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Abstract

We present a modification of the well-known snakes
algorithm for extracting contours in noisy images.
Our modification addresses the issues of selection of
the control points on an estimate of the contour and
the determination of the weighting coefficients. The
weighting coefficients are determined dynamically on
the basis of the distance between the control points and
the local curvature of the contour. We show results ob-
tained in extracting the lwer from cross-sectional im-
ages of the abdomen.

1 Introduction

Three-dimensional modeling of liver and the esti-
mation of its volume are powerful tools for diagnosing
liver metastases, for the determination of liver regen-
eration after hepatectomy, and for deciding whether
the patient will have enough liver postoperatively to
avoid liver failure. Furthermore, liver volume is an
important factor when evaluating patients for entire
or partial liver transplantation to avoid the possibility
of size incompatibility. The 2D segmentation of liver
from projection or cross-sectional images is a neces-
sary precursor to 3D modeling.

Previously, Shani et al. have proposed knowledge-
based algorithms using generalized-cylinder organ
models for 3-D structure recognition in abdominal CT
scans [1]. Karssemeijer et al. [2] described a Markov
random field model to segment out the spleen. Bae et
al. [3] proposed a scheme to detect pulmonary nodules
from a set of CT images. Levin [4] explored the de-
tectability of soft-tissue tumors by using multispectral
feature space classification.

The state-of-the-art in 1mage segmentation is such
that practically all automatic methods available at
this time will not work for separating out specific or-
gans from the rest of the image. In current prac-
tice, the physicians use either fully-manual or semi-
automatic methods. For the fully-manual approach,
the user first traces the boundary by marking the high-

curvature points and then obtains the edge by inter-
polation. This method is labor and time consuming,
especially when the procedure must be repeated for
all the cross-sectional images for the estimation of 3D
volume. For the semi-automatic methods, the com-
puter provides the appropriate initial boundary; then
using the control points supplied by the user, a more
accurate version of the boundary is extracted.

In this paper, we describe an automatic liver
boundary extraction method. Our algorithm starts
with a newly developed region segmentation algo-
rithm, called the Spedge-and-Medge algorithm, which
has been shown to be robust for industrial and robotic
applications [5]. This algorithm first eliminates tex-
ture appearing in the image by applying a smoothing
operator. The algorithm then takes into account the
edge information as well as the region homogeneity to
generate subregions from the entire image. Next, the
algorithm accumulates the segmentated regions that
potentially constitute the liver organ based on the
geometric properties (location information) and non-
geometric properties (intensity information). Once
the initial boundary of the liver is generated, a set of
representative boundary points is selected on the basis
of their curvature properties. These control points are
then fed into an energy-minimizing snakes algorithm
for a precise delineation of the organ boundary. Note
that the control point in our algorithm will, in gen-
eral, not be equi-spaced. Since the control points are
selected on the basis of their curvature properties and
with no regard to whether or not they are equi-spaced,
we believe we obtain a superior implementation of the
snakes approach. This automatic liver contour extrac-
tion expedites the next stage of liver volume quantifi-
cation.

2 Coarse Segmentation

In this section, we will briefly describe the initial
segmentation procedure whose boundary output for
the liver is later refined by the algorithm presented in



the next section. An example cross-sectional abdomi-
nal image that is processed by our system is shown in
Fig. 3(a). For the initial segmentation, this image is
taken through the following processing steps:

1) The first step uses two thresholds, Low and High,
discovered empirically by examining a large number
(roughly 100) of cross-sectional images of the type
shown in Fig. 3(a) to determine the 99 percentile
range for the gray levels of the liver pixels. Subse-
quently, these two thresholds are applied to every im-
age to discard pixels whose gray levels are obviously
outside the liver range. Fig. 3(b) shows the output
image obtained when these two thresholds are applied
to the cross-sectional image of Fig. 3(a).

2) A 5xb median filter is then applied to the image
obtained from the previous step to reduce the effect of
any impulse noise present in the imaging system and
to smooth out the textures present in the image. This
step makes more robust the performance of the steps
to follow.

3) The Canny edge operator is applied to the im-
age obtained from the previous step. This edge de-
tector, like practically all other edge detectors, yields
broken and dangling edges. What that means is that
the edges by themselves cannot be used for describing
closed regions. We first apply an edge linker to the
output of the Canny detector to repair small breaks
in the edges. The edge linker works on the basis of
joining nearby edges provided they are colinear, are
separated by no more than two pixels, and if the ori-
entation of the edge end points at the breaks are nearly
identical. The partially repaired edge image is fed into
the following step.

4) Then, the spedge-and-medge segmentation algo-
rithm is applied to the image to segment out regions
inside the body. This algorithm [5] is a modifica-
tion of the well-known split-and-merge algorithm [9]
in which an image is first recursively segmented using
a quadtree data structure on the basis of homogeneity
of gray levels within the regions represented by the
nodes of the quadtree. Next, these regions are merged
on the basis of nearness of the gray-levels to the gray
levels in other proximal regions and the edge content
of each region etc.. The spedge-and-medge modifica-
tion to split-and-merge consists of taking into account
the repaired Canny edges when deciding whether or
not to merge two contiguous edges. Fig. 3(c) shows
the boundaries of the regions output by the Spedge-
and-Medge algorithm.

5) Regions generated by the previous step are ana-
lyzed, and geometric and non-geometric attributes are
computed for each region. These attributes include:

i) Area, ii) Mean gray level, iii) Standard deviation of
gray level, and iv) Location (centroid), etc.

6) Using an initial guess for the attribute values, ac-
cumulate regions that potentially come from the liver
organ. The initial guess is made on the basis of the
following two considerations: a) The center of mass of
the region should be in the upper left portion of the
image since that’s where liver is expected to be; and
b) the mean gray level in the region should be between
the two experimentally-derived thresholds mentioned
earlier — Low and High.

7) The liver regions thus obtained are merged to-
gether into a single large region. Any holes in this
merged region are patched by using one of the stan-
dard tools of image analysis.

3 Refinement of Boundary
3.1 The Energy Function

A snake is an energy-minimizing continuous spline
whose energy is guided by the image forces that at-
tract it to the wanted image features and the internal
energy that serves as a smoothness constraint. The
contours slither while always minimizing the energy
function, and therefore act like snakes and exhibit dy-
namic property. This approach to contour extraction
from images was first promulgated by Kass et al. [6]
and since then has found applications in many areas.

The total energy of a spline with parametric de-
scription of S(¢) = (#(t), y(t)) can be described as
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E(S(t)) is the local energy associated with the con-
tour at a point defined by the parameter ¢t. This local
energy consists of three components: 1) The inter-
nal energy, Fj,¢, which represents the forces of the
spline due to bending; 2) The image energy, Eimg,



which drags the snake to salient features in the vicin-
ity, such as lines, edges, etc.; and 3) The constraint en-
ergy, E.,n, which represents the energy of the spring,
with spring constant K, which connects a point z;
on the contour and the corresponding point x5 on the
spline. The internal energy in turn can be decomposed
into two terms, a first-order term and a second-order
term. The first-order term, proportional to the first
derivative of the contour, makes the snake act like a
membrane and the second-order term, proportional to
the second-order derivative of the contour, makes it
act like a thin-plate. The image energy, Fjpyg, can
be expressed as a sum of the energies in the different
constituents of an image, such as lines, edges, and pos-
sibly others. In the expressions above, the line energy
at a point defined by the parameter ¢ is represented
by Eline, the edge energy by Feqqe, and other possible
sources of image energy by Fiepm. The notation here
follows the original papers on the subjects [6, 7].

The performance of a snake algorithm is controlled
by the coefficients « and 8 and by the weights wine,
Wedge, aNd Wierm . Unfortunately, there doesn’t exist a
guideline on how to set values for these coefficients and
weights. For obvious reasons, no particular values for
these parameters work in all cases. The performance
of a snake algorithm, especially its convergence, is also
a function of what is used as an initial approxima-
tion to the contour, in our case meaning the output of
coarse segmentation. We will now present a modified
version of the snake algorithm whose convergence is
improved by choosing a set of unequally-spaced con-
trol points and by using values for a and g that are
functions of the local geometry.

3.2 Dynamic Deformable Model

Boundary points are extracted for the potential
liver region generated by coarse segmentation (see
Step 7 of Section 2). This boundary list is sampled
non-uniformly by a recursive algorithm, the placement
of the sampling points being determined by the curva-
ture of the boundary. We will not provide the details
of this algorithm here for lack of space, but suffice it to
say that, starting at a boundary point, the algorithm
constructs chords to each of the subsequent boundary
points and, as long as the perpendicular distance of
the intermediate points to the chord is within a thresh-
old, the chord is made longer. When the constraint on
the perpendicular distance is violated, the extension of
the chord stops. The boundary point at the end of the
chord becomes the next point retained. The boundary
points retained in this manner are called the control
points.

Let v; = (#;,4), ¢ = 0,---,n — 1, be the control

points on the boundary obtained in the manner de-
scribed above. We may refer to these as the state
variables for dynamic programming. In terms of these
state variables, a discretization of the integrals in Eq.

(1) yields
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and Fegt is given as Fep(v;) = — |V I(v;)], T being
the image intensity at stage i.

Dynamic programming is used here to minimize the
energy function in Eq. (2) [7]. Tt is a discrete multi-
stage decision process that varies the control points at
each iteration in the direction of a global energy mini-
mum. During each iteration, the optimal energy func-
tional is obtained from all possible shifts of the control
points to new positions within an mxm neighborhood
of the current placement of the control points. (In our
current implementation, m is 3.) Our implementation
decomposes the summation in Eq. (2) into the follow-
ing form:

’vn) = El(vl, V3, U3) + EZ(UZa U3, 04)
+...+ En_z(vn—Z,vn—lavn)
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where

Ei_1(vie1,vi,v41) =
Fept(vi) + Eint(vi—1, U5, vig1).

To apply the dynamic processing, a sequence of opti-

mal value functions, {Si}?z_ll, is calculated by
Si(vi,vig1) = min Si—1(viz1, v;) + Eint(vi)
+Eext(vi)~

The internal energy at the control point v; is con-
trolled by a; and B;. These two coefficients adjust the
relative importance to be given to the membrane and
thin-plate bending energies. Since the « coefficients
control the membrane-like behavior of the contour, if
the distance d between two adjacent control points is
small, a big value of «; for that position will cause the
boundary to sag into the liver region between those
two control points. Therefore, if the distance d be-
tween two adjacent control points is small, we’d like
the corresponding value of a; to be also small, and



vice versa. We determined empirically that for best
results the relationship between «; and d; should be

ai= A (1 _ 6—1.67><10_3d,) (5)

where A i1s a constant for all stages and is around
.003 in the liver image analysis. Fig. 1 shows the
relationship.

Figure 1: Parameter «; function.

It is useful for the snake to behave like a thin strip
rather than like a membrane. That is, it should try to
be a smooth curve or a straight line, but should not
contract. The second-order derivative here solves the
problem. The coefficient 3 controls the relative im-
portance of the thin-plate term and the smoothness of
the contour. If it is too small, the edge will become
coarse. Setting it to zero allows the discontinuity of
the second-order and will develop a corner. To those
sharp changing contour sections with high curvature,
the G should be small to follow the rapid geometri-
cal change; otherwise, those sections will be flattened.
The relationship between 3; and the curvature k; was
found to be

ﬁz’ — 36_0'01k’. (6)

The above relationship can also be seen in Fig. 2. In
our experiments, we can choose B around 0.002.

4 Concluding Remarks

The robustness of the above method was tested on
CT images of abdominal sections containing the liver.
Although the complexity of our algorithm is O(m?®n)
for each iteration of dynamic programming, the con-
vergence is still fast due to the closeness of the coarse-
segmentation contour to the final contour. An impor-
tant reason for our superior results is that the parame-
ters a; and 3; are updated continuously in accordance
with the changing geometrical properties of the con-
tour locally. Fig. 3 shows the images obtained during
the various stages of processing.
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Figure 2: Parameter §3; function.
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Figure 3: An example of contour extraction. (a) Original image. (b) After gray-level thresholding with Low and High.
(c) Result of Spedge-and-Medge segmentation. (d) Region obtained by merging all candidate liver sub-regions. (e)
Final segmentation of the liver boundary superimposed on the original image. (f) The final liver contour, represented
by x, and the liver contour obtained after just the coarse segmentation, represented by +, are shown here.



