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Abstract

We present a novel range sensing method that is capa-
ble of constructing accurate 3D models of specular objects.
Our method utilizes a new range imaging concept called
multi-peak range imaging, which accounts for the effects of
mutual reflections. False measurements generated by mu-
tual reflections are then eliminated by applying a series of
constraint tests based on local smoothness, global coordi-
nate consistency and visibility consistency. We show the
usefulness of our method by applying the method to three
real objects with specular surfaces. The ground truth data
for those three objects were also acquired in order to evalu-
ate the elimination of false measurements and to justify the
selection of the parameters in the constraint tests. Exper-
imental results indicate that our method significantly im-
proves upon the traditional methods for constructing reli-
able 3D models of specular objects with complex shapes.

1. Introduction

In recent years, there has been considerable interest
in constructing accurate three-dimensional models of real-
world objects for applications where the focus is primarily
on visualization of the objects by humans. This interest is
fueled by the recent technological advances in range sen-
sors, and the rapid increase of computing power that now
enables a computer to represent an object surface by mil-
lions of polygons and that allows such representations to
be visualized interactively in real-time. Researchers have
shown that the state-of-the-art techniques can now construct
detailed 3D models of objects ranging from small figurines
to large statues. Although they have established the fea-
sibility of constructing accurate 3D models, there still re-
main several challenging issues. One of these challenging
issues arises from the fact that many objects have surface
materials that are not ideal for range sensors. Various sur-
face properties that cause difficulties in range imaging in-
clude specular surfaces, highly absorptive surfaces, translu-
cent surfaces, and transparent surfaces. Some researchers
have tried to simply do away with such surface-related prob-
lems by painting the object or coating the objects with re-

Figure 1.
Camera images of 3 different objects when a laser stripe is pro-
jected onto the objects. (a): Object with a diffuse surface. Notice
that only a single peak for each camera scan line exists. (b),(c): Ob-
jects with specular surfaces. Due to the effects of mutual reflection,
multiple peaks in the same scan lines exist.

movable powder to ensure that the surfaces reflect the light
source diffusely. Obviously, this approach is not desirable
and may not even be feasible for real-world objects outside
the laboratory.

Of the various surface-related properties we mentioned
above, surface specularity is one of the more problematic
material properties. Specularity causes mutual reflections
that give rise to ghosts in the measured structured-light data.
Depending on the extent of specularity, the presence of
these ghosts can make it difficult to localize a data point
that corresponds to the object point that was actually illu-
minated. Figure 1 shows camera images of three different
objects when a laser stripe is projected onto the object sur-
faces. The first image shows the ideal case where the laser
reflection on the surface can be clearly detected for each
camera scan line. The second and the third images show the
laser reflections on specular surfaces. Notice in these two
images multiple peaks (i.e., laser reflections) in the same
camera scan lines exist due to mutual reflections. Choos-
ing the peak with the highest intensity value in a scan line
— which is the conventional peak detection method — does
not guarantee that this is the illuminated point correspond-
ing to the primary reflection of the laser. The conventional
approach, therefore, is prone to generate false range mea-
surements in the presence of mutual reflections.

2. Related work

Determining the shape of specular objects has long been
a challenging problem in computer vision. Nayar et al. [8]
proposed an iterative algorithm that recovers the shape and
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reflectance properties of surfaces in the presence of mutual
reflections. This algorithm is useful for the shape-from-
intensity approach to range acquisition; this approach, how-
ever, does not produce dense and accurate range maps com-
pared to the optical triangulation methods. Additionally, the
proposed algorithm was tested only on Lambertian surfaces
of simple geometry.

Clark et al. [6] developed a laser scanning system that
uses polarization analysis to disambiguate the true illumi-
nated points from those caused by mutual reflections. Their
system was tested on shiny aluminum objects with concavi-
ties, and false illuminated points were successfully discrim-
inated. However, the system requires special equipment
such as linear polarizers, and multiple images need to be
captured at each position of the laser. In their experiment,
three images were acquired at three different angles of the
linear polarizer.

Trucco and Fisher [12] proposed a number of consis-
tency tests for acquiring reliable range images of specular
objects. Their range sensor consists of two CCD cameras
observing a laser stripe from opposite sides. The consis-
tency tests are based on the fact that the range measure-
ments obtained from the two cameras will be consistent
only if the measurements correspond to the true illuminated
point. Their method was tested on a polished aluminum
block with holes. However, their method does not consider
the situation where more than one illuminated point is ob-
served. The consistency tests, therefore, are applied only
to the measurements corresponding to a single illuminated
point observed per camera scan line. In our experiments, we
have noticed that the illuminated points caused by mutual
reflections occur very frequently in the vicinity of the true
illuminated points, and thus they are seen together along
the same camera scan line. Eliminating all points whenever
multiple peaks are observed in the same camera scan line
may result in too few range measurements.

As an improvement over the conventional methods, we
have recently proposed multi-peak range imaging [9] — a
new range acquisition concept that can also handle surface
specularities. False measurements generated by the effects
of mutual reflection are eliminated using various constraint
tests based on local smoothness, global coordinate consis-
tency and visibility consistency. However, the parameters in
the constraint tests were selected manually, and no experi-
mental justification of those selections was provided. Also,
a straight-forward implementation of the visibility consis-
tency occasionally caused situations where the true mea-
surements received high inconsistency values. The main
contribution of this paper is to resolve these limitations of
our previous work.

Due to space limitation, we refer the reader to a good
survey paper [2] for the literature concerning the 3D model
construction using range images.

3. 3D Modeling Process

Figure 2 shows the flowchart of the 3D reconstruction
process. First, several scans from different viewpoints are
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Figure 2. Flowchart of 3D modeling process

performed so that the entire surface of the object can be
captured. For each scan, the multi-peak range imaging [9]
is carried out to account for the effects of mutual reflections.
The local smoothness test is then invoked. This test itera-
tively eliminates all points that are determined to be locally
non-smooth.

After executing the steps described above for each scan,
the registration of all the range data acquired from different
views is carried out first interactively to yield an approxi-
mate registration, and then via a multi-view registration step
to fine-tune the registration. The isolated region test is then
applied to the registered data followed by the global consis-
tency test which eliminates the points that are determined
to be highly inconsistent based on two criteria — namely the
coordinate consistency and the visibility consistency — us-
ing the information given by all the range data collected
from different viewpoints. From now on, we will inter-
changeably use the term global tests as the isolated region
and the global consistency test together. If any points were
eliminated during the global tests, the multi-view registra-
tion step is carried out again on the new data set followed
by another application of the global tests. This iteration is
continued until no points are eliminated. Finally, the inte-
gration is performed on the resulting output. We used the
method of Curless and Levoy [7] for the integration.

Here let us define some notations that will be used for
the rest of this paper. Let p; denote the ¢’th range mea-
surement in a range image. When there is a superscript,

for example pg , it denotes the 7’th measurement from the
range image acquired from the j’th viewpoint. Let x(p;)
and n(p;) denote, respectively, the 3D coordinates and the
unit surface normal vector at p;. The 3D coordinates and
the surface normal vector are all with respect to the world
frame — the common coordinate system to which all range
images are registered. Let D(a,b) denote the closest Eu-
clidean distance between two elements a and b where the
elements can be 3D coordinates or line vectors. Finally, let
O(n(p;), n(p;)) denote the angle between n(p;) and n(p; ).
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3.1. Local smoothness test

It is a legitimate assumption that a range measurement
lies on one of the three types of surfaces: smooth surface',
near crease edge or near jump edge. A crease edge is where
surface normals suddenly change directions, and a jump
edge is where a spatial discontinuity occurs between adja-
cent range measurements. A common approach to estimate
the local surface property of a range measurement is to fit a
planar patch on the neighboring points where the neighbor-
ing points typically are those within a small window (e.g.,
3x3 or 5x5) centered at the point in question. It has been
shown in [5] that the planar patch can be reliably computed
not only for those on smooth surfaces but also for those that
are located near edges by appropriately selecting neighbors.
What we are trying to convey here is that given a true range
measurement, whether it lies on a smooth surface or near
an edge, we should be able to find a local planar patch that
reasonably fits well on the carefully selected neighboring
points. If no suitable planar patch can be found, it is likely
that the measurement is spurious and should be eliminated.
The elimination of such spurious measurements is the ob-
ject of the local smoothness test.

There are two constraints in the smoothness test. The
first constraint requires that each range measurement p; has
the number of valid elements in its fitting window, denoted
as m(p;), greater than a threshold 7;,:

m(pi) > Tm ey

Valid data elements in a fitting window are those that have
distances to the point of interest less than b - p where b is
the city-block distance to the point of interest and p is the
maximum distance allowed between two immediate neigh-
bors. We empirically set p to be four times the range sensor
resolution. Suppose that there are n valid elements in a fit-
ting window for p;, including p; itself. Let us denote those
elements as p., e = 1,...,n, and the center of mass of the
elements as x.. Then, the covariance matrix C is computed
by

C =3 [x(pe) — xc] [x(pe) — x|

The eigenvector corresponding to the smallest eigenvalue
of C represents the normal of the best fitting plane for the
elements. Thus, this eigenvector is used as the estimate of
the surface normal at p;, denoted as n(p;). The Euclidean
distance between an element p, and the best fitting plane is
simply the scalar projection of the vector x(p.) — X, onto
the plane’s surface normal n(p;). Thus, the fitting error of
the elements to the best fitting plane, denoted as £(p;), can
be computed by

ei) = + 3" [x(pe) — xe] o n(p)

! Additionally, smooth surfaces may be categorized into 8 different
types based on surface curvature sign [3].

The second constraint in the local smoothness test requires
that the fitting error of the best fitting plane be less than 7 :

e(pi) < e @)

All range measurements that do not satisfy either of the
two constraints are eliminated. In general, the threshold 7,
must be high enough so that the best fitting plane can be
reliably computed, but low enough so that the points near a
jump edge will not be eliminated, and the threshold 7. must
be set in such a way that the points on crease edges will
not be eliminated. In some sense, the main task of the local
smoothness test is to eliminate only the measurements that
no local planar patch is able to fit onto its neighbors. Section
4.2 discusses in more detail how to set the two thresholds
T and 7..

3.2. Registration

The registration process in our system consists of two
steps: the interactive step that provides an approximate reg-
istration and the multi-view registration step which fine-
tunes the registration. The interactive step allows a user
to look at a set of range images that need to be registered
and to click on the corresponding points between the anchor
data set and the moving data set. The approximate registra-
tion provided by the human interaction serves as the initial
registration for the multi-view registration step based on the
ICP algorithm [4]. Our multi-view registration is similar to
the one proposed by Bergevin ef al. [1]. Adapting the cor-
respondence criteria presented in [11], our method selects
the corresponding points between two data sets as the clos-
est points with the angle between surface normals less than
a threshold. The thresholds for selecting the corresponding
points are set dynamically in each iteration of the ICP us-
ing an approach similar to the one proposed by Zhang [13].
Since our correspondence criteria also includes the angle
between surface normals, the angle threshold is also com-
puted dynamically using the same approach as the distance.

Even after multi-view registration, we must anticipate
some registration errors, which depend, in general, on the
accuracy of the previous registration and the number of re-
maining false measurements in the data. The registration
errors play an important role in the global tests because the
tests use the information between all range images, and that
information is greatly influenced by how well the range im-
ages are registered with one another. It should be mentioned
that it is not trivial to compute the registration error for two
reasons. First, we do not know which parts between the
data sets are overlapping and which parts are distinctive,
and second, we do not know which measurements corre-
spond to true surface points and which ones are spurious.
Nevertheless, it is commonly accepted in the literature on
registration algorithms that the mean distance between the
corresponding points or the distance threshold for the cor-
respondence search at the termination of the ICP algorithm
be used as the estimate of the registration error. We adopted
the latter approach where we use the distance and the an-
gle thresholds at the termination of the ICP algorithm as the



This paper appears in: The Second International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT 2004)

estimates of the registration error. We will denote the reg-
istration error of the ¢’th range image with respect to the
distance as A}, and with respect to the angle as Aj.

3.3. Isolated region test

The main purpose of the isolated region test is to elim-
inate all points that are far separated from the true object
points. The test involves constructing a 3D volumetric grid
that contains the entire data with each voxel having a binary
value of 1 if any point exists inside the voxel, and O other-
wise. A voxel segmentation based on region growing [10] is
then performed to cluster the connected voxels. In order to
ensure that all true measurements belong to a common con-
nected voxel region, the resolution of the volumetric grid is
set as

max (m?,X(Ai[,), p) 3

where A, is the approximate registration error of 4’th range
image that was just defined in the last section, and p is the
maximum distance allowed between two immediate neigh-
bors that was defined in Section 3.1. The isolated region test
eliminates all measurements except the ones that belong to
the region with the largest size. By the largest size, we mean
the largest number of connected voxels in a region.

3.4. Global consistency test

The global consistency test is based on two criteria: the
coordinate consistency and the visibility consistency. The
coordinate consistency states that the 3D coordinates of true
measurements are always consistent among all registered
range images that capture the same object surface. On the
other hand, the 3D coordinates of false measurements are
likely to be inconsistent since the locations where mutual
reflections occur depend on the object surface normal rela-
tive to the direction of the light source. Assuming that we
have range data from NN different viewpoints, and that there
are a total of M¥ measurements in the v’th range image, the
coordinate consistency value, denoted as C, is computed by

co) =wiph)+ Y | max  {oc@lp) v} @

v=1,v%j

where w is the weight2 (i.e, confidence value) of a measure-
ment and the test function d¢ is given by

1 if D(x(pz'), x(py)) < max()\{?, ) and
O(n(p!),n(py)) < max(A\}, A\j)

0 otherwise

5C (pLPZ) =

Recall that D is the closest Euclidean distance between two
elements and O is the angle between surface normals. Also
recall that A}, and Aj are the estimates of the registration

2Weights are computed as the dot product between the surface normal
and the bisection of the camera’s line-of-sight and the light projector’s line-
of-light
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Figure 3. lllustration of visibility consistency

error of the 4’th range image with respect to the distance
and the angle, respectively. Notice in the test function d¢
that the registration error for each range measurement is in-
corporated by using them as thresholds. Notice also in Eq.
(4) that by taking the maximum value, we are limiting the
coordinate consistency value to be contributed only once
per range image in case multiple valid points in the same
range image exist. In other words, for each measurement
pg, the maximum of N — 1 measurements can contribute

to the coordinate consistency value of pJ. Since the weight
w is normalized to 1 and since the coordinate consistency
includes the weight value of its own, the upper bound of the
coordinate consistency value is IN. This allows us to obtain
a more balanced distribution of the coordinate consistency
values throughout the data, and more importantly, it allows
us to combine the coordinate consistency and the visibility
consistency as we shall explain shortly.

The second criterion of the global consistency test, we
call it visibility consistency, is based on the fact that the line
space between the sensor and a true measurement is empty,
and that the line space beyond a true measurement is invis-
ible to the sensor. Although we can apply this concept for
both the projector’s line-of-light and the camera’s line-of-
sight, only the former is considered in this paper; obtain-
ing the visibility consistency for the camera’s line-of-sight
is computationally much more expensive than that for the
projector’s line-of-light.

Consider the example depicted in Figure 3 where an ob-
ject was scanned from three different viewpoints. The dot-
ted lines represent the projector’s lines-of-light at the re-
spective sampling positions during the scan. Suppose in the
first view, among other detected measurements, points a;
and ay were detected in the same rigel. If a; is a true mea-
surement (we do not know yet which one is true), the space
at as should have been empty. On the other hand, if a» is
true, a; should not have been visible (or illuminated) by the
projector [,. Thus the measurements a; and as are incon-
sistent with each other with respect to the projector [,. In
fact, the measurements in the same rigel are always incon-
sistent with each other for there can not be more than one
true measurement in the same rigel. The visibility concept
applies also for the measurements obtained from different
viewpoints. For example, a; acquired from the first view
and e from the second view are inconsistent with respect to
the projector .. Similarly, a; and g are inconsistent with
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respect to the projector [, and also with respect to [,.
In order to test the visibility consistency of a range mea-

surement pz?, we first need to check for extra measurements
in the same rigel since there is always an inconsistency be-
tween measurements in the same rigel. We then need to
check for measurements from other range images that lie

on the line-of-light where p] was sampled. Let the light

projector that sampled p] be labeled as lg , and the 3D co-
ordinates of that light projector with respect to the world

frame be x(lf ). Then the ray equation of the line-of-light
that sampled p?, denoted as f(pf ), is given by

I(p) = x(t) +a (x(p) = x()) . a=(0,00)

The closest distance between f(pf ) and a range measure-
ment, say py,, can be computed by

_ [[eh = (1) ® (xwi) — x(@) |
x(w}) = x(@])]

where ) is the cross product and ||-|| the vector magnitude.

Obviously, few range measurements will be exactly on a

ray, therefore we use the registration error for determining
whether a point lies on a line-of-light. That is, we define a

range measurement p?, to lie on the line-of-light f(pf ) if

D (x(v2), 1))

D (x(22). 1p))) < max(¥j, Ab) )

Once we find the measurements that lie on the line-of-light
l(pz?), the distance between each of those found measure-
ments and x(I]) (i.e., the 3D coordinates of the light pro-
jector that sampled p}) needs to be computed. If that dis-
tance is less than the distance between x(p]) and x(l7),
there is a visibility inconsistency. For example, in Figure
3, the points a; and e are inconsistent because a; lies on the
line-of-light of e and D(x(e),x(l.)) > D(x(a1),x(l¢)).
On the other hand, although as and g lie on each other’s
line-of-light, they are consistent because D(x(g),x(ly)) <
D(x(az),x(ly)) and D(x(az),x(la)) < D(x(g),%(la))-
Again we need to take account for the registration error
when comparing the distances to the projector. Therefore?
we define that there is a visibility inconsistency between p;

and p;, with respect to the light projector lf if Eq. (5) satis-
fies and

D (x(@)), x(#)) > D (x(p), x(1)) +max(Xp, \p) (©)

A straightforward implementation of the visibility con-
sistency can result in situations where true measurements
may falsely be determined to be highly inconsistent. For
example, the point h in Figure 3 has inconsistency with
four measurements ¢, d, e and f from the second view even
though all of them are true measurements. This kind of sit-
uation may occur between two orthogonal surfaces where
each side of the surfaces is captured by a different range
image. For another example, the point b is inconsistent with
three false measurements 41, 42 and ¢3 that happened to be

along the line-of-light of b. Similar situations can occur
more frequently as the noise increases in the scene and the
object shape becomes more complex.

In order to consider all the discussions above, we com-
pute the visibility consistency value for each measurement
as follows. Using the same notations as Eq. (4), the visi-

bility consistency value of p], denoted as V(p}), is defined
as

}

n(p!) e n(p;)

V(p{) = Zu:}rli.r,le {dv(pf,pﬁ)w(pz)

where the test function dy, is given by

—1 (1) if p/ and p? are in the same rigel or
i 2) if there is visibility inconsistency
NPT ,
v (B Pu) between p} and p;,

0 otherwise

There are several things that need to be mentioned: First,
notice that V(p?) can only have a zero or a negative value
since the test function dy, checks only for inconsistency.
Second, the absolute value of the dot product between the
surface normal vectors is multiplied so that any two mea-
surements whose surface normals are close to orthogonal
— such as points ¢ and h in Figure 3 — have little effect to
each other. Also, only the smallest consistency value (high-
est inconsistency) computed for each range image is added

to V(p]) in order to prevent the situation described earlier
with the example of the points b, ¢1, 42 and 43 in Figure
3. By adding only the smallest consistency value for each
range image, the lower bound of the visibility consistency
value is set to be -V, which enables to obtain a more evenly
distributed values of V' throughout the data.

The total global consistency value, denoted as G, is sim-
ply the sum of the coordinate consistency and the visibility

consistency: _ ‘ .
G(pi) =Cp) + V() )

The main reason for considering the global consistency
value G is that we discovered in our experiment that it is
easier to distinguish between the true and the false mea-
surements using G as opposed to just C or V. We are able to
add C and V since the scales of both values are normalized
to the number of range images. By simply adding C and V
without any coefficients, we are assuming they have equal
weights. Given the values of G, the global consistency test
employs a simple threshold technique in order to eliminate
the measurements with low consistency values. There are
two constraints in the global consistency test. The first con-
straint requires that the global consistency value of a mea-
surement be greater than a threshold 7g:

G(pl) > g ®)
with the threshold set as

7g = min(ug —t - 0g,0) )
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Figure 4. Objects used in the experiment

where pg and og are the mean the standard deviation of G;
and ¢ is a positive constant. We shall evaluate the effect of
varying t in Section 4.3. Note that by forcing 7g < 0, we are
preserving all measurements that do not have any neighbors
from other range images as long as there is no visibility
inconsistency with other measurements. This property lifts
an otherwise restrictive requirement that every part of the
object surface must be sampled at least twice from different
viewpoints.

The second constraint of the global consistency test also
eliminates the measurements with small G values, but the
difference between the first constraint is that it now consid-
ers only the range measurements in the same rigel. We de-
fine a measurement in a rigel to have a small G if the value
is smaller than the maximum G in that rigel minus ¢ - o¢
where ¢ is the same constant used in Eq. (9). Formally,

let Gmax (pf ) denote the maximum global consistency value

among all the range measurements in the rigel to which pg
belongs, then the second constraint requires that

G(P)) > Gmaz (@) —t - 0g (10)

Note that the second constraint only applies to those with
more than one measurement in the same rigel. All measure-
ments that do not satisfy either of the constraints, Egs. (8)
and (10), are eliminated in the global consistency test.

4. Experiments

We will now report experimental results on three objects:
abowl, a seashell and an angel figurines, all shown in Figure
4. All three objects have surface materials and shapes that
are highly likely to generate mutual reflections.

4.1. Data acquisition

We acquired 5, 18, and 27 range images, respectively,
from different viewpoints for the bowl, the seashell and the
angel. Then, we painted all the objects so that the surfaces
of the objects are ideal for range sensing. Range data of the
painted objects were acquired and registered. Let p,..; be
the set of measurements in all the registered range images
of one of the painted objects, and let p; be a set of mea-
surements from 4’th range image acquired from the corre-
sponding original object. Note that none of the elimination
tests are applied to these range images yet. Each measure-
ment in p; is labeled either as true or false by the following
procedures: First, p; is transformed into the coordinate sys-
tem of the reference data where the transformation matrix

is computed beforehand by registering p; to pr.s. In order
to obtain an accurate registration, we used the final result of
p; after the convergence of all the constraint tests where the
parameters were chosen manually. Once p; is transformed,
each measurement in p; is labeled as true if there is a point
in prey that has the distance less than the range resolution
and the angle between surface normals less than 30 degrees.
Otherwise, it is labeled as false. Having all the original data
labeled as true of false, we can simply keep record of which
of the true or false measurements are eliminated during the
constraint tests.

4.2. Analysis of local smoothness test

Figure 5(a) and (b) show the histograms of true measure-
ments (blue line with o markers) and false measurements
(red line with x markers) for all three objects as functions
of the two parameters used in the local smoothness test. Fig-
ure 5(a) shows the histograms as functions of the number of
valid elements in the 5x5 fitting window (i.e., the parame-
ter m in Eq. (1)). Notice that the majority of true measure-
ments have all 25 elements, which is the maximum number
for a 5x5 window, and few of them have less than 20 ele-
ments. On the other hand, there is a considerable amount
of false measurements all throughout the range of m from
1 to 20. Since we do not want to eliminate the true mea-
surements in the vicinity of jump edges, a good choice for
the threshold 7,,, would be from 12 to 20 (i.e., 50% to 80%
of maximum number). Figure 5(b) shows the histograms
of true and false measurements as functions of the fitting
error of the best fitting plane (i.e., the parameter ¢ in Eq.
(2)). Most of the true measurements have the fitting error
less than 0.1mm whereas the false measurements are more
evenly distributed. The graph suggests that a good choice
for the threshold 7. would be from 0.15mm to 0.3mm (i.e.,
about 50% to 100% of sensor resolution?).

Figure 5(c) to (e) show the results of the local smooth-
ness test for the bowl, the seashell and the angel, respec-
tively where the parameters are set as 7,,, = 13 and 7. =
0.2mm. Approximately three quarters of false measure-
ments were successfully eliminated while maintaining al-
most all of true measurements.

4.3. Analysis of global tests

The graphs shown in Figure 6(a) to (f) show the num-
ber of true and false measurements over the course of the
global tests with a varying parameter ¢ of Egs. (9) and (10).
The three graphs from (a) to (c) show the number of true
measurements for each of the three objects, and the three
graphs from (d) to (f) show the number of false measure-
ments. The odd numbered iterations represent the isolated
region test and the even numbered iterations the global con-
sistency test. The initial data was the result of the local

3By resolution, we simply mean the distance between two adjacent
sampling positions in the scan. For all the range data presented in this
paper has the resolution of 0.3mm.
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Figure 5. Analysis of local smoothness test
(a): Histograms of true measurements (blue line with o markers) and false measurements (red line with x markers) as functions of m (the
number of valid elements in the fitting window). (b): Histograms as functions of ¢ (the fitting error of the best fitting plane). (c): Number of true

and false measurements for the bowl during the local smoothness test. (d): Number of true and false measurements for the seashell during
the local smoothness test. (e): Number of true and false measurements for the angel during the local smoothness test.
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Figure 6.

(a),(b),(c): Number of true measurements for each of the three objects during the course of the global tests with varying parameter t of Egs.
(9) and (10). (d),(e),(f): Number of false measurements during the course of the global tests. (g): The original data for the bowl where the
true measurements are displayed with light blue color and the false measurements with dark red color. (h): The bowl after the convergence
of the local smoothness test. (i): The bowl after the convergence of the global tests. (j): Final 3D model for the bowl. (k),(I),(m),(n): The same
visualization for the seashell. (0),(p),(q),(r): The same visualization for the angel.



