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Abstract

Porting well known computer vision algorithms to

low power, high performance computing devices such as

SIMD linear processor arrays can be a challenging task.

One especially useful such algorithm is the color-based

particle �lter, which has been applied successfully by

many research groups to the problem of tracking non-

rigid objects. In this paper, we propose an implementa-

tion of the color-based particle �lter suitable for SIMD

processors. The main focus of our work is on the par-

allel computation of the particle weights. This step is

the major bottleneck of standard implementations of the

color-based particle �lter since it requires the knowledge

of the histograms of the regions surrounding each hy-

pothesized target position. We expect this approach to

perform faster in an SIMD processor than an imple-

mentation in a standard desktop computer even run-

ning at much lower clock speeds.

1. Introduction

As the demand for low-power, portable, networked,
and mobile computing devices continues to increase, it
is natural that the services provided by such devices
grow in number and in complexity. However, due to
power consumption constraints, the operating speed
of these devices is bounded to be much lower than
that of standard desktop computers. To support these
new, more complex applications, running in lower clock
speed processors, alternative processing architectures
are being employed. Since these architectures are fun-
damentally di�erent from that of the general purpose
processors, it is often the case that existing algorithms
need to be redesigned in order to be implemented in
these systems.

In the speci�c case of vision systems, object tracking
is a building block for a number of applications. As a
consequence, many successful approaches have been de-
vised for visual tracking. One such successful approach

is the color-based particle �lter. Over the past decade,
many research groups have successfully employed the
particle �lter [2] to track non-rigid objects based on
their color histograms [6, 19, 22, 23, 28]. In this ap-
proach, a reference histogram of the target is initially
provided to the tracker which then searches each sub-
sequent frame for the most likely new location of the
target using Bayesian estimation. The results obtained
so far by these researchers show that the method is
suitable for tracking non-rigid objects since the color
histogram is relatively independent of the target defor-
mation and is robust to occlusion and to variations in
the color of the background [19, 23].

However, the particle �lter is computationally ex-
pensive and, therefore, is not suitable for the current
generation of wireless smart cameras based on low-
power general purpose microcontrollers (e.g. the Cy-
clops camera [26]). On the other hand, the algorithm
lends itself to e�ective parallel implementation. There-
fore, by devising a parallel implementation of the color-
based particle �lter, we believe that it is possible to
achieve robust, real-time object tracking on low-power
smart cameras based on an SIMD processor such as the
Wica camera [13].

This paper is organized as follows. In section 2, we
present some of the works on color-based particle �l-
ters and on methods to implement the general particle
�lter in parallel. In section 3, we describe the basic
idea of the particle �lter as well as its color-based ver-
sion for object tracking in image sequences. Section 4
presents our proposed parallel implementation of the
algorithm. In section 5, we provide a brief analysis of
the potential gains of the algorithm. In section 6, we
present a proof-of-concept implementation of our algo-
rithm in a standard desktop computer. Finally, section
7 concludes the paper.

2. Related Work

The particle �lter was introduced to the computer
vision community by Isard and Blake in their semi-
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nal work [9] in which they presented the CONDENSA-
TION algorithm, which tracks objects based on their
contours. The idea of tracking objects based on their
color histograms using the particle �lter was suggested
by Nummiaro et al. [19] and by Pérez et al. [23]
around the same time. In spite of a few minor dif-
ferences, both works present essentially the same algo-
rithm wherein the measurement likelihood is based on
the Battacharyya distance between the current color
histograms and the reference color histogram, and the
target dynamics are represented by a constant veloc-
ity model perturbed by Gaussian noise. Both works
present di�erent strategies for initializing the �lter.
Pérez et al. also presents some extensions such as track-
ing objects using multiple histograms and introducing
a model of the background into the tracker. The gen-
eral form of the color-based particle �lter presented by
these works is widely accepted today.

Nummiaro et al. later extended their work in sev-
eral ways. In [20] they used an adaptive target model
wherein the color histogram of the target is slowly up-
dated as the object moves. To update the target his-
togram, they �rst threshold the observed state proba-
bility to eliminate outliers and then employ a forgetting
process so that the contribution of previously estimated
states decreases as the state becomes older. They also
presented a multi-camera tracker [21] which uses mul-
tiple reference histograms corresponding to di�erent
views of the target and reinitializes cameras that lose
track of the target based on the epipolar geometry.

Pérez et al. also presented many extensions to their
initial work. In [24] they included sound and motion
cues into the color-based particle �lter to increase the
robustness of the tracker. They also presented an adap-
tive target model using both color and movement in-
formation in [30].

Currently the use of the color-based particle �lter
is widespread and a comprehensive survey is beyond
the scope of this work. Nonetheless, it is important
to mention that an embedded implementation of the
color-based particle �lter has already been presented
in [8], but their work does not consider parallel imple-
mentation issues.

Regarding parallel computation of the particle �l-
ter, many works have claimed that the particle �lter is
immediately parallelizable since there are no data de-
pendencies among particles. That is the case indeed
for most steps of the particle �lter except for resam-
pling. Therefore, most of the works on parallel particle
�lters focus on designing a resampling step suitable for
parallel implementation.

In [18], for example, the authors showed how each of
the building blocks of a particle �lter, including many
known resampling techniques, can be implemented in a

�ne-grained parallel architecture in which each process-
ing element is responsible for processing one particle.

Bolic et al. [3, 4] presented techniques to improve
the resampling step. After showing that a particle �l-
ter with K particles can be computed in an SIMD ma-
chine with M processing units in K/M+L steps, where
L is the latency for the �rst particle to be available,
they presented di�erent parallel resampling methods
and proposed architectures for e�ective implementa-
tion of these methods.

Kotecha and Djuri¢ devised the Gaussian particle
�lter [14] with the speci�c goal of avoiding resampling
and, as a consequence, providing a fully parallelizable
algorithm. The Gaussian particle �lter approximates
the posterior distribution by a Gaussian distribution
and uses the principle of importance sampling to prop-
agate the estimated mean and covariance of the distri-
bution. As opposed to the extended Kalman �lter [31]
or the unscented Kalman �lter [11], the Gaussian par-
ticle �lter does not require the process and observation
noise distributions to be Gaussian.

Sutharsan et al. [29] proposed an SIMD parti-
cle �lter for multi-target tracking. Their system uses
a distributed resampling method which requires ex-
change of fewer particles among processors. Consider-
ing the communication overhead of transmitting parti-
cles among processors, they devised an algorithm that
minimizes the computation time by balancing the load
(i.e., the number of particles) processed by each pro-
cessing element.

The main objective of most of the aforementioned
works is to parallelize the resampling step. However,
for a moderate number of particles, resampling itself is
not computationally expensive [3]. The main focus of
our work is, therefore, on the computation of the parti-
cle weights for the speci�c case of color-based particle
�lters. This step is the major bottleneck in the imple-
mentation of the �lter since it requires the computation
of the histograms of the regions surrounding each hy-
pothesized target position.

3. The Particle Filter

In a Bayesian framework, object tracking is carried
out by modeling the evolution of the state of the target
as well as its measurement process by a set of (possi-
bly non-linear) equations perturbed by (possibly non-
Gaussian) i.i.d. noise. That is:

xk+1 = fk(xk,vk) (1)

zk = hk(xk,nk) (2)

where xk is the state of the target at discrete time
k, fk(·) is the dynamic equation of the target state,
vk is the process noise vector, zk is the measurement
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vector, hk(·) is the measurement function, and nk is
the measurement noise vector. In e�ect, Eqs. (1) and
(2) provide respectively the conditional distribution of
the state of the target given the previous state and the
process noise, and the likelihood of the measurement
given the target state and the measurement noise. Our
ultimate goal is to estimate the distribution of the state
of the target given all the previous measurements, that
is, p(xk |z1:k ), where z1:k= {z1, ..., zk}. If the initial
distribution of the target is known, it is possible, in
theory, to recursively predict the state of the target
using:

p(xk+1 |z1:k ) =

ˆ

p(xk+1 |xk )p(xk |z1:k )dxk (3)

and, as a new measurement becomes available, the
state can be updated using Bayes' rule:

p(xk+1 |z1:k+1 ) =
p(zk+1 |xk+1 )p(xk+1 |z1:k )

p(zk+1 |z1:k )
(4)

When the assumptions of linearity and Gaussian dis-
tribution hold, Eqs. (3) and (4) can be solved analyt-
ically, yielding the Kalman �lter. However, in many
practical applications such assumptions do not hold.
Therefore, it is necessary to �nd alternative approaches
to solve the equations. The particle �lter provides one
way of approximately solving the equations in the gen-
eral case.

In the particle �lter, the distribution p(xk |z1:k )
is approximated by a set of M discrete samples
{xi

k}i=1...M and associated weights {wi
k}i=1...M . Then,

we have:

p(xk |z1:k ) ≈
∑

wi
kδ(xk − x

i
k) (5)

where

wi
k+1 ∝ wi

k

p(zk+1

∣

∣x
i
k+1 )p(xi

k+1

∣

∣x
i
k )

q(xi
k+1

∣

∣x
i
k, zk+1 )

(6)

∑

wi
k = 1 (7)

and δ(·) is the Kronecker delta function. The term
q(xi

k+1

∣

∣x
i
k, zk+1 ) in Eq. (6) is an importance den-

sity, which is generally obtained by approximating
p(xk+1 |xk, zk+1 ) with a Gaussian distribution, or by
simply using p(xk+1 |xk ). By approximating the im-
portance density, it is possible to use Eqs. (5) and
(6) to recursively approximate the distribution of the
target state.

However, particle �lters are subject to a phe-
nomenon known as sample degeneration in which the
number of particles with signi�cant weights decreases
in each iteration of the �lter, and, eventually, only a
very small number of particles represents the posterior
distribution. To mitigate this problem, particle �lters
employ, in general, a technique called resampling. This

technique consists basically in generating a new set of
particles by resampling the current particles based on
their weights. Resampling can be carried out at ev-
ery �lter iteration or only when a signi�cant amount
of degeneracy is observed.

3.1. Color-Based Particle Filter

In the color-based particle �lter, the measurements
are the color histograms of the target object (usually
in the HSV space to reduce sensitivity to illumina-
tion changes). These histograms, when normalized,
provide the color distribution of a region in the im-
age around the target. Generally, the color distribu-
tion is computed so that pixels farther from the cen-
ter of the region, which are more prone to occlusion,
are given less weight than pixels near the center. As-
suming m-bins histograms, and letting the color dis-
tribution of a region centered at a pixel location y be
p(y) = {p(y)i}i=1...m, one common approach to com-
pute p(y) is [5]:

p(y)i = C
∑

u∈R(y)

w(|y − u|)δ[h(u) − i] (8)

where C is a normalization constant so that
∑

p(y)i =
1, R(y) de�nes the region where the histogram is being
computed, w(·) is a monotonically decreasing function,
and h(u) is a function that assigns a histogram bin to
the color vector at pixel location u.

The measurement likelihood is computed based on
the distance between the measured target histogram
and the reference histogram of the target. One common
approach to compute the distance between the color
distributions is to use the Battacharyya distance [19,
23]:

d[p(y),p0] = [1 − ρ(p(y),p0)]
1

2 (9)

where

ρ(p(y),p0) =

m
∑

i=1

√

p(y)ipi
0 (10)

is the Battacharyya coe�cient between the measured
color distribution p(y) and the reference color distribu-
tion p0. The measurement likelihood is then given by
a function of the Battacharyya distance, such as [23]:

p(zk |xk ) ∝ exp − λd2[p(y),p0] (11)

Since we have a model of the target movement, the
likelihood function, given by Eq. (11), and an approx-
imate importance density, we are able to perform the
particle �lter. Algorithm 1 summarizes this process.

4. Parallel Implementation

It has been reported that the bottleneck in the im-
plementation of the color-based particle �lter is the
computation of the M color distributions at each step
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Algorithm 1 Color-based particle �lter.
Current particle set: {xm

k
}m=1...M

Predict the new particle set by sampling M particles from the
dynamic model � Eq. (1)

For each predicted sample
compute the color distribution � Eq. (8), the likelihoods
Eq. (11), and the corresponding weights � Eq. (6)

End For

Sample M new particles, {xm
k+1

}m=1...M , according to

their weights

PE PE PE PE PE PE PE PE

Digital
Video
Input

External
MemoryDigital I/O Processor

Buffer

Figure 1. Hardware architecture.

of the algorithm [23]. This bottleneck is due to the
fact that, in a general purpose processor, each of the
M histograms has to be computed sequentially. In this
paper, we show that, as long as the processor architec-
ture allows for e�cient access to external memory, it is
possible to compute the histograms in parallel.

4.1. Hardware Architecture

We propose an algorithm for an SIMD linear proces-
sor array similar to the Xetal family of SIMD proces-
sors [12]. The architecture is composed of P process-
ing elements each of which with an arithmetic logic
unit and a small amount of memory. Each process-
ing element is able to communicate directly with its
two nearest neighbors. The processing elements also
have read and write access to a bu�er which is able to
store multiple image lines. A digital I/O processor is
responsible for parallelizing data received from the im-
age sensor or from the external memory and store them
in the bu�er. The digital I/O processor also reads data
from the bu�er and serializes them to store in the exter-
nal memory. This architecture is illustrated in Figure
1. The digital I/O processor can operate independently
of the processing elements so that, while the processing
elements are performing computations on the data, the
digital I/O processor may store previously processed
data or fetch new data from the image sensor or from
the external memory.

4.2. Parallel Histogram Computation

Suppose we want to compute the histogram of a rect-
angular image region R(x) of dimensions rx × ry, that

Algorithm 2 Parallel computation of the integral his-
tograms.
For each image line

compute ci(x, y) in parallel for all x using Eq. (13)

store ci(x, y) in the external memory
End For

For each column of ci(x, y)
read the ith column of ci(x, y) transposed

compute the value of li(x, y) in parallel for all y using
Eq. (14)

End For

is:

R(x) = R(x, y) = {(u, v) : x ≤ u ≤ x + rx,

y ≤ v ≤ y + ry} (12)

One straightforward approach to compute the his-
togram of region R(x) would be to employ integral his-
tograms [25] as follows. Let ci(x, y) represent the total
count of the ith histogram bin for pixel x at column y.
This count can be computed recursively by:

ci(x, y) = δ[h(x, y) − i] + ci(x, y − 1) (13)

In a linear processor array, Eq. (13) can be computed in
parallel for all the values of x. Letting li(x, y) represent
the total count of the ith histogram bin then we can
compute the total count of the ith histogram bin using:

li(x, y) = li(x − 1, y) + ci(x, y) (14)

If the values of ci(x, y) are stored in an external mem-
ory, Eq. (14) can be computed in parallel by reading
each column of ci(x, y) transposed into the memory of
the SIMD processor. This procedure is illustrated in
Algorithm 2.

Therefore, if the value li(x, y) is stored for each pixel
of the image, each bin i of the histogram of the region
R(x) can be computed by:

li(x4) − li(x3) − li(x2) + li(x1) (15)

where x1 = (x, y), x2 = (x + rx, y), x3 = (x, y + ry),
x4 = (x + rx, y + ry).

The main drawback of this approach, however, is
that we need to store one histogram per pixel. Since
each histogram consists of a relatively large data struc-
ture, the memory requirements of integral histograms
are generally too high for embedded systems. For
instance, approximately 42 megabits of memory are
needed to store the integral histograms of a 320 × 240
pixels image using histograms of 32 bins. This limi-
tation has motivated us to propose a novel approach
to compute the histograms which requires temporary
storage of only one histogram per image column.

In our approach, we compute the histograms of M
image regions in parallel. To do so, we reorganize the
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Figure 2. Organization of the histograms in the external
memory.

Algorithm 3 Organization of the histograms in the
external memory.
For each region Ri

If (xi < x < xi + rx) && (yi < y < yi + ry)
store pixel value in the external memory position
corresponding to Ri

End If

End For

image regions for which we want to compute the his-
tograms into the external memory side-by-side, as illus-
trated in Figure 2, so that they can be later processed
in parallel. To store the pixels in the external mem-
ory, each processing element has to know the initial
coordinates, yi and xi, the dimensions, rx and ry, and
the corresponding initial position in the external mem-
ory of each region Ri. This procedure is illustrated in
Algorithm 3, which is executed in parallel for all the
elements in one image line.

It is important to note that, although Algorithm
3 requires O(M) iterations per pixel, these iterations
are done during a line read from the image sensor.
Therefore, the time required to store the image regions
should be negligible.

After the image regions are stored in the external
memory, they are read, line-by-line, into the internal
memory to be processed in parallel using an approach
somewhat similar to that used in [16, 17], which is il-
lustrated in Figure 3. During the �rst ry iterations,
the histograms for each column of the regions are com-
puted. This step can be carried out e�ciently by em-
ploying embedded histogramming functions available
in processors such as the Xetal II [1]. After the column
histograms are computed, we need rx steps to compute
the total histograms of each image region. This is done
by sequentially adding the histogram of a given column
to that of its immediate neighbor.

The procedure to compute the histograms in parallel
is illustrated in Algorithm 4. Using this procedure, it
is possible to compute the histograms of all the image
regions in O(rx + ry) steps. The main bottleneck in
this procedure is reading the data from the external
memory. Since the external memory has to be read
sequentially, we need O(nx) operations to read each
line of data, where nx is the number of elements in

Line Memory

ry steps

rx steps

Final Histograms

Figure 3. Parallel computation of the histograms.

Algorithm 4 Computing the histograms in parallel.
For line_counter = 0 To ry

read the pixel values of the current line into the line memory

compute the column histogram and store in the line memory
End For

For column_counter = 0 To rx

If (x Mod rx) = column_counter
add the current column histogram to the histogram of the
right neighbor

End If

End For

one row of the line memory (which is the same as the
number of processing elements since the line memory is
basically the memory within the processing elements).
This problem can be mitigated if the external memory
can be accessed in a pipelined manner. That is, if we
allow the digital I/O processor responsible for reading
the external memory to read an entire line and store it
in a temporary bu�er while the linear processor array
processes the previous line.

Depending on the size of each line of the line mem-
ory and the number of regions to be stored, it may be
the case that the line memory cannot store all the im-
age regions side-by-side, i.e., nx < M × rx. In that
case, it is possible to store the elements in an array as
illustrated in Figure 4. Using this arrangement, M×rx

nx

extra steps are necessary to compute the histograms of
all the regions. However, since in practice we expect
rx ≪ nx, there should not be too many extra steps. As
an example, if we let nx = 320, rx = 16, and M = 60,
then only three steps of 32 iterations are necessary to
compute all the histograms.

Evidently, the function w(|y − u|) used in Eq. (8)
can also be computed in parallel for each pixel of the
image. Since there are no data dependencies among
the particles, after the histogram distributions are com-
puted, each likelihood can be computed in parallel as
long as the processing elements have access to the
common reference histogram. After the likelihoods
are computed, the (unnormalized) weights can also be
computed in parallel.

As the weights are computed, the remaining steps
of the color-based particle �lter are very simple and it
should be possible to implement them e�ectively even
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in microprocessors with relatively limited processing
capabilities. Evidently, careful implementation is al-
ways a paramount concern in wireless smart cameras.
However, �ne tuning the parameters of the algorithm
such as the histogram resolution and the number of
particles should provide a point of balance between
its robustness and performance suitable for embedded
smart cameras.

5. Performance Analysis

In this section, we provide an analysis of the poten-
tial performance gains of our approach as compared to
a sequential implementation. The analysis is based on
the following assumptions:

• Reorganization of the histograms can be done in
parallel with image acquisition. Thus, the time
required for this step is not considered.

• Reading a line from the external memory can be
done in parallel with computations in the linear
processing array. Thus, the time required for this
step is also considered negligible.

• The sequential processor can compute 1 histogram
element in 1 unit of processing time whereas the
SIMD processor can perform the same computa-
tion in 50 units of processing time. This assump-
tion should re�ect the usually much lower clock
speeds of low power processors.

Figure 5(a) shows the time required to compute the
histograms as a function of the number of particles for
the sequential processor and the SIMD processor with
the line memory width �xed to 320 elements and the
region size �xed to 16 × 16 pixels. As the �gure il-
lustrates, gains of up to 4 times are possible, and this
gain increases with the number of particles. The dis-
continuities in the computation time of the SIMD pro-
cessor occur when the total width of the regions (i.e.
the number of particles times the width of each re-
gion) is a multiple of the line width. This is due to the

fact that when the total width is not a multiple of the
line memory width, the computations performed by the
processing elements to the right of the last region are
not used. Therefore, for an SIMD implementation, it is
highly desirable to make the total width of the regions
a multiple of the line memory width.

Figure 5(b) shows the same comparison with the
number of particles �xed to 60, line memory width
�xed to 320 elements and varying tracked region size.
In that case, performance gains of up to 14 times are
possible.

Figure 5(c) shows the e�ects of varying the line
memory width when the number of particles is �xed
to 60 and the region size to 16 × 16 pixels. The com-
putation time required by the sequential processor is
constant in that case since it obviously does not de-
pend on the line memory width. As the �gure illus-
trates, the wider the line memory the faster the SIMD
processor can compute the histograms. This is an ex-
pected result since wider line memory implies a larger
number of processing elements. As the line memory
width becomes wider than the total width of the image
regions, no further gains are achieved since the extra
processing elements are not involved in any computa-
tions. It is important to note, however, that although
increasing the line memory width provides great per-
formance gains, the increased hardware complexity will
lead to more energy consumption. Therefore, there is
a trade-o� between performance and energy consump-
tion, which must be carefully evaluated.

To validate the claim that resampling is not com-
putationally expensive, we have implemented system-
atic resampling in an Atmel AVR ATmega128 proces-
sor running at 8MHz. Figure 6 shows the computation
times for a varying number of particles. In our appli-
cation, we have empirically veri�ed that 100 particles
are enough to obtain good tracking results. Hence, it
is possible to perform resampling in less than 20ms in
a very low power processor. On the same platform,
computing the weights of 100 particles using 32 bins
histograms of regions consisting of 16×16 elements pre-
viously stored in the internal memory of the processor
takes 294ms. If the number of bins of the histogram is
not a power of 2, due to the �oating point operations
involved in computing the histogram, the processing
time is much longer (855ms for histograms of 33 bins).
Therefore, it is clear that weight computation, rather
than resampling, is the bottleneck of the algorithm.

6. Proof-of-Concept Implementation

As a proof-of-concept, we have implemented a color-
based particle �lter using our histogram computation
algorithm in a standard desktop computer. The �lter
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Figure 5. Analytical comparison of the computation times as a function of: (a) the number of particles, (b) the tracked
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Figure 6. Resampling computation times.

uses the hue histograms of 100 particles, and systematic
resampling is carried out at every iteration of the �l-
ter. To keep the implementation simple so that it could
be ported to an embedded system, we restricted the
tracked region to a �xed size of 16 × 16 pixels. Figure
7 shows the tracking results obtained using the tradi-
tional method (left side), and our method (right side).
As expected, since the histograms computed using our
method are identical to the histograms computed using
the traditional method, the results obtained by both
systems are essentially the same.

7. Conclusions and Future Directions

The color-based particle �lter is an e�ective algo-
rithm for tracking non-rigid objects, however, at the
cost of high computational expense. In this paper we
have shown that it is possible to implement the ma-
jor bottleneck of the algorithm, the computation of
the color histograms, in a parallel manner suitable for
an SIMD architecture. Our analysis of the algorithm
shows that it should be possible to achieve substantial
performance improvement in comparison to standard
desktop computers while operating at much lower clock
frequencies.

Many previous works have shown that it is possible
to port complex computer vision algorithms to smart
cameras based on SIMD processors [7, 10, 15, 27, 32].
As we have shown, the color-based particle �lter is an-

frame 1 frame 1

frame 180 frame 180

frame 383 frame 383

Figure 7. Tracking results.

other such algorithm. We believe that its real time
implementation in an embedded camera will provide
an invaluable building block for the design of applica-
tions of practical interest in portable embedded devices
and wireless camera networks.

Our next goal is to implement the algorithm in a
real smart camera based on an SIMD linear proces-
sor array in order to measure the actual performance
gains. We are also currently investigating possible ways
to allow multiple cameras tracking the same target us-
ing a color-based particle �lter to collaborate in order
to increase the robustness and accuracy of the algo-
rithm. Since our ultimate goal is to be able to port this
method to wireless cameras, we are trying to achieve
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such collaboration while keeping the interaction among
cameras to the minimum necessary.
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