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An Interactive Framework for Acquiring Vision
Models of 3-D Objects From 2-D Images
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Abstract—This paper presents a human-computer interaction
(HCI) framework for building vision models of three-dimensional
(3-D) objects from their two-dimensional (2-D) images. Our
framework is based on two guiding principles of HCI: 1) provide
the human with as much visual assistance as possible to help the
human make a correct input; and 2) verify each input provided by
the human for its consistency with the inputs previously provided.
For example, when stereo correspondence information is elicited
from a human, his/her job is facilitated by superimposing epipolar
lines on the images. Although that reduces the possibility of
error in the human marked correspondences, such errors are not
entirely eliminated because there can be multiple candidate points
close together for complex objects. For another example, when
pose-to-pose correspondence is sought from a human, his/her job
is made easier by allowing the human to rotate the partial model
constructed in the previous pose in relation to the partial model
for the current pose. While this facility reduces the incidence
of human-supplied pose-to-pose correspondence errors, such
errors cannot be eliminated entirely because of confusion created
when multiple candidate features exist close together. Each input
provided by the human is therefore checked against the previous
inputs by invoking situation-specific constraints. Different types of
constraints (and different human-computer interaction protocols)
are needed for the extraction of polygonal features and for the
extraction of curved features. We will show results on both
polygonal objects and object containing curved features.

Index Terms—Human-computer interaction, pose—to—pose cor-
respondence, 2-D, 3-D, vision models.

1. INTRODUCTION

T IS NOW generally believed that model based vision of the

kind reported in [1], [3], [5] cannot always be driven by CAD
models of objects. Mechanical CAD models do not always pro-
vide a good representation of objects for recognition by a com-
puter vision system. Since a CAD model must by definition be
a complete geometric representation of an object, the resulting
representations can be excessively complex and geometrically
too rich for computer vision work.

On the other hand, the representation for a vision system
needs to be sufficient only for the purpose of recognition and
pose estimation. That is, the representation used should provide
just sufficient discriminatory power to differentiate between a
given object and all the other objects that a vision system is ex-
pected to see. Obviously, if a vision system is expected to see
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only one type of a rigid object in a clutter-free environment, the
needed representation can be very simple and consist of just a
small number of features that would be needed for pose calcula-
tion. We will refer to the representation needed for recognition
and pose calculation as a vision model—a term that has been
used before by many other researchers.

What that means is that, unlike a CAD model which must
be geometrically complete and precise, what vision model one
uses depends on a host of factors such as what other objects the
vision system will be seeing, the visual similarity between the
objects, the nature of the clutter in the background, etc.

It therefore stands to reason that while it may be possible to
derive a vision model from a CAD model, a superior strategy
might consist of constructing a vision model directly from the
object itself. Ideally, one would want to show N objects to a vi-
sion system, each in multiple poses, tell the vision system that
those N objects are to be treated as visually different, and then
have the vision system figure out on its own how to differen-
tiate between the objects and between different poses for a given
object.

But, as is so well known in the vision community, we are far,
far from achieving this ideal. In the meantime, all we can hope
for is that it would be possible for a computer to construct vision
models with human assistance—hopefully minimal human as-
sistance. For the foreseeable future, one would want to be able
to develop easy-to-use graphical interfaces and user-interaction
protocols that would permit a human to help the computer with
solving those aspects of model-building that cannot yet be fully
automated.

For sure, the development of such graphical user interfaces
and human-computer interaction protocols has received much
attention from industry [2], [12], [21] and academia [4] in re-
cent years. These interfaces, intended primarily for animators,
architects, forensic specialists, and so on, allow one to con-
struct a three-dimensional (3-D) model from multiple two—di-
mensional (2-D) images taken from different viewpoints. There
is an important reason for why these prior systems cannot be
used in robotic and industrial computer vision applications: The
end-goal of these systems is the graphical rendering of a recon-
structed 3-D object. This means that the notion of a feature that
might play a critical role in object-recognition for bin-picking
or in vision-guided robotic assembly is not central to the overall
process of 3-D object reconstruction.

Vis-a-vis the systems described in [2], [4], [12], [21], the
work described in this paper is geared primarily toward robotic
vision applications where the reconstructed 3-D models must
be rich in features. Our human-computer interaction protocol
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Feature Vertex Area Perimeter Shape
Surfaces Entities (mm?) (mm) Complexity
Polygon SO VO V1V2V3 3045 244 4.42
Polygon S1 | V1 V2 V4 V6 V8 V10 V12 8769 441 4.71
Polygon S2 V3 V2V4V5 3828 262 4.23
Polygon S3 V4 V6 V7 V5 1586 212 5.32
Polygon S4 V6 V8 V9 V7 5005 542 7.66
Polygon S5 V8 V10 V11 V9 1144 202 5.97
Ellipse EO 8 cardinal points 2827 188 3.54
Vertices | Adjacent Vertices | X Coordinates | Y Coord. | Z Coord.
Vo V1V3Vi3 34.9 46.6 124.9
Vi V0 V2 V12 -46.4 35.3 125.1
V2 V1 V3 V4 -44.8 1.7 125.5
V3 V0 V2 V5 39.3 10.9 125.1
V4 V2 V5 V6 -42.7 -3.4 83.5
V5 V3 V4 V7 47.7 8.4 84.2
V6 V4 V7V8 -42.1 -19.5 74.0
V7 V5 V6 V9 45.8 -8.8 71.6
V8 V6 V9 V10 -31.0 -81.0 18.2
V9 V7 V8 V1l 56.0 -67.5 15.1
V10 V8 V11 V12 -24.9 -83.1 -1.6
Vi1 V9 V10 V13 52.6 -64.6 -3.6
V12 V1 V10 V13 -30.9 37.0 -1.9
V13 V1 V11 V12 43.7 57.1 -2.7

(a)

Fig. 1.
(b) Correspondent features and their attributes.

makes it convenient for a human to assist the computer with the
grouping processes required for the formation of these features.
More specifically, our system requires a human to place a 3-D
object under a multicamera system in its various poses and to
then

* help the computer with the extraction of the visually sig-
nificant planar and curved features;

* help the computer establish stereo correspondences if
needed;

* help the computer establish pose-to-pose correspondences
when needed;

so that the computer can build a 3-D vision model of the object.
As we will describe in greater detail in the next section, the vi-
sion system records five different images for each pose of the
object chosen by the human. These five images consist of a cen-
tral main view and four ancillary views. This data configuration,
which differs markedly from what is employed in the systems
described in [2], [4], [12], [21], is necessitated by the require-
ments of the domain—accurate reconstruction of the features
of industrial objects in a 3-D vision model. The cited systems
try to reconstruct a 3-D graphical model by a global integra-
tion of all the views all at the same time. On the other hand, our
human-computer interaction protocol seeks to localize the fea-
ture with high-accuracy in each view that is considered primary
for that feature by the human—the localization achieved with
the help of the other four views.

To quickly show a result before launching into a detailed dis-
cussion of our system, Fig. 1(a) shows a reconstructed vision
model. For the sake of visual display, we only show a wire-frame
representation of the reconstructed model. But note that all of

(b)

Gometrical representation of a typical 3-D polyhedral object. (a) A wireframe represented form of the reconstructed 3-D vision model with labeled features

visually significant features in the reconstructed model are at-
tributed. The attributes associated with the various features in
the reconstructed model are shown in the form of a table in
Fig. 1(b). Whereas the attributes area and perimeter have their
usual meanings, the attribute shape complexity was calculated
as perimeter /\/area.

Learning 3-D models from 2-D images is much more chal-
lenging than doing the same from range images. A high-quality
range scanner will faithfully capture most if not all of the ex-
ternal surfaces of a wide variety of 3-D objects. Constructing
a 3-D model from the range maps taken from different view-
points then consists of establishing correspondence between the
same surfaces in the different range maps and “stitching” the
surfaces together into a full 3-D model. This is what has been
done in many recent notable contributions that have brought
computer vision and computer graphics together for the con-
struction of 3-D models of the statue of Michelangelo’s David
at the museum [16] and of the statue of Great Buddha at Ka-
makura temple [19]. If this learning process is also supposed
to teach the computer how best to distinguish between the con-
structed models for recognition and pose calculation, the model
building approach can be combined with the decision-tree based
learning approach as advanced in the MULTI-HASH system [9].

Ours is by no means the first contribution in constructing 3-D
models from 2-D images. For very simple 3-D shapes, such as
cylinders, there is the contribution of Ogawara et al. [20] in
which prior knowledge of the dimensions and a color histogram
based segmentation of the round surface of a cylinder is used to
construct a vision model of the cylinder for its future recognition
using color cues. An extension of this idea to simple polyhedral
shapes, again assuming that the basic dimensions of the model



568 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

= View 2 Marking vertex #0 -1

Epiplolar line

Vertex not visible | Cancel

() (b)

Fig. 2. Stereo correspondence for a human with an epipolar line.

are already known, is presented by Kuniyoshi et al. [15]. An-
other related contribution is from Heuel and Nevatia [10] in the
context of mobile robotics vision in which 2-D images are used
for the construction of a 3-D model of a building whose basic ge-
ometry and layout are already known. The reader is also referred
to a human-assisted model construction system by Fracois and
Medioni [7] that builds a 3-D model from a single image by ap-
plying NURBS fitting to human-supplied control points.

A human-computer interaction framework for constructing
vision models of 3-D objects from 2-D images must address
the problems caused by the fact that low-level feature extrac-
tion algorithms are notoriously ill-behaved. A classic example
of this is the output of an edge detector. In order not to miss im-
portant edges, one usually tries to use detection thresholds that
are liberal, leading to cluttered edge maps in most situations.
So when human assistance is sought in identifying features in
such maps or in establishing stereo correspondences between
two such edge maps, we have to accept the high possibility that
the human might make an error. We have tried to alleviate such
problems as follows.

* Providing the human with as much visual assistance as
possible for interaction. As a case in point, when the
system asks the human for identifying a stereo corre-
spondence, the system superimposes an epipolar lines
on the image in which the correspondence is sought.
What’s interesting is that such facilities do not eliminate
errors—they only reduce the probability of error. For ex-
ample, shown in Fig. 2(a) is an image with a highlighted
feature point. The computer would like a stereo corre-
spondence for this feature point in a different viewpoint
image that is shown in Fig. 2(b). To help the human, the
computer superimposes on the image in (b) the epipolar
line for the highlighted feature point in (a). As the reader
can see, despite the epipolar line, there are multiple pixel
candidates in (b) for the highlighted feature point in (a).
The confusion created by the presence of such multiple
candidates justifies our second step below.

* Each input by the human is verified for its consistency with
the previously supplied inputs.

We will identify these two aspects of our system in each of the
interaction phases presented in the rest of this paper.

In the rest of this paper, in Section II we first give the reader
an overview of the human-computer interaction in our system.
Subsequently, we describe in greater detail the various functional
modules of the system. Along those lines, Section III discusses
how polyhedral features are extracted in 2-D and reconstructed
in 3-D; this section also shows how multiple poses are merged
for the case of polyhedral features. Section IV then does the
same for general elliptical features. Subsequently, Section V
presents the results of an evaluation study where we report on
the accuracy with which polyhedral and curved-feature models
are reconstructed by our system. Finally, Section VI concludes
our paper by summarizing what we have learned and what
remains to be done.

II. OVERVIEW OF THE INTERACTION FRAMEWORK

Fig. 3 shows separately the responsibilities of the computer
and those of the human. The responsibilities assigned to each
agent exploit the unique strengths of that agent. For the most
part, the computer carries out actions that require extensive nu-
meric or symbolic computations. On the other hand, the human
carries out actions that require perceptual abilities that a ma-
chine cannot yet be endowed with.

The model building process begins with the human placing
the object under the camera system in each of its stable poses.
The computer manipulates the robotic arm holding the camera
and collects five different images of the object from a central
view and from four other peripheral views. In the rest of this
paper, we will refer to the image taken from the central overhead
view as the View_0 image. The other four images will be re-
ferred to as View_1, View_2, View_3, and View_4 images (see
Fig. 4).

The computer then applies an edge detector and vertex
detector to the images. Next, the human helps the computer
by accepting some or all of the vertex features identified by
the computer and, if necessary, by identifying additional vertex
features. Subsequently, the human helps the computer with the
organization of those feature points into larger level features
that can be polygonal and curved. To create a 3-D representation
of those features, the computer then seeks human help for
establishing stereo correspondences for feature points. To make
the job of the human easier, the computer draws epipolar lines
on the images. The 3-D representations of the object features
created in this manner are subject to various verification tests.
After all the information that can be gleaned from the five
images in one stable pose is acquired, the human repeats the
process for the next stable pose. Later, the human also helps
the computer with establishing pose-to-pose correspondences
so that the computer can integrate all of the 3-D features in
all of the stable poses into a single model.

Fig. 5 shows the various buttons and the clickable icons of
the Graphical User Interface that is used to orchestrate the in-
teraction between a human and the computer for the purpose of
object modeling. The second row of buttons allows a human to
execute the following steps after the object is placed in the work
area of the vision system.

* Acquire a sequence of images, usually five, from five dif-
ferent viewpoints.
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Computer Human

I Place the object in the work area

| of the robetic vision system
Robot hand manipulation for imaging
objects from rultiple views

|
Apply Canny operator and image
preprocessing for vertex detaction

Click on salient features in the image w

Group previously selected salient features
Display epipolar lines bf: form mid-level perceptual groupings
in multiple viewpoint images

I ‘Qdenﬂfy stereo correspond ences)

Form 3D features
ﬂnvaka 3D feature editor for )
s

I \Jncrememal position correction
| Cormpute attributes of the features |
|
Display the accumulated features in all previous
poses for the integration of the current pose

I ’:;Eslablish poseto-pose correspondem@

Compute pose-transform
relating current pose to first pose

A complete 3D model

Fig. 3. Division of responsibilities between the human operator and the
computer.

Fig.4. Four viewpoints, View_0, View_1, View_2, View_3, and View_4, used
for the imaging of an object in each stable pose.

* Apply the Canny edge operator to each image.
* Identify vertices if any are found.
* Load the resulting images into the model building
program.
The reason for this initial row of buttons is to give the human
a choice of low-level processing routines. Suppose we wanted to
include other edge detectors in our system, to incorporate them
into the computational process all we would have to do is create
a button for each detector. Each button in this row is modal,

meaning that each button can be clicked only after some other
particular button has been clicked.

The buttons of the third row—these are the buttons with
graphical icons on them—ask the user whether the feature to
be extracted from an image is a polyhedral feature, an elliptical
curved feature, a circular feature corresponding to cylindrical
shape on the surface of the object, or a general curved feature.
In the rest if this section, we will explain separately how the
interaction proceeds for the polyhedral and the curved feature
cases.

A. Human Interaction for Identifying Polyhedral Features

Extraction of a polyhedral feature begins with the human se-
lecting those points in the image that correspond to the vertices
of the object. The image used for this purpose is the edge-ex-
tracted version of a perpendicular view of the object. Before the
human interacts with this image, the computer also applies a
vertex detector to the output of the edge detector; the vertices
are shown as dark filled circles in the image (Fig. 6). The view
in which the human first identifies the features for a given pose
of the object, the central view, is referred to as View_0 for that
pose. The operation of the vertex detector is presented in greater
detail in [17].

Since the vertex detector cannot be expected to work with
100% precision, the GUI gives the human the freedom to click
anywhere he/she wants in order to define a new model vertex.
However, if the point clicked on by the human is within three
pixels of one of the system-supplied vertices, the system-sup-
plied vertex is chosen. The three-pixel “slop” takes care of any
fatigue-induced lack of precision in point clicking by the human.
Additionally, three pixels translate roughly into 1.5 mm in the
plane that corresponds to the base of the work area. This interval
is roughly the best that our system can exhibit by way of spatial
resolution in object reconstruction.

B. Human Interaction for Identifying Elliptical Features

As shown in Fig. 7, for elliptic shape extraction, a human is
asked to select a representative set of points in View_0 along
the perceived boundary of the elliptic shape. Although one can
get away with only six points, for incorporating some noise im-
munity our system insists that the user click on at least eight
points. A least-squares elliptical fit is then made to these points
and projected back into the image.

C. Human Interaction for Stereo Correspondence

Identification of a feature in View_0 is followed by its
localization in 3-D. For polyhedral features, this is done by
establishing correspondences between the selected vertices in
View_0 and the vertices in the four other views for every pose
of the object. For curved features, the localization in 3-D is
accomplished by first choosing a cardinal set of points on the
analytically computed feature in View_0 and then establishing
the stereo correspondents of those points in the other views.

So basic to the 3-D localization of both polyhedral and curved
features is the identification of a corresponding pixel in View_i
for a given pixel in View_0 fori = 1, 2, 3, 4. Since the finding
of the corresponding pixels cannot be fully automated for rea-
sons that are well documented in the computer vision literature,
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Fig. 5. Buttons and icons of the human-computer interaction editor.

Fig. 6. Human selects vertices for polyhedral shapes directly on the top of
View_0 image.

human’s help is sought again. The human begins the process
of helping out with stereo correspondence by clicking on the
“Stereo Correspondences” button shown in Fig. 5(b), initiating
a phase of interaction in which the different view images are
shown sequentially in the GUI and the human asked to identify
the corresponding pixel in each.

To speed up the human-assisted stereo correspondence in
View_i, for each selected pixel in View_0 the system draws an
epipolar line in View_i. The human then only has to click on
what appears to be the best corresponding pixel on the epipolar
line in View_i. To visually aid the human in this task, the GUI
shows both the View_0 and the View_i images side by side;
the View_0 pixel whose correspondent is sought is highlighted
in the image on the right, as shown in Fig. 8, and the View_i
image with the epipolar line on the left.

The stereo correspondences thus entered by the human are
not taken on their face value. Even with the help provided by
the system-drawn epipolar line, it is possible for a human to
commit an error for an object with a large number of surface
features. For example, shown at the bottom left of Fig. 8 is what
the GUI shows for a curved object of moderate complexity in
View_1 (The black arcs shown are the edge segments produced
by low-level image processing routines.) Shown on the right
is the pixel in View_0 whose correspondent the human must
supply from the pixels displayed in View_1 on the left. As the
reader can see, there are multiple competing pixels in View_1
on the epipolar line in the vicinity of where one would expect
to find the corresponding pixel; the human must select one of
those. Given this potential for human error, the system subjects

Previous Session | ,File Data!

Model O

Stereo Correspondences

Fig. 7. Elliptical features superimposed on the edge image.

Epipolar line

Fig. 8. Stereo correspondence of polyhedral and elliptical object. The image at
top right shows the mid-level feature groupings extracted with human assistance
from View_0. The computer highlights vertices in this partial model, one vertex
at a time, and asks the human to identify a corresponding vertex in the View_i
image at top left. To help the human, the computer draws the epipolar line in the
left image as shown. The bottom two images show the same process for curved
features.

the human-supplied correspondents to checking by all of the
usual stereo constraints:

1) the epipolar constraint;
2) the ordering constraint;
3) the multiple view constraint.
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Despite the fact that the epipolar line is drawn in the image to
help the human, we still apply the epipolar constraint to the
human-supplied points. This is to allow the human to select
points that may not be exactly on the drawn epipolar line, but
only in the general vicinity.

D. Human Interaction for Pose-to-Pose Correspondence

When an object is placed under the robot-mounted camera
system, only those features can be acquired that are not occluded
from the camera viewpoints used. In order to relate the features
acquired from one pose with the features acquired from a pre-
vious pose, the system needs to know the pose transformation
between the two poses by establishing feature correspondence
between the two poses.

1) Pose-to-Pose Correspondence for Polyhedral Fea-
tures: The human interaction protocol for establishing the
pose-to-pose correspondences is designed in a way so as to
mitigate the cognitive and perceptive burden on the human.
As poses are integrated, we end with a growing partial model
that can become perceptually complex toward the end of the
pose sequence. As the partial model becomes complex, it
can become difficult for a human to see which vertices in
the current pose correspond to what vertices in the model
accumulated so far. To keep the interaction efficient and
to facilitate the visualization of such correspondences, the
graphical user interface presents the following information
to the human.

* Only the View_0 images are shown from the current
pose and the latest pose already integrated into the partial
model. The pose to pose correspondence is carried out for
only the vertices visible in View_0 images in the different
poses. The reader will recall that for the View_0 image,
the camera is directly over the object. The other four
images, indexed 1 though 4, provide stereo triangulation
data for the vertices in View_0. It is possible that we may
uncover additional 3-D triangulated vertices between
the other four views, but usually such vertices will be
visible in only two or three images, making their stereo
correspondence not as robust as for the vertices in the
View_0 image.
Since the 3-D coordinates of the vertices are already
known at this stage, the GUI also shows the wireframe
representations of the reconstruction in the current pose
and the reconstruction corresponding to the partial model.
The human is allowed to rotate in 3-D each of these
reconstructions to better visualize how the current pose
fits to the partial model constructed from the previous
poses.
Note that the wireframe representations of the previous
step are purely for the purpose of a human’s visualization
of the correspondences. The correspondences themselves
must be entered by mouse clicking in the View_0 images
for the current pose and one of the View_0 images for the
poses already in the model.

Using these graphical devices, the human-computer interac-
tion protocol for entering pose-to-pose correspondences is as
follows.

1) The View_0 image of the current pose and the View_0
image of the latest pose in the accumulated partial model
are shown side-by-side as in Fig. 9(a) and (b). The
pose-to-pose vertex correspondences must be entered
by clicking in one of these images as we will describe
below. Buttons are provided in Fig. 5 for switching to
the View_0 images of the other poses in the accumulated
model if that’s desired by the human. The need for doing
so will become clear shortly.

2) To facilitate the visualization of current-pose to the ac-
cumulated-model correspondences, the wireframe repre-
sentations for the 3-D reconstructions of the current pose
and of the accumulated partial model are shown directly
below the View_0 images, as in Fig. 9(c) and (d). As was
mentioned before, these wireframes are meant to be ro-
tated in 3-D.

3) The system highlights each vertex in the current pose
View_0 image, as shown in Fig. 9(a), and asks the user
to click on the corresponding vertex in the partial-model
View_0 image on the right. As mentioned before, the
human can switch to the other View_0 images in the par-
tial model if the corresponding vertex is not visible in the
one displayed.

4) Each vertex in the left image for which the human sup-
plies a corresponding vertex in the right image is added
to a database of object vertices for which 3-D coordinates
can be calculated. Two 3-D vertices thus established are
connected in a wireframe representation of the accumu-
lated partial model if their 2-D projections are connected
in any of the View_0 images included in the partial model
so far.

If the human enters an incorrect correspondence between a
vertex in the current pose and a vertex in the model already ac-
cumulated, the system discovers the inconsistency of the trans-
formation by computing the error criterion that is presented in
Section III-C. When an error is discovered, a message to that
effect is flashed on the screen. The human then has the option
of either entering new correspondences for the current pose or
simply ignore the error message.

2) Pose-to-Pose  Correspondence for Curved Fea-
tures: While the main issue in establishing pose to pose
correspondence for polyhedral shapes is the identification of
corresponding vertices between two different poses, the main
issue for curved features is the identification of the correct
corresponding curves. Fig. 10 shows the View_0 images for
a curved-feature object in the current pose in (a) and in (b)
the View_0 image in the previous pose. Superimposed on
the images in both (a) and (b) are the features extracted with
human help in those two images. Shown in (c) is a wireframe
reconstruction of the features extracted from (a). And, shown
in (d) is the accumulated partial model before the current
pose is integrated into it. The human can rotate the wireframe
feature reconstruction in the current pose against the wireframe
reconstruction of the accumulated model to get a better sense
of how the current pose fits into the partial model.

As these figures illustrate, the main pose-to-pose correspon-
dence problem for curved objects stems from possible confusion
as to which curved feature in one pose goes with which curved



572 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 1, FEBRUARY 2004

(©) (d)

Fig.9. For pose-to-pose correspondence, the View_0 image in the current pose
is shown in (a), whereas (b) shows the View_0 image of the latest pose in the
accumulated partial model. The user can switch to the other View_0 images in
the accumulated model by clicking on a button. Shown in (c) is a wireframe
representation of the partial model corresponding to the current pose of the
object. Shown in (d) is the accumulated partial model using all of the previous
poses of the object.

feature in another pose. The human interaction protocol here
is simple: all that a human has to do is to mark for each curved
feature in the View_0 image on the left its corresponding curved
feature in the View_0 image on the right. And, as for the poly-
hedral case, the human can rotate the wireframe representations
in 3-D before making the markings.

After establishing the curve-to-curve correspondences, the
system upgrades its 3-D description of the curve taking into ac-
count the corresponding 2-D curves supplied by the two poses.
The mathematics of how that is done will be explained later in
Section IV.

III. MODELING ISSUES FOR POLYHEDRAL FEATURES

A. Calculation of the 3-D Coordinates of a Vertex Feature

As explained earlier in Section II, stereo correspondence for
each vertex in a View_0 image is established by the system dis-
playing in turn each of the other images, with the epipolar lines
superimposed on each, and then asking the human to click on
the correct corresponding vertex. The question then is how to
optimally calculate the 3-D coordinates of the object point that
gave rise to the vertices in the images.

Let ¢ be the index for the five images collected in a given
pose, and let C'" be the calibration matrix for the " viewpoint,

Fig. 10. For pose-to-pose correspondence, the View_0 image in the current
pose is shown in (a), whereas (b) shows the View_0 image of the latest pose in
the accumulated partial model. The user can switch to the other View_0 images
in the accumulated model by clicking on a button. Shown in (c) is a wireframe
representation of the partial model corresponding to the current pose of the
object. Shown in (d) is the accumulated partial model using all of the previous
poses of the object.

the relationship between the (X,y,z) world coordinates of a scene
vertex and the pixel coordinates (u;,v;) of the vertices in the
1 =0, 1, 2, 3, 4 images is given by [14], [18]

7 Nal T (N e )
1 1 1 1 1 1
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where C! are elements of the calibration matrix C* in the i-th
(¢ = 1,2...) camera viewpoint (the viewpoint corresponding
to the View_i image). From (1), the 3-D point £ = (z,y, )7
can be obtained as Az = b, where
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Human interaction for establishing the stereo correspondences for the vertex marked V in the central viewpoint image in (a). The human is asked to click

in each of the other four images to identify the corresponding points. The correct correspondent in (b) is marked A, but the human clicked on the point marked B.
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The least-squares estimate of £ = (r,y,z)? from the above
equation is given by

= (ATA)~1ATp. A3)
It goes without saying that the accuracy in computing (x,y, z)
depends essentially on the accuracy of the camera calibration
matrix for each viewpoint. Our calibration procedures, dis-

cussed in [18], are based on the pinhole model of a camera with
lens distortion.

B. Error Detection in Human Supplied Stereo Correspondences

We must allow for the possibility that the human might
misclick on some of the points when identifying corresponding
pixels among the five images. If the mouse click is way off the
mark in one or more of the View_1 through View_4 images,
the entire set of correspondences would be rejected for a given
vertex in View_0 image by our thresholding logic that we will
explain next.

We apply the following two tests to the human-supplied cor-
respondences in all the stereo pairs we can form from the five
images recorded in a given pose.

* Check if the epipolar constraint is satisfied by all five cor-
responding pixels in seven out of ten stereo pairs formed
by the five images.

* Apply the ordering constraint to the supplied correspon-
dences.

If the mouse click is way off the mark in one image out of five, in
general one or both of these constraints would not be satisfied
in four out of ten stereo pairs. Our acceptance threshold is 7,
meaning that these two constraints should be satisfied in seven
out of the ten stereo pairs we can form from the five images.

If the human has misclicked in one or more images and the
above stated seven-out-of-ten rule is violated, we have 2 options.

TABLE 1
ERROR IN AVERAGED DISTANCE USING FOUR IMAGES
(LEAVE-ONE-OUT IMAGE)

Image Indexed View || Error Distance (mm)
b,c,d,e (a-out) 8.4
a,c,d,e (b-out) 1.1
a,b,d,e (c-out) 6.0
a,b,c,e (d-out) 6.4
a,b,c,d (e-out) 7.2
Option
I: Reject the entire set of five corresponding pixels
entered by the human and repeat the process.
Option
2: Identify the incorrect mouse click and have the

human fix the error in just that one image.

We believe that the first option places an excessive burden on
the human operator. We have therefore gone with the second
option. In this option, the image in which the human misclicked
is identified by computing the Euclidean distance || Az — b||? on
a one-leave-out basis, where A and b are as defined in (2). The
leave-one-out basis here means that we compute this distance
for A, &, and b as determined for each grouping of four out of
five images. The set of four images that yields the smallest value
for this distance identifies by elimination the image in which the
human mis-clicked.

This error detection procedure will be illustrated with the help
of Fig. 11 where we have shown the five images taken from the
five viewpoints. Let’s assume that the human has mis-clicked in
the image labeled b. The correct correspondence in this image
is marked A, but the human has clicked at the point marked B.
This causes a failure of the pairwise epipolar constraint to be sat-
isfied for the image pairs (b, a), (b, ¢), (b, d), (b, e). This means
that the epipolar constraint is satisfied in only five out of the ten
stereo pairs we can form from the 5 images—which is below our
acceptance threshold of 7 out of 10. This violation of the accep-
tance threshold then causes the computation of the Euclidean
distance ||Az — b||? to be carried out for the identification of
the image that is the source of a bad correspondence. Shown in
Table I is this distance for the five images of Fig. 11. As is clear
from this example table, the image labeled b is the source of the
bad correspondence.
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When an error in the human-supplied correspondences is de-
tected by our seven-out-of-ten rule, the human is alerted by
flashing a message on the screen. The human has the choice of
ignoring the message. If the message is not ignored by pressing
on the “ok” button, the system proceeds with the computation of
the distance || Az —b||? for identifying the source of the problem.
The human can subsequently re-supply a more correct choice.

C. Accumulating and Merging Features From Different Poses

As was mentioned before, in the learning phase the object is
placed in different poses under the camera system so that all of
its surfaces can be captured in the model. In each pose, the mul-
tiple-view vision system acquires a fresh set of features on the
object and it is the accumulation of all the features from all the
poses that lead to the final model. In order to relate the features
acquired from one pose with the features acquired from a pre-
vious pose, the system needs to know the pose transformation
between the two poses. In other words, the system needs to know
the rotational matrix and the translational vector that would take
the object in its current pose under the camera system to the pose
that was used previously.

The process of integrating all the 3-D coordinates collected
from the five different views in one pose with all the 3-D co-
ordinates from all previous poses will be referred to as model
accretion. Model accretion requires that there be some common
features visible to the camera system between the current pose
and the partial model accumulated from all previous poses. By
mouse clicks, the human in the loop needs to tell the system
what vertices acquired in one pose correspond to which vertices
in a previous pose. As the discussion in the rest of this section
will reveal, the human must identify at least three different non-
coplanar vertices that are common between the current pose and
previously accumulated partial model for the system to be able
to carry out their integration. Of course, in practice, if more than
three noncoplanar points are available, the integration will be
that much more robust.

Fundamental to model accretion is the calculation of the rota-
tion matrix and the translation vector that would take the object
from the new pose into its old pose. It is through the rotation
matrix and the translation vector, that the system knows where
to place the newly acquired vertices and other features in rela-
tion to the previously acquired vertices and features. We adopt
the quaternion approach [5] for the optimum calculation of the
rotation matrix and the translation vector.

The coordinate frame associated with the first pose is used
to accumulate the information gleaned from all other poses. So
when the second pose becomes available, the system first calcu-
lates the rotation and translation (R, t) from the common ver-
tices between the new pose and the first pose and then adds the
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new vertices seen the second pose to the integration taking place
the coordinate space corresponding to the first pose.

An important engineering question that pertains to this inte-
gration of poses is how does the system discover the error if the
human enters an incorrect correspondence between a vertex in
the current pose and a vertex in the model already accumulated?
We use the following two criteria to detect such errors.

1) Given a set of vertices that are common to two poses, let’s
call them Pose O and Pose 1, we use the quaternion approach
to find the optimum rotation matrix between the two poses. So
given the vertices v, Y, ....v0 as the orientation vectors asso-
ciated with the vertices chosen in Pose 0 and vé, vy, 1 as
the corresponding orientation vectors in Pose 1, the quaternion
approach consists of first establishing a matrix (4) shown at the
bottom of the page, and solving an eigenvalue problem for the
following vector-matrix equation:

Y A A7) -Q=)Q. ©)
=0

The eigenvalues and the eigenvectors of the matrix on the left
can be obtained by carrying out the following minimization:

inE2 = inoT . A;-AT ) . 0. 6
minEg argménQ ; ; Q 6)

The eigenvector that we choose as a solution for the rotation
between the two poses should correspond to the smallest eigen-
value. It can easily be shown that the fitting error for computing
the best rotation matrix in this way equals the magnitude of
the smallest eigenvalue [3], [5], [13]. To see this, we first note
that the rank of the matrix in our vector-matrix equation is four.
Let’s represent the four eigenvalues by Ao, A1, A2, A3, where
[Ao| < |A1] £ |A2] < |As], and the associated normalized
eigenvectors by Qg, @1, @2, and Q3. The mean squared error
corresponding to each eigenvector can be obtained by substi-
tuting (5) in (6)

minEp = Qo MoQo = |ol. )

Obviously, by applying a decision threshold to the smallest
eigenvalue, we can either accept or reject a calculated rotation
matrix (R). We have observed experimentally that we can use
the same threshold for all poses and for all objects in our current
library. The value of this decision threshold is given by 1.073,

Fig. 9 shows the case in which the 3-D partial model con-
structed in Pose 1 was rejected on the basis of this criterion ap-
plied to the Pose 1 to Pose O rotation quaternion. The value of
the smallest eigenvalue in this case was 0.0022.

2) The above criterion only looks at the errors in the calcula-
tion of the optimum rotation matrix. We also need to check the

0 (v} —v), (}-9),  (v}-9}),
Lm0 T @ral)) — (e o), \
P (ol - D), - (v +0?), 0 (v} +09), @)
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Fig. 12.  Shown in this figure is the model accretion process for which the final result was shown in Fig. 1. The five images collected in the first pose yield the
wireframe shown in (a). When this partial model is integrated with the data gleaned from the images in the second pose, we get the accumulated partial model in
(b). This accumulation continues with the incorporation of each new pose, until we get the final wireframe shown in (e).

contribution made by translation errors in order to form a true
estimate of the pose transform error. An integrated measure of
error is given by Y"1 |Rp¥ +t — p?|? /n, where (R, t) are the
computed pose of Pose 1 vis-a-vis Pose 0, and p¥ and p! are the
corresponding vertices for Pose &k and Pose 0.

This composite measure of error gives an average value of
the error on a per vertex basis. The per vertex basis allows for
a single threshold to be used for either accepting or rejecting a
calculated pose. If the user enters an incorrect vertex in Pose 1
as a correspondent for a given vertex in Pose 0, we can expect
that the overall R and ¢ for Pose k will be wrong and that this
fact would be reflected in an unacceptable value for the above
error measure. By trial and error, we have found that a decision
threshold value of 1.0~2 m? works well for the above criterion
for our system.

An example of model accretion is shown in Fig. 12 which
yields the final result of Fig. 1. The partial model constructed
from the five images for the first pose is shown in (a). When this
is integrated with the partial model extracted in the second pose,
we get the accumulated partial model of (b). Further integration
with the partial model extracted in the third pose yields (c), etc.

IV. ISSUES IN CURVED SHAPE MODELING

The previous section discussed issues related to polyhedral
modeling of shapes or entire objects. In particular, we focused
there on automatic detection of errors made when a human in-
advertently enters wrong information.

In this section, we will do the same for curved object. But we
must state at the very outset that we deal with a very limited case
of curved shapes.! Our focus will be limited to planar elliptical
features, as exemplified by the curved silhouettes on the indus-
trial object shown in Fig. 10.

Lacking distinguishing vertices, curved features obviously
cannot be extracted in a manner similar to polyhedral features.
For a curved feature, the low-level image processing routines
will usually output edge fragments at the curve boundaries, as
shown by a processed image in Fig. 7. Given this kind of output
from the low-level routines, we are faced by the following goals.

¢ The human must first indicate his/her intention to the com-
puter that he/she is about to delineate a curved feature.

I Nevertheless, the curved shapes we are able to handle describe a large class
of objects with curved features in industry.

Using menu-driven interaction, the human can also inform
the computer as to what shape the human is about to delin-
eate. Given the current scope of our system, these shapes
will only be elliptical, which includes circular.

* The human must then click on a sufficiently large set of
points on the edge-extracted portions of the boundary of
the curved feature. Again, since we are currently limited
to elliptical features, the user must click on eight points.
Note that theoretically only six points are needed for a
least-squares fit of an ellipse to the supplied points.

* Given 2-D ellipses extracted from the different camera im-
ages as projections of the same curved feature on an ob-
ject, the system must then come up with an optimum 3-D
description of the curved feature on the object.

In the rest of this section, we will address the computational
issues involved in this interaction. Our discussion to follow will
break the interaction into a sequence of four steps.

A. Computational Steps for 3-D Modeling of Elliptical
Features

Step 1) The human clicks at eight points (u;,v;) for
1 = 1,2,...8 on what the human sees as an el-
liptical feature in the central image for a given
pose of the object. This is the image for View_0.
An example of what a human clicks on for de-
lineating elliptical features is shown in Fig. 7.
A least-squares minimization algorithm [6] is
used to fit an optimum 2-D ellipse to the points
supplied by the human. The human-supplied
pixel coordinates (u;,v;) are expressed in the
form of a vector z; = (u?,u;v;,v? u;,v;,1)T
for = = 1,...8 for each of the eight points se-
lected by the human. The ellipse parameters
are then obtained by a least-squares solution of
a = (a,b,c,d,e, f)T for an ellipse of description
F(a,z;) = a - z; = 0, which is the same as opti-
mally solving au? +bu;v; +cv? +du; +ev;+ f = 0.
After delineating the ellipse in the central image,
we need to find the “corresponding” ellipses in the
other four images of the five images recorded in each
pose of the object. For this purpose, the computer
first chooses its own eight points on the analytically
derived ellipse from the View_0 image in Step 1.

Step 2)
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These points are the cardinal points on the ellipse,
cardinal in the sense that they are located at the inter-
sections of the major and minor axes with the ellip-
tical boundary and of the diagonal lines in-between.
The central ellipse in the top portion of Fig. 13 rep-
resents the ellipse extracted from the View_0 image.
The cardinal points on this ellipse as positioned by
the computer are labeled A, B, C, D, E, F, G, and H.
For each of the above cardinal points on the el-
lipse in the View_0 image, the computer draws an
epipolar line in each of the other four views. As with
the polyhedral case, this is merely to help the human
identify the pixels corresponding to the View_0 car-
dinal pixels in the other four views for a given pose.
The human then clicks on what he/she considers to
be the correct corresponding pixel in each of the four
views presented in a sequence in the same manner as
for the polyhedral case. As shown in the left ellipse
in the top portion of Fig. 13, the computer draws an
epipolar line in the image and the human must then
select a point in the vicinity of the intersection of the
epipolar line and the perceived ellipse in that image.
From the pixel coordinates of all the corresponding
pixels for a given cardinal point in the View_0
image, the system then computes the 3-D (X, y, z)
coordinates of that point on the object.
Given 3-D coordinates of all eight cardinal points on
the ellipse as located by the human in the View_0
image, the system now fits an optimum planar ellipse
to these eight 3-D points using the following two
steps: 1) First a least-squares plane is fit to the points
in 3-D world coordinates, as illustrated in Fig. 13
Step 4:). 2) The eight cardinal points are then pro-
jected onto this best-fitting plane.

Step 3)

Step 4)

A planar 3-D ellipse calculated in this manner is then charac-
terized by the following parameters.

1) The two parameters that describe the orientation of the
optimum plane through the eight points.

2) The center of the mass of the eight points as projected
onto this plane. This center of mass, which is also the
center of the ellipse, will be represented by (X, Y.).

3) The focal lengths f, and f; of the ellipse in the best-fitting
plane are then calculated by using standard formulas [8],
as is also the orientation  of the major axis of the ellipse
with respect to the XY plane of the world coordinates.

To estimate the focal length and the orientation of the
plane in the best-fitting 2-D plane, a new 2-D coordi-
nate frame is established in the best-fitting plane, with its
center at the point (X, Y,) and with its X and Y axes in
two arbitrary but mutually perpendicular directions. A 4
x 3 homogeneous transformation matrix keeps track of
the orientations of the X and Y directions in the best-fit-
ting plane vis-a-vis the world coordinates.

B. Pose-to-Pose Integration of Curved Features

Recall that the goal of pose-to-pose integration of informa-
tion is to find a reliable transformation matrix between two dif-

e Step 2: Cardinal Points
in the View0 ellipse
Epipolar Line Epipolar Line
o 0
o <+ > o
\_ LeftView Center View Right View
-
Step 4:
Plane fitting of
3D cardinal points/ ©
A planer template ellipse
| /{;rld coordinate
\ »>
Fig. 13. Step 2: Compute epipolar lines on the representative points. Step 4:

A planer fitting in the cardinal points.

ferent poses so that the information gathered for two different
poses can be represented in a single coordinate frame. For the
polyhedral case, this was achieved by identifying corresponding
vertices in two different poses.

For the curved feature case a strategy similar to that used for
the polyhedral case is used to find the pose-to-pose correspon-
dence. The quaternion pose calculation formulas are used on
the eight cardinal points on the same ellipse in the two different
poses. These formulas then directly yield the pose transform.

From the standpoint of the human interaction involved, the
main focus of pose-to-pose merging process is for the human to
tell the computer which ellipse in one pose corresponds to which
ellipse in a second pose. Our interaction editor makes this pos-
sible by asking the human to click on the correct corresponding
ellipse in Pose 2 for every ellipse highlighted in Pose 1.

V. MODEL ACCURACY EVALUATION

The results of an evaluation study presented here show the
accuracy with which our system can construct models of new
objects. But before presenting the evaluation results, we will
first describe our system configuration in the next subsection.

A. System Configuration

The Graphics Editor that allows a human to interact with the
images in the manner described in this paper is written in Java.
The computer vision routines for low and mid and high level
processing are all in C/C++. Java calls up the C functions as
needed and retrieves their output for display when so necessary.
The system is installed on a SUN Workstation ULTRA 10. It
usually takes several minutes for a human working interactively
with the GUI to generate an object model.
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Fig. 14.  Acquired 3-D object models of polyhedral objects with measurement labels m1-m4 corresponding in Table II.

TABLE 11
THIS TABLE SHOWS THE ACCURACY OF OUR HUMAN-ASSISTED MODEL
CONSTRUCTION SYSTEM FOR THREE OBJECTS THAT ARE PRIMARILY
POLYHEDRAL. ALL DIMENSIONS ARE IN MILLIMETERS

TABLE IV
NUMERATOR IN EACH ENTRY IS THE VALUE IN A RECONSTRUCTED MODEL
AND THE DENOMINATOR THE GROUND TRUTH

Object foclz:acquired/true | focl, | foc2, | foc2, focy
Object || ml:acquired/true | m2 m3 md Object (a) 99/102 1/2 | 2137204 | 7/2 | 149/141
- Object (b) 3/1 5/1 3/1 5/1 | 131/136
ObJ.ect (a) 90/87 77/74 | 37/36 | 86/87 Object (©) v 56 1/ 8T 37738
Object (b) 60/63 78/75 | 36/37 | 102/100
Object (c) 97/100 66/69 | 22/24 | 35/36
TABLE V
PERCENTAGE ERRORS IN THE FIVE PARAMETERS OF THE
RECONSTRUCTED MODELS
TABLE III
PERCENTAGE ERROR FOR THE ACCURACY RESULTS SHOWN IN TABLE II Object ” Max Error(%) | Min Error(%)
Object || Max Error(%) | Min Error(%) ObJ:eCt (a) 4.9 2.3
Object (a) 5.0 14 Object (b) 71 2.0
Object (b) 2.9 2.2 Object (c) 6.6 2.2
Object (c) 8.3 3.0
B. Results on Polyhedral Objects
B We will show accuracy results on the three polyhedral objects
X«” ﬁ“\“ whose wireframe images are shown in Fig. 14. The accuracies
‘f“ } " «Bf:,' will be shown with respect to the measurements marked ml,
. ; f £~ m2, m3 and m4 in the figure. For each of these objects, Table II
’ f \ shows the true values of these measurements and the values in

(a) (b) ()

Fig. 15. Acquired 3-D object models of curved shape objects.

The imaging data is acquired by a monocular camera
mounted on a robotic wrist. For each pose of the object, five
images are taken by moving the robotic effector to different
viewpoints. The robotic-wrist-mounted robotic vision system
consists of a Sony DC-47 monocular 1/3 ¢nch CCD camera
with a Pulnix Lens of focal-length 16 mm. The robot end-ef-
fector automatically moves to the different viewpoints to
generate all the multiple views needed. The acquired images
are digitized on a 512 x 480 array of pixels.

the constructed models in a typical run of our system.
Table III presents the above accuracy results in the form of
error percentages.

C. Results of Curved Objects

This section shows model reconstruction accuracy results for
curved objects, meaning objects with planar elliptical features.

The accuracy of model construction is evaluated on the basis
of the values of the coordinates of the two foci of a planar ellipse
and the orientation 6 of the best fitting plane to the ellipse in
the world coordinates. In the best fitting plane, as defined in
Section IV, the coordinates of the foci are measured with respect
to a 2-D coordinate frame that is centered at the center of the
ellipse, with its X axis lined up with the major axis and the Y
axis lined up with the minor axis. If we denote the two foci by
focl and foc2, their coordinates in the best fitting plane can be
represented by (focl,, focly) and (foc2,, foc2,).
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We used three curved shape objects for our evaluation study.
Fig. 15 shows pictorially the wireframe representations of the
corresponding models constructed by our system. The object in
(a) is a very thin and flat elliptical shaped aluminum plate, the
object in (b) the same as shown earlier in Fig. 10, and the object
in (c) a wooden cylinder.

Table IV summarizes these results for each object in the eval-
uation study.

Table V shows the accuracies obtained for the three objects
in the form of percentages of the ground-truth values.

VI. CONCLUSION

Our human-assisted model reconstruction system calls for an
object to be placed in all its stable poses on a work table under
a robot-controlled camera. In each stable pose, one central and
four peripheral images of the object are taken. Low level image
processing routines are applied to all such images (no human
intervention here) and subsequently made available for human
interaction to construct 3-D models.

The nature of human interaction depends on whether a fea-
ture to be extracted is polyhedral or planar curved shape. For
polyhedral features, the human first helps identify each planar
face by clicking on the vertices and then by identifying corre-
sponding vertices in the stereo images. In the latter task, the
computer helps the human by drawing epipolar lines in the pe-
ripheral view images where stereo correspondences are sought.
This human input helps the computer figure out the 3-D coor-
dinates of the vertex features in each stable pose of the object.
Subsequently, the human is asked to help out with establishing
pose-to-pose correspondence by identifying vertices common to
the different poses. The protocol for the curved features is dif-
ferent: the human first clicks on 8 points in the central image
to help the computer fit an elliptical curve to the points. The
computer then identifies eight cardinal points on the ellipse thus
constructed in the central image. Subsequently, the computer
seeks from the human the correspondents of these eight car-
dinal points in the four peripheral images; the computer helps
the human in this task by drawing epipolar lines in the peripheral
images, as was done for the polyhedral case. Thus the computer
constructs a 3-D model of a planar elliptical feature. For pose
to pose integration the human identifies for the computer which
ellipses in one pose correspond to that ellipse in a different pose.

Our accuracy results bear out the feasibility of our human-
computer interaction protocols. Further extensions of our work
would include general 3-D surface modeling.
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