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or automation to be cost effective in small batch

manufacturing, the use of special purpose parts

handling equipment must be minimized by the use

of adequate sensory feedback to enable a robot to
interact with a random environment.! For this kind of manu-
facturing, an assembly cell should consist ideally of one or
more robots, sensory elements (vision, tactile, torque/force),
a motion control system, and supervisory intelligence; such a
cell should be knowledge driven in the sense that it should
‘‘know’’ about the objects and plans that the assembly cell is
supposed to deal with. This knowledge should also allow the
robot to handle uncertainty in sensory data and to arbitrate
between sensors in the event of conflicts.

The intent of this article is to provide an overview of one
possible organization for an automated assembly cell that is
under development in the Robot Vision Laboratory at
Purdue University. We will present a knowledge-based system
that consists of Supervisor, Global Knowledge Base, Current
World Model, Motion Controller, and Sensory Subsystem
modules. (Although the complete system is an ongoing
project, significant contributions have been made in most of
the system’s components.)

We will also discuss the issue of object representation and
mention our efforts on the slot-filler approach, which appears
to work well for objects with distinctive landmarks; this ap-
proach can also be used for storing other itéms of informa-
tion such as assembly instructions and any real-world con-
straints to be used in task planning.

For solid objects of high symmetry, not uncommon in the
industrial world, we will review the Extended Gaussian Image
concept for representation, and, in addition, present a
simpler approach for generating the center coordinates of a
tesselated Gaussian sphere.
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For the Current World Model generator, we will discuss
the radial-valued skeleton approach for objects that are
primarily 2-D in nature and then show its extension into a
novel method for solving the stereo problem symbolically by
using information-theoretic image-to-image interprimitive
distances and relational constraints. For generating the Cur-
rent World information on 3-D solid objects, we will sum-
marize some of our recent work on the creation of edge-
vertex graphs from structured light data. We will then talk
about the Motion Controller which consists of a flexible user-
friendly manipulator interface.

Finally, some experimental results in parts mating using
3-D vision feedback will be shown.

System overview

Until recently, not much was published on the organization
of sensor based assembly cells. In the past, manipulator sys-
tems have usually consisted of a robot with special-purpose
fixturing; if sensory capability was required, a vision system
(and, sometimes, other sensors) was grafted onto the con-
figuration.2? This approach presents a number of dif-
ficulties, the most significant of which is the lack of a truly
integrated system-level design.

Recently, there has been some work at defining configura-
tions for more general purpose, and better integrated, sys-
tems. Alami4 describes a system being developed in France
under the ARA (Automatisation et Robotique Avanceesa)
program. This system uses a Lisp-based environment to in-
tegrate the sensory, manipulation, and decision processing re-
quired for research in automated assembly. Several com-
municating processes support two manipulators and a vision
system.
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Lee and Goldwasser> have recently presented a distributed
system that is being explored by the General Robotics and
Active Sensory Processing Group at The University of Penn-
sylvania. This configuration consists of a network of several
mini- and microcomputers, with sensory and manipulation
tasks routed to the most appropriate computing resource.
Their published work focuses on distributed communication
and operating system issues. Shin and Epstein® have exa-
mined the communication problems inherent in a multi-
processing robotics environment. They propose a set of
process-level communication primitives that can be used to
coordinate the components in an assembly cell.

The system presented here is designed as a framework for
research on sensory systems and sensor-guided motion. It has
the following design goals:

e Flexibility: Since its first use will be as a researehitool,
the system should permit incorporation of new
methodologies and programming paradigms, as they
become available, for each of its major components.

* Modularity: To implement a system of this size, a broad
spectrum of technologies must be integrated. To simplify
system integration, general specifications for several in-
dependent subsystems were established. Each of these
subsystems is a self-contained module performing a subset
of the tasks required for the cell’s operation. The modules
communicate through a well-defined message-based
network.

¢ Ease of use: This feature is probably the most impor-
tant. People with vastly different backgrounds are
cooperating to bring the project to fruition, each working
in a particular area of expertise. However, since each must
also interact with system components outside his or her
area, the interfaces between components must be easy to
use. Human-robot interaction, in particular, should occur
at a sufficiently high level so that persons not skilled in
robotics can use the system effectively.

A block diagram showing the component subsystems and
their interconnections is given in Figure 1. The subsystems
consist of Supervisor, Motion Controller, Global Knowledge
Base, Current World Model, and Sensory Subsystem(s). An
earlier version of this system is detailed elsewhere.’

The Supervisor. The Supervisor coordinates and controls
the activation of the entire system and the interaction between
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Figure 1. Control functions for the assembly
cell distributed across several subsystems.

the components. It is given assembly instructions for a prod-
uct and, from them, determines the necessary sequence of
operations to successfully complete the task. After the task
plan is derived, requests for action are sent to the appropriate
subsystems, their responses monitored, and adjustments in
the task plans made continuously on the basis of the latest
sensory information available to the Supervisor.

The Motion Controller. The Motion Controller accepts ac-
tion requests from the Supervisor, determines their feasibility,
and handles their execution. This module is in charge of con-
trolling all electromechanical devices in the work cell; the
devices could include one or more manipulators, grippers,
parts handling machinery, and programmable work-piece
positioners (Figure 2).

The actions of the Motion Controller are divided into plan-
ning and control functions. Planning functions consist of
path planning and collision avoidance, while control involves
the origination and verification of movement requests to the
various motion execution units, or MEUs.

Each programmable device has an associated MEU. These
modules take action requests from the Motion Controller, su-
pervise their execution, and note any exceptional conditions.
To accomplish this, each MEU maintains a model of the cur-
rent state of the device under its control. As actions occur,
this model is continually updated with information received
from the device’s control system. If an error condition oc-
curs, execution is halted and the Motion Controller is notified
of the nature and extent of the difficulty. Since the MEU is
closely coupled to each device’s control system, it is in charge
of monitoring the fast sensory feedback loops required for
force and contact sensing. For a manipulator, the MEU
would be an augmented version of a conventional robot
controller.

The Global Knowledge Base. The Global Knowledge Base
contains everything the assembly cell knows about its world.
This knowledge includes part and fixture models, assembly
instructions, and any real world constraints used in task
planning.

The GKB provides a central repository for all the long term
knowledge required by the system. This approach has several
advantages over distributing the system’s knowledge among
the subsystems. Since the knowledge is centralized, special-
purpose knowledge representation and database languages
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Figure 2. The Motion Con-
troller. The Motion Controller
coordinates the planning
and execution of all move-
ments within the cell.

that are relatively easy to implement can be used to ease the
burden of depositing new information and modifying or
retrieving existing information. If each subsystem maintained
its own database, knowledge base additions and corrections
could become major undertakings. Note that the information
stored in the GKB might be useful to more than one subsys-
tem in the cell. For example, the Motion Controller may need
to know about the object models in the GKB for path plan-
ning, while the Sensory Subsystem may need to know about
them for position verification and object recognition.

The Current World Model. The Current World Model
maintains a description of each known object in the work
cell, as well its location and and orientation. Also included in
the CWM are the locations and orientations of the end-
effectors on the manipulators. At any instant, the informa-
tion contained in the CWM should be sufficient to recon-
struct the current state of the cell.

Entries in the CWM are changed whenever a new object is
identified, an object moved, two or more objects assembled,
or one of the manipulators or positioners moved. Since access
by the other components to the data housed in the CWM is
asynchronous, care must be taken to make sure that at any
given time the entries are valid. For example, assume that the
current task is to put a cover on a box. The Supervisor re-
quests the Motion Controller to move the manipulator
holding the cover to a position over the box; it also requests
‘the vision system to verify that the cover is in a position that
will allow it to be installed. Since each subsystem operates
asynchronously, there is no guarantee that the manipulator
will have the cover in position before the vision system
receives its request. Therefore, some sort of interlock is re-
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quired on CWM entries while the manipulators are moving.
The use of semaphores?® is one way to ensure this type of
data integrity; the waitfor primitive of Shin and Epstein® is
another possible approach. With interlocks, the CWM entries
for the cover and manipulator are locked at the start of the
transfer movement and released when the motion has been
completed. The vision system then waits until these entries are
released before inspection. A time sequence for this scenario
is given in Figure 3.

The Sensory Subsystem. The Sensory Subsystem consists
of sensors requiring a processing cycle that is greater than the

Figure 3. To ensure data integrity, data locking capability
is necessary in a distributed assembly cell.
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Figure 4. Slot-filler paradigm provides a fiexible scheme
for knowledge representation.

manipulator servo rates. These sensors would require special-
purpose hardware and significant computing power to pro-
duce cycle rates approaching real time.

Examples of these types of sensors include binary vision
systems,® 3-D vision systems, 113 and tactile arrays. 1415
Common tasks for these sensory types include determining
the identity and location of objects in the work area, inspect-
ing assemblies, and providing the feedback necessary to en-
sure successful task completion.

Knowledge bases and representation
schemes

In a complete robotic assernbly cell, the types of knowledge
required for system operation fall into two classes: static and
dynamic. Static knowledge consists of knowledge that is
unaffected by the system state; examples include object
models, assembly instructions for a particular task, and rules
of inference. Dynamic knowledge is knowledge of the en-
vironment, which must be updated as the system state
changes. Dynamic knowledge reflects the current state of the
world, accounting for all actions taken by the robot and the
effect of external operators on the world state as sensed.

The term static does not mean that such information is
never changed, altered, or updated. This type of information
is not subject to change during the course of a complete
assembly operation, but it can changed when the system is
idle.

To meet the needs of software packages that require both
static and dynamic knowledge, we maintain two knowledge
bases: a Global Knowledge Base to support the static infor-
mation and a Current World Model to support the dynamic
information. The Global Knowledge Base is accessed by all
elements of the system, but altered only by human interven-
tion. The Current World Model is likewise accessible by all
system elements, and can also be altered by any of them.

The Global Knowledge Base. The design of the Global
Knowledge Base is a continuing endeavor and the slot-filler
approach described here is one of many possibilities. A slot-
filler form can be cast into a graph data structure, an advan-
tage being that subgraph matching techniques can now be
used for tasks such as object identification.
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. Another powerful representation strategy described here
works well for 3-D objects with no special landmarks. It is
based on the notion of Gaussian spheres. For example,
describing a solid object like a dodecahedron would be very
hard using the slot-filler approach, but rather easy using the
EGI (Extended Gaussian Image) technique derived from the
Gaussian sphere. In our discussion on the EGI, we will show
a simple method for generating the center coordinates of the
tesselations on a Gaussian sphere.

An important point to note is that no single representation
scheme will suffice for all classes of objects that a robot will
normally be asked to deal with; therefore, a repertoire of
schemes is called for. Eventually, a top-level expert will have
to be developed, its function would be to automatically in-
voke the correct representation strategy on the basis of partial
evidence about the object under examination.

Slot-filler representation. The slot-filler form of knowledge
representation is used to store (1) information on object
models that can be characterized by distinctive landmarks and
(2) information, such as assembly plans, required for task
planning.

The slot-filler structure is a generalization of the frame
concept proposed by Minsky. 16 Several special-purpose
knowledge representation languages based on this scheme
have now been developed; these include FRL (Frame
Representation Language), !” KRL (Knowledge Representa-
tion Language), '# and PEARL (Package for Efficient Access
to Representations in Lisp). 19

An example of a generic frame is shown in Figure 4. We
may think of this generic form as follows: We associate with
each object a number of slots, an example being a parts-
inventory slot. With each slot, we associate a number of
facets. For example, in the part inventory slot of a wrench,

. we might have facets for “grip,”” “loop,” and “‘lip,”” these
 being the features of a thinned version of a wrench image

(Figure 5). Finally, with a facet we associate a value, if there
is a value. For example, with the “‘grip’’ facet, we may
associate a value of 1, meaning that there is only one grip in
the image of a wrench. A slot-filler data structure is a
generalization of the frame structure in the sense that an ar-
bitrary degree of nesting is allowed. That is, we do not stop at
the nesting implied by the slot-facet-value form. Instead, slots
can occur within slots, and this recursive inclusion can pro-
ceed to an indefinite extent. (Our previous work on the use of
the slot-filler representation is documented elsewhere.7)

As Figure 5 illustrates, the frame for a complete object
contains information describing how the object is composed
of simpler parts, including inventory and interconnection in-
formation. Figure 6 is a frame for an item in the parts inven-
tory of Figure 5. The inventory slot holds a list of all the sim-
ple parts that may appear in making up the complete object,
and their respective quantities. The node-members slot con-
tains parts connection information. Parts appearing together
may be expected to share common connections in a structural
description. Other object structure information may also ap-
pear, as appropriate.
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Tool name:
Wrench

Parts inventory: Node members: Connections:

Grip (1) Grip-Loop Grip to:
Loop (1) Grio-Lip-Li Loop >90
Lip 2) ip-Lip-Lip Lip >90

Loop to:
Grip >90

Lip to:
Grip >90
Lip >90

Figure 5. Object decomposition into
parts and structural information.

A complete object is decomposed into its simple parts by Partname- 1
separation into structural primitives. For example, pliers

would be segmented into two handles and two jaws, while a
screwdriver would be segmented into handle and shank.

The frames for object parts contain information about the A-Part-Of:
geometrical features of extractable simple parts, uses for A%\rlg:]%r;]ch - _ | Socket
those parts, action to take if any of them appears alone, etc. Socket ’i
These simple parts can be used as primitive elements in an ob- L ——
ject recognition system. Possible geometrical features used in ,;
these frames include aspect ratio of the bounding ribbon, Constant ~
straight (true or false), corner (true or false), cross-section il e
(constant or variable), loop (true or false), curvature (cons- : ﬁ}‘s’{?&‘,‘;ﬁ;;
tant or variable), axial inflections (number), and end charac- ' Diffuse

teristics (pointed or blunt). This information is treated as -
fuzzy, and variable weighting may be applied to each item 5
depending on its importance in determining the geometry of a _ = es —
given part. As an example of the fuzziness, allowable values

of aspect ratio are elongated, slightly elongated, square, and Figure 6. Object-part descriptions with geometric and con-
very elongated. textual information.

A frame for an object part also contains information for
the application of that part, meaning a list of all the objects
to which this part can belong. This list is used in an object -
recognition scheme wherein parts are recognized by their
geometrical properties. These results then guide a search -
through the complete object frames. ‘

Information to assist with task planning is also stored in
slot-filler type structures (Figure 7). These representational
units can be thought of as steps in a hierarchical set of
assembly instructions. The argument field contains all global
variables used by this stage of the plan. Substeps of the plan
are specified in the component-plans field. If the plan is
primitive—that is, a hard-coded procedure—this field is emp-
ty. Verifying correct execution is the responsibility of the
verify field. If verification is desired, it contains the necessary
parameters. Finally, if an error occurs during execution, the
error field provides an error handler that can be invoked as
needed.

To illustrate the use of this representation, Figure 8a shows
in a slot-filler form and Figure 8b in a schematic form, the
execution sequence for moving an object to a specified loca- :
tion. First, the plan for moving an object is retrieved from Figure 7. Assembly plans in slot-filler form (a) and a pic-
the GKB. This plan is found to consist of two subplans— torial representation of a generic plan (b).
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Figure 8. Representations of three simple
plans (a) and a flow diagram showing the exe-
cution order for move-object (b).

move-object
{object, focation)

pickup-object
. {object)

putdown-approach
(object, location)

Figure 9. A scene consisting of two boxes (a), light stripes projected by a structured light sensor (b), and surface normals
computed from the range map (c).
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pickup-object and putdown-object. The arguments of move-
object are unified with those of the subplans, and then the
sub-plans are invoked in order. In this case, the plan for
pickup-object is retrieved, and the plan-invocation procedure
is repeated. At the next level down, pickup-approach is found
to be a primitive plan, so its procedure is invoked. Control
now shifts back to the pickup-object frame. The other
subplans, grasp and depart are similarly invoked. As each
plan is completed, the corresponding sensory verification is
performed. For example, verification for the grasp routine
determines if the gripper has actually closed on an object. At
a higher level, the verification for move-object determines if
the object is actually in the desired location.

At least for storing knowledge about objects, we can view
the structural descriptions captured by a slot-filler representa-
tion as an attributed structural graph. Such graphs are useful
for solving problems involving object identification and loca-
tion via structural descriptions through the use of graph ho-
momorphisms and subgraph isomorphisms.20:2! Following
Shapiro and Haralick,2° we will give but a flavor of sym-
bolism behind such graph-theoretic forms.

A structural description at the top level is a pair

D=(P,R)

where P is a set of object primitives and R is a set of named
nary relations over the primitives. An object primitive is
characterized by a set of attribute-value pairs. So we have

P= {pl" .. ,pn}
with each primitive defined in the product set

PiSAXYV

where A is a set of attributes and V'is a set of values for those
attributes. As mentioned, R is a set of named nary relations
over P:

R={R;...,Rg}
For k={1,. .. ,K} we have
Ry =(NRk,Rg)

Where NR ;, represents the name assigned to the kth relation
and Ry is a set of M, tuples of primitives having that rela-
tionship. For each £, there is an integer M}, such that

Ry cPMk

Thus, R is a set of M} tuples drawn from the primitive set
P. We refer to M, as the cardinality of the relation NR ;.

The idea here is that, if necessary, an object recognizer
would construct a structural description as an attributed
graph from the frames stored in the GKB, and then compare
this graph with those obtained from CWM. In practice, we
do not want to get bogged down in a combinatorial explo-
sion, so we must either use some form of a hypothesize-verify
approach or order the primitives before invoking procedures
such as subgraph isomorphism. A probabilistic method for
ordering the primitives for this purpose is described
elsewhere. 22
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The Extended Gaussian Image. Although the slot-filler ap-
proach is very flexible and rather forgiving of scene segmenta-
tion errors, its successful use requires that the object possess
distinctive landmarks. For solid objects that are highly sym-
metrical—not an uncommon occurrence in industrial assem-
bly—use of the slot-filler approach is difficult. One of the
best alternatives, in our opinion, is based on the concept of
the Extended Gaussian Image. For many solid objects of high
symmetry, this representation can be used both for recogni-
tion and determination of orientation. In fact, for convex ob-
jects, such a representation is uniquely invertible, since only
one representation is possible for a convex object, and from
that representation, the object can be reconstructed. Horn

gives a good introductory survey of the subject.
At a simple level, the EGI, at least in its discrete form, can

be viewed as an orientation histogram. The first step in ob-
taining the histogram is to divide the surface of a unit sphere
into cells—a process called the tesselation of the spherical sur-
face. The next step is to characterize each cell by the orienta-
tion of the surface normal at the center of the cell and then
assign to the cell all the object surface normals that have the
same orientation, under the assumption that all normals on
the object surface represent equal elemental areas. (If the
computed normals on the object surface do not represent
equal elemental areas, they must be multiplied by suitable
obliquity factors.) Note that such a representation is object
centered, as opposed to viewpoint centered, and that we have
assumed the availability of a discrete approximation for the
object surface, as might be generated by a 3-D vision system.
Figure 9 is an example of a discrete approximation to the sur-
faces in a scene; this approximation was generated from a
range map obtained with a structured light scanner. Figure 9a
shows the original scene consisting of two boxes, Figure 9b
shows the light stripes, and Figure 9c the computed surface
normals.

Té construct a discrete approximation of the EGI by com-
puter, the surface of the unit sphere must be divided into
cells. Ideally, these cells should have the same area and shape,
which should be regular (after all, in most cases, nobody
wants to use a histogram with dissimilar cells). These condi-
tions on cell area and shape can be satisfied by projecting a
regular polyhedron onto a unit sphere after bringing their
centers into coincidence. There are only five regular solids for
this purpose: three of them bounded by equilateral triangles
(tetrahedron, octahedron, icosahedron), one bounded by
squares (cube), and one by regular pentagons (dodecahedron).

Although the tesselations generated by regular solids satisfy
the area and shape constraints, even for an icosahedron,
which gives us the largest number of cells, 20, the resulting
sampling of the Gaussian sphere is simply too coarse. Finer
subdivisions are obtained by splitting each face of a given
tesselation into triangular facets. If we divide each face of a
dodecahedron into five equal triangles, the resulting
polyhedron is called the pentakis dodecahedron and consists
of 60 cells. Further subdivisions are usually accomplished by
employing the technique of geodesic tesselation, which con-
sists of dividing each edge of the solid into sections. If we
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Figure 10. Locating cells via hierarchical descriptions. Given an object surface
normal, for increased computational efficiency it is possible to locate the cor-

Figure 11. Axes of twofold (a) and five-
fold (b) symmetry of a dodecahedron.

responding cell on the EGI by utilizing a hierarchical description of the tessela-

tions on the Gaussian sphere.

divide each edge into two sections, every cell of a pentakis
dodecahedron would split into four smaller triangles, giving
us a total of 240 cells.

To construct an orientation histogram from measured
data, we must take the dot product of a measured unit vector
with the vector corresponding to the center of each cell. The
best candidate cell is then determined as the one that gives the
largest dot-product. Depending on the number of surface
patches used, this brute force approach to constructing
histograms can be computationally demanding. However, for
geodesic tesselations, this calculation can be performed
hijerarchically, thereby reducing the computational burden.
As was mentioned by Horn,?? to hierarchically assign a
measured surface normal to a cell, we first take the dot-prod-
uct of the measured normal, with unit vectors corresponding
to the centers of the dodecahedron’s facets. The measured
normal is assigned to the facet yielding the maximum value.
Next, we take dot-product of the measured normal with vec-
tors corresponding to the centers of pentakis triangles for the
dodecahedron facet. We now assign the measured normal to
the triangle yielding the maximum value. This procedure is
repeated with the geodesic tesselations of the pentakis
triangles. Figure 10 is a pictorial depiction of this hierarchical
search for the correct cell on the Gaussian sphere.

Clearly, for the above hierarchical procedure to work, we
must first determine the center coordinates of the 12 pen-
tagons of the dodecahedron, of the 60 larger pentakis
triangles, and, finally, of the 240 smaller triangles obtained by
geodesic tesselation.

What follows is a simple procedure for computing these
center coordinates for frequency-two geodesic tesselations.
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(The 240-cell tesselation is also called a frequency-two
geodesic dome, since each edge of the pentakis triangles is
divided into two intervals.) For this procedure, we use the
axis of twofold symmetry for a dodecahedron, which is
shown in Figure 11a as the z-axis of a Cartesian coordinate
system. We next write down expressions for the vertices of
the dodecahedron in this coordinate system, first recognizing
the following relationship between the radius, R, of the cir-

- cumscribing sphere of the dodecahedron and the length, ¢, (‘)f
" any of its edges:

R, =1.4013¢;,

Since the Gaussian sphere has unit radius, implying R, =1,
the edge length £, must equal

4= N =0.7136.

The twofold symmetry for a dodecahedron shown in Figure
11a leads, in most cases by inspection, to the following ex-

pressions for the coordinates of the 12 vertices shown in
Figure 12a:

P, =( ) 0)
P =ms
P —("’1 ?3,0)
2 = ?1 3
4}
P = —e ,0,_
3 =(—10; 2)
Py =(t3,0 g‘)
4 3y 72

£
PS = (Os? ’e3)
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Ps =0 t3)
Py =(—4y, &s,t0)
Pg =(l4,04,04)

Pg =(—84,—04,04)
Pro=0(4,—14,84)
Py =(—%, —¥{3,0)

4
P12=(7 —1{3,0)

where ¢,(=0.7136) is the side length of a dodecahedron in-
scribed in a unit sphere; 4 is the length of the line connecting
a vertex and a midpoint of its opposite side of the pentagon
(Figure 12b); £; is the distance from the origin of coordinate
system to the midpoint of the edge where two pentagons
meet; and ¢, = cos54°. The other eight vertices not visible in
Figure 12a are symmetric to Ps, Py, Ps, Pg, P;, Pg, Py, Pig
with respect to the x-y plane, so their x and y coordinates are
identical to their symmetric counterparts and only the z coor-
dinates change sign.

Note that in the coordinate system used here, all 60 coor-
dinate values (for 20 vertices) can be described in terms of
four unique numbers (£, 43, &, and 0).

Once the coordinates of all 20 vertices are determined, the
center of each spherical pentagon projected on the unit
sphere can be calculated by first averaging the coordinates of
the five vertices forming such a pentagon, and then normaliz-
ing the resulting vector by its magnitude to yield a unit vec-
tor. The same procedure is used to find unit vectors cor-

- responding to the centers of the triangles of the pentakis
dodecahedron, and, finally, those of the smaller triangles
belonging to the geodesic tesselation.

If the coordinate system in which the z-axis corresponds to
the axis of fivefold symmetry (Figure 11b) is preferred, the
coordinates of all the vertices can be deduced from those
given above by using an appropriate rotational transform. !

Note that the number of unique values for describing the
vertex coordinates in the two systems shown in Figure 11 is
not the same; Table 1 shows a comparison. It would appear
that by using the system of Figure 11b, fewer unique values
are required. In Table 1, Type 1 refers to the system in Figure
11a (twofold symmetry), and Type 2, to the system in Figure
11b (fivefold symmetry). The table shows that we need eight
unique values for describing the center coordinates for all the
pentagons in Figure 11b, whereas only three unique values are
required in Figure 11a. The second row shows that 30 unique
numbers are required for describing the center coordinates of
all the pentakis triangles in Figure 11b, whereas only nine
unique numbers are needed for the same purpose in Figure
11a, and so on. This implies that a look-up table for the
centers of cells of the EGI would be much more efficient for
the coordinate system of Figure 11a, than for the one in
Figure 11b.

The Current World Model. The Current World Model
maintains a representation of the current status of the robot’s
working environment. Examples of knowledge to be main-

2
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tained include location and, if known, identity of objects in
the work area; status of the robot manipulator; status of any
environmental variable, such as special-purpose lighting,
which is subject to change for completing the task at hand or
sensing the world state. The techniques described here model
the current world state as obtained from vision packages
within the sensory subsystem.

Edge-vertex drawings from structured light images. To
generate the CWM information on polyhedral objects from
3-D vision data as acquired with structured light techniques,
we often use the edge-vertex drawing representation. 2425 The
edges in the scene are assigned labels according to type: con-

Figure 12. A cross-section of a dodecahedron viewed
along the axis of twofold symmetry (a) and a regular pen-
tagon (b).

Table 1. The number of unique values required for the
center-coordinates of the tesselated Gaussian sphere
computed from two different coordinate systems. Type 1
reflects the axis of twofold symmetry, while Type 2
reflects an axis of fivefold symmetry.

Pentagon
_ lorgertriangle
Smaller triangle
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Figure 13. A scene consisting of five overiapping boxes (), light stripes projected by a structured light sensor (b), and the
edges extracted from the range data (c). Although it is not possible to display here, the edge labels are also known; the
labels being: convex, concave, interior occluding, and exterior occluding.

vex, concave, interior or exterior obscuring. Figure 13a shows
a multiobject scene from which edges and vertices are ex-
tracted using a structured light range map (Figure 13b).
Figure 13c shows the result. (Methods for edge detection and
edge labeling in structured light range data are discussed
elsewhere. 2%:26) Given the edge-vertex drawing of a complex
scene made up of many overlapping polyhedral objects, we
can isolate the topmost object by defining an object segmen-
tation path, which lies along concave and interior obscuring
edges in the scene. Object segmentation results using this
method are presented elsewhere. 24

Radial-valued skeletons and attributed structural graphs.
For thin objects that are primarily 2-D in nature, the CWM
knowledge can often be adequately represented by a radial-
valued skeleton and a subsequent attributed structural graph.
The graph can then be used to derive the slot-filler construc-
tions described earlier.

The radial-valued skeleton is a 2-D analog to the general-
ized cone for object modeling. 27-28 In our application, the
object or region is first represented as a binary silhouette. The
radial-valued skeleton is then reduced to a symbolic descrip-
tion in terms of attributes and values for the object skeletal
components. That is, the skeletal arms, and possibly their
junction points, serve as the primitives in the structural
descriptions we build.

Once we have computed the radial-valued skeleton as an
image array, a symbolic list description is constructed in a
single raster scan. This description represents the skeletal
arms by their endpoints, chain code descriptions of their tra-
jectories in the image plane, and pixel-by-pixel radial and
gray-level values. Because the description of the algorithm
that constructs the symbolic list is quite lengthy, we omit it
here; it is presented in detail elsewhere. 22 Suffice it to say
that the list is a deeply nested structure, as shown by its pic-
torial representation in Figure 14.

The next step in the modeling process is to build an at-
tributed structural graph from the radial-valued skeleton. The
attributed structural graph involves assigning attributes to the
edges and vertices of a graph formed by associating skeletal
arms with edges and arm endpoints with vertices. Some at-
tributes for which we may assign values directly from the list
representation of the radial-valued skeleton include edge at-
tributes such as
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* M-orient: Mean orientation

® Asp-ratio-rib: Aspect ratio of the bounding ribbon

* Masp-ratio-rib: Aspect ratio of the mean-bounding
ribbon

¢ Edge-length (in pixels), Edge-mass: Area of binary
feature

¢ Dom-radius: Dominant radial value

e Eight-ratio: Ratio of length to 8-distance between end-
points

¢ Straight-ratio: Ratio of length to Euclidean distance be-
tween ends

® Loop predicate: True or False

¢ Gray-level behavior (roughness, taper, discontinuities)

* Gray-level inflections, peaks, valleys

and vertex attributes such as

® Degree (number of incident edges), location

» Edge orientation sequence

¢ Edge length sequence

e ].ocal gray level roughness

¢ Local mean gray level

® Nearest neighboring vertex, distance thereto

We now extend the abstraction of the scene (iescription in
terms of the radial-valued skeleton to an attributed graph.
We identify branchpoints, or their clusters, with vertices in
the graph and skeletal arms with edges in the graph. Arm
endpoints that are not branchpoints are identified as vertices

of degree one.
We define the attributed graph G’ to be an ordered five-

tuple:

G’ =(V(G),E(G), ¥, Tg(V).EG(E)
where, V, E, and ¥ are the vertices, edges, and mapping of
edges onto vertices, respectively. T and Z are sets of attribute-
value pairs assigned to vertices and edges, respectively. Spe-
cifically, let A" and V"’ represent a set of named attributes
and their allowable values, respectively. Then:

TGZ [vl(vl), . e ’vu(vy) }: EG= {El(el)r s e ey Ee(ee) }
So each element of the mappings T and X is a set of binary
relations:

7, SA' XV’ and §SA’ XV’

The description of an attributed graph comprises three
parts. These are the augmented adjacency matrix, which
represents the mapping ¥, the attributed vertex descriptions,
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which represent the set T, and the attributed edge descrip-
tions, which represent the set E.

The augmented adjacency matrix is » X v. At each point we
store the number of edges appearing between the two vertices
identified by the row and column index and a list of the ordi-
nal values assigned to those edges.

To construct structural descriptions from attributed struc-
tural graphs, we define and invoke relational predicates.

In the attributed graph, the relations among the primitives
(edges and vertices) are built-in, but, with the exception of the
explicit information in the augmented adjacency matrix, not
precisely defined or named. To make the best use of the in-
formation available, we determine which rary relationships
are effective, define predicates to compute the primitive sets
entering into those relationships, and apply these to construct
the structural description. Some examples of relational
predicates that may be computed for the edges in a graph as
primitives in a structural description include

¢ One endpoint in common (close)

* Two endpoints in common (close)

¢ Collinear, parallel, orthogonal

o Left-of, Above

With these structural descriptions extracted from real im-

ages, we may invoke stereo matching, object recognition, and
SO on.

Sensory Subsystem

Many vision processes are being investigated in the Robot
Vision Laboratory. No single approach to the vision problem
is capable of providing the flexibility needed to support
automated assembly. Therefore, several different efforts are
underway, including passive stereo, eye-in-hand, linear scan
structured light, and color-encoded structured light. Because
the information derived by these techniques will be used to
guide the task planner, the Sensory Subsystem will be
operating at a high level in the control system hierarchy. Sen-
sory information required to perform fine motions, such as
those provided by force sensors or RCC devices, operates at a
much lower level in the control system. Integration of these
two different types of sensory information is currently a topic
of research in the lab.

Linear-scan structured light for vision with depth percep-
tion. Depth information is important to any sensory-based
computerized manufacturing, and forms an important com-
ponent of the machine intelligence required for eye-to-hand
coordination. Depth is important for the speed control of a
manipulator approaching a workpiece. Depth also plays an
important role in the methods for scene analysis in robot vi-
sion. In the past, most algorithms for scene analysis have re-
quired as input a near perfect line drawing representation of
the scene; which under most practical conditions is impossible

[ Srelist

,,<—-—- Descnptron of
complete scene‘
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distinct clustersof .=
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 Unique /I ] I I
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Figure 14. List structure representation of a structural description; r; = radial value, ¢; = chain code entry (N, S,E, W,

etc.).
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Figure 15. A robot performing a linear structured-light
scan.

to obtain from reflectance images. [Under most conditions, a
line in an image corresponds to an edge in an object formed
by an intersection of two faces.] The difficulty with extracting
a line representation is that for many images the photometric
differences between the adjoining faces of an object may be
too small for reliable edge extraction; and for other images
the application of edge extraction can lead to excessive noise
enhancement causing false lines to appear in the representa-
tion. With edge extraction from reflectance images, false lines
are also produced by quantization errors, shading and
shadows, and by variability in reflectance properties. With
depth information, edges are defined as range discontinuities
and range-gradient discontinuities; such edges being immune
to reflectance variability and shading and shadow effects.
Moreover, edge extraction from range data is not noise
enhancing as happens with reflectance data.

Structured light and laser scanning are probably the most
robust approaches for range data acquisition for 3-D vision.
Although not as sophisticated as passive stereo, in the sense
that they do not directly simulate the human depth perception
capability via binocular fusion, these two methods are
capable of generating dense range maps for a large variety of
objects and scenes. Both these methods run into difficulties if
the object surfaces are glossy and highly reflecting, but then
no other approach to range mapping is expected to work
either in these situations.

We have built a lightweight structured-light sensor that is
picked up by the robot when it needs 3-D vision data; the
sensor is then put away in its cradle that is located by the side
of the robot. The advantage of this approach is that now the
robot can be surrounded by two or three different types of vi-
sion sensors of different specifications, and each one used if
its specifications will provide the most information for the
task at hand. (It is conceivable that sensors of different
specifications will be needed for, say, electronic assembly on
the one hand and mechanical assembly on the other.)

As depicted by Figure 15, the manipulator, with the sensor
in its gripper, makes a linear scan of the scene. For each posi-

74

tion of the projected stripe, triangulation formulas can be
used to translate the illuminated pixel locations in the camera
image into range information (details are presented else-
where 2%). A real-time peak detector circuit at the back of the
camera in the structured-light sensor locates the illuminated
pixel in each raster line of the camera image by using an
analog comparator that strobes a synchronous counter.

Color-encoded structured light. To accelerate the process
of acquiring a structured light range image of a scene, we
could project multiple planes of light simultaneously.
However, with this approach, the sequence in which the
stripe reflections appear in the image plane may not be the
same as that projected, particularly for scenes of practical in-
terest. Therefore, a possible ambiguity arises in the identifica-
tion of the stripes. Various methods have been proposed for
identifying the stripes or the elements of an array of projected
rays. 230 Our term for the process of matching a detected
stripe with its position in the projection grid is indexing.

A stripe’s index is an integer indicating its ordinal place-
ment (say, from left to right) in the complete set of projected
light stripes. Once indexing is accomplished, the range at
stripe illuminated image points can be calculated by tri-
angulation.

We have demonstrated a system for acquiring the entire
range map of a scene in a single color projection, requiring
only one color image. 3! This technique substantially increases
speed, while reducing the amount of memory needed. It also
results in a system having no moving parts, making it in-
herently more rugged and thus expanding its range of poten-
tial applications. As always, there is a cost associated with
these improvements. Because the system employs color in the
stripe-indexing strategy, its use may be restricted to environ-
ments in which the color content of the scene is inherently

. neutral. The indexing algorithm, even with perfect stripe

detection, may be fooled by particular occlusive effects,
although this has not proven to be a problem of any
significance for us. Our results indicate that these problems
are relatively rare, and it is our position that, in most applica-
tions, a color-encoded structured light system will offer suffi-
cient speed improvement to offset the occasional range error.
Intelligent high-level processing should have little difficulty
dealing with a modest number of erroneous range points.

Eye-in-hand vision. To handle tasks that require flexible
positioning of a monocular camera, we haye an arm-mounted
camera. Useful applications for an arm-mounted camera in-
clude tracking, current world model verification, and other
supervisory work requiring camera repositioning. While we
describe no processes specific to such a camera here, we men-
tion it for completeness and to emphasize our philosophy that
a complete environmentally interactive robotic assembly cell
will require the integration of many sources of sensory input.

Bear in mind that in the absence of range data—that is, if
we were limited to reflectance data—an eye-in-hand camera
may possess unique advantages over a static overhead camera
for drawing inferences about a scene. 132 Compared with the
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static overhead camera, an eye-in-hand camera does not suf-
fer from parallax errors in the calculation of location and
orientation for an object in the scene. Also, for the same ac-
curacy in calculation, an eye-in-hand camera can get by with
lower resolution; and, because of lower resolution, it can
yield results in a shorter time.

Symbolic stereo from structural descriptions. The primary
difficulty with the use of passive stereo is the so-called cor-
respondence problem, which arises when we try to identify
corresponding points in two images of a scene. This problem
has been pursued by many researchers, too numerous to be
cited individually; the literature is presented in a survey ex-
position elsewhere. 11 Most of these techniques operate at the
pixel or waveform level with little aid or guidance from any
sort of structural representation of the scene content.

For scenes composed of objects that are rather *“flattish,”’
(meaning that they are basically 2-D in nature), it is often
possible to acquire 3-D vision faster with the structural ap-
proach to stereo described below. (3-D vision for objects that
are basically 2-D is required for dealing with the overlapping
parts problem and positioning of the end-effector in bin-
picking.) In this method, structural descriptions are used for
solving a stereo correspondence problem, and in seeking to
contain the combinatorial explosion, we extract primitives
rich in information content. Relationships among the
primitives serve as another source of constraints.

We invoke the following constraints for solving the struc-
tural stereo problem:

(1) The extraction of structural primitives is such that each
primitive in the left image is associated with at most
one correspondent in the right image, and vice-versa.
This uniqueness constraint applies not only to points,
but also to the regions we extract as primitives.

(2) A great deal of redundancy exists between the two im-
ages. The correct mapping between the primitives of
the two images is most likely to be the one that results
in the greatest apparent redundancy between the struc-
tural descriptions of the two images.

(3) The primitive descriptions and relations are such that
the initial stages in the process to find the interprimitive
mapping function rely heavily on the information con-
tent of the primitives themselves.

Our goal is to determine an effective mapping function be-
tween the two sets of primitives such that the likelihood of
correct interprimitive correspondence is maximized. This
mapping is 1:1 between subsets of equal cardinality from the
two primitive sets.

An information-theoretic interprimitive distance measure.
The fundamental concept in information theory is that the
amount of information derived from some event, or experi-
ment, is related to the number of degrees of freedom avail-
able beforehand, or a reduction in uncertainty gleaned from
an observation of the outcome. In this manner, the discrete
communication problem is analogous to the structural stereo

SPRING 1986

~ correspondence problem. We expect the properties of cor-

responding scene features to be similar. As a channel, we ex-
pect the stereo correspondence process to convey relatively lit-
tle information.

Modeling Correspondence as an Information Channel:
We may model the set of n primitives characterized by a set 4
of attributes in a structural description as an information
source consisting of » X |4 |independent sources operating
in parallel. We may consider the correspondence problem as
an information transmission issue.

Let’s look at Figure 16. The single primitive p; on the left
has been extracted from the left image of the scene, while q;
has been taken from the right. If p; and g; are, in fact, cor-
rectly matched, then the image-to-image distortion in the
characteristics of the primitives is represented by a set of
channels, one per attribute, mapping symbols from the left
primitive into symbols from the right primitive.

The apparent information conveyed in the mapping must
be characterized by probabilistic models. We characterize the
correspondence process in terms of a set of transition prob-
abilities indicating the conditional probability that a primitive
will have value v,=a(g;) for attribute ¢ in the right image
given that it has value v;=a(p;) for the same attribute in the
left image.

Interprimitive Distance: The amount of information con-
veyed by the set of channels in Figure 16 is a measure of the
dissimilarity between the two primitives. If we imagine a set
of | A | channels established between every pair of primitives
deemed to correspond by the mapping function 4, then the
distance between the primitive sets under the mapping # is the
amount of information conveyed by all those p X | 4 | chan-
nels, where p is the cardinality of 4.

We define the conditional information contributed by an
attribute g taking value v, for g;in the right image given that
it has taken value v, for p; in the left as

k Moo
4 —1—> Channel 1 —— 1 3,
VQ ; Va
8 —f——pn| Channel 2 —— 3 3,
P, . Ql
Vm, | ' 'Vm
a, ——» Channel P ——1 3,
o left  Right- .
- primitive - g primitive- -
. Correspondence e .

‘channel

Figure 16. Correspondence as an information channel.
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(((1 (asp-ratio-rib 15) (2 (asp-ratio-rib 2)
(masp-ratio-rib 15) masp-ratio-rib 4)
edge-length 71) edge-length 18)

( (3 asp-ratio-rib 2)
E
m-orient 82) (m-orient 172)
{
(
(

(masp-ratio-rib 4)
(edge-length 18)
(m-orient 7)
edge-mass 126)
(loop-pred nil)
(dom-radius 4)
(centroid (20 91)))

(edge-mass 361) edge-mass 126)
(loop-pred 1) loop-pred nil)
dom-radius 4) dom-radius 4)
centroid (37 47)})) (centroid (18 76)))

og[ p({atap= Vrlll @) =) ]

The total distance between the two primitives p; and g; is then
defined as the sum of the conditional information contrib-
uted by each of its attributes under the mapping /:

Dy(p»ay) = azE:AI(a(qj) |a(p))

I(a(q) | a(pi)) =

We then compute the distance between the two primitive
sets under the mapping » by summing over all mapped pairs:

Dp(P,Q)= Y, Dun(piqp
G.))eh
And our task is one of selecting the interprimitive mapping
function A that minimizes Dy(P, Q).

The information-theoretic approach to interprimitive
matching should be superior to some more obvious tech-
niques, such as representing each primitive as a vector in at-
tribute space and computing Euclidean distances, because the
probabilistics of the situation are considered. Further, for at-
tributes that take on symbolic values, it may be difficult or
impossible to order the values in such a manner as to make
the Euclidean distance meaningful. In our approach, the
distance between two entities is a monotonic function of the
likelihood of the features of one being transformed to coin-
cide with the features of the other.

Entropy-based attribute selection. In an information-
theoretic approach to the selection and ordering of attributes,
some attributes will clearly be more useful than others in
identifying likely correspondents in the stereo-matching prob-
lem. The issue under consideration is how to best select a
subset (ordering) of these attributes yielding the best (quick-
est) descrimination among the possible correspondents.

Entropy is the measure of the average amount of informa-
tion available from some source, or passing through some
channel.3? The entropy of an attribute @ taking on values
from some set v= {v;} is

H,= Sp(vlog [

1
P(Vi)]

}
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Figure 17. A thinned binary image (a),(b)
and part of its structural description (c).

{({(common-end-1 2
35)(34)(36) (
7)(67)(89)(
2

)

1

{ ((23)(25)
57
) (common-end-2
{
{
(
{

46) (5 6)
810) (910)))
nil)
parallel 2 ((1 11) (3
69) (8 10) (11 12))
orthogonal 2 ((1 14
)

10)

4H(57)
)

) (213) (3 14)
414) (6 8) ( 89)(910)))))

We are also interested in the conditional entropy of an at-
tribute. The conditional entropy of attribute a taking on
values v;in, say, the right image given corresponding values
of v;in the left is

"= Zr)Tr | vj)log[ LT )]

For us, entropy provides a measure of the average informa-
tion about a primitive provided by an attribute. Conditional
entropy indicates the average amount of uncertainty remain-
ing in the value of that same attribute for corresponding
right-image primitives, once a left value is known. Condi-
tional entropy may be considered to be the average a posteri-
ori entropy for the attribute. We define a figure of merit for
attributes, g

H,

H,®
An attribute exhibiting a large value for g may be expected to
outperform one with a small value in dlscrlmmatlng correct
from incorrect primitive matches.

There can be problems with g, however. It is possible for
an attribute to have a very low a posteriori entropy, yielding a
large value for ¢ even if the a priori entropy is also low. As
we will see, this is particularly true of the loop-predicate at-
tribute. This attribute has the low a priori entropy of 178
millinats, as determined by our experiments. However, the a
posteriori entropy of this attribute, as determined in our ex-
periments, is zero.

To improve on this situation, we define another figure-of-
merit, ¢’, which takes values in [0,1]. If we have the follow-
ing

AH=H,-H,°
Then g’ is defined as
, AH
q = —_—
Ha

This figure-of-merit is used for ordering the attributes before
graph-theoretic matching. (Further details are presented else-
where.22)
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Experimental results. There are two sets of experimental
results: those used to construct the channel models and char-
acterize the attributes and relations, and those in which the
resulting models were used in solving a symbolic stereo cor-
respondence problem.

Building the Models: To develop these ideas and provide a
testbed for the procedure, we took 25 pairs of images from
an overhead stereo pair of cameras. Figure 17 illustrates one
of the images, its thinned version, and part of its structural
description.

Channel matrices are stored as distance measures. Some
entries in the channel matrices are infinite, establishing some
attribute value pairings as impossible for corresponding
primitives. Primitive pairings having infinite distance are re-
jected. Figure 18 is an example of our channel matrices.

The figures of merit, g and q’, were computed for each of
several attributes. Values of g and g’ for these attributes are
listed in Table 2. Entropy values are expressed in millinats.

To avoid problems with threshold sensitivities in consisten-
cy checks, two versions of each relational predicate involving
a threshold were written. The conservative version was ap-
plied to the left image, while the liberal version was applied to
the right. This provided a bias against the rejection of pair-
ings for relational violations because the composition of the
left image relations with the mapping function is required to
be a subset of the right image relations. That is, we check for
homomorphism.

Matching Results: Matching experiments were run on 13
image pairs using loop-pred, m-orient, asp-ratio-rib, dom-
radius, edge-length, edge-mass, and straight-ratio as the inter-
primitive mapping criteria. The primitives consisted only of
skeletal arms, that is, edges in the graph. Four binary rela-
tional predicates were computed and invoked, including

¢ Common-end-1: One endpoint in common

e Common-end-2: Both endpoints in common

® Parallel: Orientations approximately the same

¢ Orthogonal: Orientations differ by about 90 degrees

The results are summarized in Table 3. A rank of 1 in-
dicates that the correct mapping function was assigned the
lowest distance value of all those found, while a rank of in-
finity indicates that the correct mapping function was not
found. Although a mapping function was nearly always
found that was almost completely correct, we made no at-
tempt to tabulate those results. A rank of 1T indicates that
more than one mapping was found with the same (low)
distance.

Image pairs for which the process failed to isolate the cor-
rect mapping function were poorly segmented, leaving only
broken pieces available to the matcher. Most of the images
contained some segmentation noise. In modest amounts this
poses no problem to the matcher, the noise blobs in one im-
age being mapped (correctly) to nil in the other.

Let us now look at the Motion Controller and the Super-
visor in more depth. \
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Figure 18. Channel matrix example; distances are in nats.

Table 2. Tabulated values of the figures of merit gand g’
for several primitive attributes.

_Attribute

M-orient 2438 617 3.95 1821 0.75
loopped | 8| 0| e | 18| 10
Edge-mass 2032 740 2.75 1292 | 064
Edgelength | 2123 | o6 | 222 | 1167 | 055
Eight-ratio 15 | 706 | 172 | 509 | 0.42
Domradius | 1512 | 905 | 167 | 607 | 040

Asp-ratio-rib 688

_Ma ib |
Straight-ratio

Table 3. Tabulated matching results for 13 image pairs; IP
= image pair, LP = no. of left-image primitives, MPS-U =
no. of mappings without relational constraints, R = rank-
ing accorded the correct mapping, and MPS-C = no. of
mappings with relational constraints.

- Matching Results ,
P | P | MPSU | R | wmPSC
1 8 12 1
T s
3 6 4 1
4 10 2 1
5 1 1
8 | 3 1 A
7 10 6 1
8 | 1 | 3 AT
9 9 29 8
10 | 14 | 8 | 1
11 14 136 1T
12 | 15 8 | 1T
13 14 20 17
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Movement command
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Function command
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Figure 19. The Motion Planner. The Motion Planner con-
sists of two message servers and a system interface.

The Motion Controller

The Motion Controller controls the programmable ac-
tuators in the assembly cell. It consists of a motion planner
(MP), which handles move verification and path planning
functions, and a motion execution unit (MEU) for each ac-
tuator, which executes the commands derived by the MP.
Currently, our cell consists of a Cincinnati Milacron T3-726
electric robot with its associated controller and a pneumatic
gripper controlled by a VAX 11/780 minicomputer.

The motion planner. Figure 19 illustrates the structure of
the MP. The system-MP interface processes the incoming re-
quests and invokes the appropriate server. Two types of
servers currently exist, one for motion requests and another
for function requests. The motion request server handles mo-
tion planning and move verification, while the function server
is in charge of gripper operation, tool transform and segment
velocity updating. These servers take an incoming request,
perform the appropriate action, and, if necessary, send an ac-
tion request to the MEU.

The MP maintains a model of the state of the manipulator
and its associated hardware. This model contains the current
position of the arm, the tool transform in current use, the
velocity selected for the current path segment, and the state
of the gripper. These parameters are transmitted to the Cur-
rent World Model whenever the manipulator is in an idle
state. When motion begins, a signal is sent to the CWM to
lock requests for information about the manipulator state un-
til it has stabilized.

Movement commands. The MOVE function is in charge of
servicing movement commands. Figure 20 provides an over-

view of its function. All manipulator movements are straight
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line Cartesian motions with respect to the tool center point.
The tool center point is defined as

tool center point = T6 TOOL

where T is the position of the center of the manipulator’s
tool-mounting plate with respect to its base, and TOOL
represents the transformation from the tool-mounting plate
to the tool tip. This arrangement allows motions to be
specified by three sets of parameters:

® Goal position
¢ TOOL transform
e Segment velocity

At the present time, force control has not been im-
plemented. To add this capability to the Motion Controller,
the movement command server’s capabilities would be
augmented. The force constraints will be expressed in a form
analogous to those in AL34 or RCCL.35

Path Planning: After a move command is issued, a path
planner is invoked to ensure that the manipulator doesn’t col-
lide with any fixed obstacles in its workspace. At the present
time, no provision is made for automatically avoiding
movable objects in the workspace. The path planner takes a
starting and ending position, and produces a list of straight
line motions that will guide the manipulator between them.
The orientation of the manipulator is first set to that of the
goal position. The required translation then occurs.

A recursive procedure is used for the translational planning
step to ensure that no motion commands are generated or
executed that would cause a collision between the robot arm
and base (Figure 21). Assume the manipulator is at position
A, and is requested to move to position B. Straight-line mo-
tion would send the manipulator through the base. To avoid
this problem, two transition points are defined. These provide
safe points near the corners of the base forbidden space. The

;. path planner examines the line joining the starting and ending

points of the motion. If this line intersects the forbidden
region surrounding the manipulator base, the transition point
nearest the goal is located, and a move from there to the end-
point is appended to the end of the move list. The endpoint is
now set to the selected transition point, and the same pro-
cedure is applied to this new path. This process continues un- |
til no path segment intersects the forbidden region. The move
list is now passed to the move verification routine.

Error Detection and Handling: Two types of errors are
detected: kinematic errors and world errors. Kinematic errors
result whenever the manipulator is requested to move to a
position that is kinematically impossible. These errors are
detected by using the inverse kinematics of the manipulator to
provide the joint angles corresponding to the position in
question. Each joint angle is checked against its allowable
range. If any are out of limit, the supervisor is notified and
presented sufficient information to permit a diagnosis.

World errors occur whenever the manipulator is requested
to move to a kinematically valid position that conflicts with
some permanent obstacle in the workspace. Currently, the
only such obstacle is the work table surrounding the
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Path planner

Move verification

Figure 20. The MOVE command, whichis the prime vehicle
for serving motion requests.

manipulator. Any move that would put some portion of the
manipulator or its gripper through the table is detected, and
the supervisor is notified of the problem.

To provide flexibility in error handling, a user modifiable
error handler is invoked when either error condition occurs.
The default version aborts execution and returns an error in-
dication to the calling procedure.

Function commands. The function commands handle any
operation not involving manipulator movement. Currently,
the set of function commands supported includes facilities for
changing the TOOL transform and translation velocity, ac-
tivating various switches to control external functions, and
controlling the gripper. In addition, several administrative
functions are available. These allow the supervisor to
establish and reset the MP-to-MEU and MEU-to-Motion
Controller communication links.

A model containing the current state of each of the sensors
is maintained. When a function request is issued, the MP-
level model is updated, and a function request is issued to the
MEU. The MEU then carries out execution of the request.

Administrative functions require more effort. The major
administrative function is controlling the MEU communica-
tion channel. A command, setup-link, is responsible for
restoring the MP and MEU manipulator models to a known
state and verifying that the communication links are
operating correctly. First, communication with the MEU is
established. Next, the MP waits until the MEU has estab-
lished a link to the robot controller. The model position and
tool transforms are reset to values obtained from the robot
controller via the MEU. The gripper state is set to an ar-
bitrary value since there are no facilities for interrogating the
state of the controller I/0 lines.

The motion execution unit. The MEU provides a uniform
low-level interface to the manipulator. Ideally, the MEU
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Figure 21. To avoid moving the end effector through the
manipulator, a recursive path planner is used.

would be a part of the manipulator controller, but most cur-
rent robot controllers do not support user programming at
the level required for its implementation.

The MEU consists of three subcomponents (Figure 22): the
MP-to-MEU communication interface, the controller model,
and the MEU-to-robot controller communication interface.

MP-to-MEU communication interface. The MP-to-MEU
communication interface processes the messages sent to, and
received from, the Motion Planner. In normal operation, the
MEU executes a loop waiting for a message from the MP.
Upon receipt, appropriate action is taken according to
message content. Three message classes are supported: func-
tion, aﬁministration, and motion. Messages in the function
subclass control the operation of the various peripheral
devices on the manipulator, such as grippers and program-
mable fixturing. Administration messages provide control of
the MEU-to-controller communication link and manage the
controller’s tool and velocity tables. The motion messages
specify the robot’s movements.

The controller model. This portion of the MEU determines
what actions are required to fulfill the incoming request. It
maintains a present-state/next-state model of all pertinent
manipulator parameters. To avoid unnecessary effort, actions
are initiated only if the next state of a parameter differs from
its present state.

The robot controller incorporates two tables that are of in-
terest at this level: the velocity table and the tool table. The
velocity table contains 15 preset velocities that may be
specified on each move request, evenly spaced from 3.0 to
45.0ips. Velocity is selected by choosing the table entry
closest to the requested velocity. The TOOL transform used
in computing the tool center point is stored in the tool table.

MEU-to-robot controller communication interface. The
language available on the T3-726 is a teach-by-showing-
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oriented system. 3 This language allows the user to enter a
program by moving the manipulator to a desired location and
storing the corresponding joint coordinates. In addition, the
programmer may specify a function to be performed at each
point. Primitive subroutines and user-accessible variables are
also available.

Recently, a REMOTE function was added to this
language. 37 This function allows the controller to com-
municate with a remote host and execute commands received
from it. The command language supporting this function is
called the Remote Link Level Interface (RLLI). RLLIisa
packet-oriented system that communicates with the controller
over a serial channel. This interface was originally conceived
as a means for storing and modifying programs offline.
Nonetheless, a set of facilities is available to control the ma-
jor functions of the manipulator over the remote link. Com-
mands for moving the arm to a specific position at an explicit
velocity and for interrogating the controller for position are
available. By programming the controller to execute a tight
loop consisting of a REMOTE command and a PERFORM
(subroutine call) statement, the manipulator may be con-
trolled from a remote host. This program is provided in
Figure 23.

The PERFORM statement is required because no direct
facilities for controlling 1/0 ports in the controller exist. To
work around this limitation, the program modification
facilities provided by the RLLI were brought into play.
Whenever the state of an 1/0 line is to be modified, the host
sends a request to the controller to modify a point in the
subroutine. By changing this point to a function that controls
the correct 1/0 line, and leaving the REMOTE mode, it is
possible to control any of the I/0 lines.

The Supervisor

Figure 23. A short controller program. The controller program allows operation
of the manipulator from a remote host.

Figure 22. The motion execution unit, or MEU, which handles the execution of
movement-related requests; MP = Motion Planner.

operator to oversee the remaining system functions. At the
other extreme, the supervisor-can plan, execute, and monitor
all aspects of cell operation. Development of a such a system
is a long-range goal of our program.

An important component of the supervisor is the task plan-
ner. Several planning systems have been proposed in the
literature. These include the Strips family of planners, 383
Build, 40 and Pulpl.4! As input, they take a description of
the current state of the world, and a desired goal state. As
output, they produce a sequence of operations that will trans-
form the current state into the goal state. None of these sys-
tems allows sensory feedback to guide the planner—an ability
essential to a flexible assembly cell.

For the incorporation of sensory feedback in automatic
planning, we have developed a special-purpose language,
FProlog, in the Robot Vision Laboratory. 42 FProlog, an ex-

. tension of the Prolog language®? and implemented in Lisp,

integrates logic and functional programming in a package
that allows the automatic generation of task plans from
knowledge of the current state, the desired goal state, and a
rule set. FProlog has been used to generate task plans and au-
tomatically invoke those plans with the robot manipulator to
solve the blocks world problem. Extension to other problem
domains will follow. FProlog clauses are defined to access the
motion control functions, retaining the advantages of Prolog
as a resolution theorem prover. Work is underway to explore
the use of this language in planning sensor-guided assembly.

Experimental results in sensory-guided
parts mating

The Supervisor orchestrates the operation of the other
modules. In its simplest (and current) form, it is a human
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The aim of this section is not to give an experimental cor-
roboration of the overall system described here. Rather, it is
to show some basic, yet successful, experimental studies we
have conducted in mating parts from random locations and
orientations. Our aim was to learn about the low-level sen-
sory and manipulation issues involved so that they could then

IEEE EXPERT




be incorporated in the overall system. Note that if we remove
the requirement that parts be allowed in any position and
orientation (within reasonable limits, of course), the resulting
simpler problem has a well-known solution. 4 When the posi-
tion and orientation of the parts are random, the task
becomes difficult without proper environmental feedback.

In this section, we will show how 3-D vision feedback is
used to meet our goal. In the following experiment, the sens-
ing consists of a portable structured light unit that is picked
up by the robot for scanning the scene when it needs the
range data. The processing consists of transforming the 3-D
vision data into what we call an aititude map, segmenting the
objects from the background, discriminating between the
male and the female components, computing the correct ap-
proach path for the gripper so as to allow mating, and finally
mating the two pieces.

The experiment described was run on a Cincinnati-Mila-
cron T3-726 electric robot coupled to a VAX 11/780 com-
puter. Figure 24a shows a scene consisting of two pieces, a
male and a female, located at random positions and oriented
randomly in the work area for the robot. Note that the
diameter of the peg on the male part and the diameter of the
hole on the female part differ by approximately ¥4 inch—in
other words, the fit is not tight between the peg and the hole.
The allowable tolerances on the dimensions depend on the ac-
curacy of the vision data, which, in our case, is a function of
the number of light stripes used to illuminate the scene. The
dimensional difference we have used gives us a sufficient
margin for error for the 80 stripes we typically use in our ex-
periments. (For close fitting parts, it is necessary to use some
form of force feedback in conjunction with vision.) A range
map is acquired by directing the robot to pick up a
structured-light sensor and then to scan the scene with it
(Figure 24b). This range map is then transformed to an
altitude map, which is constructed by retaining for each x,y
location on the work table the highest vertical coordinate as
obtained by 3-D vision. In the altitude map, the male and
female objects are then segmented by a region-growing algo-
rithm and identified. The orientation and position of each
object are then computed. A stored object model helps the
computer determine the holdsites for the gripper on the male
part. (Both the object model and the mating strategy are a
part of the Global Knowledge Base.) As shown in Figures 24¢
through 24i, we are able to successfully mate the two parts,
and to do so, the robot automatically reorients the male part
to make mating kinematically possible. First, the male piece is
picked up and reoriented so that the cylindrical portion is
pointed away from the manipulator’s base (Figures 24c and
24d). It is then reacquired with the gripper forming a
135-degree angle with the vertical (Figure 24¢). The male part
is then picked up and rotated 180 degrees about the gripper
approach vector (Figures 24f and 24g). The result is that the
peg points straight down. The peg is then centered over the
hole in the female part (Figure 24h) and mated (Figure 24i).
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(b) Scene is scanned with
structured-light unit for the
acquisition of 3-D vision data.

(a) Male and female parts are
in random positions with
random orientations.

(¢) Robot has correctly
calculated grip points on male
piece and picked it up.

(d) Reorientation of male
piece for mating.

(f) Male piece is picked up by
reoriented gripper.

(e) Reoriented male piece is
put back on work table and
freed gripper rotated by 135°
about vertical axis.

(g) Male piece is rotated by 180° -
about gripper-approach vector.

(h) Male piece is centered
over hole in female piece.

Figure 24. Male and
female objects usedinthe
parts-mating experiment
(a), an example of atypical
light stripe projection
from the data collection
phase, and views after the
objects have been identi-
fied and the peg inserted
in the hole (c-i).

(i) Mating is completed.
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e have discussed the ongoing development of
an integrated, knowledge-based robotic as-
sembly cell that uses sensory feedback for
true flexibility. Although much work re-

mains to be done on some components of the system, we
have reported major progress in the vision and motion
planning modules. Items of high priority at this stage in-
clude the development of a master template for the top
levels of both the Global Knowledge Base and the Current
World Model.
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