r̂�
i

Rri

of i

ori

� �T�����
npk¼n�pk

ri¼r̂�
i

; ð26Þ

where

of i

ori
¼

of1
ou0i

of1
ov0i

of1
oZi

of2
ou0i

of2
ov0i

of2
oZi

24 35 ð27Þ

Rri ¼
R

qei 0

0 r2
Zi

" #
: ð28Þ

Then the first estimated motion vector uncertainty nU
þ
k by Kalman filter can be

written as:

Ki ¼ nRekMT
i Gi þMi nRekMT

i

� ��1
; ð29Þ

n�p
þ
k ¼ n�pek � Kif i; ð30Þ

nR
þ
k ¼ I� KiMið ÞnRek: ð31Þ

Each pair of corresponding feature points ððui; viÞ; ðu�i ; v�i ÞÞ—including, of course,
only those points in frame k for which correspondents were found in frame n—is
used sequentially to update the uncertainty nUk.

During our EKF formulation (29)–(31) for motion uncertainty updating, there
are six unknown parameters and there are 2m measurements constituting the con-
straints on the parameters. To uniquely solve the problem, the number of internal
features needed must satisfy 2m > 6, m > 3. So theoretically we just need to register
a certain number of feature points to solve the motion estimation problem. With the
initialization of motion uncertainty, Eqs. (29)–(31) can update motion uncertainty
using a single measurement but the price to pay will be large error covariance. In
general, the larger the number of matched feature points in each frame, the better
the performance of the filter will be in terms of convergence and accuracy. But when
the filter reaches certain convergent point, extra feature points don�t contribute to
the motion estimation any more.

4.2. A second update of motion uncertainty

Motion uncertainty updating of the last section is based only on the correspon-
dences established on the basis of maximum NCC values.

While NCC provides good candidates for the features of frame k, it cannot be
relied upon completely for a final choice of correspondences. While it is possible

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 19
to reduce the errors in template based matching by using large templates to describe
the feature points, large templates imply greater computational load.

To reduce the errors in correspondences established on the basis of NCC—and to
further improve the motion uncertainty estimate—we project the updated motion
uncertainty ðn�pþk ; nRþ

k Þ into the current frame n and check the validity of each corre-
spondence by applying a Mahalanobis distance based criterion to the location of the
extracted feature in frame n and the center of the uncertainty ellipse, as explained in
Fig. 8. If the Mahalanobis distance is larger than a certain threshold, we identify this
point correspondence as an incorrect match, and eliminate this measurement for mo-
tion and shape estimation. Once all outliers are identified, we have a new smaller set
of feature correspondences. We then re-update the motion vector from predicted
ðn�pek; nRekÞ by a second application of Kalman filter using only the reduced set of
feature correspondences. We denote ðn�pþþ

k ; nR
þþ
k Þ as the updated motion uncertainty

from second application of Kalman filter.
Fig. 8 illustrates the above feature prediction and extraction procedure. For the

two features shown in frame k, A, and B, the predicted uncertainty regions
ð�qe;R

qeÞ in the current frame n as computed from ðn�pek; nRekÞ are represented by so-
lid line ellipses. After initial feature matching where the extracted features q̂� are
shown in ·, the first application of Kalman filtering yields updated motion param-
eters denoted by ðn�pþk ; nRþ

k Þ. The updated motion uncertainty leads to the bold-dot
ellipses for the new predicted feature location uncertainties ð�qþ;Rþ

q Þ. After applying
the Mahanalobis distance constraint, it turns out that the measurement q̂� corre-
sponding to feature B is an invalid measurement. After discarding the invalid mea-
surement, we update motion uncertainty as ðn�pþþ

k ; nR
þþ
p Þ by second visit of Kalman

filter. The dash-dot ellipse in the figure will be explained in the next section.
Fig. 8. Feature point prediction and extraction. The solid ellipses in frame n represent the predicted
feature uncertainties ð�qe;R

qeÞ from ðn�pek ; nRekÞ. The ‘‘·’’s stand for the initial extracted features q̂�. The
bold-dot ellipses demonstrate the new feature uncertainties ð�qþ;Rqþ Þ projected by ðn�pþk ; nRþ

k Þ. The dash-dot
ellipse illustrates the new feature uncertainty ð�qþþ;Rqþþ Þ predicted by ðn�pþþ

k ; nR
þþ
k Þ, and the ‘‘+’’ shows the

re-extracted feature point q̂�� for the initial invalid measurement.

20 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
4.3. Seeking new matches for invalidated feature pairings

The processing described so far tries to find the frame n features that correspond
to the frame k features. Establishing feature pairings gives us updated motion uncer-
tainty in the form of ðn�pþþ

k ; nR
þþ
p Þ, while invalidating some of the correspondences as

not being consistent with the updated estimates of the uncertainty.
We could simply discard the features in frame k whose initially selected corre-

spondences are rejected during the formation of the ðn�pþþ
k ; nR

þþ
p Þ estimate. But doing

so reduces the pool of feature points that get tracked from frame to frame, making it
necessary that we inject even more new feature points in each frame. This reduces the
quality of the tracking process.

We therefore seek to find the new matches in the new frame n for those frame k

features that lost their matches during the processing that led to ðn�pþþ
k ; nR

þþ
p Þ. In the

example shown in Fig. 8, that means we must try to find a new match for feature B in
frame k.

The feature correspondence re-match is done within a new locational uncer-
tainty region ð�qþþ;RqþþÞ obtained from the current updated motion uncertainty
ðn�pþþ

k ; nR
þþ
k Þ. In some cases, as for point B in Fig. 8, this may result in a match

for a frame-k feature that was otherwise unmatchable on the basis of the
ðn�pþþ

k ; nR
þþ
k Þ estimate. Within the new and smaller uncertainty region

ð�qþþ;RqþþÞ, the measurement q̂�� is extracted from the newly calculated NCC
map NCCmap2. For obvious reason, if the point corresponding to the first peak
value in NCCmap2 is the same as the initial correspondent q̂� found in the
NCC map NCCmap1, the second NCC peak value point within the new smaller
NCCmap2 is selected.

If the new NCC map yields new feature pairings for those points that lost their
correspondences during the calculation of ð�qþþ;RqþþÞ, we re-apply the Kalman filter,
using exactly the same formulation as described previously, and update the motion
uncertainty using each of new feature pairings. The result of this process is the mo-
tion uncertainty ðn�pþþþ

k ; nR
þþþ
k Þ.

This step is illustrated in Fig. 8 where the new locational uncertainty, drawn on
the basis of ð�qþþ;RqþþÞ, for the frame k feature point B is shown by the ellipse drawn
dash-dot. The NCC peak inside this uncertainty region is marked as ‘‘+’’ and de-
noted q̂��. This new point in frame n becomes the new feature correspondent for
point B of frame k. Uncertainty ðn�pþþ

k ; nR
þþ
k Þ, as updated by the new feature pairing

for point B in frame k, is denoted ðn�pþþþ
k ; nR

þþþ
k Þ.

The overall process of how feature correspondences are established between a
prior frame k and the current frame n is summarized in Fig. 9. As mentioned previ-
ously, only observable features play a role in this process and in the related process
of motion uncertainty updating. Feature points in frame k for which no correspon-
dences can be found after all of the steps described so far are unobservable. The
unobservable feature points are replaced by new feature points, as described in Sec-
tion 6.

In the rest of this paper, in order to make the notation less cumbersome the mo-
tion uncertainty estimate ðn�pþþþ

k ; nR
þþþ
k Þ will be denoted as nUk : ðn�pk; nRkÞ.

Fig. 9. Feature observability and unobservability for m features initially appeared in frame k.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 21
5. Multi-frame based motion estimation

In the previous section, we talked about the motion estimation from frame k to n

based on a set of feature points first appearing in the same frame k. In this section,
we will present a framework for integrating all the motion estimates obtained for all
previous values of k that contribute features to the current frame n.

In what follows, we first introduce the framework of motion estimation from sets
of features with different starting points. For the N features initially registered in
frame 0, as we have mentioned before, some, or maybe all, of them will disappear
as time goes on due to self or external occlusion, and new features need to be regis-
tered. Our motion estimation frame work will introduce how to systematically esti-
mate motion vector (MV) and shape vector (SV) by integrating multiple image
frames, and to deal with new feature registration.

5.1. Motion vector estimation

5.1.1. Feature representation

In our motion tracking system, each individual feature in the current frame n is
represented by a data structure whose various fields are:

� Starting frame k.
� Normalized image position (u,v) in frame k (normalization is carried out accord-

ing to Eq. (2))
� Initialized depth value Z in frame k where Z will be updated based on motion vec-

tor (MV) updating.
� Transformation from frame 0 to k: kH0 (already estimated in the previous frames).
� Transformation from frame k to n � 1: n�1Hk (already estimated in the previous

frames).

22 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
� Transformation from frame k to n: nHk (estimated in current frame).
� Transformation from frame 0 to current frame n: nH0 (which is what we want to

estimate).
� Normalized feature correspondent (u0,v0) in current frame n.
� Observability status.

For the N initially registered internal features, we keep tracking them until they
become unobservable in the image stream. The observability of feature points is de-
fined during feature extraction based on the NCC thresholds and Mahanalobis dis-
tance constraints as introduced in Section 4. As we mentioned before, only the
observable features are used for motion estimation.

5.1.2. Genesis frame based grouping of features in the current frame
Let n be the index of current frame, 0 be the first frame of image sequence, and k

be the frame where feature i is first registered. Our goal is, of course, to estimate the
object motion from frame 0 to n. Toward that end, we will group the features in the
current frame on the basis of the genesis frame for the features. The genesis frame for
a given feature is that frame in which it first makes its appearance. As was mentioned
before, as one or more features become invisible, due to occlusion and possibly other
phenomena, the system tries to use new features so that the overall number features
in each frame remains constant and equal to N.

The N features in the current frame are grouped according to the index of the gen-
esis frame for each. This is illustrated in Fig. 10. Let the S groupings thus formed be
denoted ð~Gi; i ¼ 0; . . . ; S � 1Þ. The set E of N feature points in the current frame n

can now be represented as:

E ¼ f~q0; . . . ;~qN�1g ¼ ~G0 [� � � [~GS�1 ðS 6 NÞ: ð32Þ
For features within a group ~Gi whose genesis index is k, we do feature extraction
from frame k to n and motion estimation of nUk : ðn�pk; nRkÞ by using the formulas
presented in Section 4. In accordance with the discussion in Section 4.3, frame-k fea-
tures in the current frame n are classified as observable or unobservable during this
Fig. 10. Feature grouping based on genesis indices, where frame 47 is current processed frame with
features initiated from frames 18, 26, 34,. . .. Different marks of features denote features with different
genesis indices.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 23
process. For each frame-k feature that is observable in frame n, we update its initial-
ized depth value Z in the shape vector w. Also, we use all the observable features in
frame k to update the motion parameters in frame n as represented by

nUk : ðn�pk; nRkÞ.

5.1.3. Final motion estimation

Given a motion estimate nUk in the current frame n for the different values of the
genesis frame index k, our goal now is to estimate nU0. From the estimated nUk, we
can then extract the transform nHk from its mean part. In terms of the genesis frame
index k, and the transforms nHk and kH0, the new transform nH0 is

nH0 ¼ nHk kH0: ð33Þ
Since kH0 was already estimated when the current frame index was k, and since we
have available to us nHk from the formulation presented in Section 4, we can use Eq.
(33) to update the mean motion vector associated with the uncertainty nU0.

But note that the above estimate nH0 is only for a single genesis index k. The issue
now is to somehow integrate all such estimates for the different values of k between 0
and the current frame index n. We propose a Kalman framework to bring about this
integration (Fig. 11). In this framework, we treat the motion vector np0 constituting

nH0 as the ‘‘state vector’’ to be estimated from the ‘‘measurements’’ npk and kp0 for
different values of k.

As before H is represented as

H ¼
R T

0 1

� �
; ð34Þ

where rotation matrix R and translation vector T are specified by corresponding
(/x,/y,/z, tx, ty, tz)

T.
By expanding Eq. (33), we have the following constraint equations relating the

elements of the ‘‘state vector’’ with the ‘‘measurements’’:

Rij ¼ ðnR0Þij � ðnRk kR0Þij ¼ 0 ði; j ¼ 0; 1; 2Þ; ð35Þ

T ¼ nT0 � nRk kT0 � nTk ¼ 0: ð36Þ
The Kalman estimation of nU0 is achieved separately with respect to the two con-
straint equations shown above, as explained in the two cases presented below.
Fig. 11. Sequential motion uncertainty updating by integrating multiple groups of features.

24 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
The extended Kalman filter shown below uses the same state vector notation as
before—the symbol p. Recall, this vector represents the six-tuple (/x,/y,/z, tx, ty, tz).
Estimation of this vector from the measurements nUk and kU0, k = 0,1,2,. . ., will
yield the desired estimate nU0. We will use the symbol r to represent these measure-
ments, as expressed by the form (npk, kp0). In other words, we have

r ¼ ðnpk; kp0Þ
T
: ð37Þ

(1) Case 1 (Rij ¼ 0)
The constraint of Eq. (35) can be written as

Rij ¼ Rijðnp0; rÞ ¼ 0: ð38Þ
By linearizing Rij in a similar way as presented in Section 4.1, we can sequentially

update ðn�p0; nR0Þ by EKF as:

K ¼ nR0M
TðGþM nR0M

TÞ�1
; ð39Þ

Rij ¼ ðnR0Þij � ðnRk kR0Þij; ð40Þ

n�p0 ¼ ne�p0 � KRij; ð41Þ

nR0 ¼ ðI� KMÞnR0e; ð42Þ
where K is Kalman gain, M stands for the observation matrix, and G is the obser-
vation error covariance matrix. Here ðn�p0e; nR0eÞ is the last updated motion uncer-
tainty. M and G are calculated by:

M ¼ oRij

onp0
ð43Þ

G ¼ oRij

or

nRk 0

0 kR0

� �
oRij

or

� �T

ð44Þ

¼ oRij

onpk

oRij

okp0

h i
nRk 0

0 kR0

� �
oRij

onpk

oRij

okp0

h iT
: ð45Þ

(2) Case 2 ðT ¼ 0Þ
By linearizing

T ¼ Tðnp0; rÞ ¼ 0 ð46Þ
the EKF related observation matrix M and observation error covariance matrix G

for this case can be defined in a similar way as

M ¼ oT

onp0
ð47Þ

G ¼ oT

or

nRk 0

0 kR0

� �
oT

or

� �T

: ð48Þ

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 25
The final updated motion uncertainty nU0 from this constraint is then given by
T ¼ 0 through the following formulization

K ¼ nR0M
TðGþMnR0M

TÞ�1
; ð49Þ

T ¼ nT0 � nRk kT0 þ nTk; ð50Þ

n�p0 ¼ n�p0e� KT; ð51Þ

nR0 ¼ ðI� KMÞnR0e: ð52Þ
Mathematical details underlying the Kalman filters for both cases above can be

found in Appendix C.
The initialization of nU0 : ðn�p0; nR0Þ is achieved by first initializing n�p0 through

nHe0 ¼ nHen�1 � n�1Hk; ð53Þ
where motion uncertainty nHen�1 is predicted as in Eq. (12), and n�1Hk is stored in
feature structure from the previous frame. The covariance matrix nR0 for nU0 is done
by the method described in Appendix A.

To make sure the estimated motion parameter converge to the correct answer,
whitening process is used during the implementation.

5.2. Shape vector estimation

The discussion so far dealt with the estimation of the motion vector (MV)—more
particularly the uncertainty associated with the motion vector. This estimation is
elaborate because the motion vector is a global property of the entire object and be-
cause this global property must be estimated from local features that appear and dis-
appear in a video sequence.

On the other hand, the shape vector (SV) is associated with a group of features. It
is a vector of values proportional to the depths corresponding to the feature points.
Being specific to a set of features, as opposed to the entire object, the shape vector is
estimated independently of the motion vector and its individual components esti-
mated separately for each feature. The shape vector is updated separately for each
of feature points that has the same genesis frame k (Fig. 12), as we will explain in
the rest of this section. The shape vector is initialized by setting all elements equal
to 1. Each element of w is updated separately according to the explanation below.

Before we update elements Zi of the shape vector defined by w = (Z0,Z1, . . .,
Zm�1)

T, we need to re-estimate nUk : ðn�pk; nRkÞ taking into account the latest estimate
of nU0 : ðn�p0; nR0Þ. The previously estimated nUk uses feature correspondents in frame
n and initialized depths Zi as measurements, in which Zi have relatively large uncer-
tainties. The re-estimating of nUk by absorbing new information from nU0 fine-tunes
the estimate. The following formula can be used for this purpose:

nHk ¼ nH0 � 0Hk ¼ nH0 � ðkH0Þ�1
: ð54Þ

The details of how this estimation is carried out are in Appendix D.

Fig. 12. Motion vector and shape vector updating.

26 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
For a certain feature registered in frame k, once we have the fine-tuned motion
estimate nUk from frame k to n, the initialized depth value Z in frame k can be based
on the components of the frame-k to frame-n pose change vector

npk = (/x,/y,/z, tx, ty, tz)
T, as shown below:

u0 ¼ Zðr11uþ r12vþ r13Þ þ tx
Zðr31uþ r32vþ r33Þ þ tz

; ð55Þ

v0 ¼ Zðr21uþ r22vþ r23Þ þ ty
Zðr31uþ r32vþ r33Þ þ tz

; ð56Þ

where (u,v) are the pixel coordinates of the initially registered feature point in
frame k, (u0,v0) the corresponding coordinates in current frame n, and rij,
i, j = 0, 1, 2 the elements of the rotation matrix defined by npk. Here for simplicity
of notation, we write Zi as Z. Since the corresponding depth Z0 in frame n can be
obtained by

Z 0 ¼ Zðr31uþ r32vþ r33Þ þ tz; ð57Þ
we just need to consider the updating of Z for different features starting from differ-
ent frame k.

We can rewrite Eqs. (55) and (56) as

h1 ¼ Zðr11uþ r12vþ r13Þ þ tx � u0ðZðr31uþ r32vþ r33Þ þ tzÞ; ð58Þ

h2 ¼ Zðr21uþ r22vþ r23Þ þ tx � v0ðZðr31uþ r32vþ r33Þ þ tzÞ: ð59Þ
To use EKF estimate ð�Z; rzÞ, we define measurement r, observation matrixM, and

measurement error covariance matrix G as

r ¼ /x;/y ;/z; tx; ty ; tz; u
0; v0

	
T
; ð60Þ

M ¼
oh1
oZ
oh2
oZ

" #
; ð61Þ

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 27
G ¼ oh

or

� � nRke 0

0 R
qie

" #
oh

or

� �T

; ð62Þ

where R
qie is the measurement uncertainty for (u0,v0) and h = [h1,h2]T. Now we can

update depth value Z and standard deviation rZ for each feature point as follows:

K ¼ r2
ZM

TðGþMr2
ZM

TÞ�1
; ð63Þ

�Z ¼ �Ze� Kh; ð64Þ

r2
Z ¼ ðI� KMÞr2e

Z : ð65Þ
The mathematical expressions for M and of/or are provided in Appendix E.
6. Object boundary updating by region-growing

As mentioned in the introduction, some of the boundary points on an object
undergoing motion—especially rotation—will become occluded, while other points
on the object surface will become the boundary points in the image captured by
the camera. The goal of boundary updating is to make a best attempt at extracting
the silhouette of the object in the current frame.

As was already mentioned in the Introduction, the problem of silhouette extrac-
tion of a moving object undergoing rotation is highly ill-posed [4,40,13,35,28,48,25].
All proposed solutions are based on the assumption that the object pixels in the
vicinity of the boundary in the current frame possess texture and color properties
similar to the object pixels in the vicinity of the boundary in the previous frame.
But this assumption is often not satisfied by real-world objects. Shown in Fig. 13
are two frames of an object undergoing rotations. As is clear from the silhouettes
Fig. 13. An example of boundary occlusion due to self-rotation. The nose of the toy is not visible to the
camera in the left image.

Fig. 14. ROI boundary refining processing diagrams.

28 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
shown for the frames, it would be very difficult to predict the deformation of the sil-
houette caused by the sudden appearance of the nose of the toy head.

In the rest of this section, we will describe our implementation of boundary updat-
ing. While the implementations of the other researchers are based on the assumption
that the local properties of the boundary pixels in the current frame should be similar
to the local properties of boundary pixels in the previous frame, our implementation
is based on a stronger assumption that the local properties of the boundary pixels in
the current frame should be similar to the local properties of the nearby interior pix-
els in the same frame. Fig. 14 is a block schematic of our implementation that we will
describe in the rest of this section.

6.1. Boundary prediction and uncertainty field definition

Once we are done with motion estimation from frame 0 to frame n, as described in
Section 5, the motion parameters between the two adjacent frames n � 1 and n can
be calculated through:

nHn�1 ¼ nH0ðn�1H0Þ�1
: ð66Þ

For the rest of the discussion in this section, we now define the following notation:

� Bn�1 ¼ f~bn�1

0 ; . . . ;~b
n�1

M�1g
T: final extracted boundary in frame n � 1 where ~b

n�1

i is
the ith boundary point in the frame.

� Bne¼ f~bn0
e; . . . ;~bneM�1g

T: predicted object boundary in frame n.

� Bn ¼ f~bn0; . . . ;~b
n

K�1g
T: final extracted boundary in frame n. Note that the number

of boundary points, M and K, in frames n � 1 and n, respectively, can be different
due to scaling or self occlusion.

The initially predicted object boundary Bne in frame n can be obtained by per-
spectively transforming Bn�1 from frame n � 1 to the current frame n using the mo-
tion transform nHn�1. In Fig. 15A, the white contour shows the initially predicted
object boundary.

As wementioned before, in the presence of rotations, the predicted object boundary
Bnemay not correspond to the real object boundaryBn.We now define an uncertainty
field around the predicted object boundary to search for the real boundary. Based on
the predicted ROI boundaryBne, we defineBout as its dilation, andBin as its erosion,

Fig. 15. (A) Predicted ROI boundaryBne is shown as the white contour. (B) Boundary uncertainty field is
enclosed by the black and gray contours.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 29
both by three pixels in our current implementation. Obviously, the extent of dilation
and erosion depends on the frame sampling rates vis-a-vis the motion of the object.
The uncertainty field is defined as the region betweenBout andBin. Our goal is to locate
the real object boundaryBn within this field. Fig. 15 illustrates the potential field def-
inition. From the white predicted ROI boundary in Fig. 15A, the gray and the black
contours in Fig. 15B correspond to theBout andBin obtained bymorphological filters,
and the uncertainty field is defined between the two contours.

6.2. Region-growing for boundary point detection

We will now present a framework that attempts to detect the true boundary
points by growing outwards the eroded boundary Bin. This growing process,
bounded by the dilated boundary Bout, expands into the uncertainty field using cer-
tain similarity and discontinuity measures which will be introduced in this section.
The framework consists of the following three steps:

1. Recursively split-and-merge the eroded boundary Bin into multiple segments so
that the variance of the pixel intensity in each segment is bounded. The pixel
intensity is calculated from RGB using the usual transformation:

Iðx; yÞ ¼ Rðx; yÞ þ Gðx; yÞ þ Bðx; yÞ
3

: ð67Þ

2. Grow each segment outward on the basis of the averages and the variances of
the intensity, the normalized R, and the normalized G. The normalized R and
the normalized G at a pixel (x,y) are denoted r (x,y) and g (x,y). The averages
associated with the ith segment are denoted l̂I

i , l̂r
i , and l̂g

i for the intensity,
for normalized R, and normalized G. The standard deviations of the same are
denoted r̂I

i , r̂
r
i , and r̂g

i .
3. Two stopping criteria are used in the region-growing process:

30 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
(a) If no segment can be grown on the basis of the six parameters mentioned in
the previous step, stop.

(b) If the growing process reaches the dilated boundary Bout, stop.
4. After the region can no longer be grown further for all of the segments, smooth

out the boundary with median filtering.

The following subsections provide further explanation.

6.2.1. Recursive partitioning of the eroded boundary

The eroded boundary Bin is subject to a recursive split-and-merge step to yield l

segments, each denoted Cin. We can therefore write:

Bin ¼ fCin
i ; i ¼ 0; . . . ; l� 1g: ð68Þ

The squared Fisher distance [49] is used as the similarity criterion to split the contour
recursively:

D2
Fisher ¼

ðn1 þ n2Þðl̂1 � l̂2Þ
2

n1r̂
2
1 þ n2r̂

2
2

; ð69Þ

where n1, n2, l̂1, l̂2, r̂
2
1, and r̂2

2 are the sizes, intensity means, and intensity variances
of the two adjacent contour segments on Bin. During the splitting step, a segment
gets bisected into two if the Fisher distance between the two halves exceeds a pre-
specified decision threshold, split_threshold. After the splitting is complete,
the merging step takes over. Two adjacent segments are merged if the Fisher distance
between them is below another threshold, merge_threshold. The
split_threshold and the merge_threshold were specified by trial and error,
with the former set to a value much smaller than that of the latter. In all our exper-
iments, the split_threshold was set to 0.1 and the merge_threshold to 2.

The black and the white boundary segments in Fig. 16A show the segmentation of
Bin after just the splitting step. The segments are shown alternately in black and
white. Fig. 16B shows the segments after the merge step.
Fig. 16. (A) Splitting of the eroded boundaryBin. The alternate segments of the decomposition are shown
in black and white. (B) Boundary partitioning after the merging step.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 31
6.2.2. Growing boundary segments

The segments created by the partitioning algorithm are grown into the uncertainty
field by considering each pixel (x,y) that is an 8-neighbor of a pixel on a segment and
applying the following criteria to it:

Iðx; yÞ � l̂I
i

�� �� 6 2r̂I
i ;

rðx; yÞ � l̂r
i

�� �� 6 2r̂r
i ;

gðx; yÞ � l̂g
i

�� �� 6 2r̂g
i ;

8><>: ð70Þ

where the notation used was defined in the previous subsection.
To prevent the segment growing process from getting excessively biased by any

outliers that may be present in the vicinity of the segment, the six-tuple of properties
l̂I
i ; l̂

r
i ; l̂

g
i ; r̂

I
i ; r̂

r
i ; r̂

g
i is updated only after all the outward 8-neighbors of all the pixel

on a segment have been examined for possible incorporation in the growing of
the segment. This update takes place on the basis of all the new pixels accepted.
This constitutes one iteration of the segment growing process. The process is re-
peated until the stopping criteria mentioned previously are met. This is illustrated
in Fig. 17.

Fig. 18A shows in black the region grown by this process. This region was grown
starting from the partitioned segments shown in Fig. 16B.

After region growing has come to a halt, its outer boundary is smoothed with a 5-
point median filter. The outer points of the smoothed region then become the new
boundary. The final updated object boundary is shown in red in Fig. 18B.

6.3. Selecting new features for tracking

As we mentioned earlier in the overview Section 2 and in more detail in Section
4, self-occlusions and other kinds of occlusions will cause a certain number of
Fig. 17. A visual demonstration of growing of the regions starting from the partitioned boundary
segments. The points marked ‘‘·’’s and ‘‘+’’ represent the eroded boundary Bin. The different segments
obtained by recursive partitioning are shown as ‘‘·’’s and ‘‘+’’s. The accepted 8-neighbors during one
iteration of the growing step are shown as filled circles and diamonds.

Fig. 18. (A) Grown region from the seed segments of Fig. 16B. (B) Final updated object boundary.

32 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
feature points to disappear as an object is being tracked frame to frame. It may
therefore become necessary to replenish the the number of features that participate
in the tracking process. When needed, the new feature points are selected from the
region delineated by the latest estimate of the boundary of the object. These fresh
feature points are selected using the same criteria as those mentioned in Section 3.
In this manner, the system tries to use the same number of features for tracking at
all times.
7. Experimental results

7.1. Experiments with synthetic data

While a tracking algorithm must be shown to work on real data, it is difficult to
evaluate the accuracy of motion estimation on actual video sequences of real-world
moving objects. If one is interested in testing the accuracy of motion estimation,
one must use data that has objects moving with known speeds. Since it is difficult
to create real data with objects executing precisely known motions, we have used a
two-pronged approach for evaluating the tracking formalism of this paper. We use
synthetic data to test the accuracy of motion estimation and then use real video se-
quences to demonstrate the overall tracking behavior. In this section, we will focus
on demonstrating accuracy of our motion estimation approach using synthetic
data.

Our synthetic data sequence consists of 100 frames, each of size 640 · 480. The
beginning frame of the sequence has 49 evenly distributed feature points, the clus-
ter situated in the middle of the frame. The feature points are spaced 32 pixels
horizontally and vertically. The object region containing these 49 feature points
is chosen to be of size 224 · 224. The object region is depicted as the white mid-
dle in Fig. 19A. The black dots in this figure are the initially selected 49 feature
points.

Fig. 19. Synthetic video sequence. (A) Frame 0. (B) Trajectories and uncertainty regions for all feature
points.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 33
The object motion in the synthetic data is specified through a frame-to-frame mo-
tion vector for the object region for all 100 frames of the sequence. The motion spec-
ified for the object region includes rotations that vary sinusoidally with amplitude
±10 � and translations that vary in a triangular fashion with maximum changes of
±0.5 m. The motion change patterns for rotation and translation are shown as dark
black lines in Fig. 20. During the tracking process, whenever the frame number is
modulo 7, a set of five new feature points is added to the object region and five
old feature measurements with the largest measurement errors are discarded. The
feature measurements are obtained based on the true object motion, but with added
zero-mean Gaussian noise of different standard deviations. Fig. 19B shows the tra-
jectories and feature uncertainties of all the feature points during the tracking pro-
cess when added Gaussian noise has two pixel standard deviation.

Fig. 20 demonstrates the accuracy ofmotion estimation at three noise levels of stan-
dard deviations 2, 4, and 10 pixels. For all the figures in Fig. 20, the light gray lines
show one component of the estimated motion vector and the dark lines the ground
truth. Table 1 illustrates the statistical performance of the estimator at different noise
levels. The table displays the means and standard deviations of the rotation errors and
the translation errors between the estimated values and the ground truth. We can see
the gradual degradation of the performance with increased noise. Fig. 20 and Table 1
illustrate that the motion estimator performs stably and accurately. Even when the
noise levels are high, it can still steadily track and follow the motion trajectories.
7.2. Experiments with real video sequences

This section will present tracking results using real video sequences. For the
discussion in this section, we have chosen four different videos to show our results
on:

Video 1: The object to be tracked in this video is of high contrast vis-a-vis the back-
ground and the object does not suffer from any self-occlusion.

Fig. 20. Motion estimation performance evaluation with different standard deviations of the Gaussian
noise model.

(A) Estimated motion parameters added with Gaussion noise of 2 pixel standard deviation.

(B) Estimated motion parameters added with Gaussion noise of 4 pixel standard deviation.

34 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
Video 2: There is still no self-occlusion to be dealt with during tracking, but the col-
ors and the textures on the object are rather similar to those of the back-
ground in the vicinity of the object.

Video 3: The object to be tracked undergoes noticeable self-occlusion on account of
its rotation. The object background is complex.

Video 4: The object to be tracked exhibits greater self-occlusion than was the case
with Video 3. The object is also getting further away from the camera,
creating tracking issues related to scale.

(C) Estimated motion parameters added with Gaussion noise of 10 pixel standard deviation.

Fig. 20. (continued)

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 35
7.2.1. Video 1

As already mentioned, this is the simplest case we will be illustrating as it involves
a high-contrast object that does not exhibit any self-occlusion.

This video consists of 150 images, of size 320 · 240, of a toy that looks like a fish.
The video was recorded with a Sony TRV900 digital hand-held camcorder. The ob-
ject undergoes a pendulum-like motion, with the plane of the motion roughly per-
pendicular to the camera line of sight. The camera is panned suitably to keep the
object roughly in the center of the image frames.

Fig. 21A shows the object to be tracked in frame 0. Fig. 21B shows the human-
delineated segmentation of the object in frame 0 using the CISE tool. Fig. 21C shows
the feature points selected automatically by our system from the segmented region of
Fig. 21B; these points are marked as ‘‘+’’s. Fig. 21D shows the next frame, frame 1.
Also shown in this frame are the ellipses that correspond to the predicted feature
uncertainty regions for some of the feature points of frame 0. (We have not shown
the ellipses for all the features points of frame 0, since that would clutter up the im-
age excessively.) The system must look for the corresponding features within these
uncertainty regions.

Shown in Fig. 22 are the tracking results in nine frames from this video sequence.
The frame numbers are shown below the frames. The first, the third, and the fifth
rows of this figure show the tracking of the object, in the form of the interior feature
points used by the tracking process, and the estimated boundary of the object in the
frames shown. The observable interior feature points are shown as ‘‘+’’s. The sec-
ond, the fourth, and the sixth rows show the tracked object extracted from its esti-
mated boundary in the indicated frames. In the first, the third and the fifth rows,
while the dark boundary is the computed boundary of the object, the white bound-
ary is the eroded version of the predicted boundary of the object. Recall from our

able 1
stimation statistics for different noise levels

uassian noise
td (pixel)

Rotation error (�) Translation e r (cm)

mroll rroll mpitch rpitch myaw ryaw mtx rtx mty rty mtz rtz

2 0.000849 0.474467 �0.361466 0.542372 0.000772 0.152890 0.545231 0.9 477 0.033059 0.841634 �0.093237 0.338433
4 0.191100 1.091025 �0.814444 1.265045 �0.049757 0.378270 1.342209 2.3 323 0.380866 1.860176 �0.182235 0.890020
6 0.333433 1.636807 �1.029439 1.883077 �0.082283 0.573889 1.770572 3.4 754 0.607204 2.700023 �0.263409 1.381075
8 0.386088 2.011334 �1.148336 2.261628 �0.106511 0.729688 2.017599 4.1 912 0.665337 3.263815 �0.328758 1.800428
0 0.391593 2.238276 �1.251317 2.447540 �0.133897 0.866250 2.222713 4.5 214 0.642090 3.615138 �0.393025 2.167590
2 0.377629 2.385670 �1.356780 2.526870 �0.162614 0.999835 2.423629 4.6 280 0.585091 3.867647 �0.461561 2.503753

36
J
.
G
a
o
et

a
l.
/
C
o
m
p
u
ter

V
isio

n
a
n
d
Im

a
g
e
U
n
d
ersta

n
d
in
g
9
9
(
2
0
0
5
)
1
–
5
7

T
E

G
s

1
1

rro

98
32
73
78
18
51

Fig. 21. (A) Frame 0 from the video sequence. (B) Human delineated toy object to be tracked. (This is the
output of CISE.) (C) Automatically selected feature points in frame 0. (D) Predicted feature uncertainty
regions for a few chosen features are displayed in red dotted ellipses for illustration.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 37
discussion of Section 6, the new boundary in each frame is computed by first project-
ing into the current frame a motion-compensated boundary from the last frame; this
projected boundary is eroded by 3 pixels, and then re-grown to presumably the true
edge of the object using the algorithm described in Section 6.

As can be seen in frame 85, it is interesting to note that the predicted boundary is
much closer to the actual boundary of the fish in the lower side of the fish, but not on
the upper side. This problem is caused by the interaction of the ambient illumination
with the fish. In frame 85, the boundary pixels on the upper side of the fish show
specularity effects, whereas those on the lower side—the side away from the ceil-
ing-mounted illumination—show only diffuse reflection effects. So it is much more
difficult for a region-growing algorithm to extend the eroded form of the predicted
boundary to the true edge of the object on the upper side of the fish.

7.2.2. Video 2

This video, consisting of 60 frames, shows images of an accelerating car traveling
down a straight road. The camera was panned as the video was being recorded so as
to keep the car roughly in the center of the frames. The car is moving from the right
to the left in the images. Initially, the car starts its movement while parked in the
vicinity of a white van, as shown in (A) of Fig. 23. Shown in (B) of this figure is
the human-delineated segmentation of the object to be tracked using the CISE tool.

Fig. 22. Object tracking in video 1. The black contours in the first, third, and the fifth rows show the
estimated object boundaries. The white contours are the eroded version of initially predicted boundaries,
used for boundary updating. The second, fourth, and the sixth rows show the extracted object from
indicated frames.

(A) Frame 15. (B) Frame 30. (C) Frame 50.

(D) Frame 70. (E) Frame 85. (F) Frame 100.

38 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
Part (C) of the figure shows the automatically selected features points for tracking;
and part (D) the uncertainty ellipses for some of these points.

Tracking results at different time instances are shown in Fig. 25. The format of the
results shown is the same as for Video 1 in Fig. 22. As before, the first and the third
rows show the tracking process in the form of the extracted internal features points

Fig. 22. (continued)

(H) Frame 130. (I) Frame 150.(G) Frame 115.

Fig. 23. (A) Frame 0 from the video sequence. (B) Human delineated car object to be tracked. (C)
Automatically selected feature points in frame 0. (D) Predicted feature uncertainty regions for a few
chosen features.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 39

Fig. 24. Un-represented regions during region growing process.

40 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
and the computed object boundary in the indicated frames; and the second and the
fourth rows the extracted objects. The meaning to be ascribed to the white and the
black boundaries is the same as before.

Because the colors and the textures on the car surface are not too different from
the background and from the shadow the car casts on the road, the boundary that is
updated by region growing from its predicted version often ‘‘leaks’’ into pixels out-
side the car. Frame 10 and frame 50 are examples of this leakage; the updated
boundaries in both these frames underneath the car leak into the shadow regions
on the road surface.

The specularities at the top of the car also cause problems with the updating of the
boundaries. To highlight this phenomenon, we show the boundaries for frame 1 and
2 separately in Fig. 24. We have labeled the specular regions on the upper portions of
the car. The region growing program is unable to extend the eroded version of the
predicted boundaries into these regions.

7.2.3. Video 3

This video has a moving object undergoing some rotation that causes self-occlu-
sion. The video consists of 100 frames taken with a stationary CCD camera. As the
reader can see, the background in the vicinity of the moving object, a Folgers Coffee
canister, is very cluttered. The contrast between the object and the background is
rather indistinct. A person is holding the canister as the right-to-left motion is exe-
cuted. During this motion, the canister is rotated left to create self-occlusion. That
the object is rotating is made evident by the fact that the letter �S� of the name ‘‘Fol-
gers’’ is at the right edge of the object in frame 1, but noticeably in the interior of

the object, in frame 90.

Using the same presentation format as for the images in Figs. 22 and 25, the
tracking results for this video are shown in Fig. 26. The tracking performance is
the same as for the previous two sequences.

To point out specifically the challenges posed by self-occlusion, we show in Fig. 27
the tracking result obtained when we do not include boundary update through region
growing. The specific frames shown in this figure match the frames shown in Fig. 26.
Note the increasing error between the computed boundary and the actual boundary
of the object. To appreciate the nature of this error, note that in frame 1 the left side of

Fig. 25. Object tracking in video 2. The black contours in the first and the third rows show the estimat ed
object boundaries. The white contours are the eroded version of initially predicted boundaries, used for
boundary updating. The second and the forth rows show the extracted object from indicated frames.

(A) Frame 5. (B) Frame 10. (C) Frame 30.

(D) Frame 40. (E) Frame 50. (F) Frame 60.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 41
the boundary passes through the letter �F� of the name ‘‘Folgers’’ and the right side of
the boundary passes through the letter �S.� As time progresses, and as the object ro-
tates toward left, the predicted boundary, which has motion compensation built into
it, continues to pass through the letter �S� on the right, indicated accurate motion com-
pensation. But, because of object rotation, this predicted boundary is not the actual
boundary. The actually boundary, shown in Fig. 26, can only be obtained by our re-
gion-growing approach of Section 6.

Fig. 26. Object tracking in video 3. The black contours in the first and the third rows show the estimated
object boundaries. The white contours are the eroded version of initially predicted boundaries, used for
boundary updating. The second and the fourth rows show the extracted object from indicated frames.

(A) Frame 1. (B) Frame 10. (C) Frame 20.

(D) Frame 50. (E) Frame 70. (F) Frame 90.

42 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
7.2.4. Video 4

This is themost complex of the four video sequences. Themoving object, a car again,
is turning around a corner, creating a motion that includes object rotation and that, at
the same time, causes the object to change its apparent size in the camera image. As be-
fore, the rotation creates self-occlusion. The video consists of 103 images.

Using the same presentation format as for the last three videos, the tracking
results for this video are shown in Fig. 28. Despite the scale change and the self-

Fig. 27. Video 3 sequence tracking without boundary updating.

(A) Frame 1.

(D) Frame 50. (F) Frame 90.

(B) Frame 10. (C) Frame 20.

(E) Frame 70.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 43
occlusions, the overall tracking performance is the same as for the previous three
videos.

As we did for Video 3, the tracking results obtained when we do not include
boundary update through region growing are shown in Fig. 29. The specific
frames shown in this figure match the frames shown in Fig. 28. As was the case
with the previous video, the extent of error between the computed boundary and
the actual boundary of the object grows with time. Note that the predicted
boundaries in the results shown in Fig. 29 maintain the shape of the car even
as the car is shrinking in size as it moves away from the camera, indicating accu-
rate motion estimation.

The dividends paid by boundary updating through region growing are evident in
what is extracted for the tracked object in the second, the fourth, and the sixth rows
of Fig. 28. The extracted pixels contain a majority of the car pixels even though the
car is changing its size in the camera image. If we had carried out object extraction
based on just the predicted boundaries shown in Fig. 28, the extracted regions would
bear very little resemblance to the car.
8. Concluding remarks

In this paper, we presented a 3D motion estimation scheme for object tracking
with emphasis on solving the occlusion problem and providing a visually meaningful
object delineation. For many object tracking methods proposed previously
[17,28,16,6], the rigid object motion model is limited by the assumption that the

Fig. 28. Object tracking in video 4. The black contours in the first, third, and the fifth rows show the
estimated object boundaries. The white contours are the eroded version of initially predicted boundaries,
used for boundary updating. The second, fourth, and the sixth rows show the extracted object from
indicated frames.

(A) Frame 1. (B) Frame 10. (C) Frame 20.

(E) Frame 70.(D) Frame 50. (F) Frame 90.

44 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
object consists of a 2D planar surface. Such a motion model fails to describe the mo-
tions of a 3D object, especially when the object is allowed to rotate vis-a-vis the
camera.

Unlike previous contributions, our approach keeps track of the image feature
points from the time they are born until they disappear due to occlusion. We do this

Fig 28. (continued)

(G) Frame 80. (H) Frame 90. (I) Frame 103.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 45
by associating a genesis-frame index with each feature point and bundling together
all the feature points in the current frame that have the same genesis frame index. A
two-frame Kalman filter is applied to each bundle for the updating of the motion
uncertainty in the current frame. This, in our opinion, is the most novel aspect of
the tracking formalism proposed in this paper.

There are several possible extensions and enhancements to our work. One
obvious way to extend our system would be to couple it to a system for face
and object detection. That would eliminate the need for a human to delineate
the object boundaries in the first frame of a video sequence. But, then, the per-
formance of the entire system would depend strongly on the performance of the
face or the object detector. Since we wanted to focus solely on tracking in this
work, it was a deliberate decision on our part to not show any results on such
coupled systems. Another way to extend our work would be to apply it to artic-
ulated objects. This can be done by decomposing an articulated object into multi-
ple rigid objects and using the geometric relationships as additional constraints
for motion estimation.
Appendix A. Motion transform prediction from two transforms

We would like to predict the transform uncertainty Ua : ð�pa;RaÞ, given two trans-
forms uncertainties Ub : ð�pb;RbÞ and Uc : ð�pc;RcÞ, and homogeneous transformation
relationship Ha = Hb * Hc.

For any given motion vector p = (/x,/y,/z, tx, ty, tz)
T, the rotation matrix R,

translation vector T, homogeneous transformation H, and their derivatives can be

Fig. 29. Video 4 sequence tracking without boundary updating.

(A) Frame 1. (B) Frame 10. (C) Frame 20.

(D) Frame 30. (E) Frame 50. (F) Frame 65.

(G) Frame 80. (I) Frame 103.(H) Frame 90.

46 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
cx ¼ cos/x; sx ¼ sin/x; ðA:1Þ

cy ¼ cos/y ; sy ¼ sin/y ; ðA:2Þ

cz ¼ cos/z; sz ¼ sin/z; ðA:3Þ

R ¼
czcy czsysx � szcx czsycx þ szsx
szcy szsysx þ czcx szsycx � czsx
�sy cysx cycx

264
375; ðA:4Þ

T ¼
tx
ty
tz

264
375; H ¼

R T

OT 1

� �
; ðA:5Þ

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 47
dRx ¼
oR

o/x
¼

0 czsycx þ szsx �czsysx þ szcx
0 szsycx � czsx �szsysx � czcx
0 cycx �cysx

264
375; ðA:6Þ

dRy ¼
oR

o/y
¼

�czsy czcysx czcycx
�szsy szcysx szcycx
�cy �sysx �sycx

264
375; ðA:7Þ

dRz ¼
oR

o/z
¼

�szcy �szsysx � czcx �szsycx þ czsx
czcy czsysx � szcx czsycx þ szsx
0 0 0

264
375: ðA:8Þ

So we can re-write relationship Ha = Hb * Hc as

Ra ¼ RbRc; Ta ¼ RbTc þ Tb: ðA:9Þ

To be more specific, we have

ðRaÞij ¼ ðRbRcÞij ði; j ¼ 0; 1; 2Þ; ðA:10Þ

Ta ¼ RbTc þ Tb: ðA:11Þ
So the components of motion vector p can be obtained as

/x ¼ atan
ðRaÞ21
ðRaÞ22

� �
; ðA:12Þ

/z ¼ atan
ðRaÞ10
ðRaÞ00

� �
; ðA:13Þ

/y ¼ atan
�ðRaÞ20

ðRaÞ00 cos/z þ ðRaÞ10 sin/z

� �
; ðA:14Þ

tx ¼ Ta½0�; ty ¼ Ta½1�; tx ¼ Ta½2�: ðA:15Þ

Take partial derivatives of Eqs. (A.10), (A.11), we have

dpa ¼ F
dpb
dpc

� �
: ðA:16Þ

Let pa = (/x,/y,/z, tx, ty, tz)
T, pb = (hx,hy,hz,bx,by,bz)

T, pc = (wx,wy,wz,qx,qy,qz)
T,

we have

oRa

o/x

� �
ij

d/x þ
oRa

o/y

 !
ij

d/y þ
oRa

o/z

� �
ij

d/z

¼ ðdRaxÞijd/x þ ðdRayÞijd/y þ ðdRazÞijd/z; ðA:17Þ

48 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
¼
oðRbRcÞij

ohx
dhx þ

oðRbRcÞij
ohy

dhy þ
oðRbRcÞij

ohz
dhz

þ
oðRbRcÞij

owx

dwx þ
oðRbRcÞij

owy

dwy þ
oðRbRcÞij

owz

dwz; ðA:18Þ

¼ ðdRbxRcÞijdhx þ ðdRbyRcÞijdhy þ ðdRbzRcÞijdhz
þ ðRbdRcxÞijdwx þ ðRbdRcyÞijdwy þ ðRbdRczÞijdwz; ðA:19Þ

dtx
dty
dtz

264
375 ¼ oRb

ohx
Tcdhx þ

oRb

ohy
Tcdhy þ

oRb

ohz
Tcdhz þ Rb

dqx
dqy
dqz

264
375þ

dbx
dby
dbz

264
375; ðA:20Þ

¼ ðdRbxTcÞdhx þ ðdRbyTcÞdhy þ ðdRbzTcÞdhz þRb

dqx
dqy
dqz

264
375þ

dbx
dby
dbz

264
375: ðA:21Þ
Combine above two equations, we have
ðdRaxÞ00 ðdRayÞ00 ðdRazÞ00 0

ðdRaxÞ01 ðdRayÞ01 ðdRazÞ01 0

ðdRaxÞ02 ðdRayÞ02 ðdRazÞ02 0

ðdRaxÞ10 ðdRayÞ10 ðdRazÞ10 0

ðdRaxÞ11 ðdRayÞ11 ðdRazÞ11 0

ðdRaxÞ12 ðdRayÞ12 ðdRazÞ12 0

ðdRaxÞ20 ðdRayÞ20 ðdRazÞ20 0

ðdRaxÞ21 ðdRayÞ21 ðdRazÞ21 0

ðdRaxÞ22 ðdRayÞ22 ðdRazÞ22 0

0 0 0 I

26666666666666666664

37777777777777777775

d/x

d/y

d/z

dtx
dty
dtz

2666666664

3777777775

¼

ðdRbxRcÞ00 ðdRbyRcÞ00 ðdRbzRcÞ00 0 ðRbdRcxÞ00 ðRbdRcyÞ00 ðRbdRczÞ00 0

ðdRbxRcÞ01 ðdRbyRcÞ01 ðdRbzRcÞ01 0 ðRbdRcxÞ01 ðRbdRcyÞ01 ðRbdRczÞ01 0

ðdRbxRcÞ02 ðdRbyRcÞ02 ðdRbzRcÞ02 0 ðRbdRcxÞ02 ðRbdRcyÞ02 ðRbdRczÞ02 0

ðdRbxRcÞ10 ðdRbyRcÞ10 ðdRbzRcÞ10 0 ðRbdRcxÞ10 ðRbdRcyÞ10 ðRbdRczÞ10 0

ðdRbxRcÞ11 ðdRbyRcÞ11 ðdRbzRcÞ11 0 ðRbdRcxÞ11 ðRbdRcyÞ11 ðRbdRczÞ11 0

ðdRbxRcÞ12 ðdRbyRcÞ12 ðdRbzRcÞ12 0 ðRbdRcxÞ12 ðRbdRcyÞ12 ðRbdRczÞ12 0

ðdRbxRcÞ20 ðdRbyRcÞ20 ðdRbzRcÞ20 0 ðRbdRcxÞ20 ðRbdRcyÞ20 ðRbdRczÞ20 0

ðdRbxRcÞ21 ðdRbyRcÞ21 ðdRbzRcÞ21 0 ðRbdRcxÞ21 ðRbdRcyÞ21 ðRbdRczÞ21 0

ðdRbxRcÞ22 ðdRbyRcÞ22 ðdRbzRcÞ22 0 ðRbdRcxÞ22 ðRbdRcyÞ22 ðRbdRczÞ22 0

dRbxTc dRbyTc dRbzTc I 0 0 0 Rb

26666666666666666664

37777777777777777775

dhx
dhy
dhz
dbx
dby
dbz
dwx

dwy

dwz

dqx
dqy
dqz

26666666666666666666666664

37777777777777777777777775

:

(A.22)

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 49
Define 6 · 12 matrix A and 12 · 12 matrix B as:

A ¼

ðdRaxÞ00 ðdRayÞ00 ðdRazÞ00 0

ðdRaxÞ01 ðdRayÞ01 ðdRazÞ01 0

ðdRaxÞ02 ðdRayÞ02 ðdRazÞ02 0

ðdRaxÞ10 ðdRayÞ10 ðdRazÞ10 0

ðdRaxÞ11 ðdRayÞ11 ðdRazÞ11 0

ðdRaxÞ12 ðdRayÞ12 ðdRazÞ12 0

ðdRaxÞ20 ðdRayÞ20 ðdRazÞ20 0

ðdRaxÞ21 ðdRayÞ21 ðdRazÞ21 0

ðdRaxÞ22 ðdRayÞ22 ðdRazÞ22 0

0 0 0 I

26666666666666666664

37777777777777777775

ðA:23Þ
B ¼

ðdRbxRcÞ00 ðdRbyRcÞ00 ðdRbzRcÞ00 0 ðRbdRcxÞ00 ðRbdRcyÞ00 ðRbdRczÞ00 0

ðdRbxRcÞ01 ðdRbyRcÞ01 ðdRbzRcÞ01 0 ðRbdRcxÞ01 ðRbdRcyÞ01 ðRbdRczÞ01 0

ðdRbxRcÞ02 ðdRbyRcÞ02 ðdRbzRcÞ02 0 ðRbdRcxÞ02 ðRbdRcyÞ02 ðRbdRczÞ02 0

ðdRbxRcÞ10 ðdRbyRcÞ10 ðdRbzRcÞ10 0 ðRbdRcxÞ10 ðRbdRcyÞ10 ðRbdRczÞ10 0

ðdRbxRcÞ11 ðdRbyRcÞ11 ðdRbzRcÞ11 0 ðRbdRcxÞ11 ðRbdRcyÞ11 ðRbdRczÞ11 0

ðdRbxRcÞ12 ðdRbyRcÞ12 ðdRbzRcÞ12 0 ðRbdRcxÞ12 ðRbdRcyÞ12 ðRbdRczÞ12 0

ðdRbxRcÞ20 ðdRbyRcÞ20 ðdRbzRcÞ20 0 ðRbdRcxÞ20 ðRbdRcyÞ20 ðRbdRczÞ20 0

ðdRbxRcÞ21 ðdRbyRcÞ21 ðdRbzRcÞ21 0 ðRbdRcxÞ21 ðRbdRcyÞ21 ðRbdRczÞ21 0

ðdRbxRcÞ22 ðdRbyRcÞ22 ðdRbzRcÞ22 0 ðRbdRcxÞ22 ðRbdRcyÞ22 ðRbdRczÞ22 0

dRbxTc dRbyTc dRbzTc I 0 0 0 Rb

26666666666666666664

37777777777777777775

(A.24)

Then we have

F ¼ ðATAÞ�1ðATBÞ: ðA:25Þ
So the mean value and covariance of motion vector pa can be obtained as:

�Ra ¼ �Rb
�Rc; ðA:26Þ

�Ta ¼ �Rb
�Tc þ �Tb; ðA:27Þ

Rpa ¼ F
Rpb 0

0 Rpc

� �
FT: ðA:28Þ
Appendix B. Jacobian matrix of perspective motion transform

The perspective transform fi for a point (u,v) with depth value Z from frame k to
point (u0,v0) in frame n is

fi ¼
f1
f2

� �
; ðB:1Þ

50 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
¼
u0 � r11uþr12vþr13þtx

Z
r31uþr32vþr33þtz

Z

v0 � r21uþr22vþr23Þþ
ty
Z

r31uþr32vþr33Þþtz
Z

264
375; ðB:2Þ

where rij, (i,j = 0, 1, 2) are elements of rotation matrix R defined by motion vector

npk = (/x,/y,/z, tx, ty, tz)
T.

Define

dRx ¼
oR

o/x
; dRy ¼

oR

o/y
; dRz ¼

oR

o/z
; ðB:3Þ

up ¼ Zðr11uþ r12vþ txÞ; ðB:4Þ

vp ¼ Zðr11uþ r12vþ txÞ; ðB:5Þ

zp ¼ Zðr11uþ r12vþ txÞ: ðB:6Þ
We can compute the Jacobian matrix of fi as

of

oðnpkÞ
¼

of1
o/x

of1
o/y

of1
o/z

of1
otx

of1
oty

of1
otz

of2
o/x

of2
o/y

of2
o/z

of2
otx

of2
oty

of2
otz

24 35; ðB:7Þ

where
of1
o/x

¼ ZððdRxÞ11uþ ðdRxÞ12vþ ðdRxÞ13Þzp � upZððdRxÞ31uþ ðdRxÞ32vþ ðdRxÞ33Þ
z2p

;

ðB:8Þ

of1
o/y

¼ ZððdRyÞ11uþ ðdRyÞ12vþ ðdRyÞ13Þzp � upZððdRyÞ31uþ ðdRyÞ32vþ ðdRyÞ33Þ
z2p

;

ðB:9Þ

of1
o/z

¼ ZððdRzÞ11uþ ðdRzÞ12vþ ðdRzÞ13Þzp � upZððdRzÞ31uþ ðdRzÞ32vþ ðdRzÞ33Þ
z2p

;

ðB:10Þ

of1
otx

¼ 1

zp
;

of1
oty

¼ 0;
of1
otz

¼ �up
z2p

; ðB:11Þ

of2
o/x

¼ ZððdRxÞ21uþ ðdRxÞ22vþ ðdRxÞ23Þzp � upZððdRxÞ31uþ ðdRxÞ32vþ ðdRxÞ33Þ
z2p

;

ðB:12Þ

of2
o/y

¼ ZððdRyÞ21uþ ðdRyÞ22vþ ðdRyÞ23Þzp � upZððdRyÞ31uþ ðdRyÞ32vþ ðdRyÞ33Þ
z2p

;

ðB:13Þ

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 51
of2
o/z

¼ ZððdRzÞ21uþ ðdRzÞ22vþ ðdRzÞ23Þzp � upZððdRzÞ31uþ ðdRzÞ32vþ ðdRzÞ33Þ
z2p

;

ðB:14Þ

of1
otx

¼ 0;
of1
oty

¼ 1

zp
;

of1
otz

¼ �vp
z2p

: ðB:15Þ
Appendix C. Motion estimation from two transforms

We would like to update the motion uncertainty from frame 0 to n associated with

nU0 : ðn�p0; nR0Þ, given two transformations from frame 0 to k and from k to n respec-
tively as kU0 : ðk�p0; kR0Þ and nUk : ðn�pk; nRkÞ. In general case, given transformation
uncertainties ð�pb;RbÞ and ð�pc;RcÞ, and initial estimate of ð�pa;RaÞ, we want to update
ð�pa;RaÞ based on homogeneous transformation relationship Ha = Hb * Hc, or

Ra ¼ RbRc; Ta ¼ RbTc þ Tb: ðC:1Þ
Let pa = (/x,/y,/z, tx, ty,tz)

T,pb = (hx,hy,hz, sx,sy, sz)
T, pc = (wx,wy,wz,qx,qy,qz)

T,
then we have the following equations:

Rij ¼ ðRaÞij � ðRbRcÞij ¼ 0 ði; j ¼ 0; 1; 2Þ; ðC:2Þ

T ¼ Ta � RbTc þ Tb ¼ 0: ðC:3Þ
Based on the above constraints, we can apply extended Kalman filter (EKF) to
sequentially update ð�pa;RaÞ as following:

(1) Case 1 (Rij ¼ 0):
Let p and r be the system state vector and measurement vector for EKF sepa-

rately, we have

p ¼ pa and r ¼ ðpb; pcÞ
T
: ðC:4Þ

To apply Kalman filter, the relevant observation matrix M is

M ¼ oRij

op
¼ ðdRaxÞij ðdRayÞij ðdRazÞij 0 0 0
	

: ðC:5Þ

The observation error covariance matrix G can be computed as

oRij

or
¼ oRij

opb

oRij

opc

h i
ðC:6Þ

¼ �ðdRbxRcÞij �ðdRbyRcÞij �ðdRbzRcÞij 0 0 0
	
�ðRbdRcxÞij �ðRbdRcyÞij �ðRbdRczÞij 0 0 0

 ðC:7Þ

G ¼ oRij

or

Rb 0

0 Rc

� �
oRij

or

� �T

: ðC:8Þ

52 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
So the updated ð�pa;RaÞ by EKF is:

K ¼ RaM
TðGþMRaM

TÞ�1
;

Rij ¼ ðRaÞij � ðRbRcÞij;
�pa ¼ �pa � KRij;

Ra ¼ ðI� KMÞRa:

ðC:9Þ

(2) Case 2 ðT ¼ 0Þ:
Define system state vector p and measurement vector r for EKF same as above,

we can compute observation matrix M as

M ¼ oT

op
¼ oTa

opa
: ðC:10Þ

Matrix G is calculated as

oT

or
¼ �dRbxTc �dRbyTc �dRbzTc �I3x3 0 0 0 �Rb

1

0

0

264
375 �Rb

0

1

0

264
375 �Rb

0

0

1

264
375

264
375;

(C.11)

G ¼ oT

or

Rb 0

0 Rc

� �
oT

or

T

: ðC:12Þ

And the final updated ð�pa;RaÞ by EKF is:

K ¼ RaM
TðGþMRaM

TÞ�1
; ðC:13Þ

T ¼ Ta � RbTc þ Tb; ðC:14Þ

�pa ¼ �pa � KT; ðC:15Þ

Ra ¼ ðI� KMÞRa: ðC:16Þ
Appendix D. Motion estimation from inverse transforms

In this appendix, we are going to talk about the updating of motion uncertainty

nUk : ðn�pk; nRkÞ from frame k to n, given two uncertainties nU0 : ðn�p0; nR0Þ and

kU0 : ðk�p0; kR0Þ. Instead of using homogeneous transformation relationship

nHk ¼ nH0 � kH
�1
0 , we update nHk by directly using nH0 = nHk * kH0 based on

EKF to avoid matrix inverse of known motion transform.
Let pa = (/x,/y,/z, tx, ty, tz)

T, pb = (hx,hy,hz, sx, sy, sz)
T, pc = (wx,wy,wz,qx,qy,qz)

T,
then we have the following equations:

Rij ¼ ðRaÞ � ðRbRcÞ ¼ 0 ði; j ¼ 0; 1; 2Þ; ðD:1Þ
ij ij

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 53
T ¼ Ta � RbTc þ Tb ¼ 0: ðD:2Þ
Based on the above constraints, we can apply extended Kalman filter (EKF) to
sequentially update ð�pb;RbÞ as following:

(1) Case 1 (Rij ¼ 0):
Let p and r be system state vector and measurement vector for EKF separately,

we have
p ¼ pb; and r ¼ ðpa; pcÞ

T
: ðD:3Þ

To apply Kalman filter, the relevant observation matrix M is

M ¼ oRij

op
¼ �ðdRbxRcÞij �ðdRbyRcÞij �ðdRbzRcÞij 0 0 0
	

: ðD:4Þ

The observation error covariance matrix G can be computed as

oRij

or
¼ oRij

opa

oRij

opc

h i
; ðD:5Þ

¼ ðdRaxÞij ðdRazÞij ðdRayÞij 0 0 0
	
�ðRbdRcxÞij �ðRbdRcyÞij �ðRbdRczÞij 0 0 0

;

ðD:6Þ

G ¼ oRij

or

Ra 0

0 Rc

� �
oRij

or

� �T

: ðD:7Þ

So the updated ð�pa;RaÞ by EKF is:

K ¼ RbM
TðGþMRbM

TÞ�1
; ðD:8Þ

Rij ¼ ðRaÞij � ðRbRcÞij; ðD:9Þ

�pb ¼ �pb � KRij; ðD:10Þ

Rb ¼ ðI� KMÞRb: ðD:11Þ
For each Rij, we go through above process sequentially.

(2) Case 2 ðT ¼ 0Þ:
Define system state vector p and measurement vector r for EKF same as above,

we can compute observation matrix M as

M ¼ oT

op
¼ oTa

opa
ðD:12Þ

¼ �dRbxTc � dRbyTc � dRbzTc � I3�3

	

: ðD:13Þ

Matrix G is calculated as

oT

or
¼ 0 0 0 I3�3 0 0 0 �Rb

1

0

0

264
375 �Rb

0

1

0

264
375 �Rb

0

0

1

264
375

264
375; ðD:14Þ

54 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
G ¼ oT

or

Ra 0

0 Rc

� �
oT

or

T

: ðD:15Þ

So the final updated ð�pb;RbÞ by EKF is:

K ¼ RbM
TðGþMRbM

TÞ�1
; ðD:16Þ

T ¼ Ta � RbTc þ Tb; ðD:17Þ

�pb ¼ �pb � KT; ðD:18Þ

Rb ¼ ðI� KMÞRb: ðD:19Þ
Appendix E. Jacobian matrices used in depth updating

During the process of estimating initialized depth uncertainty ð�Z; rZÞ, we are given
nUk and feature correspondence pair (u,v,z)fi (u0,v0). The relevant constraint
equations and Jacobian matrices used during the updating process are defined as
following: Constraint equations:

h ¼
h1
h2

� �
¼

Zðr11uþ r12vþ r13Þ þ tx � u0ðZðr31uþ r32vþ r33Þ þ tzÞ
Zðr21uþ r22vþ r23Þ þ ty � v0ðZðr31uþ r32vþ r33Þ þ tzÞ

� �
: ðE:1Þ

Jacobian M:

M ¼
oh1
oZ
oh2
oZ

" #
¼

ðr11uþ r12vþ r13Þ � u0ðr31uþ r32vþ r33Þ
ðr21uþ r22vþ r23Þ � v0ðr31uþ r32vþ r33Þ

� �
: ðE:2Þ

Jacobian of h:

oh

or
¼

oh1
o/x

oh1
o/y

oh1
o/z

oh1
otx

oh1
oty

oh1
otz

oh1
ou0

oh1
ov0

oh2
o/x

oh2
o/y

oh2
o/z

oh2
otx

oh2
oty

oh2
otz

oh2
ou0

oh2
ov0

24 35; ðE:3Þ

where

oh1
o/x

¼ ZððdRxÞ11uþ ðdRxÞ12vþ ðdRxÞ13Þ � u0ZððdRxÞ31uþ ðdRxÞ32vþ ðdRxÞ33Þ;

ðE:4Þ

oh1
o/y

¼ ZððdRyÞ11uþ ðdRyÞ12vþ ðdRyÞ13Þ � u0ZððdRyÞ31uþ ðdRyÞ32vþ ðdRyÞ33Þ;

ðE:5Þ

oh1
o/z

¼ ZððdRzÞ11uþ ðdRzÞ12vþ ðdRzÞ13Þ � u0ZððdRzÞ31uþ ðdRzÞ32vþ ðdRzÞ33Þ;

ðE:6Þ

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 55
oh1
otx

¼ 1;
oh1
oty

¼ 0;
oh1
otz

¼ �u0; ðE:7Þ

oh1
ou0

¼ �Zðr31uþ r32vþ r33Þ � tz;
oh1
ov0

¼ 0; ðE:8Þ

oh2
o/x

¼ ZððdRxÞ21uþ ðdRxÞ22vþ ðdRxÞ23Þ � v0ZððdRxÞ31uþ ðdRxÞ32vþ ðdRxÞ33Þ;

ðE:9Þ

oh2
o/y

¼ ZððdRyÞ21uþ ðdRyÞ22vþ ðdRyÞ23Þ � v0ZððdRyÞ31uþ ðdRyÞ32vþ ðdRyÞ33Þ;

ðE:10Þ

oh2
o/z

¼ ZððdRzÞ21uþ ðdRzÞ22vþ ðdRzÞ23Þ � v0ZððdRzÞ31uþ ðdRzÞ32vþ ðdRzÞ33Þ;

ðE:11Þ

oh2
otx

¼ 0;
oh2
oty

¼ 1;
oh2
otz

¼ �v0; ðE:12Þ

oh2
ou0

¼ 0;
oh2
ov0

¼ �Zðr31uþ r32vþ r33Þ � tz: ðE:13Þ
References

[1] Y. Altunbasak, P. Eren, A. Tekalp, Region-based parametric motion segmentation using color
information, Graph. Models Image Process. 60 (No. 1) (1998) 13–23.

[2] G. Borshukov, G. Bozdagi, Y. Altunbasak, M. Tekalp, Motion segmentation by multistage affine
classification, IEEE Trans. Image Process. 6 (11) (1997) 1591–1594.

[3] I. Celasun, A. Tekalp, M. Gokcetekin, D.M. Harmandi, 2-D mesh-based video object segmentation
and tracking with occlusion resolution, Signal Process.: Image Commun. 16 (2001) 949–962.

[4] J. Chraskova, Y. Kaminsky, I. Krekule, An automatic 3D tracking system with a PC and a single TV
camera, J. Neurosci. Meth. 88 (2) (1999) 195–200.

[5] R. Castagno, T. Ebrahimi, M. Kunt, Video segmentation based on multiple features for interactive
multimedia applications, IEEE Trans. Circuits Systems Video Technol. 8 (5) (1998).

[6] A. Azarbayejani, A.P. Pentland, Recursive estimation of motion, structure, and focal length, IEEE
Trans. Pattern Anal. Mach. Intell. 17 (6) (1995) 562–575.

[7] J. Alon, S. Sclaroff, Recursive estimation of motion and planar structure, in: IEEE Proc. Computer
Vision and Pattern Recognition, North Carolina, 2000.

[8] T.J. Broida, S. Chandrashekhar, R. Chellappa, Recursive estimation of 3D motion from a monocular
image sequence, IEEE Trans. Aerospace Electronic Syst. 26 (4) (1990) 639–656.

[9] I.J. Cox, A review of statistical data association techniques for motion correspondence, Int. J.
Comput. Vision 10 (1) (1993) 53–66.

[10] N. Diehl, Object-oriented motion estimation and segmentation in image sequences, Signal Process.:
Image Commun. 3 (1991) 23–56.

56 J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57
[11] O. Faugeras, Three-Dimensional Computer Vision, MIT press, Cambridge, MA, 1993.
[12] Fu. Yue, A.T. Erdem, A.M. Tekalp, Tracking visible boundary of objects using occlusion adaptive

motion snake, IEEE Trans. Image Process. 9 (12) (2000) 2051–2060.
[13] J. Gao, A. Kosaka, A. Kak, Interactive color image segmentation editor driven by active contour

model, in: IEEE Proc. Internat. Conf. on Image Processing, Japan, 1999.
[14] C. Gomila, F. Meyer, Automatic video object generation tool: segmentation and tracking of persons

in real time, Ann. Telecommun.—Ann. Telecommun. 55 (3–4) (2000) 172–183.
[15] J. Guo, J. Kim, C. Kuo, An interactive object segmentation system for MPEG video, in: IEEE Proc.

Internat. Conf. on Image Processing, Kobe, Japan, 1999.
[16] C. Gu, M. Lee, Semiautomatic segmentation and tracking of semantic video objects, IEEE Trans.

Circuits Systems Video Technol. 8 (5) (1998) 572–584.
[17] S. Hsu, P. Anandan, S. Peleg, Accurate computation of optical flow by using layered motion

representation, in: Proc. Internat. Conf. on Pattern Recognition, Jerusalem, Israel, 1994, pp. 743–746.
[18] K. Hata, J. Ohya, F. Kishino, R. Nakatsu, Automatic extraction and tracking of complex contours,

Syst. Comput. Jpn. 30 (8) (1999) 40–50.
[19] Y.S. Hung, H.T. Ho, A Kalman filter approach to direct depth estimation incorporating surface

structure, IEEE Trans. Pattern Anal. Mach. Intell. 21 (6) (1999) 570–575.
[20] M. Isard, A. Blake, Condensation-conditional density propagation for visual tracking, Int. J.

Comput. Vision 29 (1) (1998) 5–28.
[21] D. Jang, H. Choi, Active models for tracking moving objects, Pattern Recogn. 33 (2000) 1135–1146.
[22] S. Kamijo, Y. Matsushita, K. Ikeuchi, M. Sakauchi, Occlusion robust tracking utilizing spatio-

temporal Markov random field model, in: Proc. Internat. Conf. on Pattern Recognition, 2000.
[23] C. Kervrann, F. Heitz, Statistical deformable model-base segmentation of image motion, IEEE

Trans. Image Process. 8 (4) (1999).
[24] M. Kim, J.G. Jeon, J.S. Kwak, M.H. Lee, C. Ahn, Moving object segmentation in video sequences

by user interaction and automatic object tracking, Image Vision Comput. 19 (5) (2001) 245–260.
[25] A. Kosaka, A. Kak, Fast vision-guided mobile robot navigation using model-based reasoning and

prediction of uncertainties, Computer Vision, Graphics, Image Process. Image Und. 56 (3) (1992).
[26] M. Lee, W. Chen, B. Lin, C. Gu, T. Markoc, S. Zabinsky, R. Szeliski, A layered video object coding

system using sprite and affine motion model, IEEE Trans. Circuits System Video Technol. 7 (1)
(1997).

[27] F. Meyer, P. Bouthemy, Region-based tracking using affine motion models in long image sequence,
CVGIP: Image Und. 60 (2) (1994) 119–140.

[28] N. Peterfreund, Robust tracking of position and velocity with Kalman snakes, IEEE Trans. Pattern
Anal. Mach. Intell. 21 (6) (1999) 564–569.

[29] Y. Rui, T. Huang, S. Chang, Digital Image/video library and MPEG-7: Standardization and
Research Issues, ICASSP, Seattle, 1998.

[30] R.C. Smith, P. Cheeseman, On the representation and estimation of spatial uncertainty, Int. J.
Robotics Res. 5 (4) (1986) 56–68.

[31] S. Sun, D. Haynor, Y. Kim, Semiautomatic video object segmentation using vsnakes, IEEE Trans.
Circuits Syst. Video Technol. 13 (1) (2003) 75–82.

[32] A. Tekalp, Digital Video Processing, Prentice Hall PTR, 1995.
[33] C. Toklu, A. Tekalp, A. Erdem, Semi-automatic video object segmentation in the presence of

occlusion, IEEE Trans. Circuits Syst. Video Technol. 10 (4) (2000) 624–629.
[34] J. Wang, E. Adelson, Representing moving images with layers, IEEE Trans. Image Process. 3 (5)

(1994) 625–638.
[35] J. Weng, T.S. Huang, N. Ahuja, Motion and Structure from Image Sequences (Series in Information

Science), Springer, Berlin, 1993.
[36] J.J. Wu, R.E. Rink, T.M. Caelli, V.G. Gourishankar, Recovery of the 3-D location and motion of a

rigid object through camera image (an extended kalman filter approach), Int. J. Comput. Vision 3
(1998) 373–394.

[37] Y. Yao, R. Chellappa, Tracking a dynamic set of feature points, IEEE Trans. Image Process. 4 (10)
(1995) 1382–1395.

J. Gao et al. / Computer Vision and Image Understanding 99 (2005) 1–57 57
[38] Z. Zhang, O.D. Faugeras, Three-dimensional motion computation and object segmentation in a long
sequence of stereo frames, Int. J. Comput. Vision 7 (1992) 211–241.

[39] Z.Y. Zhang, R. Deriche, O.D. Faugeras, Q.T. Luong, A robust technique for matching two
uncalibrated images through the recovery of the unknown epipolar geometry, Artificial Intell. 78 (1–2)
(1995).

[40] Y. Zhong, A.K. Jain, M.-P. Dubuisson-Jolly, Object tracking using deformable templates, IEEE
Trans. Pattern Anal. Mach. Intell. 22 (5) (2000) 544–549.

[41] S.C. Zhu, A. Yuille, Region competition: unifying snakes, region growing, and Bayes/MDL for
multiband image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. 18 (9) (1996) 884–900.

	A multi-Kalman filtering approach for video tracking of human-delineated objects in cluttered environments
	Introduction
	The motion tracking framework mdash an overview
	Extraction of feature points, their representations, and uncertainty modeling
	Automatic selection of feature points for tracking and for boundary description
	Object representation for tracking and uncertainty modeling
	Feature prediction and finding correspondences
	Motion uncertainty nUk prediction
	Projecting predicted motion uncertainty into image space
	Feature extraction using predicted uncertainty

	Two-frame motion estimation
	Updating motion uncertainty from initial feature correspondences
	A second update of motion uncertainty
	Seeking new matches for invalidated feature pairings

	Multi-frame based motion estimation
	Motion vector estimation
	Feature representation
	Genesis frame based grouping of features in the current frame
	Final motion estimation

	Shape vector estimation

	Object boundary updating by region-growing
	Boundary prediction and uncertainty field definition
	Region-growing for boundary point detection
	Recursive partitioning of the eroded boundary
	Growing boundary segments

	Selecting new features for tracking

	Experimental results
	Experiments with synthetic data
	Experiments with real video sequences
	Video 1
	Video 2
	Video 3
	Video 4

	Concluding remarks
	Motion transform prediction from two transforms
	Jacobian matrix of perspective motion transform
	Motion estimation from two transforms
	Motion estimation from inverse transforms
	Jacobian matrices used in depth updating
	References

