
AN EFFICIENT ALGORITHM FOR THE EXTRACTION OF CONTOURS AND CURVATURE
SCALE SPACE ON SIMD-POWERED SMART CAMERAS

Paul J. Shin1, Xinting Gao2, Richard Kleihorst2, Johnny Park1, and Avinash C. Kak1

1School of Electrical and Computer Engineering, Purdue University
{paulshin, jpark, kak}@purdue.edu

2 NXP Semiconductors, Corporate I&T / Research
{xinting.gao, richard.kleihorst}@nxp.com

ABSTRACT

SIMD (Single Instruction Multiple Data) processors have
been shown to possess high capability for vector-based im-
age processing due to their massively parallel architecture.
However, it is not always easy to map the general-purpose
processor implementations of high-level vision algorithms to
such processors due to the hardware-imposed characteristics
of SIMD processors. In this paper, our focus is on contour
extraction algorithms for such processors. We present a novel
real-time memory-efficient contour extraction algorithm that
is suitable for the SIMD processor used in the WiCa camera
developed by NXP. A further goal of this paper is to present a
method for extracting the curvature scale space (CSS) on the
same SIMD processor. For contour extraction, the detected
contour points are first stored as they are detected, and then
effectively reordered with low memory overhead. For extract-
ing the CSS, we introduce a high-precision Gaussian filtering
scheme using an extended number representation that is par-
ticularly suited for the SIMD processor of the camera. We
demonstrate both in real time.

Index Terms— Contour extraction, contour tracing, cur-
vature scale space, SIMD, smart cameras

1. INTRODUCTION

Wireless camera networks are expected to play a significant
role in smart interior and exterior spaces of the future. For ex-
ample, by tracking people in the environment, a camera net-
work could become aware of the fact that an individual has
slumped on the floor and is in need of medical help.

A camera network works best if the computing required
for the interpretation of the images can be carried out locally
at each node or by a neighboring set of nodes. This requires
that the computer vision algorithms developed for general-
purpose processors be mapped to the processors embedded in
the individual camera units. Of course, when a vision prob-
lem must be solved by a neighborhood of cameras, the map-
ping must take the form of a distributed implementation in the

presence of possibly lossy communications. Many such map-
pings have already been proposed for the case when the cam-
eras use SIMD processors for fast image-based calculations.
See, for example, [1] for the case of face recognition, [2] for
the case of depth estimation with stereo, and [3] for gesture
recognition. When such mappings are carried out on SIMD-
powered (Single Instruction Multiple Data) smart cameras,
such as the WiCa [4] developed by NXP Research (formerly
Philips Research), one benefits from their massively parallel
architecture to obtain high-speed implementations that, as it
turns out, are also energy efficient.

The goal of this paper is to add to the vision algorithms
that have so far been implemented on SIMD processor of the
WiCa camera. In particular, we will demonstrate an SIMD
implementation for extracting boundary contours. Contour
extraction plays an important role in many computer vision
algorithms as shape-based characterizations of objects are de-
rived from the boundary contours. Such characterizations
include Fourier descriptors [5], wavelet descriptors [6], the
shape context [7], and the curvature scale space [8]. The ap-
plications of contour-based techniques including snakes [9]
span video surveillance, medical image processing, and pat-
tern recognition [10, 11, 12, 13]. In all these applications,
contour extraction consists roughly of object segmentation
followed by contour tracing.

A straightforward mapping of a contour extraction algo-
rithm intended for a general-purpose processor to an SIMD
processor goes against the grain of the SIMD architecture em-
ployed in the WiCa. For example, the WiCa does not make it
easy to access the individual pixels of an image since only the
ends of video scan lines are directly available, such lines be-
ing the basic data blocks that are processed in parallel. Thus,
tracing a contour using either 4- or 8-neighborhood based al-
gorithms is inefficient for such processors since such algo-
rithms need direct access to the pixel data in the middle of
the line memories. Thus the chain-code based contour trac-
ing algorithms [14] are not suitable for the WiCa. Another
challenge posed by the WiCa is the limited precision of the
numbers that can be represented in the line memories. This

978-1-4244-2665-2/08/$25.00 c©2008 IEEE

Fig. 1. Architecture of the WiCa 1.1 wireless smart camera.

limited precision creates difficulties for implementing linear
filtering operations needed for creating curvature scale-space
(CSS) representations.

Against a background of the above-mentioned challenges
posed by the SIMD architecture of the WiCa, this paper
presents a novel memory-efficient contour extraction and cur-
vature scale space (CSS) algorithm for the WiCa. The contour
extraction algorithm requires only six line memories for all of
its four steps: object segmentation, contour tracing, contour
reordering, and contour normalization. It does not require
for the whole image to be stored. Only the detected contour
points are stored in four line memories: two of the line mem-
ories are used for the x and y coordinates, one for storing the
total number of boundary points in a video line which directs
the point movement in vertical direction, and one for storing
the horizontal direction of the next point movement. After
detecting all the boundary points, they are reordered in such a
way that they form a continuous counterclockwise contour of
the object. The reordered x- and y-coordinates are stored in
the remaining two line memories.

This paper also presents a high-precision Gaussian filter-
ing algorithm for extracting scale-space representations. It
is based on an 18-bit number representation using two line
memories; note that each element in the line memory in the
SIMD processor of the WiCa consists of 10 bits. Based on
this extended number representation, a high-precision arith-
metic operation scheme is introduced, which plays a crucial
role in accurate filtering. This allows for contour smoothing
to be carried out iteratively with high precision.

The paper is organized as follows: Section 2 describes
the hardware specification and the configuration of the WiCa.
The new contour extraction algorithm is presented in Section
3. Section 4 presents the material related to the curvature
scale space. We demonstrate our algorithms in Section 5 and
give concluding remarks in Section 6.

2. SMART CAMERA HARDWARE PLATFORM

WiCa is a low-power, high-performance, and programmable
smart camera platform equipped with four major components:
one or two VGA color image sensors, a massively paral-
lel SIMD processor known as IC3D, a general-purpose 8051
processor, and a Zigbee communication module, as shown
in Fig.1. Both processors are connected through DPRAM
(Dual-port RAM), which works as an asynchronous shared
workspace.

The IC3D, one of the Philips’ Xetal family of SIMD pro-
cessors, consists of 5 specific internal blocks as shown in
Fig.2. The video input and output processors stream 24-bit
3-channel input and output digital video signals to and from
IC3D, respectively. The heart of the chip is a linear proces-
sor array (LPA) with 320 processing elements (PEs). Each
PE shares with others both the memory address and the in-
structions in the SIMD sense and has simultaneous read and
write access in one clock-cycle to the on-chip parallel mem-
ory of 64 lines of 320 positions. Each memory position con-
sists of 10 bits. The global control processor (GCP) is a pro-
cessor dedicated to performing global DSP operations, con-
trolling the IC3D, and taking care of video synchronization
while communicating with the LPA. The peak pixel perfor-
mance of IC3D is about 50 GOPS at 80 ∼ 100MHz. The
power consumption at the peak performance is low because
of the shared instruction decoding and the ultra-wide mem-
ory access scheme.

The 8051 general-purpose processor is dedicated to per-
forming high-level vision processing and decision making
based on the data from IC3D. The 8051 processor com-
municates with IC3D through the DPRAM. It can share its
workspace asynchronously with IC3D via the DPRAM, so
that they can work in their own clock domains. The DPRAM
has eight memory banks in WiCa 1.1, each of which has
64KB so that, at the maximum, one 256x256 image can be
stored into one bank.

The wireless communication module of WiCa 1.1 is an
Aquisgrain Zigbee module developed by Philips. It works
as a wireless UART port of the system with limited capac-
ity. The maximum data rate for wireless communications is
around 10kB/sec. The data to be transmitted is sent by the
8051 processor to the communication module. The communi-
cation module is based on CC2430 transceiver from TI, which
includes an additional 8051 controller for its own processing.

The Xetal chips including IC3D are programmed using an
extended C (XTC) language. One of its features is a vector
data type for the 320-element wide memory address repre-
sentation in the LPA. A single line memory with its 320 data
elements is processed as a single data unit.

Fig. 2. Internal architecture of the IC3D, which is one of the
Philips’ Xetal family of SIMD processors.

3. THE PROPOSED CONTOUR EXTRACTION
METHOD

Various contour extraction algorithms have been proposed
for general-purpose CPUs based on pixel-level operations
[15, 14, 16]. Contour extraction, commonly referred to as
contour tracing, is generally carried out by finding the next
point on a contour in a 4- or 8-neighborhood of the previ-
ous point. Such algorithms, however, cannot be implemented
directly on the WiCa due to the unique characteristics of its
hardware architecture. More specifically, the SIMD proces-
sor on the WiCa stores input data internally in line mem-
ories. As a consequence, only the first and the last values
stored in a line memory can be read directly. Even if we use
the DPRAM, the delay between a read request and when the
data is available from the memory also makes it inefficient to
read the individual pixels directly. These characteristics of the
WiCa make it difficult to directly implement the conventional
contour extraction algorithm designed for a general-purpose
CPU. Moreover, due to the limited memory space with no
dynamic memory allocation support in WiCa, complex data
structures such as linked lists, which have been used in most
of the existing parallel implementations of contour extraction
[17, 18], cannot be employed in WiCa.

We propose an efficient contour extraction algorithm suit-
able for SIMD-powered architectures with limited memory
space. The proposed algorithm entails three steps, in which
we will describe in detail in the following subsections. We
assume that the object of interest has been detected and its re-
gion identified using one of the available segmentation meth-
ods such as simple background subtraction, color segmenta-
tion, etc [19]. One could, for example, employ the color seg-
mentation algorithm described in [3] that uses the k-means
clustering method; this algorithm was developed specially for
the WiCa.

Fig. 4. The eight cases of point corners. The white pixel
of the 2-by-2 mask corresponds to the background, and the
black pixels the object. The darker gray pixel indicates the
current point of interest. The red curved arrows in (a), (c),
(f), and (h) indicate the point movement in counterclockwise
direction. The x coordinates of the next contour point in (c)
and (f) should be smaller than the current one, whereas those
in (a) and (h) should be larger.

3.1. Detection of Left-Side and Right-Side Contour
Points

Given a properly segmented region, contour detection refers
to the identification of the outer boundary points of the re-
gion. In the proposed algorithm, instead of detecting all con-
tour points, only the left- and the right-side contour points are
initially detected. As each scan line of the image (i.e., im-
age row) is processed in the right-to-left traversal direction,
if a background pixel is followed by an object pixel, we de-
clare the object pixel a right-side contour point. On the other
hand, if an object pixel is followed by a background pixel, we
declare the object pixel to be a left-side contour point. Fig-
ure 3(a) illustrates the idea of the left- and the right-side con-
tour points where the segmented object region is represented
by gray pixels, the background by white pixels, the contour
points by darker gray pixels, the left-side contour points by
those with green numbers, and the right-side contour points
by those with red numbers. From now on, we will call the left-
side contour points as L-points, the right-side contour points
as R-points, and together as LR-points. We will loosely use
the term LR-points in the sense that an LR-point could either
be an L-point or an R-point. We will also assume that individ-
ual scan lines of the image are processed from top to bottom
and that the pixels in each scan line is processed from right
to left. The index numbers of LR-points shown in Figure 3(a)
indicate the order at which each LR-point is detected.

The information of LR-points are stored in four line mem-

(a) (b)

Fig. 3. (a) A segmented object region in an image. The object region is represented by gray pixels, the background by white
pixels, the contour points by darker gray pixels, the left-side contour points by those with green numbers, and the right-side
contour points by those with red numbers. (b) The corresponding information of the LR-points in the object shown in (a).
The information is stored in four line memories, X , Y , N , H . The arrows in the top illustrate the re-ordering procedure.The
coordinates of the re-ordered LR-points are stored in the last two line memories X’ and Y’.

ories that we call X , Y , N , and H in the order they are de-
tected (see Figure 3(b)). We will call the immediate neighbor
of a point in the storage as the storage neighbor and the neigh-
bor along the contour the contour neighbor. Obviously, not all
contour neighbors will be immediately connected in the im-
age. For example, the points 1 and 2 in Figure 3 are storage
neighbors and the points 3 and 7 are contour neighbors. In the
next section, we will describe how we can re-order the stor-
age so that two consecutive LR-points in the list are contour-
neighbors. The line memories X and Y contain the x- and y-
coordinates of the LR-points, respectively. The line memory
N contains the total number of LR-points detected in the re-
spective scan line. Note that when a scan line has an isolated
object pixel, it is either because the scan line contains an ex-
tremal contour point or because the scan line cuts through the
crossing point of an 8-like figure. In either case, the isolated
object pixel will be counted in both the object-to-background
and the background-to-object transition. Therefore, the value
stored in N in this case will be 2. Including this extremal
case, the value stored in N is always even. Moreover, we
set the sign of the value in N to distinguish between L-points
and R-points; we assign a positive sign to L-points and a neg-
ative sign to R-points as illustrated in Figure 3(b). Note that
the sign of the N value also indicates the vertical direction of
the next contour neighbor. The exceptions are the L-points
having an R-point as the next contour neighbor and the R-
points having an L-point as the next contour neighbor. With
the counterclockwise contour tracing direction, the connected
L-points move along the positive Y direction, thus the posi-
tive sign of the value in N . On the other hand, the R-points
move along the negative Y direction, thus the negative sign.

The fourth line memoryH contains the information of the

horizontal direction of the next contour neighbor, which can
be determined by fitting a 2 by 2 window around the point
and determine the corner information at the point of interest.
There are eight possible corners as shown at the top of Fig. 4.
Again, the gray pixels belong to the object region and white
pixels to background. The point of interest is indicated by
the darker gray pixel. Since we are only interested in the hor-
izontal direction of the next contour point, we only need to
consider four out of eight cases, namely the cases (a), (c), (f),
and (h). Among these four cases, (a) and (h) represent the
cases when the next contour point moves towards the positive
X direction whereas (c) and (f) are the cases when the next
contour point moves towards the negative X direction. If a
point does not belong to any of these four cases, then there is
no horizontal movement to the next contour neighbor (there is
only a vertical movement). Some examples of these corners
are shown in the bottom of Fig. 4.

In our current implementation, three line memories are
used to store three image scan lines. For each point, a 2 by
2 window is fitted around the point to determine the corner
information. Noticing that the cases (a) and (f) only occur
to the R-points and (c) and (h) only to the L-points, this pro-
cedure is further speeded up by checking only two cases per
point. For the points that were determined to have positive
horizontal movement, ’+’ is assigned in H , and those with
negative horizontal movement, ’-’ is assigned, and those with
no horizontal movement, ’0’ is assigned.

3.2. Reordering Left-Side and Right-Side Contour Points

With the four line memories that contain the information of
the LR-points, the sequence of LR-points is re-ordered in the

counterclockwise as follows. We will describe the re-ordering
algorithm with the help of the example shown in Fig. 3. Let
us first define some notations. Let pt(i) = (x(i), y(i)) be the
x and y coordinates of the i-th point stored in the X and Y
line memories, n(i) and h(i) the corresponding values in N
and H , respectively, of the point.

First, the starting index point needs to be determined.
Note that the starting index can be any number less than the
total number of the detected LR-points. In our example, we
will choose index 1 as the starting point. Thus, the x- and y-
coordinates of pt(1) is copied to the first position in X ′ and
Y ′.

The next step is to find the N value of the adjacent scan
line of the current point. The adjacent scan line of an L-
point is the scan line below (since the vertical direction of
the contour-neighbor of an L-point is in the positive Y direc-
tion), and the adjacent scan line of an R-point is the scan line
above. From the current point position in the storage, we can
jump either 2 steps forward (in the case the current point is
an L-point) or 2 steps backward (in the case of an R-point),
until there is a change in the y-coordinate value. For exam-
ple, starting from pt(1), since it is an L-point, jumping 2 steps
forward takes us to pt(3). Since y(1) 6= y(3), we know we
have reached to a point in the adjacent scan line. TheN value
at this point is the number of LR-points in the adjacent scan
line.

Once we have the N value of the adjacent scan line,
denoted as m, the next step is to identify the next contour
neighbor. It is not difficult to see that all possible candi-
dates for the next contour neighbor are the points with even
index numbers between i + n(i) and i + m, along with
the two storage neighbors of i. More formally, a set of
the indices of all possible candidates can be expressed as:
K = {i + k | k ∈ evennumbers ∧ min(n(i),m) ≤ k ≤
max(n(i),m)} ∪ {i+ 1, i− 1}. Out of these possible candi-
dates, we can discard some points by checking the values in
H . Recall that h(i) indicates the horizontal direction of the
next contour neighbor of the i-th point. Thus, if h(i) = −,
then the x coordinate of the next contour neighbor must be
less than that of the i-th point. Similarly, if h(i) = +, then
the x coordinate of the next contour neighbor must be greater
than that of the i-th point. All candidate points that do not sat-
isfy any of these conditions are discarded. For example, let’s
say the current point is pt(3) in Fig. 3. All possible candidates
for the next contour neighbor of pt(3) is {2, 4, 5, 7}. Out of
these candidates, only pt(7) satisfies the constraint posed by
h(3) (i.e., h(3) = − and x(3) > x(7)).

There may be some cases where the constraint posed by
the H value does not eliminate all false candidates. In this
case, we compute the distance between the current point and
each of the remaining candidate points. The candidate with
the smallest distance is chosen as the next contour neighbor.
For example, let’s say that the current point is pt(6). Since
it is an R-point, its adjacent scan line is the image row 2 (the

Algorithm 1 Pseudo code of the proposed contour extraction
algorithm

Initialize 6 line memories (X,Y ,N,H,X′,Y ′)
// LR-Points Detection (Section 3.1)
for each image scan line

Hold the current scanline and two adjacent scanlines
in the buffer

Detect LR-points
Fill in X,Y ,N, and H

// LR-Points Re-ordering (Section 3.2)
i=i0 // i is the index of the current point

// i0 can be any number less than the total number
// of LR-points

j=0
do

X′(j)=X(i)
Y ′(j)=Y (i)
m = N value of the adjacent scan line
K = {all even numbers between n(i) and m, i+1, i-1}
for each k∈K

if (x(i)-x(k) > 0 && h(i)==’+’)
Discard k from K

if (x(i)-x(k) < 0 && h(i)==’-’)
Discard k from K

for each k∈K
compute the distance between pt(i) and pt(k)

i = the index of the point with the minimum distance
j++

while i 6= i0

third row of the image). Therefore, all possible candidates for
the next contour neighbor of pt(6) is {5, 7, 2, 4}. Out of these
points, only pt(7) is eliminated by the H value constraint.
Among the remaining three points, pt(5) is closest to pt(6),
thus pt(5) is chosen as the next contour neighbor.

All the above steps are continued until the current point
reaches to the original starting point. The pseudo code of the
proposed algorithm is outlined in Algorithm 1.

In the detection and reordering procedures described so
far, we have assumed that the total number of the detected
LR-points fits in a single line memory size. If it is not the
case, however, then we could either use additional line mem-
ories to store the remaining LR-points or downsample them
by taking, for example, every second or third scan line. In the
former case, the contour reordering algorithm should be able
to deal with two or more line memories as a single circular
array during its reordering procedure.

3.3. Full Contour Extraction

Once we have the re-ordered list of LR-points, we can ob-
tain the complete list of contour points by inserting additional
points between two consecutive LR-points in the list that are
not connected in the image. For example, although pt(15)
and pt(14) are adjacent to each other in the re-ordered list,
they are not pixel-wise neighbors. A complete list of contour
points can be obtained by applying a set of rules for insert-
ing additional points between two disconnected LR-points.
However, depending on the point insertion rules, the result-
ing contour may be slightly different than the true contour of
the object. For example, applying a simple rule of connect-

ing two disconnected LR-points on the same row can create
correct contour points, for example, for the case of between
pt(15) and pt(14) or incorrect contour points for the case of
between pt(6) and pt(5). One possible way to alleviate this
problem would be to utilize the corner information that we
obtain during the LR-points detection step.

3.4. Discussion on the Proposed Contour Extraction Al-
gorithm

The procedure we have described so far is for the case when
the image contains a single object whose boundary needs to
be extracted as a closed contour. However, the procedure ex-
tends easily to the case of multiple objects. Note that the con-
tour tracing procedure we described above must always return
back to the start point. If a contour returns back to its start
point and there are still some boundary points unaccounted
for, then starting a second boundary trace with any one of
those previously unvisited points will extract the next bound-
ary contour. We should also mention that image noise caused
contours can be discarded during contour tracing by placing
a threshold on the minimal acceptable length of a contour.

The contour extraction algorithm described above is sum-
marized in Algorithm 1. It can detect and reorder all the con-
tour points of the scene objects regardless of their shape and
the starting point of the reordering. If desired, this algorithm
can also be implemented on general-purpose processors.

Our proposed method is advantageous not only because
it needs to hold only three consecutive input lines at once
instead of storing an entire image and processes them in an
SIMD fashion, but also because it reduces the number of
boundary points to be processed to some extent depending
on the shape of the object. Since it actually processes only
the end points of the horizontal line segments detected as ob-
jects in a row, it just skips the processing of all the internal
points of the horizontal line segment, directly going to the
next boundary point of the next scanline. Thus, the more there
are horizontal line segments in an image, the smaller the num-
ber of boundary points are stored and processed, which cause
better performance with respect to the size of the input. It
is because the performance of the contour tracing algorithm
generally depends on the number of points to be processed.

4. EXTRACTING THE CURVATURE SCALE SPACE

We will now show how the contour extraction procedure of
the previous section can be used to create a curvature scale
space (CSS) for the boundary contours in an image. The cur-
vature scale space is a multiscale, curvature-based shape rep-
resentation for planar curves. It utilizes the curvature zero-
crossings of a contour at multiple scales as shape features.
The curves at lower resolution are obtained through smooth-
ing with wider Gaussian kernels. The curvature scale space
representation was tested by comparing it with other several

shape description techniques on different image databases
[20]. On the basis of such comparative evaluations, it was
selected as a standard in the visual part of the MPEG7 stan-
dard.

4.1. Definition

Given a planar curve Γ = {(x(u), y(u)) | u ∈ [0, 1]}, a
smoothed (also referred to as evolved) version of the curve
is defined as:

Γσ = {rσ(u) = (xσ(u), yσ(u)) | u ∈ [0, 1]}

where

xσ(u) = x(u) ∗ wσ(u) =

∞∫
−∞

x(v)wσ(u− v)dv

yσ(u) = y(u) ∗ wσ(u) =

∞∫
−∞

y(v)wσ(u− v)dv.

In CSS, the weight function wσ(u) is a Gaussian of width σ:

wσ(u) =
1

σ
√

2π
e−u

2/2σ2
.

The curvature κσ(u) of Γσ at a particular scale σ is given by

κσ(u) =
ẋ(u)ÿ(u)− ẏ(u)ẍ(u)

(ẋ(u)2 + ẏ(u)2)3/2
.

The derivatives needed for the curvature calculation can be
computed by:

ẋσ(u) =
∂

∂u
(x(u) ∗ wσ(u)) = x(u) ∗ ẇσ(u)

ẍσ(u) =
∂2

∂u2
(x(u) ∗ wσ(u)) = x(u) ∗ ẅσ(u)

with similar forms for ẏσ(u) and ÿσ(u). Since the derivatives
of the Gaussian kernel can be precomputed, the curvature can
be computed more easily by:

κσ(u) =
ẋσ(u)ÿσ(u)− ẍσ(u)ẏσ(u)

(ẋ2
σ(u) + ẏ2

σ(u))3/2
.

The curvature zero crossings are localized along the scale di-
mension. If we trace the location of these zero crossings in
the (u, σ) space, we get what is referred to as the CSS image.
In the CSS image, the zero crossings merge as the scale in-
creases, as shown in Fig.5. The CSS descriptor is defined as
the coordinates of the merged points in the (u, σ) space if the
points are not generated by noise.

Fig. 5. Contour evolution and the CSS image: (a) Smooth-
ing of a planar curve with wider Gaussian kernels; (b) The
corresponding CSS image plotted in (u-σ) space. These are
reprinted from [21].

4.2. Computing the Derivatives on SIMD Processors

The extraction of the curvature scale space generally requires
that Gaussian filtering be applied 50 to 100 times. With re-
gard to the filtering calculations, a single multiplication or
addition for 320 elements can be done in one cycle on IC3D.
Exploiting this parallelity, an efficient filtering procedure with
a single kernel can be implemented in a recursive fashion by
using the output of the previous result.

The computation of curvature of the evolved contours en-
tails the computation of the first and the second derivatives
with multiple divisions. Since division is computationally ex-
pensive and inaccurate on IC3D, it should be avoided as much
as possible. Moreover, even a small loss of precision in sin-
gle filtering step may result in high inaccuracy in the output
of a recursive filtering calculation. Therefore it is important
that smoothing in linear scale space be carried out with high
precision.

The WiCa has limitations on the precision with which
numbers can be represented in the SIMD processor. The
WiCa can only use a 10 bit number representation in its LPA,
which gives it an integer range from -511 to 511. Also,
there is no support for handling the overflow during the com-
putations in LPA. Moreover, due to the real-time operation
of WiCa, every processing element is driven by and syn-
chronized to the inputs from the sensor. One video line is
transferred from the sensor to the Xetal processor at each
clock cycle. Thus, the basic storage block of the Xetal pro-
gram is a single video line. Since Xetal runs at between
80 ∼ 100MHz with 30 fps with 480 video lines per frame,
the maximum number of clock cycles between the capture
of the successive video lines is roughly 6000. If the num-
ber of instructions in a per-video line program block exceeds
this number, the next input video line from the sensor will be
missed, which may crash the whole program.

In what follows, we introduce a way of overcoming these
limitations to achieve high-precision Gaussian filtering and
the curvature zero-crossing localization on SIMD processors
while completely avoiding division operations.

4.3. Gaussian smoothing

To implement Gaussian filtering with the required preci-
sion, we employ a number representation along with over-
flow control using two line memories: one for the higher bits,
LmemH , and the other for the lower bits, LmemL. To carry
the overflow from LmemL into LmemH , one bit in LmemL

is used to mark the occurrence of the overflow. Also, since the
sign bit in LmemL is redundant with that in LmemH , only 8
bits are available for the lower bits. (Recall that each element
in a line memory is represented by 10 bits.) Thus, the new
two line-memory based number representation uses 18 bits.
In this paper, the higher 10 bits are used for the integer part
and the lower 8 bits for the fractional part. This gives us a
range of -511.996 to 511.996 for representing numbers. This
number representation entails a precision of 1/28 = 0.0039.

With this extended number system, a suitable multiplica-
tion scheme for linear filtering is devised with overflow con-
trol. We assume that the initial input data, which are the coor-
dinates of the boundary pixels in this application, are of inte-
ger type and that the result of the multiplication between the
input data and the coefficients of a linear filter ranges from
-511.996 to 511.996. Let Signal be an integer type Lmem
data, and Coef one of the original coefficients of a linear fil-
ter. For high-precision computation, Coef is multiplied by 28,
and split into the integer part, intCoef, and the fractional part,
fixedCoef. The output will be two line memories, LmemH

and LmemL. The multiplication between Signal and intCoef
is carried out using multiple additions and stored in LmemL.
Whenever the value in LmemL is greater than 255, we have
a carry that is transferred to LmemH . Signal is also mul-
tiplied by fixedCoef and added to LmemL with carry con-
trol. All these Lmem-based computations are carried out on
an element-wise basis. If Signal is multiplied with all the fil-
ter coefficients using this scheme and added up, then filtering
will be carried out without loss of precision (subject to our as-
sumptions regarding the range of the multiplies). Since Coef
is already multiplied by 28, the final result should be shifted to
the right by 8 bit. Instead of doing it, if we take only LmemH

as the result, then it will be the integer part of the result of
the multiplication while LmemL will be the fractional part.
The accurate multiplication algorithm is briefly summarized
in Algorithm 2.

While this high-precision multiplication scheme benefits
the accuracy of the filtering operations, it does involve a com-
putational overhead. Checking whether or not there is a carry
in each operation during the multiple additions required for
multiplication demands is obviously burdensome. This ad-
ditional computational overhead means that filtering opera-
tions related to one video line cannot be completed before the
next video line must be scanned in — since it entails using
more than 6000 machine cycles. One way to get around this
problem is to multiply Coef by 27 or 26 instead of 28. That
reduces the number of additions to be used for the multipli-

Algorithm 2 High-precision multiplication on LPA
AccurateMUL(Signal, intCoef, fixedCoef)
// Signal : integer-type data
// intCoef : integer part of 256*Coef
// fixedCoef : fixed point part of 256*Coef
// Note: Every computation is done in element-wise
LmemH = output Lmem for integer (higher 10 bits)
LmemL = output Lmem for fixed point (lower 8 bits)
// Compute integer multiplication
for i = 0...intCoef

LmemL += Signal
if LmemL > 255, then transfer carry to LmemH

// Compute fixed point multiplication
LmemL += Signal * fixedCoef
if LmemL > 255, then transfer carry to LmemH

Fig. 6. The curvature zero-crossings from real curvature com-
putation and its simplified version.

cation steps. Another way to deal with the problem is to dis-
tribute the computational load over several video lines. In this
paper, the latter method is used so that completing one Gaus-
sian filtering takes about 6 video lines in a recursive fashion.

4.4. Localization of Curvature Zero Crossings

The localization of curvature zero-crossings can be simplified
by using an approximation scheme identifying the convexity
and concavity of the curvature. The simplification is based
on the fact that only the sign of the curvatures needs to be
determined to obtain the curvature zero-crossings.

Curvature, κ(i), is defined as the rate of change of the

tangent angle φ(i). That is, κ(i) = lim
h→0

φ

h
=
dφ(i)
di

.

Let m(i) be the gradient of the tangent line at ith point.

Then m(i) = tanφ(i) =
dy

dx
and

dφ(i)
di

=
d

di
arctanm(i) =

1
1 +m(i)2

d

di
m(i)

= f(i)
d

di
m(i) , where f(i) =

1
1 +m(i)2

.

Since the differentiation of discrete data is defined as the fol-
lowing:

d

di
m(i) = lim

h→0

m(i)−m(i+ h)
h

≈ m(i− h)−m(i+ h)
2h

dx

di
≈ x(i+ h)− x(i− h)

2h
,
dy

di
≈ y(i+ h)− y(i− h)

2h
,

the first derivative of the gradient can be written as:
d

di
m(i) =

g(i)
h(i)

, where

g(i) = (y(i)− y(i− 2h))(x(i+ 2h)− x(i))
−(y(i+ 2h)− y(i))(x(i)− x(i− 2h))

h(i) = 2(x(i)− x(i− 2h))(x(i+ 2h)− x(i)).

Thus, combining these equations, the identification of the
convexity and concavity of curvatures is simplified as the fol-
lowing without involving any divisions:

sign(κ(i)) = sign(
dφ(i)
di

) = sign(f(i)
d

di
m(i))

= sign(
d

di
m(i)) , since f(i) > 0

= sign(
g(i)
h(i)

)

= sign(g(i))× sign(h(i)).

The determination of the sign of the curvature using both real
curvature computation and this simplification scheme was
tested using MATLAB, as shown in Fig.6. The result shows
that this simplified scheme is appropriate for localizing cur-
vature zero-crossings.

Since this simplification is based on the gradient of tan-
gent lines, the sign of the curvature becomes unreliable when
a tangent line is close to either the horizontal or the vertical
axis. In such cases, then the contour coordinates can be ro-
tated by 45 degree to get stable results.

The convexity or concavity of the curvature may also be
determined using the Gaussian derivatives as kernels. How-
ever, that would double the computational load since we
would need to carry out two filtering operations at every scale:
with the first and the second derivatives of the Gaussian.
Since differentiation is much cheaper than high-precision fil-
tering, we have used the the former in this paper.

5. DEMONSTRATION

The demonstration consists of two parts: one for contour ex-
traction and the other for the curvature scale space. The in-
tegration of these algorithms with proper object segmentation

Fig. 8. The curvature zero-crossings on smoothed contours: The leftmost figure is the image of a 3D synthetic human model.
Starting with the second left, the bold green contour segments indicate concave curvature and the thin red contour segments the
convex curvature. From the left: σ= 8, 40, 120.

Fig. 7. The extracted contours of the segmented objects. The
left-side contour points are marked in red whereas the right-
side are in green. The highlighted bold green points move
along the contour sequentially; we show these to help the
reader visualize how the points are ordered.

and shape matching remains as future work. All programs are
written in XTC language. The size of the image processed by
the WiCa is 640 by 480 pixels (VGA). An LCD screen is con-
nected to the camera for debugging purposes so that we can
observe the intermediate results that are internally available.
The display shows them in the VGA format.

5.1. Experiments with Contour Extraction

The segmented regions are fed from a PC into the DPRAM.
The images are binarized so that the objects have white pix-
els and the background black. Then, the algorithm reads the
image from the DPRAM at the same speed that would be the
case if the image had been captured directly by the input sen-
sor. (On the PC, a GUI program called WiCaEnv is used to
send the images via a USB port for the experiment. This could
also be done through wireless if we used the Zigbee module.)
The contour extraction algorithm runs at 30 frames per sec-
ond on the camera. Fig. 7 shows the extracted contours from
two binarized images. To test the algorithm, the images are
significantly deformed intentionally to be more complicated.
Although it is hard to check how the contour points are or-
dered from the figures, we highlight each point sequentially
as it is ordered. This creates an impression of the points mov-
ing along the contour.

5.2. Mapping of curvature Scale Space

We again feed the necessary data from a PC using the
WiCaEnv program. A synthetic 3D human model is created
and projected on the image plane of a hypothetical camera.
Then we extract the ordered contour points using the OpenCV
library — this will be replaced by our contour extraction algo-
rithm in future experiments. After the ordered contour points
are written in DPRAM, the curvature scale space algorithm
retrieves them and performs Gaussian smoothing while local-
izing the curvature zero-crossings. In Fig.8, the leftmost im-
age shows the projected 3D human model. Starting with the
second-left image, we show the gradually smoothed contours
of the model. The points in the concave curve segments are
shown as bold and highlighted in green, whereas those in the
convex curve segments are thinned and marked as red.

The algorithm runs on the WiCa at 15 frames per second
because of the high-precision Gaussian smoothing. Currently,
the contours evolve recursively using a single Gaussian ker-
nel with a standard deviation of 4.0. (The smoothed contours
will evolve more slowly if we used a narrower kernel.) The
performance of this algorithm could be improved further by
optimizing the code.

6. CONCLUSION

The implementation of real-time vision algorithms in embed-
ded systems requires a careful balance between accuracy and
speed. As to what challenges are created with regarding to
the achievement of this balance depends on the architecture
of the embedded system. Our paper presented the difficulties
faced and the solutions thereof when one tries to implement
contour extraction on the SIMD processor of the WiCa cam-
era. Our paper also showed how it is possible to extract the
curvature scale space on this processor and introduced an ex-
tended number representation for that purpose. The calcula-
tion of curvature scale space entails linear filtering — a step
that is particularly prone to errors if implemented with limited
precision.

7. REFERENCES

[1] H. Fatemi, R. Kleihorst, H. Corporaal, and P. Jonker,
“Real time face recognition on a smart camera,” in
Advanced Concepts for Intelligent Vision Systems,
ACIVS’03, 2003.

[2] X. Gao, R. Kleihorst, and B. Schueler, “Implementa-
tion of auto-rectification and depth estimation of stereo
video in a real-time smart camera system,” in Fourth
Workshop on Embedded Computer Vision in conjunc-
tion with CVPR, to be appeared, 2008.

[3] C. Wu, H. Aghajan, and R. Kleihorst, “Mapping vi-
sion algorithms on simd architecture smart cameras,”
in First ACM/IEEE International Conference on Dis-
tributed Smart Cameras, ICDSC ’07, Sep 2007, pp. 27–
34.

[4] R. Kleihorst, A. Danilin, and B. Schueler, “Wireless
smart camera with high performance vision system,”
Telematik, pp. 3:20–25, 2006.

[5] I. Bartolini, P. Ciaccia, and M. Patella, “Warp: Accu-
rate retrieval of shapes using phase of fourier descrip-
tors and time warping distance,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 27, pp.
142–147, 2005.

[6] G.C.H. Chuang and C.C.J. Kuo, “Wavelet descriptor of
planar curves: theory and applications,” IEEE Trans-
actions on Image Processing, vol. 5, no. 1, pp. 56–70,
1996.

[7] S. Belongie, J. Malik, and J. Puzicha, “Shape match-
ing and object recognition using shape contexts,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 4, pp. 509–522, 2002.

[8] F. Mokhtarian and A.K. Mackworth, “A theory of mul-
tiscale, curvature-based shape representation for planar
curves,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 14, no. 8, pp. 789–805, 1992.

[9] M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Ac-
tive contour models,” International Journal of Com-
puter Vision, vol. 1, no. 4, pp. 321–331, 1988.

[10] J. Malik and S. Russell, “A machine vision based
surveillance system,” University of California, Berke-
ley, PATH Project MOU-83 Final Report, 1994.

[11] M. Yokoyama and T. Poggio, “A contour-based mov-
ing object detection and tracking,” in 2nd Joint IEEE
International Workshop on Visual Surveillance and Per-
formance Evaluation of Tracking and Surveillance, oct
2005, pp. 271–276.

[12] N. Paragios and R. Deriche, “Geodesic active contours
and level sets for the detection and tracking of moving
objects,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 22, no. 3, pp. 266–280, 2000.

[13] J. Liang, T. McInerney, and D. Terzopoulos, “United
snakes,” Medical Image Analysis, vol. 10, no. 2, pp.
215–233, apr 2006.

[14] H. Freeman and A. Saghri, “Generalized chain codes for
planar curves,” in the Fourth International Joint Confer-
ence on Pattern Recognition, Nov 1978, pp. 701–703.

[15] M. Ren, J. Yang, and H. Sun, “Tracing boundary con-
tours in a binary image,” Image and Vision Computing,
vol. 20, no. 2, pp. 125–131, 2002.

[16] K. Ratnayake and A. Amer, “A real-time implementa-
tion of chaotic contour tracing and filling of video ob-
jects on reconfigurable hardware,” in IEEE Interna-
tional Conference on Systems, Man and Cybernetics,
ISIC, Oct 2007, pp. 1089–1094.

[17] David W. Capson, “An improved algorithm for the se-
quential extraction of boundaries from a raster scan,”
Computer vision, graphics, and image processing, vol.
28, no. 1, pp. 109–125, 1984.

[18] T.Chia, K. Wanga, L. Chenb, and Z. Chenb, “A parallel
algorithm for generating chain code of objects in binary
images,” Information Sciences, vol. 149, no. 4, pp. 219–
234, 2003.

[19] J. Freixenet, X. Munoz, D. Raba, J. Marti, and X. Cufi,
“Yet another survey on image segmentation: Region and
boundary information integration,” Computer Vision -
ECCV 2002, pp. 408–422.

[20] M. Bober, “Mpeg-7 visual shape descriptors,” IEEE
Transactions on Circuits and Systems for Video Tech-
nology, vol. 11, no. 6, pp. 716–719, 2001.

[21] S. Abbasi, F. Mokhtarian, and J. Kittler, “Curvature
scale space image in shape similarity retrieval,” Mul-
timedia Systems, vol. 7, no. 6, pp. 467–476, 1999.

