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In this paper we have discussed what appears to be a superior implementation 
of the Algebraic Reconstruction Technique (ART). The method is based on 1) 
simultaneous application of the error correction terms as computed by ART for all 
rays in a given projection; 2) longitudinal weighting of the correction terms back- 
distributed along the rays; and 3) using bilinear elements for discrete approximation 
to the ray integrals of a continuous image. Since this implementation generates a 
good reconstruction in only one iteration, it also appears to have a computational 
advantage over the more traditional implementation of ART. Potential applications 
of this implementation include image reconstruction in conjunction with ray tracing 
for ultrasound and microwave tomography in which the curved nature of the rays 
leads to a non-uniform ray density across the image. 
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1. INTRODUCTION 

Although filtered backprojection algorithms are the favored choice for tomo- 
graphic imaging with x-rays [18], there remains an interest in the algebraic 
approaches due to their potential applications for diffracting sources. When tomo: 
grahpy is attempted with ultrasound and microwaves, in a majority of applications 
one immediately runs into difficulties caused by refraction and diffraction. Energy 
propagation can no longer be modeled as occurring along straight non-bending lines. 
It is hoped that at least for those cases where refraction is the primary culprit, a 
combination of digital ray tracing and algebraic reconstruction algorithms may gen- 
erate images of acceptable quality [2,19]. 

The algebraic approach to image reconstruction from projections consists basi- 
cally of two iterative techniques: the Algebraic Reconstruction Technique (ART) and 
the Simultaneous Iterative Reconstruction Technique (SIRT). The first, the Alge- 
braic Reconstruction Technique, was proposed simultaneously by Gordon, Bender, 
and Herman [10] and by Hounsfield [16]. It derives from a simple procedure proposed 
by Kacmarz [17] for solving systems of consistent linear equations. ART-type 
methods are sequential in nature; they implement a correction to the estimated 
image vector in such a way that the updated estimate will satisfy a single ray-sum 
equation representing a ray integral--then proceed to the next equation. SIRT-type 
methods [8,12] are quadratic optimization methods; in their approach they attempt 
to correct for errors in all ray-sum equations simultaneously. Such simultaneous 
methods are iterative in that they reconsider the same set of ray-sum equations ad 
infinitum. For ART-type as well as for SIRT-type methods, we say that one itera- 
tion is completed when each ray-sum equation in the overall system has been con- 
sidered exactly once. 

The particular advantages of the two types of methods appear to be mutually 
exclusive. ART-type methods based directly on the sequential scheme of the 
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Kaczmarz procedure [17] enjoy a rapid convergence in the sense of the root-mean- 
squared error criterion; the reconstructed images, however, exhibit a very noisy salt 
and pepper characteristic. SIRT-type methods, on the contrary, produce fairly 
smooth images but require for convergence a large number of iterations. In the ART 
approach, a series of smooth images can be produced when relaxation parameters are 
introduced; only a small fraction of the error correction term as computed by the 
Kaczmarz procedure is applied. In the relaxation method we loose some of the rapid 
convergence properties of the basic ART algorithm at the benefit of more intelligible 
pictures. 

The problems associated with the sequential ART algorithm arise because of 
inconsistencies in the set of equations representing the forward process. The discrete 
formulation does not exactly represent the line integrals of the original continuous 
image function. Although the Kaczmarz procedure [17] for solving a system of con- 
sistent equations has been demonstrated to converge towards a generalized inverse 
[25], the resulting vector is likely to represent a very noisy looking image. This 
develops since satisfying a single equation may result in a very noticeable stripe 
along the particular ray which corresponds to that equation. Repetition of such 
steps for rays in different directions may result in a salt and pepper appearance of 
the final reconstructed images. 

A significant reduction in the noise can be achieved if we apply all error correc- 
tion terms for rays in a particular projection simultaneously rather than in the con- 
ventional sequential fashion. Such a procedure may at a first encounter seem like a 
SIRT-type algorithm, and it does enjoy some of the advantages of SIRT without 
suffering from its costs. However, we recall that the SIRT algorithm does not 
involve the concept of projections in given directions in that it is an inherently 
discrete approach in which all ray equations are corrected for simultaneously, regard- 
less of the order of the equations. The proposed technique is aimed at producing a 
smooth image estimate after the consideration of the subset of ray-sum equations 
associated with a particular scan direction; SIRT, on the contrary, aims at producing 
smooth image estimates after each full iteration, i.e., after all the ray-sum equations 
have been considered. The rationale for the implementation derives from the formu- 
lation of ART for the reconstruction of a continuous image function [23]. At each 
step of the reconstruction process in the continuous formulation, the updated image 
estimate is formed by adding a correction image determined by back-distributing the 
forward projection error along a continuum of rays in the given direction. Thus, the 
correction to each image point is uniquely determined. For a discrete image 
representation in which a given image element may be involved in the forward pro- 
cess along several adjacent rays, the conventional sequential back-distribution pro- 
cedure will invariably lead to ambiguity in the correction applied to that element -- 
and a noisy image update will result. The simultaneous implementation solves this 
ambiguity problem by defining uniquely the correction term to be applied to each 
image element. Thus the proposed method benefits from smoother image estimates 
at every step of the reconstruction procedure obviating the use of relaxation parame- 
ters. Oppenheim [20] was the first to use this projection-by-projection concept of 
reconstruction, although he did not attribute explicitly any significance to the noise 
suppression feature of this approach. Eggermont et al. [7] have discussed the conver- 
gence properties of algebraic reconstruction algorithms that partition the linear equa- 
tions, as is done in the projection-by-projection method. 

Furthermore, the good performance of the basic ART algorithm by the root- 
mean-squared error criterion has prompted us to seek the key to improved recon- 
structions in the set-up of the equations representing the ray integrals as well as in 
the reconstruction procedure itself. As the number of iterations of an algorithm 
increases, the continued convergence will ultimately depend on the accuracy of the 
discrete representation of the forward projection process. It is our belief that ART is 
a much more powerful technique in the reconstruction of images from projections 
than has been demonstrated by previous implementations. 

82 



SIMULTANEOUS ALGEBRAIC RECONSTRUCTION 

2. APPROACH 

Our ultimate objective is again the reduction of the salt and pepper noise com- 
monly associated with ART-type reconstructions. We wish to accomplish the recon- 
struction in essentially one iteration (i.e., each equation is considered exactly once), 
without relaxation, and starting from a uniform image. Furthermore, we intend to 
use far fewer equations per projection than is common practice with algebraic tech- 
niques. We will use a number of equations approximately equal to the number of 
points in the discrete image representation; for comparison, conventional systems are 
overdetermined by typically a factor of four [12,14,21]. Finally, we want to maintain 
the basic correction strategy of ART at an overall computational cost comparable to 
(or possibly less than, since fewer rays are required) that for the first iteration of a 
conventional weighted-ART algorithm. 

In our at tempt to reduce the error in the approximation of the ray integrals of a 
smooth image by finite sums, we have abandoned the traditional pixel-basis in favor 
of bilinear elements. Also, for a circular reconstruction region, we have taken cau- 
tion in calculating the partial weights that need to be assigned to the first and last 
picture elements on the individual rays, i.e., the first elements just as a ray enters 
the circle and the last just as it exits. With fewer rays per view and, thus, less 
redundancy in the system of equations, we must take some additional precautions in 
order to reduce the noise resulting from the inavoidable, but now presumably consid- 
erably smaller, inconsistencies with real projection data. We have found that a 
simultaneous application of the correction terms for the rays in a particular view is 
preferable to the usual sequential fashion. In addition, we have used a heuristic pro- 
cedure to improve the quality of reconstructions: a longitudinal Hamming window is 
used to emphasize the corrections applied near the middle of a ray relative to those 
applied near its ends. 

We will proceed to describe in more detail the individual steps comprising our 
proposed implementation of the algebraic reconstruction technique in image recon- 
struction from projections. The contribution that each step makes in improving the 
overall accuracy of the proposed procedure will be illustrated with reconstructions of 
the head phantom proposed by Shepp and Logan [21]. The reconstructions on a 
128x128 sampling lattice are carried out for 100 projections of 127 rays each. It 
should be pointed out that no "waterbag" is assumed to enclose the phantom. The 
waterbag is a carry-over from the initial work of Hounsfield.[16] and has been 
assumed in most reconstructions of simulated head phantoms using ART-type algo- 
rithms [14,16,21]--it permits that, except for the skull, a uniform image as a first 
estimate will be in fact a very good approximation to the correct image. 

3. MODELING THE FORWARD PROJECTION PROCESS 

In any kind of image processing by computer we must have a way of describing 
pictures f (x ,y)  by finite sets of numbers. The common approach is an expansion of 
a continuous image into a linear combination of N basis pictures {b;(x,y)} [12,13]. 
Thus, for any picture f (x ,y)  there exist real numbers gl,g2,. ..... ,gN such that 

N 

- E (1) 
i = 1  

](x,y) gives an adequate approximation to the picture f(x,y),  and the gi's form the 
finite set of numbers which describes the picture relative to the chosen basis set 
{bi(x,Y)}. 

If r j (z ,y)  = 0 is the equation of the j ' t h  ray, the projection operator Rj along 
that ray can be expressed as 

O0 O 0  

Pi : Ri f (x ,Y)  = f f f(x,Y)6(ri(x,Y))dxdy. (2) 
- - 0 0 - - 0 0  
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We have assumed that f ( x , y )  is a square integrable function which vanishes outside 
the unit circle. With the finite-dimensional image model, the linearity of the projec- 
tion operator ensures that we have 

N 
R j ( x , y )  = E ~Rib~(x,Y). (3) 

i= l  

In practical implementations, we may want to replace the numbers R:b i ( z , y  ) by 
• J . 

some approximations aii in order to facilitate computation. Thus, we obtain 

N N 
PI = R Y f ( z , Y )  ~- R I ] ( x , Y )  = E giRybi(x,Y) " E gia6. (4) 

i= l  i = l  

If e i represents the error inherent in the finite-dimensional representation of the 
forward process, we have 

N 
P1 = ~ a~a~i + ei. (5) 

i = l  

In matrix notation we write 

= [A]r~ ' + -~, (6) 

where [A] r is the J x N  projection matrix of the coefficients a;:, and ~* and ~ are J- 
J 

dimensional column vectors. The N-dimensional vector y" is commonly referred to as 
the image vector. 

In the selection of a set of basis pictures, most researchers have found the pixel 
basis the simplest to deal with [6,8-10,12-16,20,21]. To obtain this set we divide the 
square of side 2 into N identical subsquares referred to as pixels and identified by 
the index i, for I < i < N .  The basis functions become 

0' inside the i ' th pixel 
bi(x'Y) : , everywhere else (7) 

For this basis, R i bi(x,y ) exactly represents the length of the intersection of the j ' t h  
If the projection matrix [A] were computed this way, no ray with the i ' th pixel, r 

error would be committed in the model of the forward projection process beyond 
that inherent in the equations from the choice of basis functions. Although Eq. (2) 
implies rays of zero width, if we now associate a finite width with each ray, the ele- 
ments of the projection matrix will represent the areas of intersection of these ray 
strips with the pixels. In the original version of the ART algorithm [10], for compu- 
tational ease binary coefficients were chosen for the projection matrix: a;: was set 
equal to 1 if the center of the i ' th pixel fell within the strip of the j ' t h  ra~, and 0 if 
not. With the representation of rays as strips of finite width, it is necessary to adjust 
the width of each ray according to the orientation of the projection [9,15,20]. 

In practically all work with ART-type algorithms, researchers have adhered to 
this choice of model. Higher-order basis functions have been judged too costly in 
computation time. One measure to combat the salt and pepper noise inherent to 
ART-type reconstructions with this model has been to increase the number of rays 
per view [22]. When the number of rays per view is increased, many pixels are inter- 
sected by several rays in each projection. This results in the averaging of possible 
errors committed in the correction procedure. It appears common practice to have a 
system with about four times as many equations as unknown pixel values [12,14,21]. 
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The computational cost, however, is increased directly with the number of rays pro- 
cessed. An additional method has been to use a relaxation factor ) ,<1 [9,12-14,16,24] 
which, although reducing the salt and pepper noise, increases the number of itera- 
tions required for convergence. Underrelaxation is now presented as the definitive 
technique that allows us to obtain fair reconstructions for ART with real projection 
data, not just with pseudo-projection data [12,13]. 

It is our opinion that one of the keys to improved reconstructions lies in a more 
accurate depiction of the forward projection process. The bilinear elements are the 
simplest higher-order elements [1,13]. They are "pyramid'-shaped,  each with a sup- 
port extending over a square region the size of four pixels. The g/'s appearing in Eq. 
(1) will be the sample values of the image function f (x ,y )  on a square lattice. 
Whereas the pixel basis leads to a discontinuous image representation, the bilinear 
elements allow a continuous form while we maintain a relative ease in computation. 
Finding the exact ray integrals across such bilinear elements for a large number of 
rays is nevertheless a time consuming task and we will use an approximation. 

Rather than try to find separately the individual coefficients aii for a particular 
ray, we opt to approximate the overall ray integral Rj f ( x , y )  by a finite sum involv- 
ing a set of M i equi-distant points {f(sjm)} , for l < m < M  i [4,19] (see Fig. 1): 

M, 
Ps -~ E ](ss~)~s. (s) 

m--1 

This approach was inspired by our work in ray tracing [1]. According to the chosen 
image representation, the value f(sjm ) is determined from the values gi of f (x ,y )  on 
the four neighboring points of the sampling lattice, i.e., by bilinear interpolation. 
We write 

N 
](sym) = Ediy.,g;, for m = 1,2,....,M L (9) 

i=1  

Combining Eqs. (8) and (9), we obtain an approximation to the ray integral pi as a 
linear function of the image samples gi 

Ms N 
pj = ~ ~ d~ym a~ As 

m = l i = l  

Fig. 1 Illustrating the ray-sum equa- 
tions for a set of equidistant 
points along a straight line cut 
by the circular reconstruction 
region. 
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NM, 
= ~ ~ dijmgiAs for l < j < J  

/ = l m = l  

N 

: E a,jg, , (lo) 
i=1 

where the coefficients aq represent the net effect of the linear transformations. They 
are determined as the sum of the contributions from different points along the ray 

aii = H dqmAs" (11) 
m = l  

It is important to the overall accuracy of the model that for m-' l  and for m'-M:, 
• . ° J 

I.e., for the first and last po~mts of the ray within the reconstruction circle, tlie 

weights are adjusted so that ~ aq equals the actual physical length Lj. 
i=1 

In the choice of step-size As, we have found that setting it equal to half the 
spacing of the sampling lattice provides a good trade-off between accuracy of 
representation and computational cost. For this choice of step length, it is our 
judgement that, considering the computational simplicity of finding the weights dFr n 
associated with a bilinear interpolation, the overall cost of finding the net effects I;: 
this way should be comparable to the cost involved in finding the aq's as intersec s- 
tions with the pixels in the traditional formulation. 

4. IMPLEMENTATION OF THE RECONSTRUCTION ALGORITHM 

Our computer simulation results will be shown for the image of figure 2a. This 
is the well known Shepp and Logan [21] "head phantom", which consists of a 
number of ellipses of varying sizes and densities. [The advantage of using ellipses is 

Fig. 2 
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(a) Illustrating the Shepp and Logan head phantom with a subdural hema- 
toma. (b) The gray level distribution of the Shepp and Logan phantom is 
shown here. 
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that one can write mathematical expressions for their projections, and therefore the 
"real" projection data for the image of figure 2a can be generated by summing the 
line integrals for individual ellipses thus obtained.] The gray level distribution in the 
test image is shown in figure 2b. 

Using this procedure, we analytically determine the line integral data for the 
test image for 127 rays in each of 100 projections, and the image is reconstructed on 
a 128×128 sampling lattice. In the model of Eq. (10), this corresponds to N=16384 
picture elements and an overall number of rays J=12700. We notice that the sys- 
tem of equations is underdetermined by about 25 percent, but then the reconstruc- 
tion circle covers only about 75 percent of the area of the square sampling lattice. 
Reconstructions from this data will be shown without assuming the existence of the 
"waterbag" around the head phantom. Thus, ours becomes a much more difficult 
task than the reconstructions shown with the waterbag [14,21] where a uniform den- 
sity of 1.0 as a first estimate is indeed a very good approximation to the correct 
image. 

The error-correcting procedure of the basic sequential ART algorithm [9,10,12- 
16] can be written as 

Ck+,) = Ck) + pJ (12) 

where h¢ i denotes the j ' t h  column vector of the matrix [A 1. The estimate y(k) of the 
image vector is updated after each ray has been considered. The initial estimate ~01 
is set to a uniform image of zero density. We say that one iteration of the algebraic 
reconstruction technique is completed when all J rays, i.e., all J ray-sum equations, 
have been used exactly once. In order to efficiently use the information in the sys- 
tem of Eqs. o(10), we consider projections taken at angles far apart (in our implemen- 
tation 73.8 ). This procedure was introduced by Hounsfield [16] based on an heuris- 
tic argument as to the high correlation between the information in neighboring pro- 
jections. Later the scheme was demonstrated to have a deeper mathematical founda- 
tion as a tool for speeding up the convergence of ART-type algorithms. (The proof 
relies on a continuous formulation of ART, as shown by Hamaker and Solmon [ll].) 

Figure 3a illustrates the reconstruction of the head phantom for one iteration of 
the conventional sequential ART algorithm. In order to avoid streak artifacts in the 
final image, the correction terms for the first few projections were deemphasized rela- 
tive to those of projections considered later on . The image has been thresholded to 
the density interval .95-1.05 to illustrate the finer detail. We notice that even the 
larger structures are buried in the salt and pepper noise present when no form of 
relaxation or smoothing is used. Figure 3b shows a line plot through the three small 
tumors of the phantom (we have plotted the profile along the line y=-.605).  We 
observe that the amplitude variations of the noise largely exceed the density 
differences characterizing these structures. 

Figure 4a illustrates the reconstruction when a simultaneous application of all 
correction terms for a given scan direction is used. In this implementation, we com- 
pute the individual correction terms in the usual fashion. The terms are then saved 
until all rays in that view have been considered. The average correction to each pic- 
ture element is computed and added to form the updated image: 

. a 6  N 

aii 
i = 1  

gi(k+l) : gi(k)+ (13) 
aij 

i 
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Fig. 3 
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Reconstruction from one iteration of sequential ART (a) Image (b) Line 
plot through the three small tumors (for y--.605). 

where the summation with respect to j is overNthe rays intersecting the ith image 

element for a ~iven scan direction. The factor ~ alj in the denominator of the indi- 
i = l  

vidual correction terms (the term in the square bracket) ~quals the actual physical 
length L i of the ]th ray. The replacement of h~f~y by ~ aij in the simultaneous 

i= l  
procedure is done for reasons of uniformity of the reconstructed image. Furthermore, 
it maintains the correct dimensions for the updated image vector. 

Fig. 4 
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Reconstruction from one iteration of simu]taneous ART (a) Image (b) Line 
plot through the three small tumors (for y=-.605). 

q 
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A simplified form of the simultaneous technique was used by Oppenheim in [20]. 
However, the scope of the implementation as described by Eq. (13) is much wider. 
The method can be used advantageously in the general image reconstruction problem 
for curved rays with overlapping and non-onverlapping ray strips as well as in con- 
junction with any image representation, provided the forward process can be 
expressed in the form of Eq. (4). 

Compared to the reconstruction of figure 3 for the sequential scheme, the simul- 
taneous method offers a reduction in the amplitude of the noise. In addition, the 
noise in the reconstructed image has become more slowly undulating compared to 
the previous salt and pepper appearance. This technique maintains the rapid con- 
vergence of ART-type algorithms while at the same time it has the noise suppressing 
features of SIRT [8]. As with SIRT, our simultaneous implementation does require 
the storage of an additional array for the correction terms. The simultaneous pro- 
cedure is justified by the argument that the corrections from all rays in a particular 
view should result in a continuous image function [23]. 

We will now present a heuristic procedure that has not previously been used in 
conjunction with ART algorithms. We will modify the back-distribution of the 
correction terms by a longitudinal Hamming window. The idea of the window is 
illustrated in figure 5. The conventional, basically uniform back-distribution accord- 
ing to the coefficients aq is replaced by a weighted version. This corresponds to 
replacing the standard correction term 

~- PJ - ' - N  ~/~(k) (14) 

i = l  

by a weighted correction term 

~i Pi -N ~T~k) 

i~= l aii 

where the weighting coefficients wii are determined as (compare with Eq. (11)) 

M, 
wij = ~ him diy m As. 

rn= l  

/ 

/ 

Fig. 5 

(15) 

(16) 

Illustrating the longitudinal 
Hamming window for a set of 
straight rays. 
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Fig. 6 
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Reconstruction from one iteration of simultaneous ART with a longitudinal 
Hamming window (a) Image (b) Line plot through the three small tumors 
(for y =-.605). 

The sequence him , for l < m < M i ,  is a Hamming window of length M i. We notice 
that the length of the window varies according to the number of points M: describ- 
ing the part of the ray cut by the reconstruction circle. The basic differenc~ between 
Eqs. (14) and (15) lies in the first factorNThe denominator in both cases is the same. 

If we change the denominator from ~ aq to ~ wq, the discontinuous jumps in 
N i=1 i=1 

wii (caused by the discretized length of the window) will result in edges after the 
i=1 
correction from a single projection and salt and pepper noise in the final image. The 
use of this "filter" will require the storage of an additional array to hold the 
coefficients wii. 

The incorporation of the longitudinal Hamming window has an intuitive appeal 
in that objects are most often of a convex shape and located centrally within the 
reconstruction circle. The back-distribution procedure should therefore emphasize 
central portions of the rays to distal portions. Figure 6 illustrates a reconstruction 
of the head phantom after one iteration with the longitudinal window in conjunction 
with the simultaneous scheme previously described. We see an amazing improve- 
ment from the reconstructions of figures 3 and 4: the noise is practically gone and 
the structures within the skull including the hematoma can he fairly well dis- 
tinguished. The longitudinal Hamming window has proven to be a most powerful 
step in suppressing noise, and giving a contrast enhancement at the same time. If 
we had not applied the corrections in a simultaneous scheme but incorporated the 
longitudinal Hamming window only for the conventional sequential implementation, 
we would have arrived at the noisy reconstruction illustrated in figure 7. Based on 
the reconstructed image of figure 6, further iterations as illustrated by figures 8 and 
9 bring out even more contrast at a cost, though, of a beginning appearance of salt 
and pepper noise. The subdural hematoma can now be clearly distinguished. All 
reconstructions shown represent the raw output from the algorithms with no post- 
processing applied to suppress noise. 

For the purpose of comparison, we have included in figure 10 the resulting 
image using the technique of convolution back-projection. The reconstructions with 
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Fig. 7 
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Reconstruction from one iteration of sequential ART with a longitudinal 
Hamming window (a) Image (b) Line plot through the three small tumors 
(for y =-.605). 

our implementation of the algebraic reconstruction technique are of a quality, that at 
least from a numerical standpoint, is essentially what is obtained with convolution 
back-projection. With regard to this conclusion, the reader may wonder about the 
noise that is so apparent in the photo in figure 9 and those preceding it. Note from 
the plots shown below the reconstruction, the noise in figure 9 represents a maximal 
deviation of only about 0.5 percent. 

Fig. 8 
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Reconstruction from two iterations of simultaneous ART with a longitudi- 
nal Hamming window (a) Image (b) Line plot through the three small 
tumors (for y =-.605). 

91 



ANDERSEN AND KAK 

Fig. 9 
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Reconstruction from three iterations of simultaneous ART with a longitudi- 
nal Hamming window (a) Image (b) Line plot through the three small 
tumors (for y =-.605). 

5. CONCLUSION 

We have presented significantly improved reconstructions in fewer iterations 
(essentially just one iteration) with fewer rays per iteration and in a simple simul- 
taneous implementation of the ART algorithm. We will leave it up to the individual 
reader to decide for him/herself which reconstruction is the most pleasing. To us the 
reconstructed image after the first iteration appears to suffer least from the effects of 
noise, whereas the line plot after the second iteration is the one closest to the correct 

Fig. 10 
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Convolution back-projection reconstruction of the head phantom (a) Image 
(b) Line plot through the three small tumors (for y =-.605). 
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profile. However, we can say that the increased amplitude of the salt and pepper 
noise pattern with an increase in the number of iterations is an indication of remain- 
ing inconsistencies in our model of the forward projection process. 

A potential application of the Simultaneous Algebraic Reconstruction Technique 
lies in the reconstruction along curved rays for ultrasound and microwave tomogra- 
phy in which case the ray density is non-uniform across an image. This non- 
uniformity in conjunction with a conventional sequential implementation leads to 
unacceptable spurious effects. Curved-ray reconstruction algorithms with single- 
iteration convergence are expected to be of considerable value to the ongoing work in 
ultrasonic transmission tomography. While addressing some of the degradations asso- 
ciated with refraction effects [3], this work has hitherto been based on the assump- 
tion of straight-ray propagation. 
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