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Integrating Sensing, Task Planning, and 
Execution for Robotic Assembly 

Chao-Ping Tung, Member, IEEE, and Avinash C. Kak, Member, IEEE 

Abstract-This paper deals with enhancing the level of au- 
tonomy in a robotic work cell. With that mission in mind, 
we present here an integrated framework for the sensing, the 
planning, and the execution aspects of assembly. In experimental 
demonstrations of this system on a PUMA762, we can now 
throw objects randomly into the workspace of the robot and the 
robot then automatically synthesizes a manipulation plan that 
includes the operations of sensing, grasping, and regrasping. Each 
operation is invoked only when it is deemed necessary for the 
successful execution of assembly. 

I. INTRODUCTION 

WEN the rather frequently expressed doubt these days G about the merit of injecting artificial intelligence into 
robotics, we need to demonstrate at the very outset what our 
system can really do by way of useful experiments. The reader 
will probably agree with us that if the industrial revolution 
that was supposed to be heralded by robotics is ever to come 
to fruition, robotic assembly will have to be shown to be 
as free as possible of the accouterments of hard automation. 
We believe that experiments demonstrating robots performing 
complex assemblies from parts placed in random positions 
and orientations would serve as automation benchmarks for 
the future. Evidently, such robots would have to synthesize 
their own manipulation sequences, invoking sensors only when 
necessary, using fixtures only when needed, etc. 

Consider the following experiment that we can now do 
effortlessly on our robot, a PUMA 762 arm. We throw the parts 
of an assembly in front of the robot so that they land on the 
work surface in random poses and random locations within an 
area that is kinematically accessible to the robot. Admittedly, 
at this time, these parts are simple (Fig. l), but still we believe 
that for a robot to come up with all the grasping, putdown, 
pickup, regrasping, mating, fixturing, and sensor-selection 
operations automatically, and without human intervention, is 
no small accomplishment. Furthermore, the system is capable 
of learning assembly goals automatically-the human user can 
specify assembly goals to the robot by wearing a DataGlove 
and performing the task. The system observes the assembly 
motion through the signals received from the glove and then 
deduces the assembly goal. Fig. 2(b) is a snapshot of the sys- 
tem learning the assembly goal of Fig. 2(a). Shown in Fig. 3 
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Fig. 1. Parts for assembly. 

is a sequence of photos showing a human operator throwing 
two parts in front of the robot and the robot then assembling 
the parts to form the assembly shown in Fig. 2(a) using an 
automatically generated manipulation program. Further details 
describing the sequence of steps shown in Fig. 3 are presented 
in the Appendix. 

This accomplishment is an advance-conceptually, theo- 
retically, and experimentally-over SPAR, an earlier system 
to come out of our laboratory [18]. For one, the current 
system, called the integrated robotic assembly system (IRAS), 
incorporates fixturing in its planning process; that means the 
new planner has to reason about how and when to place objects 
in the fixture. Also, in SPAR a human had to supply to the 
planner the initial positions and orientations of all the parts 
needed for the assembly, which necessitated that these objects 
not be disturbed during the execution. In the new planner 
reported here, the planner automatically adds sensory requests 
to search the work area for the needed parts and takes into 
account the fact that prior actions may disturb the poses of 
other objects. Another shortcoming of SPAR was that it did 
not take space into account specifically during the planning 
process. Although SPAR did check the lunematic feasibility of 
reaching a part for pickup, it did not account for the kinematic 
constraints for the approach point, nor did it take into account 
explicitly the locations for object placement for putdown 
operations-an important consideration for regrasping. Thus, 
the regrasping steps generated by SPAR were not always 
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Fig. 2. A snapshot of the system learning an assembly goal. (a) An assembly 
example involving a fixture. (b) User specifying the assembly of (a) using a 
DataGlove. 

feasible for the robot. Even if regrasping is not necessary, the 
grasping step may still fail because the robot cannot reach the 
approach point for pickup. We have rectified this deficiency 
in IRAS. There exist many additional important differences 
between SPAR and IRAS, many of them dealing with the 
issue of computational efficiency; some of these are included 
in the discussion that follows. 

In the rest of this paper, in Section I1 we give the reader an 
overview of the reasoning and control architecture of IRAS 
that makes possible the kinds of experiments we discussed 
above. Section 111 then surveys the related work published to 
date. Since representation is a key to how efficiently planning 
and reasoning can be carried out, Section IV discusses how 
the various entities of IRAS are represented. Section V goes 
into the issue of how the destination pose of an object that 
is supposed to be fixtured can be computed. In Section VI, 
we then take up the subject of uncertainties associated with 
the various entities. Section VI1 presents the assembly task 
planner; the purpose of this planner is to generate that part 
of the plan that is independent of highly variable parameters 
such as the initial positions and orientations of the objects to be 
assembled. Subsequently, Section VI11 shows how the partial 

plan of Section VI1 can be augmented and further constrained 
to yield a truly executable plan. In Section IX, we then proceed 
to sensory and error-recovery issues. Finally, in Section X we 
present the conclusions. 

11. OVERVIEW OF IRAS 

Shown in Fig. 4 is a top-level view of the architecture of 
IRAS. The system is implemented as communicating processes 
in PROLOG, C, and LISP, all running in a UNIX environment. 
The planning system, running on a Sun workstation, controls 
a PUMA 762 robot. A forceltorque sensor and a pneumatic 
fixture are used to aid the assembly. Visual sensing takes 
place with the help of two cameras; one, mounted permanently 
overhead, has a view of the entire work area in front of the 
robot and the other, mountable in the gripper, is used for a 
closer look at the objects on as-needed basis. 

The system interacts with the user via the System Inteface, 
which is a graphics interface that allows the user to enter new 
assembly Goals and to update the Database of the system. The 
database represents the system’s knowledge of the work cell. 
Some of this knowledge is static in time, such as about the 
tools that the system can use, the locations and capacities of 
various storage bins, etc. This information constitutes part of 
the knowledge that is initially provided to the system. Other 
kinds of information, such as the positions and orientations 
of the objects in the work cell, are dynamic. These data are 
obtained by the system as it acts to achieve its goals. In other 
words, the contents of the database do not necessarily represent 
a complete knowledge about the world, but only those parts 
of the world that are deemed important by the system. 

The system satisfies the assembly goals by using an assem- 
bly task planner. It is a nonlinear, constraint posting planner 
[SI that uses the geometric specifications of the final assembly 
and the available tools of the work cell to generate flexible 
plans consisting of sensory-motor actions. These plans are 
general, in the sense that they list the possible poses and 
grasps that would permit a given assembly to be completed 
successfully. They are also flexible because the plans are gen- 
erated independently of the initial positions and orientations 
of the parts. Thus, these plans are also reusable, i.e., creating 
multiple instances of the same assembly requires the planner 
to only generate one plan, assuming that the available tools 
and fixtures have not changed. 

The plans generated by the assembly task planner are 
particularized to the specific conditions in the work cell by 
the assembly execution planner, which also schedules the 
appropriate action for execution. An action could either be 
a sensory request or an assembly operation. The sensory 
requests are issued to the sensors to obtain information about 
the current state of the work cell, such as the positions and 
orientations of certain parts. Whenever the physical limitations 
of the robot or the geometric constraints imposed by the initial 
position and orientation of an object prevent a planned action 
from being carried out immediately, the assembly execution 
planner augments the plan by generating the regrasping steps 
necessary to take the object from its current pose to that needed 
for assembly. 
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Fig. 3. Shown in (a) is a human throwing the parts in front of the robot such that their poses and locations are random. The sequence of photos 
from (b) to (1) shows the robot carrying out the assembly using an automatically generated manipulation program. Further details on the various frames 
shown here can be found in the Appendix. 

The actions that are scheduled for execution are carried 
out by the execution-monitor. The execution-monitor accom- 
plishes this by translating the actions into their corresponding 
actuator commands, sending them to the efsectors for execu- 
tion, and monitoring the execution process with the sensors. 
It is also used in conjunction with the assembly execution 
planner to perform error recovery. 

111. RELATED WORK 

Traditional approaches to planning for assembly have often 
been guided by the STRIPS assumption that the only agent 

that can bring about a change in the world is the robot, 
and that only the predicates specified in the descriptions of 
actions can modify the world state [12], [l]. The inputs to 
these kinds of systems usually consist of the desired goals 
and a complete description of the initial state, including the 
initial poses of the objects. Typically, these planners produce 
complete plans off-line, with the final plan being either a 
fixed sequence of actions, a partially ordered sequence, or a 
hypergraph containing all possible assembly sequences [ 121, 
[18], [28], [lo]. The sequence of preprogrammed plan steps 
thus generated is then executed by some sort of an execution- 
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Fig. 4. Block diagram of IRAS. 

monitoring module. However, on account of the dynamic 
nature of a work cell and the uncertaintities associated with 
the locations of objects, this approach tends to be inefficient 
and ineffective. 

Regarding the matter of scheduling actions needed for an as- 
sembly, some researchers have proposed adaptive approaches 
that supposedly increase the flexibility and robustness of an 
assembly system [14], [33]. In these architectures, a complete 
plan, generated off line, is downloaded into an adaptive 
scheduler unit for execution. Developers of these architectures 
have shown by simulations that the plans so devised can cope 
with unexpected events, like delays in the arrival of parts, 
by selecting applicable alternative actions. Being only action 
schedulers, these approaches do not address important issues 
such as planning for sensory requests, use of fixtures, and 
regrasping. Furthermore, because these systems have separated 
planning from execution, their ability to deal with unexpected 
events is limited, at least in the sense reported in [27] and [31]. 

Another approach to enhancing a robot’s ability to deal 
with unexpected events in the environment is to use reactive 
execution. This approach allows for fast (and supposedly 
robust) action in the absence of an explicit plan. Such systems 
first came into existence in mobile robotics [6] ,  [7] and their 
likes are now beginning to be reported for arm robots [22], 
[23]. In general, these system act as dynamic schedulers of 
actions and do not address the issue of automatic generation 
of the initial task plan. 

IV. REPRESENTATIONAL ISSUES 
It has long been recognized that the power of any symbolic 

reasoning and planning system depends ultimately on the 
representations employed for the various abstract and concrete 
entities involved. Yet, there do not exist any formal procedures 

Falk 
to satifi the goal: 

fixturd( Object, Fixture, ContactFacePairs, Pos, FPos ) 

ActionId, G1, G2 
generate unique identzj5ers for: 

compute the placement andfintured pose of the object: 

compute the valid grasps for the fixture operation: 
PTm, E m ,  WO 

OkGrasps 

ApproachPt 
retrieve the fixture’s approach point: 

add to the constraint network the geometric constraints: 
same-pose( Pos, PTm ), same-pose( FPos, FTm ) 

Temntatr?: 
action id: 

ActionId 
action name: 

fixture( Object, Fixture, ContactFacePairs, Pos, FPos ) 

preconditions: 
goal( G1, ActionId, [ available( Fixture, yes ) 1, [I, [I ) 
goal( G2, ActionId, [ holding( Object, Grasp, Location ) 1, 

[ member( Grasp, OkGrasps ) 1. 
[ reachable( Grasp, Pos, ApproachPt ) 1) 

uncertainty-check( fixture, [Fixture, Grasp, PTm, WO ] ) 

fixtured( Object, Fixture, ContactFacePairs, Pos, FPos ) 

available( Fixture, no ) 

add list: 

gripper( open ) 

delete list: 
holding( Object, Grasp, Location ) 
gripper( closed ) 
available( Fixture, yes ) 

Rule and template for the fixture action. Fig 5. 

for selecting the “best” representations. All one can do is to 
learn from the representations used by previous researchers 
and conjure up new ones to advance the state of the art. 

LRAS needs representations for actions, sensory-requests, 
goals, plans, nodes that inhabit the search space of plans, 
etc. For actions we have used, with minor modifications, the 
representation in SPAR [18]. Shown in Fig. 5 is the fixture 
action. The first part of the action consists of a rule that tells 
the system how to instantiate the various planning variables 
and that invokes a set of initial constraints. The second part 
of the action is the action template, in the style of a STRIPS 
action, that consists of a set of preconditions, an add list, and 
a delete list. The first line of the rule says that this action can 
be used to satisfy a goal of type fixtured(Object, Fixture, 
ContactFacePairs, Pos, FPos), where the first parameter of 
the goal, Object, is instantiated to an identifier for the object 
that needs to be fixtured; the second parameter, Fixture, is set 
to the identity of a fixture in the work area; the third parameter, 
ContactFacePairs, is set to the pairs of object and fixture faces 
that are in contact after the object is fixtured; the parameter Pos 
is set to the pose of the object as it is set down in the fixture; 
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and, finally, the parameter FPos is set to the value of the final 
pose of the object after the fixture clamps are activated. 

The precondition part of the action template uses a special 
syntax that was first used in SPAR. The precondition shown 
in Fig. 5 say, that the goals available(Fixture, yes) and 
holding(0bjec t, Grasp, Location) must be satisfied before 
the goal fixtured can be satisfied. Furthermore, the success 
of the fixturing operation depends on the uncertainty in the 
description of the object.' The arguments to the uncertainty- 
check predicate supply the necessary information for estimat- 
ing the uncertainty associated with the position and orientation 
of the object. This predicate can be invoked during execution 
time to ensure that the object's location falls within the 
tolerance that will allow the fixture operation to succeed. The 
issue of uncertainty reasoning will be discussed in greater 
detail in Section VI. 

The satisfaction of the second precondition goal of the 
fixture action is subject to constraints member(Grasp, Ok- 
grasps) and reachable(Grasp, Pos, ApproachPt), where Ap- 
proachPt is the approach point. The membership constraint is 
a geometric constraint, so termed because it is based entirely 
upon the geometric relationship between the object and the 
fixture. The other geometric constraints used are inpose-class 
and samepose; these are used to constrain the pose config- 
uration of the object. As a part of satisfying the precondition 
goals, the geometric constraints are sent to a constraint sat- 
isfaction network with all possible instantiations for the vari- 
ables involved. As explained in [8], finding mutually consistent 
instantiations for the variables is one of the basic tenets on 
which the constraint posting approach to planning is based. 

The reachable constraint, on the other hand, depends both 
on the initial position and orientation of the object as well 
as on the physical limitations of the robot manipulator. Thus, 
it is a kinematic constraint. The reachable constraint checks 
to ensure that the robot is able to reach both the approach 
point and the desired grasp point with the planned grasping 
configuration. The other kinematic constraint used by the 
system is mate. reachable, which accounts for the geometric 
and kinematic aspects of a mating operation. The kinematic 
constraints are useful for specifying the set of feasible grasp 
configurations for a particular situation in the work cell. 
These constrairts are not applied until execution time, as 
discussed further in Section VIII. A pictorial illustration of 
these constraints is given in Fig. 6. The rest of the action in 
Fig. 5 is self-explanatory. 

Other actions in the system-these would be actions for 
pickup, putdown, locate, assemble, and unfixture-are sim- 
ilar in form to the one shown here for fixture. 

We will now describe the nodes in the search space of plans; 
this should give the reader a clue as to how the search for a 
correct plan takes place. Each node is a partial plan containing 

'It has been our experience that it is not necessary to reason about 
uncertainties for binary assemblies for the kinds of simple objects shown 
in Fig. 1. However, if the uncertainties associated with the sensory reports 
regarding the positions and orientations of objects are large, planning of the 
kind reported in this paper would not succeed without an explicit accounting 
of the uncertainties in the manner discussed in Section VI. Due to the high 
quality of locational information gleaned from the vision sensors, the specific 
implementation of IRAS reported in this paper ignores uncertainties. 

(C) 

Fig. 6.  Pictorial illustration of the REACHABLE and MATEREACHABLE 
constraints. (a) A feasible approach point. (b) A feasible grasp. (c) A 
MATE_REACHABLE(Grasp, FixPos, MateTm, Approach) constraint. 

uninstantiated variables. A node consists of five separate 
entities: the list of pending goals, called the Goalstack; the 
list of actions planned so far, called the PlannedActions; the 
constraint networks generated so far from the root to the node 
in question; the list of satisfied goals by the PlannedActions; 
and the rationale that shows which action was used to satisfy 
each goal as it was transferred from the goal stack to the list 
of satisfied goals. 

We mentioned above that a part of the plan description at 
each node in the search space consists of constraint networks. 
Actually, there are only two networks that the planner has 
to keep track of. One of the networks deals with constraints 
pertaining to the permissible instantiations for plan variables 
such as grasps, object poses, object locations, etc. The other 
network partially orders the actions invoked so far in the search 
space with a prior-to relation. These descriptions for the two 
networks should give meaning to the statement that each node, 
being only a partial description of a plan, represents a family of 
plans. Therefore, any plan that does not violate the constraints 
in either of the networks, would be consistent with a given 
node. 



192 EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996 

Yo J 
~ x w  

Fig. 7. The object, world, and fixture coordinates and the pose for the placement of the object in the fixture. 

The successor nodes of each node, if they exist, are created 
by choosing the topmost goal in the goal stack and then 
determining whether an existing action in the PlannedActions 
list can be constrained to satisfy this goal. If that does not 
work, a new action is posted on PlannedActions and its 
preconditions pushed into the Goalstack. Because the addition 
of a new action may undo a previously satisfied goal, the 
planner checks the satisfied goals list, and any goal that 
is undone by the new action is moved to the Goalstack 
so that it can be resatisfied. Subsequently, the system must 
make sure that none of the previously posted actions will 
clobber the goal just transferred to the list of satisfied goals. 
If the goal will be clobbered, the system will invoke a 
declobbering strategy consisting of adding further constraints 
to the constraint database. For all of the different aspects of 
goal satisfaction and declobbering, the reader is referred to 181 
for further details. 

object, and noncoplanar contact face pairs f f ,  f;? and 
f z f ,  fg, where f,f and f; denote fixture face z and object 
face j ,  respectively. 

This information enables us to retrieve all the data needed to 
compute R. The following information is obtained from the 
fixture model database: ~1 and ~ 7 2 ,  the unit normals of the 
faces f f and fz f  , respectively; Tf  , the orientation and location 
of the fixture relative to the work cell. The object model 
database provides the values for the normals of the faces f;? 
and fi. The object normals are then transformed to the fixture 
coordinate frame by premultiplying the normals by TF Ro , 
where Ro is the transform that relates the object’s model frame 
relative to the world coordinate frame. An illustration of these 
relationships is shown in Fig. 7. 

be the unit normals of ff and fi expressed in 
the fixture coordinate, respectively. Then R is simply R2 RI, 
where RI and R2 are as described earlier. Thus, once we 
have determined the matrices RI and R2, we have solved the 

Let El and 

above problem. Since ff and ff form a contact face pair, 
they must have opposing normals after the object is placed in 
contact with the fixture. This means that R1 can be determined 

v. OBJECT POSE DETERMINATION FOR THE 
FIXTURE ACTION 

Before any fixture can be used to fix the position of an 
object, the object must be placed within the fixture. Thus, we 
need to compute the object’s destination pose in the fixture. In 
IRAS, the configuration of this pose is described by symbolic 
spatial relationships between those faces of the object and 
the fixture that come into contact with one another. Given 
the fixture-object contact face pairs, the planner computes a 
rotation matrix that is capable of transforming the object’s 
standard pose into the destination pose in the fixture. Two 
noncoplanar contact face pairs are sufficient to determine the 
orientation of the object relative to the fixture. We employ a 
two-step method to determine the orientation matrix, R. First, 
the rotation matrix, RI, that aligns the first of the contact face 
pairs is computed. Then, a rotation about the normal to this 
pair of planar faces, the matrix represented by R2, is computed 
that satisfies contact face requirement for the other pair. This 

by solving (1). In the discussion that follows, the coordinate 
frame of reference is the local fixture coordinate frame: 

R1 can be further decomposed and expressed as a product of 
two basic transformations. 

1) Rotate [I about either the x- or the z-axis so that its y 
component is the same as -71. 

2) Rotate this result about the y-axis so that another of the 
remaining components of the two normal vectors match. 

Denoting the result of steps 1 and 2 by RI  and rot(y,p), 
respectively. Then RI = rot(y,p)Al. Both of these steps 
require solving for the root of an equation of the form 

(2) F(8) = acosQ + bsin8 + e. 
section details how these computations are carried out. 

The problem of determining the rotation matrix that de- 
scribes the orientation of an object in a fixture can be formu- 
lated as follows. 

For example, if we want to rotate about the x-axis so that the 
y components of the two normals [ and -q match, then ( 3 )  
must be satisfied: 

0 0 
(3) 

Compute the rotation matrix R, which is the orientation 
of the object relative to the fixture, given the following 
information: the name of the fixture, the identity of the 
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In this case, the values of a ,  b, and c of (2) are &,, - E Z ,  and 
vY, respectively. These instances of (2) will always have a 
solution, 0 E [O,27r]. 

We modified the Brent algorithm in [26] to solve for the root 
of this nonlinear equation. This iterative algorithm employs 
the Van Wijngaarden-Dekker-Brent method, which allows one 
to find bracketed roots of a general one-dimensional function 
without having to compute the function's derivative. Since (2) 
can always be evaluated within the initial interval containing 
the root, this method is guaranteed to converge [3]. 

The rotation matrix R2 represents the rotation of the object 
about the normal 71 so that and 72 would become opposing 
normals, where is obtained by applying the transformation 
R1 to (2. Thus, R2 is constrained to satisfy 

-72 = R2E: (4) 

where R2 is rot(q1, a) .  We can visualize this process as 
transforming to coincide with -72. This is accomplished 
in four steps. 

1) Transform 71 so that it becomes parallel to the z-axis. 
2) Apply this transform to <; and 72. 
3) Rotate the transformed ,$ about the z-axis so that it 

4) Transform the coordinates back to the local fixture 

The transformation, R2, in step 1 is computed using the 
Brent method. Steps 2 and 3 are matrix multiplications and 
inverse tangent computations, respectively. R2 is the result of 
step 4, which can be represented by 

would match the transformed -72 axis. 

coordinate. 

where ro t (z ,$J )  is the result of step 3. An example that 
illustrates these computations is shown in Fig. 8. 

VI. PLANNING FOR UNCERTAINTY IN IRAS 

The representation scheme used in IRAS is capable of ac- 
commodating the uncertainties in a robotic work cell, although, 
as was mentioned before, for high-quality sensory information 
and for simple binary assemblies, the uncertainty framework 
can be bypassed, as was done for the specific implementation 
reported here. Uncertainty is handled by using variables that 
take on values from bounded sets. This approach is similar 
to the one presented in [18] and will be reported only briefly 
here. The following quantities are considered to be uncertain: 
the position and orientation of objects, fixtures, and the gripper 
of the robot. In this section, we will describe the representation 
scheme for these uncertain quantities. 

Regarding positional uncertainties, we assume that objects 
resting on the work table are in stable poses. Therefore, the 
only uncertainty in the orientation of an object resting on 
the table is the rotation about an axis perpendicular to the 
table. This axis is parallel to the Z-axis of the world coor- 
dinate in our implementation. The other uncertain quantities 
in the object description are the location of the object. These 
possible uncertainties are illustrated in Fig. 9. Homogeneous 
transformation matrices that are used to express the position 

R 
/ 

Zf 

Yf 

(d) 

Fig. 8. Solving for R for fixturing an object with a clamp (a) The contact 
face pars for the placement of an object in a clamp. (b) Intermediate result 
after solving for E1 (c) Solving for RL (d) Final pose of the object. 

-.+- 

X W  ( X + A X , Y  +AYo,Z+AZo) 

Fig. 9. 
a stable pose. 

Possible uncertainties in the position and orientation of an object in 

and orientation of an object can also be used for expressing 
the uncertainties associated with the position and orientation. 
For that purpose, the entries of these matrices are expressed in 
terms of the uncertain variables described above. The possible 
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(X + AXo, Y + AYg, Z + AZO) L’ 7fi i  (X+AX?,Y+AYt,Z) 

Fig. 11. Possible uncertainties in the configuration of the fixture. 

Fig. 10. Possible uncertamties in the configuration of the gnpper. 
same manner as that of the gripper. In order to do this, we 
must express the uncertainty of the fixture in terms of its 
local coordinate, as shown in Fig. 11. Let A o ,  denote the 
displacement uncertainty of the fixture in the world coordinate. 
Then its corresponding values in the fixture’s local coordinate 
can be expressed as 

positions and orientations of an object are obtained by substi- 
tuting valid values for its associated uncertain variables and 
then combining this information with the ideal position and 
orientation of the object. Using this formalism, the possible 
positions and orientations of an object resting on a work table 
are given by the following equation [18] 

i o t a  = T A ~ T ~ R A ~ R ,  ( 6 )  

where Tao defines the uncertainty in the location of the object 
relative to the world coordinate frame, RA, is the rotational 
uncertainty about the world Z-axis, and T, and R, are the 
ideal location and orientation of the object, respectively. The 

[AX, AY, 0 lIt = Ri lAOf  

where Rf is the ideal orientation of the fixture. Since the Z- 
axis of both the clamp and the world have the same direction, 
the rotational uncertainty in the clamp’s local coordinate frame 
is the same as its rotational uncertainty in the world frame. Let 
this be represented by the uncertainty variable A0,. Then the 
uncertainty transform for the fixture is 

uncertainty transform for TA, is 

/I 0 0 ax,\ 

\ 0 0 0  1 /  

and the uncertainty matrix for RA, is 

/cos(AO,) -sin(AQ,) 0 0 \  

where [AX, AY, AZO lIt and A0, are the dispacement and 
orientation uncertainty for the object, as shown in Fig. 9. 

Other quantities that we must consider are those related 
to the configuration of the gripper. As shown in Fig. 10, 
we consider the location of the tool center and the rotation 
about the Z-axis of the gripper’s local frame to be uncertain. 
Usually, the gripper uncertainty is less than the uncertainty 
in positions which are determined by the sensing system. The 
transformation matrix for the gripper uncertainty is given by 

/cos(AO,) -sin(AQ,) 0 AX,\ 

\ o  0 0 1 /  

where [AX, AY, AZ,lt and A8, are the dispacement and 
orientation uncertainty variables of the gripper. 

IRAS uses a computer-controlled pneumatic clamp for the 
fixturing operations. Since this fixture is placed on the work 
table, its 2-position in the world coordinate is known without 
ambiguity. However, its dispacement about the X -  and Y -  
axis, as well as the rotation about the Z-axis, are not exact. 
Since the clamp is essentially a stationary parallel-jaw gripper, 
we want to express the uncertainty of the fixture in the 

In an uncertain environment, the uncertainties associated 
with the object descriptions must be within certain bounds if 
the planned actions are to be assured of success. In this section, 
we will develop the conditions for the uncertain quantities 
which ensure that the planned actions can be carried out. The 
putdown action is assumed to always succeed, since IRAS 
only places objects at locations that are known to be clear 
on the worktable. Two other actions of IRAS, unfixture and 
locate, can always be executed regardless of the uncertainties 
in the object descriptions. Hence, only the following actions 
need to be considered: pickup, fixture, and assemble. 

The success of a pickup action depends on the possible 
locations and orientations of both the gripper and the object 
to be grasped. In particular, the two contact points on the 
object must lie between the two fingers of the gripper. This 
is satisfied if the grasp point of the object is located within a 
certain distance of the tool center of the gripper. 

We will now derive the necessary criteria for the success 
of the pickup action. A pictorial illustration of this is given 
in Fig. 12. Let P, be the grasp point in the object’s local 
coordinate frame. Then its possible value P, in the actual 
gripper coordinate frame is 

where lag and are given by (9) and (6), respectively, 
and 7,” is the ideal gripper configuration relative to the world. 
Let wg and w, be the width of the gripper opening and 
the distance between the two contact points on the object, 
respectively. If the two contact points are to lie between the 
fingers of the gripper, the Y-component of P, must be no 
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Fig. 12. 
for the gripper and the object, respectively, while 0, and 0, denote the actual local coordinate frames for the gripper and the object, respectively. 

Possible gripper coordinates and grasp point for a successful pickup action. The symbols 0, and 0, represent the ideal local coordinate frames 

further than (w, - w,)/2 away from 0,, i.e., 

--E < [O 1 0  OIP, < t (1 1) 

where E = (w, - w,)/2. 
The conditions under which a fixture operation will succeed 

are similar to those of the pickup action. In the fixture 
operation, the clamps close about the fixture point, whereas 
in the pickup action the fingers close about the grasp point. 
In IRAS, the object to be fixtured is held in the gripper just 
prior to the fixturing operation. Therefore, we need to convert 
the uncertainty from the gripper coordinate to the fixture 
coordinate. Let Po denote the position of the fixture point 
in the object's local coordinate. Then the possible locations of 
this point in the fixture's actual coordinate system is 

where 7af is given by 10, 7; is the ideal configuration of 
the object relative to the fixture, 7," is the ideal grasping 
configuration, and la is the uncertainty of the object in terms 
of the gripper coordinate. Using the same argument as those 
for the pickup action, we get the constraint for the fixture 
operation 

(13) 

where E = (w, - w o ) / 2 ,  and wf and w, are the width of 
the clamp opening and the distance between the two contact 
points on the object, respectively. 

The assemble action mates the object held in the gripper 
with another object fixtured with the clamp. In the current 
implementation, we only account for uncertainties in the 
assembly operations for mating an object with a round peg 
to an object with a round hole, as shown in Fig. 13. For 
mating operations of other kinds of assembly, we assume that 
the uncertainty tolerance is zero. As will be made clear in 
Section VIII, this will cause the fine motion planner to be 

--E < [O 1 0  O]Pf < E 

Y 
Fig. 13. 
assembly. 

The relationship between the peg and the hole in the peg-in-hole 

invoked to generate the motions for the assembly process. The 
peg-in-hole assembly will succeed if all the possible positions 
of the peg will lie in each of the possible positions of the 
hole. Let Rp and Rh denote the radius of the peg and the 
hole, respectively. Then the assembly will succeed only if the 
relative distance between the center of the peg and the center 
of the hole is no bigger than Rh - Rp, i.e., 

(14) 

where Ch and C p  are the possible locations of the center of 
the hole and of the peg, respectively, in the local frame of 
the object with the hole. The value of Ch can be obtained in 
a straightforward manner. In IRAS, the object with the hole 

Rh - Rp > ICh - C p I  
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will be fixtured, so its possible positions in the object’s ideal 
local coordinate frame is 

Ch = 7 A o C h  

where l a 0  is the uncertainty transform of the object relative 
to the fixture’s local coordinate, and C h  is the center of the 
hole in the object’s local coordinate frame. 

The computation for C, is less obvious. Since the peg is 
held by the gripper, its uncertainty will be described in terms 
of the gripper’s local coordinate. Let this uncertainty matrix be 
represented by TA. Then the possible locations of the center 
of the peg in the object’s local coordinate frame is 

where G g  is the ideal gripper configuration relative to the 
peg’s local coordinate frame, and C, is ideal location of the 
center of the peg in the object’s local coordinate frame. In 
IRAS, the assembly goal specifies the final position of the peg 
relative to the position of the object with the hole. Denote this 
transformation as 7:. Then the possible location of the center 
of the peg in the ideal coordinate frame of the fixtured object 
is given by 

c, = q c  
or 

(15) 

All of the actions in IRAS change the uncertainty of the 
object description. Therefore, it is necessary to determine the 
effects of an action on the uncertainties in the work cell. The 
six actions of IRAS, pickup, putdown, fixture, unfixture, 
locate, and assemble, all affect the uncertainty in different 
ways. IRAS contains formulas for how uncertainties propagate 
through these actions. However, these formulas will not be 
presented here as their veracity has yet to be established 
through experimentation. 

VII. ASSEMBLY TASK PLANNING 
The purpose of the assembly task planning module shown in 

Fig. 4 is to generate only that part of the overall manipulation 
plan that is independent of the initial positions and orientations 
of the parts. The assembly task planner also inserts into the 
plan sensory requests, which are invoked during execution 
time for locating the necessary parts for the assembly. Suppose 
the desired assembly is as displayed in Fig. 2(a) which calls 
for the assembly of a peg into a block, but the block must 
first be placed in a fixture in a particular pose. This top level 
assembly goal is as follows: 

assembled(peginho1e-assembly, 
gripperheld-object(Peg), 
fixtured-obj ect(Block), 
matefaces(MateFaces), 
mate-transform(MateTM) , 
mate-vector(MateVector), 
fixture( clamp), 
contactface-pairs(FacePairs)), 

where MateFaces is a list of mating features, MateTM is the 
transformation that describes the final position and orientation 
of the peg relative to the block, Matevector specifies the 
direction of the mating operation, and FacePairs specifies the 
contact faces between the block and the fixture, which is a 
clamp in this case. As mentioned earlier, this goal is specified 
by a human via the DataGlove system. A detailed description 
of this is given in [32]. 

Given this assembly goal, the assembly task planner pro- 
duces the plan shown partially in Fig. 14(a) and an associated 
constraint network, shown pictorially in Fig. 14(b). As the 
reader can see, all the variables in this plan are constrained to 
take on only certain permissible instantiations. The symbols 
grasp-I, grasp.2, pos-I, pos.2, fpos-0, fpos-I are the planning 
variables; grasp-1 and grasp3  are for picking up the peg and 
the block, respectively, pos-1 and p o s 2  will be instantiated to 
the initial positions and orientations of the peg and block, 
respectively, fios-0 and fpos-l will get instantiated to the 
positions and orientations of the fixtured object before and 
after the clamps are activated, respectively. In Fig. 14(b), 
shown below the constraint network are the known permissible 
instantiations for the planning variables. Therefore, the assem- 
bly task planner has already determined that the constraints of 
the assembly dictate that the instantiations for the variable 
grasp1  be limited to the set {peg-gl, peg-gl3, peg-gl7, 
where each of the constant symbols peg-gl,  etc., actually 
stands for a particular grasp configuration. The same is the 
case for the other variables shown in Fig. 14(b). Note also 
from Fig. 14(b) that while the nodes of the network are 
constrained in this manner, the arcs themselves are devoid 
of any constraining information. For example, the arc con- 
necting the nodes marked grasp2 and p o s 2  will eventually 
be constrained by the assembly execution planner using the 
reachabk constraint which, as was mentioned earlier, tests 
for the kinematic feasibility of the robot gripper reaching 
the object in a certain pose and with a certain grasp for 
the fixturing operation. If the reachable constraint cannot be 
satisfied, the assembly execution planner will automatically 
generate regrasping operations, as will be discussed further in 
the next section. 

At this juncture, the reader might ask why this split of 
the planning process into assembly task planning and assem- 
bly execution planning, the former for generating an initial 
constraint network for the planning variables and the latter 
for imposing constraints on the arcs of the network and for 
possibly extending the network. This question is pertinent 
particularly because in SPAR there is no such division between 
the two phases of planning. The division of the planning 
process in IRAS was done for reasons of endowing the system 
with enhanced reactivity and for computational efficiency. By 
generating the entire plan all at once, as in SPAR, one runs 
the risk of having to abandon the whole plan if any of the 
objects get inadvertently disturbed by the robot. On the other 
hand, by dividing the planning process in the manner we do 
in IRAS, one first uses the assembly task planner to create 
a plan-it may be referred to as the high-level plan-that 
constrains the grasp, location, and pose variables to those 
instantiations that would permit the assembly to be executed. 
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fixture( block. clamp, fpos-0, fpos-1 ) 

pickup( block, g r a s p 3  

assemble( peg, block ) 

variable its lube1 set 
grasp-1 
grasp2  
fpose-1 (dbtm(ftm-1)) 
fpos-0 (dbtm(tm-1)} 

I p e g s  1, pegs1  3, p e g s  17,. .. I 
(block32, block-g9, blocks4 ,... } 

(b) 

arc ( grasp-4 / pos-2, [ block218 I dbtm(tm-2) )) 
arc ( grasp-4 / pos-4, [ block318 I [block-p4,0] )) 

arc ( grasp-2 / pos-j, [ block24 / [block-pS,O] }) 
arc ( grasp-2 / fpos-0, { block24 / dbtm(tm-1) )) 

(c) 

Fig. 14. The constraint network in (a) and (b) are generated by the assembly 
task planner. Subsequently, the assembly execution planner augments the 
constraint network of (b) and generates constraints for the arcs of the network. 
Shown in (c) is the augmentation of the bottom segment of the network in (b). 
(a) Prior-to constraints on planned actions. (b) Associated constraint network. 
(c) Expanded arcs: grusp-2/pos-2, grusp-2/fpos-O. 

Subsequently, the system uses the assembly execution planner 
to locate each object, on an as-needed basis, and the calculated 
location and pose of the object then cause the imposition of 
kinematic and other constraints on the instantiations permitted 
by the assembly task planner. More specifically, the assembly 
execution planner applies kinematic constraints implied by 
considerations such as reachability, etc., to the nodes of the 
constraint network. As was shown already in Fig. 14, part 
(b) of the figure shows the instantiation sets permitted by 
the assembly task planner at each of the nodes. Fig. 14(c) 
shows the arc constraints generated by the assembly execution 
planner for the arc between the nodes pos-2 and grasp-2 of 
Fig. 14(b). Also shown in Fig. 14(c) is the augmentation of 

the network by the assembly execution planner. This figure 
will be discussed in greater detail in the following section. 

VIII. ASSEMBLY EXECUTION PLANNING 

As should already be evident from the discussion in the 
preceding section, the assembly execution planner has the 
following functions. 

Invoke sensing actions for objects as they are needed for 
the assembly manipulation. 
Apply reachability and other such criteria to the objects 
located by the sensors. Invocation of the reachability 
criteria will generate arc constraints, as shown already 
in Fig. 14(c). 
If the object found cannot be reached with the grasp 
needed for the satisfaction of a subsequent goal, generate 
a regrasping manipulation sequence. This would cause 
augmentation of both constraint networks. Notice the 
assembly execution planner generated augmentation in 
Fig. 14(c) of the constraint network of Fig. 14(b). This 
augmentation consists of a regrasping sequence signi- 
fied by the chain consisting of nodes grasp-4, pos-4, 
grasp-3 and pos-3. This chain was inserted in place 
of the link between the nodes pos-2 and grasp-2 in 
the network of Fig. 14(b). That link had to be broken 
because the assembly execution planner discovered, by 
invoking kinematic considerations, that no permissible 
instantiation for the variable grasp-2 would allow the 
block to be transferred from p o s 2  to &os-0. The 
regrasp planning is described in greater detail in the 
remainder of this section. 
Examine the partial ordering among the actions, as 
encoded in the network shown in Fig. 14(a), and then 
select an action on the basis of the following criteria: 
If an action node in the network has no prior-to prece- 
dents, it is accorded a high priority for execution. 
If two or more actions have the same priority, that 
action is selected which is a prior-to precedent of the 
largest number of action nodes. Once an action has been 
successfully executed, it is deleted from the prior-to 
network. The constraint network is also updated. 
Apply the uncertainty reasoning process described in 
Section VI to update the uncertainty in the world de- 
scription. If the uncertainty level is too large so that 
success cannot be guaranteed for an action chosen for 
execution, invoke the appropriate strategies to reduce the 
uncertainty. Currently, a pair of two distinct grasps are 
selected to reduce the uncertainty in the position and 
orientation of an object. In the case of the assembly 
operation, violation of the uncertainty constraint will be 
handled with a simple fine-motion planner employing 
forceltorque control [ 151. 

In the remainder of this section, we will describe the method 
used in IRAS for regrasping and for updating uncertainties. 

Regrasping actions are generated by treating the regrasping 
problem as a discrete one. This is accomplished by quantizing 
the space of grasp configurations of each object and using 
stable classes to characterize its placement on the table. 
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Associated with each stable class is a set of orientations for 
regrasping, i.e., an instance of a stable pose is specified by a 
placement-orientation pair. This representation is similar to 
that described in [21], [30], and [25]. Since regrasping is 
preceded by the need to put down the object, we have reserved 
some free space on the table for that purpose. 

We construct a grasp-placement graph, G, for an object as 
follows. Each placement-orientation pair is a vertex in G. G has 
two additional vertices, Po and Pf , representing the initial and 
final positions and orientations of the object, respectively. Two 
vertices in G are connected together if and only if there is a 
common grasp that is feasible for the placement corresponding 
to the vertices, the arc joining the two vertices is labeled by 
the set of all such grasps. 

The construction of G requires an exhaustive enumeration 
of pairs of placements and grasps. This is not as difficult as 
it might seem, since the grasps are characterized by grasping 
features associated with each stable pose, and the number of 
stable poses for an object is often fairly small. Furthermore, 
the subgraph G* = 6 - {Po, Pf} is the same for each object 
regardless of its initial and final position and orientation, i.e., 
G* is independent of the task that requires the object. There- 
fore, we can precompute G* and store it in the knowledge base 
of the system. Once G has been constructed, the problem of 
finding a sequence of regrasping operations can be formulated 
as finding a shortest path from Pf to Po. 

Once an action has been successfully executed, the assembly 
execution planner updates the uncertainties of the objects 
affected by the action according to the specifications described 
in Section VI. Since all of the uncertainty constraints are of 
the forms C < E and E < C, where C is a constant and E 
is a symbolic expression in terms of uncertainty variables, the 
evaluation of these constraints can be done in a straightforward 
manner-for each symbolic expression, it is only necessary to 
find the lower and upper bounds on the expression, subject 
to a set of constraints. In IRAS, finding bounds on symbolic 
expressions is accomplished by using a SUP/INF algorithm. 
The reader is referred to [2], [4], [5], and [29] for a more 
detailed description of the SUP/INF method. 

Ix .  EXECUTION MONITORING AND SENSING 

The execution-monitoring system is devised for a work cell 
equipped with a PUMA762 robot manipulator. The sensors 
consist of a parallel-jaw gripper (used as a sensor to measure 
the width of the part of the object that is grasped), a wrist- 
mounted forcehorque sensor, as well as various kinds of 
cameras. As discussed presently, the cameras are used to 
determine the positions and orientations of the part specified in 
a sensory request. The sensor system monitors the execution of 
each action to ensure its success. In the case of a pickup action, 
the width of the opening of the gripper is used to determine 
the success of the operation. If this action cannot be executed 
successfully, perhaps because the part was located too close to 
other parts, the assembly execution planner is informed of the 
failure so that it can issue a new sensory request to locate the 
part and replan the regrasping steps. For the assemble action, 
the forceltorque sensor is used to ensure the success of the 

mating operation. The method described in [ 151 is employed to 
recover from mating errors. Other operations such as putdown 
and fixturing objects are assumed to always succeed. 

Regarding the vision part of sensing, it is important to note 
that in light of the great strides that have been made in 3-D 
vision 191, [16], [19], [17], [20], [ l l ] ,  [13], it would certainly 
be possible today to endow IRAS with a sophisticated and 
robust vision module for recognizing and locating the objects 
needed for assembly. However, the focus of this research 
is more on planning than on vision. So, for the purpose of 
establishing the feasibility of the planning notions presented 
here, we developed a special 2-D vision module for IRAS that 
is simple and fast. This module is based on the assumption that 
the objects are recognizable from their 2-D bounding contours, 
the objects resting in arbitrary stable poses on a flat surface. 
This module uses two cameras. One of the cameras, mounted 
overhead so that it can view the entire work area, is used for 
coarse location of all the objects in the work area. The other 
camera is mountable in the gripper and is used as needed for 
the determination of the positions and orientations of the parts. 
The gripper-held camera is oriented so that its image plane is 
parallel to the worktable. For an object in one of its stable 
configurations, the image taken by the camera will contain 
the bounding contour of the object that can then be used 
for identifying the pose. The bounding contour is represented 
by a differential chain code, which is refined using a least 
square fit method to yield analytic forms. From the bounding 
contour, the stable pose of the object is recognized using a 
minimum least squares classifier. For an object in a stable pose, 
it only has one rotational degree of freedom-a rotation about 
a direction perpendicular to the table. Thus, the identification 
of this stable pose in conjunction with the angle of rotation 
specifies the orientation of the object. This angle, along with 
the displacement of the object, is computed using the contour 
of the object. Fiducial marks are placed on the different faces 
of the objects; these marks help determine the location of the 
origin of the local coordinate frame attached to the object. To 
illuseate, the parts used for the assembly shown in Fig. 3 are 
marked with triangular markers, as illustrated in Fig. 15. 

Regarding the processing of the overhead camera image, 
a histrogram derived threshold is applied to the image and 
the resulting components labeled. Since the objects to be 
manipulated are not very large, the image provided by the 
overhead camera does not provide enough data that can 
be used to differentiate the parts. But we can compute the 
center of mass of each component, that after application of 
the inverse perspective transform for the camera yields the 
world coordinates of the center of mass of the object. The 
inverse perspective transform is performed using the two-plane 
method of camera calibration [24]. 

Once a rough estimate of the object’s location is available, 
the robot moves its9 gripper-held camera so that it is, at a 
predesignated height, directly above the center of the object 
as ascertained from the overhead camera image. The camera is 
oriented such that its image plane is parallel to the table. With 
this arrangement, the entire object is within the field of view of 
the camera. Because the object is in a stable configuration, the 
image taken by the camera will contain the bounding contour 
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in Fig. 3. 

The fiducial markers for the parts for the sample assembly shown 

of the object, which is used to identify and compute the pose 
of the object. This process is carried out in three steps: image 
segmentation, feature extraction, and pose estimation. 

First, the image is thresholded and components labeled. 
This uses the same component labeling algorithm as for the 
overhead camera image. In our experiments, because of the 
camera placement, the largest component in the image will 
always correspond to the object of interest. Once the image 
has been labeled, feature extraction can be performed. The 
system extracts five features from the image: the perimeter of 
the object, the area of the object, the number of comers of the 
object, the number of holes in the object, and the location of 
the fiducial mark.’ The perimeter of an object is defined to be 
the total number of border pixels of the object. The area of 
the object is defined to be the total number of pixels of the 
object. This is computed by the image segmentation routines 
described above. The number of corners refers to the number 
of comers in the border of the object. These five features form 
the feature space which is used to identify the object and its 
stable pose. 

Initially, each straight line segment is represented by a 
differential chain code. Subsequently, linear regression is used 
to fit the standard analytic form y = a + bx to each straight 
segment and the values of the parameters a and b computed for 
the segment. Simple formulas then yield the precise locations 
of the intersections of these straight segm%s. Finally, in 
order to locate the fiducial marks, search is conducted along 
a bisector of the angle formed at each intersection point. In 
order to determine whether or not an object face contains a 
hole, a search is conducted along the two principal axes in the 
vicinity of the center of the object. 

Of the five features mentioned above-area, perimeter, 
number of comers in the contour, number of holes, and 
location of the fiducial mark-the first four are used for 

nearest to the fiducial mark. 
2Note. Location of the fiducial mark refers to the location of the comer 

constructing a 4-D feature space that is used for distinguishing 
between the different stable pose classes of an object, each 
stable pose class characterized by the object face in contact 
with the table. Each stable pose class is represented by an 
examplar and the classification consists of selecting that pose 
class which yields the minimum least squares error for the 
distance between the measured features and the exemplar. The 
exemplar for each stable pose class is selected by simply aver- 
aging the feature values corresponding to the many instances 
of that stable pose class shown to the camera system during 
a training session. 

Once the stable pose class of an object on the table is 
determined, its precise pose is computed from the location 
of the fiducial mark. Note that in each stable pose class, the 
only degree of freedom in the object pose is its rotation about 
the world Z-axis, which is perpendicular to the worktable. 
The rotation of the object around this axis (or, more precisely, 
the rotation of the local object-centered coordinate frame with 
respect to the world Z-axis) is computed using the two edges 
adjacent to the fiducial mark associated with this stable pose. 

A pictorial illustration of this algorithm is given in Fig. 16. 
This figure consists of three snapshots taken during an assem- 
bly session similar to that of Fig. 3. In particular, it depicts 
the steps for finding the position and orientation of the peg 
object. Fig. 16(a) shows the image obtained with the overhead 
camera. The centroids of the objects are drawn as crosses and 
superimposed over the image. These values are converted into 
their respective world coordinates. The gripper-held camera 
is then placed directly over the object to be classified, as 
shown in Fig. 16(b). The image obtained with the gripper- 
held camera is subsequently analyzed in the manner described 
above. Fig. 16(c) shows the image of the peg object on which 
are superimposed the extracted boundary and the principle 
axes of the object face visible to the camera. The diagonal 
line in the lower right corner illustrates the search direction 
for finding the fiducial marker. 

X. CONCLUSION 
In this paper, we presented IRAS, an implemented robotic 

assembly system where planning, sensing, and task execution 
are tightly integrated as interleaved operations. The planning 
process divides very naturally into two phases. In the first 
phase, which we term the “assembly task planning” phase, 
a nonlinear planner is invoked to create a family of general 
plans that is independent of the dynamic aspects of the 
work cell. The second phase, which we call the “assembly 
execution planning” phase, is intertwined with the execution 
of the plan-the module issues sensory requests, adds detailed 
steps to the plan in accordance with the current status of 
the work cell and schedules them for execution. The plans 
generated by these planners are guaranteed to be correct, 
since the assembly task planner guarantees that the plans it 
generates are correct [8], and the steps added by the assembly 
execution planner are themselves correct and do not clobber 
planned steps generated in the first phase. Also, the efficient 
handling of both geometric and kinematic constraints greatly 
reduces the amount of search during plan generation. Efficient 
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Fig. 16. Locating the peg using the overhead and the gripper-held cameras. 
(a) Centroids superimposed on the regions extracted from the image from 
overhead camera. (b) Placing the hand-heald camera over the peg. (c) 
Orientations and boundary of peg. 

uncertainty propagation and constraint evaluation improves the 
system’s ability to detect and to recover from potential errors. 
Furthermore, the system’s ability to plan for sensory requests 
enhances both the robustness and flexibility of the system. 
Since only a rudimentary vision module is plugged into the 
system at this time, the experiment shown in Fig. 3 works 
all the time as long as the parts thrown on the table form 
nonoverlapping images in the overhead camera and as long 
as these parts lie within a prescribed portion of the robot 
workspace. 

APPENDIX 
DESCRIPTION OF FIG 3 

For interested readers, here is a brief description of what is 
being depicted by the different frames of Fig. 3. 

Shown in frame Fig. 3(a) is a human throwing the parts in 
front of the robot. The photo in Fig. 3(b) shows the robot using 
a gripper-held camera for the localization and pose calculation 
of the parts in the work area. Since only 2-D vision is used, 
the different surfaces of the parts are marked with fiducials to 
aid in pose calculation. The camera is removed subsequently. 
The sequence of frames in Fig. 3(c) through (f,) demonstrates 
the robot employing two grasping and regrasping operations 
that are needed to place the block in a pose that then permit 
the robot to put it down in the fixture, as shown by the pickup 
operation in Fig. 3(g) and fixturing of the block in Fig. 3(h). 

The robot then goes about the business of locating the 
second part, the peg, needed for the assembly. The robot has 
the freedom to either use the overhead camera, not shown, or 
request that the human provide it again with the gripper-held 
camera for this purpose. In the particular experiment depicted 
here, an extra grasping operation is needed for the peg in 
order to make the assembly feasible; the pickup and putdown 
corresponding to this step are shown in Fig. 3(i) and 0). Shown 
in Fig. 3(k) is the final pickup of the peg prior to its assembly 
with the block that is already in the fixture. The assembly itself 
is shown in the frame Fig. 3(1). 
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