
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996 187

Integrating Sensing, Task Planning, and
Execution for Robotic Assembly

Chao-Ping Tung, Member, IEEE, and Avinash C. Kak, Member, IEEE

Abstract-This paper deals with enhancing the level of au-
tonomy in a robotic work cell. With that mission in mind,
we present here an integrated framework for the sensing, the
planning, and the execution aspects of assembly. In experimental
demonstrations of this system on a PUMA762, we can now
throw objects randomly into the workspace of the robot and the
robot then automatically synthesizes a manipulation plan that
includes the operations of sensing, grasping, and regrasping. Each
operation is invoked only when it is deemed necessary for the
successful execution of assembly.

I. INTRODUCTION

WEN the rather frequently expressed doubt these days G about the merit of injecting artificial intelligence into
robotics, we need to demonstrate at the very outset what our
system can really do by way of useful experiments. The reader
will probably agree with us that if the industrial revolution
that was supposed to be heralded by robotics is ever to come
to fruition, robotic assembly will have to be shown to be
as free as possible of the accouterments of hard automation.
We believe that experiments demonstrating robots performing
complex assemblies from parts placed in random positions
and orientations would serve as automation benchmarks for
the future. Evidently, such robots would have to synthesize
their own manipulation sequences, invoking sensors only when
necessary, using fixtures only when needed, etc.

Consider the following experiment that we can now do
effortlessly on our robot, a PUMA 762 arm. We throw the parts
of an assembly in front of the robot so that they land on the
work surface in random poses and random locations within an
area that is kinematically accessible to the robot. Admittedly,
at this time, these parts are simple (Fig. l), but still we believe
that for a robot to come up with all the grasping, putdown,
pickup, regrasping, mating, fixturing, and sensor-selection
operations automatically, and without human intervention, is
no small accomplishment. Furthermore, the system is capable
of learning assembly goals automatically-the human user can
specify assembly goals to the robot by wearing a DataGlove
and performing the task. The system observes the assembly
motion through the signals received from the glove and then
deduces the assembly goal. Fig. 2(b) is a snapshot of the sys-
tem learning the assembly goal of Fig. 2(a). Shown in Fig. 3

Manuscript received November 1, 1994; revised August 23, 1995.
C.-P. Tung was with the Robot Vision Laboratory, Purdue University, West

Lafayette, IN 47907-1285 USA. He is now with NEC America, Irving, TX
75038 USA.

A. C. Kak is with the Robot Vision Laboratory, Purdue University, West
Lafayette, IN 47907-1285 USA.

Publisher Item Identifier S 1042-296X(96)02546-3.

Fig. 1. Parts for assembly.

is a sequence of photos showing a human operator throwing
two parts in front of the robot and the robot then assembling
the parts to form the assembly shown in Fig. 2(a) using an
automatically generated manipulation program. Further details
describing the sequence of steps shown in Fig. 3 are presented
in the Appendix.

This accomplishment is an advance-conceptually, theo-
retically, and experimentally-over SPAR, an earlier system
to come out of our laboratory [18]. For one, the current
system, called the integrated robotic assembly system (IRAS),
incorporates fixturing in its planning process; that means the
new planner has to reason about how and when to place objects
in the fixture. Also, in SPAR a human had to supply to the
planner the initial positions and orientations of all the parts
needed for the assembly, which necessitated that these objects
not be disturbed during the execution. In the new planner
reported here, the planner automatically adds sensory requests
to search the work area for the needed parts and takes into
account the fact that prior actions may disturb the poses of
other objects. Another shortcoming of SPAR was that it did
not take space into account specifically during the planning
process. Although SPAR did check the lunematic feasibility of
reaching a part for pickup, it did not account for the kinematic
constraints for the approach point, nor did it take into account
explicitly the locations for object placement for putdown
operations-an important consideration for regrasping. Thus,
the regrasping steps generated by SPAR were not always

1042-29613/96$05.00 0 1996 IEEE

188 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO. 2, APRIL 1996

Fixture: clamp

(b)

Fig. 2. A snapshot of the system learning an assembly goal. (a) An assembly
example involving a fixture. (b) User specifying the assembly of (a) using a
DataGlove.

feasible for the robot. Even if regrasping is not necessary, the
grasping step may still fail because the robot cannot reach the
approach point for pickup. We have rectified this deficiency
in IRAS. There exist many additional important differences
between SPAR and IRAS, many of them dealing with the
issue of computational efficiency; some of these are included
in the discussion that follows.

In the rest of this paper, in Section I1 we give the reader an
overview of the reasoning and control architecture of IRAS
that makes possible the kinds of experiments we discussed
above. Section 111 then surveys the related work published to
date. Since representation is a key to how efficiently planning
and reasoning can be carried out, Section IV discusses how
the various entities of IRAS are represented. Section V goes
into the issue of how the destination pose of an object that
is supposed to be fixtured can be computed. In Section VI,
we then take up the subject of uncertainties associated with
the various entities. Section VI1 presents the assembly task
planner; the purpose of this planner is to generate that part
of the plan that is independent of highly variable parameters
such as the initial positions and orientations of the objects to be
assembled. Subsequently, Section VI11 shows how the partial

plan of Section VI1 can be augmented and further constrained
to yield a truly executable plan. In Section IX, we then proceed
to sensory and error-recovery issues. Finally, in Section X we
present the conclusions.

11. OVERVIEW OF IRAS

Shown in Fig. 4 is a top-level view of the architecture of
IRAS. The system is implemented as communicating processes
in PROLOG, C, and LISP, all running in a UNIX environment.
The planning system, running on a Sun workstation, controls
a PUMA 762 robot. A forceltorque sensor and a pneumatic
fixture are used to aid the assembly. Visual sensing takes
place with the help of two cameras; one, mounted permanently
overhead, has a view of the entire work area in front of the
robot and the other, mountable in the gripper, is used for a
closer look at the objects on as-needed basis.

The system interacts with the user via the System Inteface,
which is a graphics interface that allows the user to enter new
assembly Goals and to update the Database of the system. The
database represents the system’s knowledge of the work cell.
Some of this knowledge is static in time, such as about the
tools that the system can use, the locations and capacities of
various storage bins, etc. This information constitutes part of
the knowledge that is initially provided to the system. Other
kinds of information, such as the positions and orientations
of the objects in the work cell, are dynamic. These data are
obtained by the system as it acts to achieve its goals. In other
words, the contents of the database do not necessarily represent
a complete knowledge about the world, but only those parts
of the world that are deemed important by the system.

The system satisfies the assembly goals by using an assem-
bly task planner. It is a nonlinear, constraint posting planner
[SI that uses the geometric specifications of the final assembly
and the available tools of the work cell to generate flexible
plans consisting of sensory-motor actions. These plans are
general, in the sense that they list the possible poses and
grasps that would permit a given assembly to be completed
successfully. They are also flexible because the plans are gen-
erated independently of the initial positions and orientations
of the parts. Thus, these plans are also reusable, i.e., creating
multiple instances of the same assembly requires the planner
to only generate one plan, assuming that the available tools
and fixtures have not changed.

The plans generated by the assembly task planner are
particularized to the specific conditions in the work cell by
the assembly execution planner, which also schedules the
appropriate action for execution. An action could either be
a sensory request or an assembly operation. The sensory
requests are issued to the sensors to obtain information about
the current state of the work cell, such as the positions and
orientations of certain parts. Whenever the physical limitations
of the robot or the geometric constraints imposed by the initial
position and orientation of an object prevent a planned action
from being carried out immediately, the assembly execution
planner augments the plan by generating the regrasping steps
necessary to take the object from its current pose to that needed
for assembly.

TUNG AND KAK INTEGRATING SENSING, TASK PLANNING, AND EXECUTION FOR ROBOTIC ASSEMBLY 189

Fig. 3. Shown in (a) is a human throwing the parts in front of the robot such that their poses and locations are random. The sequence of photos
from (b) to (1) shows the robot carrying out the assembly using an automatically generated manipulation program. Further details on the various frames
shown here can be found in the Appendix.

The actions that are scheduled for execution are carried
out by the execution-monitor. The execution-monitor accom-
plishes this by translating the actions into their corresponding
actuator commands, sending them to the efsectors for execu-
tion, and monitoring the execution process with the sensors.
It is also used in conjunction with the assembly execution
planner to perform error recovery.

111. RELATED WORK

Traditional approaches to planning for assembly have often
been guided by the STRIPS assumption that the only agent

that can bring about a change in the world is the robot,
and that only the predicates specified in the descriptions of
actions can modify the world state [12], [l]. The inputs to
these kinds of systems usually consist of the desired goals
and a complete description of the initial state, including the
initial poses of the objects. Typically, these planners produce
complete plans off-line, with the final plan being either a
fixed sequence of actions, a partially ordered sequence, or a
hypergraph containing all possible assembly sequences [121,
[18], [28], [lo]. The sequence of preprogrammed plan steps
thus generated is then executed by some sort of an execution-

190 E E E TR

Execuaon Planner

4
Execution-Monitor

ANSACTIONS ON ROBOTICS AND AUTOMATION, VOL 12, NO 2, APRIL 1996

A

r

f System Interface

t
t I

Database Assembly
Task Planner Goals

Fig. 4. Block diagram of IRAS.

monitoring module. However, on account of the dynamic
nature of a work cell and the uncertaintities associated with
the locations of objects, this approach tends to be inefficient
and ineffective.

Regarding the matter of scheduling actions needed for an as-
sembly, some researchers have proposed adaptive approaches
that supposedly increase the flexibility and robustness of an
assembly system [14], [33]. In these architectures, a complete
plan, generated off line, is downloaded into an adaptive
scheduler unit for execution. Developers of these architectures
have shown by simulations that the plans so devised can cope
with unexpected events, like delays in the arrival of parts,
by selecting applicable alternative actions. Being only action
schedulers, these approaches do not address important issues
such as planning for sensory requests, use of fixtures, and
regrasping. Furthermore, because these systems have separated
planning from execution, their ability to deal with unexpected
events is limited, at least in the sense reported in [27] and [31].

Another approach to enhancing a robot’s ability to deal
with unexpected events in the environment is to use reactive
execution. This approach allows for fast (and supposedly
robust) action in the absence of an explicit plan. Such systems
first came into existence in mobile robotics [6] , [7] and their
likes are now beginning to be reported for arm robots [22],
[23]. In general, these system act as dynamic schedulers of
actions and do not address the issue of automatic generation
of the initial task plan.

IV. REPRESENTATIONAL ISSUES
It has long been recognized that the power of any symbolic

reasoning and planning system depends ultimately on the
representations employed for the various abstract and concrete
entities involved. Yet, there do not exist any formal procedures

Falk
to satifi the goal:

fixturd(Object, Fixture, ContactFacePairs, Pos, FPos)

ActionId, G1, G2
generate unique identzj5ers for:

compute the placement andfintured pose of the object:

compute the valid grasps for the fixture operation:
PTm, E m , WO

OkGrasps

ApproachPt
retrieve the fixture’s approach point:

add to the constraint network the geometric constraints:
same-pose(Pos, PTm), same-pose(FPos, FTm)

Temntatr?:
action id:

ActionId
action name:

fixture(Object, Fixture, ContactFacePairs, Pos, FPos)

preconditions:
goal(G1, ActionId, [available(Fixture, yes) 1, [I, [I)
goal(G2, ActionId, [holding(Object, Grasp, Location) 1,

[member(Grasp, OkGrasps) 1.
[reachable(Grasp, Pos, ApproachPt) 1)

uncertainty-check(fixture, [Fixture, Grasp, PTm, WO])

fixtured(Object, Fixture, ContactFacePairs, Pos, FPos)

available(Fixture, no)

add list:

gripper(open)

delete list:
holding(Object, Grasp, Location)
gripper(closed)
available(Fixture, yes)

Rule and template for the fixture action. Fig 5.

for selecting the “best” representations. All one can do is to
learn from the representations used by previous researchers
and conjure up new ones to advance the state of the art.

LRAS needs representations for actions, sensory-requests,
goals, plans, nodes that inhabit the search space of plans,
etc. For actions we have used, with minor modifications, the
representation in SPAR [18]. Shown in Fig. 5 is the fixture
action. The first part of the action consists of a rule that tells
the system how to instantiate the various planning variables
and that invokes a set of initial constraints. The second part
of the action is the action template, in the style of a STRIPS
action, that consists of a set of preconditions, an add list, and
a delete list. The first line of the rule says that this action can
be used to satisfy a goal of type fixtured(Object, Fixture,
ContactFacePairs, Pos, FPos), where the first parameter of
the goal, Object, is instantiated to an identifier for the object
that needs to be fixtured; the second parameter, Fixture, is set
to the identity of a fixture in the work area; the third parameter,
ContactFacePairs, is set to the pairs of object and fixture faces
that are in contact after the object is fixtured; the parameter Pos
is set to the pose of the object as it is set down in the fixture;

TUNG AND KAK: INTEGRATING SENSING, TASK PLANNING, AND EXECUTION FOR ROBOTIC ASSEMBLY

~

191

and, finally, the parameter FPos is set to the value of the final
pose of the object after the fixture clamps are activated.

The precondition part of the action template uses a special
syntax that was first used in SPAR. The precondition shown
in Fig. 5 say, that the goals available(Fixture, yes) and
holding(0bjec t, Grasp, Location) must be satisfied before
the goal fixtured can be satisfied. Furthermore, the success
of the fixturing operation depends on the uncertainty in the
description of the object.' The arguments to the uncertainty-
check predicate supply the necessary information for estimat-
ing the uncertainty associated with the position and orientation
of the object. This predicate can be invoked during execution
time to ensure that the object's location falls within the
tolerance that will allow the fixture operation to succeed. The
issue of uncertainty reasoning will be discussed in greater
detail in Section VI.

The satisfaction of the second precondition goal of the
fixture action is subject to constraints member(Grasp, Ok-
grasps) and reachable(Grasp, Pos, ApproachPt), where Ap-
proachPt is the approach point. The membership constraint is
a geometric constraint, so termed because it is based entirely
upon the geometric relationship between the object and the
fixture. The other geometric constraints used are inpose-class
and samepose; these are used to constrain the pose config-
uration of the object. As a part of satisfying the precondition
goals, the geometric constraints are sent to a constraint sat-
isfaction network with all possible instantiations for the vari-
ables involved. As explained in [8], finding mutually consistent
instantiations for the variables is one of the basic tenets on
which the constraint posting approach to planning is based.

The reachable constraint, on the other hand, depends both
on the initial position and orientation of the object as well
as on the physical limitations of the robot manipulator. Thus,
it is a kinematic constraint. The reachable constraint checks
to ensure that the robot is able to reach both the approach
point and the desired grasp point with the planned grasping
configuration. The other kinematic constraint used by the
system is mate. reachable, which accounts for the geometric
and kinematic aspects of a mating operation. The kinematic
constraints are useful for specifying the set of feasible grasp
configurations for a particular situation in the work cell.
These constrairts are not applied until execution time, as
discussed further in Section VIII. A pictorial illustration of
these constraints is given in Fig. 6. The rest of the action in
Fig. 5 is self-explanatory.

Other actions in the system-these would be actions for
pickup, putdown, locate, assemble, and unfixture-are sim-
ilar in form to the one shown here for fixture.

We will now describe the nodes in the search space of plans;
this should give the reader a clue as to how the search for a
correct plan takes place. Each node is a partial plan containing

'It has been our experience that it is not necessary to reason about
uncertainties for binary assemblies for the kinds of simple objects shown
in Fig. 1. However, if the uncertainties associated with the sensory reports
regarding the positions and orientations of objects are large, planning of the
kind reported in this paper would not succeed without an explicit accounting
of the uncertainties in the manner discussed in Section VI. Due to the high
quality of locational information gleaned from the vision sensors, the specific
implementation of IRAS reported in this paper ignores uncertainties.

(C)

Fig. 6. Pictorial illustration of the REACHABLE and MATEREACHABLE
constraints. (a) A feasible approach point. (b) A feasible grasp. (c) A
MATE_REACHABLE(Grasp, FixPos, MateTm, Approach) constraint.

uninstantiated variables. A node consists of five separate
entities: the list of pending goals, called the Goalstack; the
list of actions planned so far, called the PlannedActions; the
constraint networks generated so far from the root to the node
in question; the list of satisfied goals by the PlannedActions;
and the rationale that shows which action was used to satisfy
each goal as it was transferred from the goal stack to the list
of satisfied goals.

We mentioned above that a part of the plan description at
each node in the search space consists of constraint networks.
Actually, there are only two networks that the planner has
to keep track of. One of the networks deals with constraints
pertaining to the permissible instantiations for plan variables
such as grasps, object poses, object locations, etc. The other
network partially orders the actions invoked so far in the search
space with a prior-to relation. These descriptions for the two
networks should give meaning to the statement that each node,
being only a partial description of a plan, represents a family of
plans. Therefore, any plan that does not violate the constraints
in either of the networks, would be consistent with a given
node.

192 EEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

Yo J
~ x w

Fig. 7. The object, world, and fixture coordinates and the pose for the placement of the object in the fixture.

The successor nodes of each node, if they exist, are created
by choosing the topmost goal in the goal stack and then
determining whether an existing action in the PlannedActions
list can be constrained to satisfy this goal. If that does not
work, a new action is posted on PlannedActions and its
preconditions pushed into the Goalstack. Because the addition
of a new action may undo a previously satisfied goal, the
planner checks the satisfied goals list, and any goal that
is undone by the new action is moved to the Goalstack
so that it can be resatisfied. Subsequently, the system must
make sure that none of the previously posted actions will
clobber the goal just transferred to the list of satisfied goals.
If the goal will be clobbered, the system will invoke a
declobbering strategy consisting of adding further constraints
to the constraint database. For all of the different aspects of
goal satisfaction and declobbering, the reader is referred to 181
for further details.

object, and noncoplanar contact face pairs f f , f;? and
f z f , fg, where f,f and f; denote fixture face z and object
face j , respectively.

This information enables us to retrieve all the data needed to
compute R. The following information is obtained from the
fixture model database: ~1 and ~ 7 2 , the unit normals of the
faces f f and fz f , respectively; Tf , the orientation and location
of the fixture relative to the work cell. The object model
database provides the values for the normals of the faces f;?
and fi. The object normals are then transformed to the fixture
coordinate frame by premultiplying the normals by TF Ro ,
where Ro is the transform that relates the object’s model frame
relative to the world coordinate frame. An illustration of these
relationships is shown in Fig. 7.

be the unit normals of ff and fi expressed in
the fixture coordinate, respectively. Then R is simply R2 RI,
where RI and R2 are as described earlier. Thus, once we
have determined the matrices RI and R2, we have solved the

Let El and

above problem. Since ff and ff form a contact face pair,
they must have opposing normals after the object is placed in
contact with the fixture. This means that R1 can be determined

v. OBJECT POSE DETERMINATION FOR THE
FIXTURE ACTION

Before any fixture can be used to fix the position of an
object, the object must be placed within the fixture. Thus, we
need to compute the object’s destination pose in the fixture. In
IRAS, the configuration of this pose is described by symbolic
spatial relationships between those faces of the object and
the fixture that come into contact with one another. Given
the fixture-object contact face pairs, the planner computes a
rotation matrix that is capable of transforming the object’s
standard pose into the destination pose in the fixture. Two
noncoplanar contact face pairs are sufficient to determine the
orientation of the object relative to the fixture. We employ a
two-step method to determine the orientation matrix, R. First,
the rotation matrix, RI, that aligns the first of the contact face
pairs is computed. Then, a rotation about the normal to this
pair of planar faces, the matrix represented by R2, is computed
that satisfies contact face requirement for the other pair. This

by solving (1). In the discussion that follows, the coordinate
frame of reference is the local fixture coordinate frame:

R1 can be further decomposed and expressed as a product of
two basic transformations.

1) Rotate [I about either the x- or the z-axis so that its y
component is the same as -71.

2) Rotate this result about the y-axis so that another of the
remaining components of the two normal vectors match.

Denoting the result of steps 1 and 2 by RI and rot(y,p),
respectively. Then RI = rot(y,p)Al. Both of these steps
require solving for the root of an equation of the form

(2) F(8) = acosQ + bsin8 + e.
section details how these computations are carried out.

The problem of determining the rotation matrix that de-
scribes the orientation of an object in a fixture can be formu-
lated as follows.

For example, if we want to rotate about the x-axis so that the
y components of the two normals [and -q match, then (3)
must be satisfied:

0 0
(3)

Compute the rotation matrix R, which is the orientation
of the object relative to the fixture, given the following
information: the name of the fixture, the identity of the

TUNG AND KAK INTEGRATING SENSING, TASK PLANNING, AND EXECUTION FOR ROBOTIC ASSEMBLY 193

In this case, the values of a , b, and c of (2) are &,, - E Z , and
vY, respectively. These instances of (2) will always have a
solution, 0 E [O,27r].

We modified the Brent algorithm in [26] to solve for the root
of this nonlinear equation. This iterative algorithm employs
the Van Wijngaarden-Dekker-Brent method, which allows one
to find bracketed roots of a general one-dimensional function
without having to compute the function's derivative. Since (2)
can always be evaluated within the initial interval containing
the root, this method is guaranteed to converge [3].

The rotation matrix R2 represents the rotation of the object
about the normal 71 so that and 72 would become opposing
normals, where is obtained by applying the transformation
R1 to (2. Thus, R2 is constrained to satisfy

-72 = R2E: (4)

where R2 is rot(q1, a) . We can visualize this process as
transforming to coincide with -72. This is accomplished
in four steps.

1) Transform 71 so that it becomes parallel to the z-axis.
2) Apply this transform to <; and 72.
3) Rotate the transformed ,$ about the z-axis so that it

4) Transform the coordinates back to the local fixture

The transformation, R2, in step 1 is computed using the
Brent method. Steps 2 and 3 are matrix multiplications and
inverse tangent computations, respectively. R2 is the result of
step 4, which can be represented by

would match the transformed -72 axis.

coordinate.

where ro t (z ,$J) is the result of step 3. An example that
illustrates these computations is shown in Fig. 8.

VI. PLANNING FOR UNCERTAINTY IN IRAS

The representation scheme used in IRAS is capable of ac-
commodating the uncertainties in a robotic work cell, although,
as was mentioned before, for high-quality sensory information
and for simple binary assemblies, the uncertainty framework
can be bypassed, as was done for the specific implementation
reported here. Uncertainty is handled by using variables that
take on values from bounded sets. This approach is similar
to the one presented in [18] and will be reported only briefly
here. The following quantities are considered to be uncertain:
the position and orientation of objects, fixtures, and the gripper
of the robot. In this section, we will describe the representation
scheme for these uncertain quantities.

Regarding positional uncertainties, we assume that objects
resting on the work table are in stable poses. Therefore, the
only uncertainty in the orientation of an object resting on
the table is the rotation about an axis perpendicular to the
table. This axis is parallel to the Z-axis of the world coor-
dinate in our implementation. The other uncertain quantities
in the object description are the location of the object. These
possible uncertainties are illustrated in Fig. 9. Homogeneous
transformation matrices that are used to express the position

R
/

Zf

Yf

(d)

Fig. 8. Solving for R for fixturing an object with a clamp (a) The contact
face pars for the placement of an object in a clamp. (b) Intermediate result
after solving for E1 (c) Solving for RL (d) Final pose of the object.

-.+-

X W (X + A X , Y +AYo,Z+AZo)

Fig. 9.
a stable pose.

Possible uncertainties in the position and orientation of an object in

and orientation of an object can also be used for expressing
the uncertainties associated with the position and orientation.
For that purpose, the entries of these matrices are expressed in
terms of the uncertain variables described above. The possible

194 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

(X + AXo, Y + AYg, Z + AZO) L’ 7fi i (X+AX?,Y+AYt,Z)

Fig. 11. Possible uncertainties in the configuration of the fixture.

Fig. 10. Possible uncertamties in the configuration of the gnpper.
same manner as that of the gripper. In order to do this, we
must express the uncertainty of the fixture in terms of its
local coordinate, as shown in Fig. 11. Let A o , denote the
displacement uncertainty of the fixture in the world coordinate.
Then its corresponding values in the fixture’s local coordinate
can be expressed as

positions and orientations of an object are obtained by substi-
tuting valid values for its associated uncertain variables and
then combining this information with the ideal position and
orientation of the object. Using this formalism, the possible
positions and orientations of an object resting on a work table
are given by the following equation [18]

i o t a = T A ~ T ~ R A ~ R , (6)

where Tao defines the uncertainty in the location of the object
relative to the world coordinate frame, RA, is the rotational
uncertainty about the world Z-axis, and T, and R, are the
ideal location and orientation of the object, respectively. The

[AX, AY, 0 lIt = Ri lAOf

where Rf is the ideal orientation of the fixture. Since the Z-
axis of both the clamp and the world have the same direction,
the rotational uncertainty in the clamp’s local coordinate frame
is the same as its rotational uncertainty in the world frame. Let
this be represented by the uncertainty variable A0,. Then the
uncertainty transform for the fixture is

uncertainty transform for TA, is

/I 0 0 ax,\

\ 0 0 0 1 /

and the uncertainty matrix for RA, is

/cos(AO,) -sin(AQ,) 0 0 \

where [AX, AY, AZO lIt and A0, are the dispacement and
orientation uncertainty for the object, as shown in Fig. 9.

Other quantities that we must consider are those related
to the configuration of the gripper. As shown in Fig. 10,
we consider the location of the tool center and the rotation
about the Z-axis of the gripper’s local frame to be uncertain.
Usually, the gripper uncertainty is less than the uncertainty
in positions which are determined by the sensing system. The
transformation matrix for the gripper uncertainty is given by

/cos(AO,) -sin(AQ,) 0 AX,\

\ o 0 0 1 /

where [AX, AY, AZ,lt and A8, are the dispacement and
orientation uncertainty variables of the gripper.

IRAS uses a computer-controlled pneumatic clamp for the
fixturing operations. Since this fixture is placed on the work
table, its 2-position in the world coordinate is known without
ambiguity. However, its dispacement about the X - and Y -
axis, as well as the rotation about the Z-axis, are not exact.
Since the clamp is essentially a stationary parallel-jaw gripper,
we want to express the uncertainty of the fixture in the

In an uncertain environment, the uncertainties associated
with the object descriptions must be within certain bounds if
the planned actions are to be assured of success. In this section,
we will develop the conditions for the uncertain quantities
which ensure that the planned actions can be carried out. The
putdown action is assumed to always succeed, since IRAS
only places objects at locations that are known to be clear
on the worktable. Two other actions of IRAS, unfixture and
locate, can always be executed regardless of the uncertainties
in the object descriptions. Hence, only the following actions
need to be considered: pickup, fixture, and assemble.

The success of a pickup action depends on the possible
locations and orientations of both the gripper and the object
to be grasped. In particular, the two contact points on the
object must lie between the two fingers of the gripper. This
is satisfied if the grasp point of the object is located within a
certain distance of the tool center of the gripper.

We will now derive the necessary criteria for the success
of the pickup action. A pictorial illustration of this is given
in Fig. 12. Let P, be the grasp point in the object’s local
coordinate frame. Then its possible value P, in the actual
gripper coordinate frame is

where lag and are given by (9) and (6), respectively,
and 7,” is the ideal gripper configuration relative to the world.
Let wg and w, be the width of the gripper opening and
the distance between the two contact points on the object,
respectively. If the two contact points are to lie between the
fingers of the gripper, the Y-component of P, must be no

TUNG AND KAK: INTEGRATING SENSING, TASK PLANNING, AND EXECUTION FOR ROBOTIC ASSEMBLY 195

Fig. 12.
for the gripper and the object, respectively, while 0, and 0, denote the actual local coordinate frames for the gripper and the object, respectively.

Possible gripper coordinates and grasp point for a successful pickup action. The symbols 0, and 0, represent the ideal local coordinate frames

further than (w, - w,)/2 away from 0,, i.e.,

--E < [O 1 0 OIP, < t (1 1)

where E = (w, - w,)/2.
The conditions under which a fixture operation will succeed

are similar to those of the pickup action. In the fixture
operation, the clamps close about the fixture point, whereas
in the pickup action the fingers close about the grasp point.
In IRAS, the object to be fixtured is held in the gripper just
prior to the fixturing operation. Therefore, we need to convert
the uncertainty from the gripper coordinate to the fixture
coordinate. Let Po denote the position of the fixture point
in the object's local coordinate. Then the possible locations of
this point in the fixture's actual coordinate system is

where 7af is given by 10, 7; is the ideal configuration of
the object relative to the fixture, 7," is the ideal grasping
configuration, and la is the uncertainty of the object in terms
of the gripper coordinate. Using the same argument as those
for the pickup action, we get the constraint for the fixture
operation

(13)

where E = (w, - w o) / 2 , and wf and w, are the width of
the clamp opening and the distance between the two contact
points on the object, respectively.

The assemble action mates the object held in the gripper
with another object fixtured with the clamp. In the current
implementation, we only account for uncertainties in the
assembly operations for mating an object with a round peg
to an object with a round hole, as shown in Fig. 13. For
mating operations of other kinds of assembly, we assume that
the uncertainty tolerance is zero. As will be made clear in
Section VIII, this will cause the fine motion planner to be

--E < [O 1 0 O]Pf < E

Y
Fig. 13.
assembly.

The relationship between the peg and the hole in the peg-in-hole

invoked to generate the motions for the assembly process. The
peg-in-hole assembly will succeed if all the possible positions
of the peg will lie in each of the possible positions of the
hole. Let Rp and Rh denote the radius of the peg and the
hole, respectively. Then the assembly will succeed only if the
relative distance between the center of the peg and the center
of the hole is no bigger than Rh - Rp, i.e.,

(14)

where Ch and C p are the possible locations of the center of
the hole and of the peg, respectively, in the local frame of
the object with the hole. The value of Ch can be obtained in
a straightforward manner. In IRAS, the object with the hole

Rh - Rp > ICh - C p I

196 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APRIL 1996

will be fixtured, so its possible positions in the object’s ideal
local coordinate frame is

Ch = 7 A o C h

where l a 0 is the uncertainty transform of the object relative
to the fixture’s local coordinate, and C h is the center of the
hole in the object’s local coordinate frame.

The computation for C, is less obvious. Since the peg is
held by the gripper, its uncertainty will be described in terms
of the gripper’s local coordinate. Let this uncertainty matrix be
represented by TA. Then the possible locations of the center
of the peg in the object’s local coordinate frame is

where G g is the ideal gripper configuration relative to the
peg’s local coordinate frame, and C, is ideal location of the
center of the peg in the object’s local coordinate frame. In
IRAS, the assembly goal specifies the final position of the peg
relative to the position of the object with the hole. Denote this
transformation as 7:. Then the possible location of the center
of the peg in the ideal coordinate frame of the fixtured object
is given by

c, = q c
or

(15)

All of the actions in IRAS change the uncertainty of the
object description. Therefore, it is necessary to determine the
effects of an action on the uncertainties in the work cell. The
six actions of IRAS, pickup, putdown, fixture, unfixture,
locate, and assemble, all affect the uncertainty in different
ways. IRAS contains formulas for how uncertainties propagate
through these actions. However, these formulas will not be
presented here as their veracity has yet to be established
through experimentation.

VII. ASSEMBLY TASK PLANNING
The purpose of the assembly task planning module shown in

Fig. 4 is to generate only that part of the overall manipulation
plan that is independent of the initial positions and orientations
of the parts. The assembly task planner also inserts into the
plan sensory requests, which are invoked during execution
time for locating the necessary parts for the assembly. Suppose
the desired assembly is as displayed in Fig. 2(a) which calls
for the assembly of a peg into a block, but the block must
first be placed in a fixture in a particular pose. This top level
assembly goal is as follows:

assembled(peginho1e-assembly,
gripperheld-object(Peg),
fixtured-obj ect(Block),
matefaces(MateFaces),
mate-transform(MateTM) ,
mate-vector(MateVector),
fixture(clamp),
contactface-pairs(FacePairs)),

where MateFaces is a list of mating features, MateTM is the
transformation that describes the final position and orientation
of the peg relative to the block, Matevector specifies the
direction of the mating operation, and FacePairs specifies the
contact faces between the block and the fixture, which is a
clamp in this case. As mentioned earlier, this goal is specified
by a human via the DataGlove system. A detailed description
of this is given in [32].

Given this assembly goal, the assembly task planner pro-
duces the plan shown partially in Fig. 14(a) and an associated
constraint network, shown pictorially in Fig. 14(b). As the
reader can see, all the variables in this plan are constrained to
take on only certain permissible instantiations. The symbols
grasp-I, grasp.2, pos-I, pos.2, fpos-0, fpos-I are the planning
variables; grasp-1 and grasp3 are for picking up the peg and
the block, respectively, pos-1 and p o s 2 will be instantiated to
the initial positions and orientations of the peg and block,
respectively, fios-0 and fpos-l will get instantiated to the
positions and orientations of the fixtured object before and
after the clamps are activated, respectively. In Fig. 14(b),
shown below the constraint network are the known permissible
instantiations for the planning variables. Therefore, the assem-
bly task planner has already determined that the constraints of
the assembly dictate that the instantiations for the variable
grasp1 be limited to the set {peg-gl, peg-gl3, peg-gl7,
where each of the constant symbols peg-gl, etc., actually
stands for a particular grasp configuration. The same is the
case for the other variables shown in Fig. 14(b). Note also
from Fig. 14(b) that while the nodes of the network are
constrained in this manner, the arcs themselves are devoid
of any constraining information. For example, the arc con-
necting the nodes marked grasp2 and p o s 2 will eventually
be constrained by the assembly execution planner using the
reachabk constraint which, as was mentioned earlier, tests
for the kinematic feasibility of the robot gripper reaching
the object in a certain pose and with a certain grasp for
the fixturing operation. If the reachable constraint cannot be
satisfied, the assembly execution planner will automatically
generate regrasping operations, as will be discussed further in
the next section.

At this juncture, the reader might ask why this split of
the planning process into assembly task planning and assem-
bly execution planning, the former for generating an initial
constraint network for the planning variables and the latter
for imposing constraints on the arcs of the network and for
possibly extending the network. This question is pertinent
particularly because in SPAR there is no such division between
the two phases of planning. The division of the planning
process in IRAS was done for reasons of endowing the system
with enhanced reactivity and for computational efficiency. By
generating the entire plan all at once, as in SPAR, one runs
the risk of having to abandon the whole plan if any of the
objects get inadvertently disturbed by the robot. On the other
hand, by dividing the planning process in the manner we do
in IRAS, one first uses the assembly task planner to create
a plan-it may be referred to as the high-level plan-that
constrains the grasp, location, and pose variables to those
instantiations that would permit the assembly to be executed.

TUNG AND KAK INTEGRATING SENSING, TASK PLANNING, AND EXECUTION FOR ROBOTIC ASSEMBLY

~

197

fixture(block. clamp, fpos-0, fpos-1)

pickup(block, g r a s p 3

assemble(peg, block)

variable its lube1 set
grasp-1
grasp2
fpose-1 (dbtm(ftm-1))
fpos-0 (dbtm(tm-1)}

I p e g s 1, pegs1 3, p e g s 17,. .. I
(block32, block-g9, blocks4 ,... }

(b)

arc (grasp-4 / pos-2, [block218 I dbtm(tm-2)))
arc (grasp-4 / pos-4, [block318 I [block-p4,0]))

arc (grasp-2 / pos-j, [block24 / [block-pS,O] })
arc (grasp-2 / fpos-0, { block24 / dbtm(tm-1)))

(c)

Fig. 14. The constraint network in (a) and (b) are generated by the assembly
task planner. Subsequently, the assembly execution planner augments the
constraint network of (b) and generates constraints for the arcs of the network.
Shown in (c) is the augmentation of the bottom segment of the network in (b).
(a) Prior-to constraints on planned actions. (b) Associated constraint network.
(c) Expanded arcs: grusp-2/pos-2, grusp-2/fpos-O.

Subsequently, the system uses the assembly execution planner
to locate each object, on an as-needed basis, and the calculated
location and pose of the object then cause the imposition of
kinematic and other constraints on the instantiations permitted
by the assembly task planner. More specifically, the assembly
execution planner applies kinematic constraints implied by
considerations such as reachability, etc., to the nodes of the
constraint network. As was shown already in Fig. 14, part
(b) of the figure shows the instantiation sets permitted by
the assembly task planner at each of the nodes. Fig. 14(c)
shows the arc constraints generated by the assembly execution
planner for the arc between the nodes pos-2 and grasp-2 of
Fig. 14(b). Also shown in Fig. 14(c) is the augmentation of

the network by the assembly execution planner. This figure
will be discussed in greater detail in the following section.

VIII. ASSEMBLY EXECUTION PLANNING

As should already be evident from the discussion in the
preceding section, the assembly execution planner has the
following functions.

Invoke sensing actions for objects as they are needed for
the assembly manipulation.
Apply reachability and other such criteria to the objects
located by the sensors. Invocation of the reachability
criteria will generate arc constraints, as shown already
in Fig. 14(c).
If the object found cannot be reached with the grasp
needed for the satisfaction of a subsequent goal, generate
a regrasping manipulation sequence. This would cause
augmentation of both constraint networks. Notice the
assembly execution planner generated augmentation in
Fig. 14(c) of the constraint network of Fig. 14(b). This
augmentation consists of a regrasping sequence signi-
fied by the chain consisting of nodes grasp-4, pos-4,
grasp-3 and pos-3. This chain was inserted in place
of the link between the nodes pos-2 and grasp-2 in
the network of Fig. 14(b). That link had to be broken
because the assembly execution planner discovered, by
invoking kinematic considerations, that no permissible
instantiation for the variable grasp-2 would allow the
block to be transferred from p o s 2 to &os-0. The
regrasp planning is described in greater detail in the
remainder of this section.
Examine the partial ordering among the actions, as
encoded in the network shown in Fig. 14(a), and then
select an action on the basis of the following criteria:
If an action node in the network has no prior-to prece-
dents, it is accorded a high priority for execution.
If two or more actions have the same priority, that
action is selected which is a prior-to precedent of the
largest number of action nodes. Once an action has been
successfully executed, it is deleted from the prior-to
network. The constraint network is also updated.
Apply the uncertainty reasoning process described in
Section VI to update the uncertainty in the world de-
scription. If the uncertainty level is too large so that
success cannot be guaranteed for an action chosen for
execution, invoke the appropriate strategies to reduce the
uncertainty. Currently, a pair of two distinct grasps are
selected to reduce the uncertainty in the position and
orientation of an object. In the case of the assembly
operation, violation of the uncertainty constraint will be
handled with a simple fine-motion planner employing
forceltorque control [151.

In the remainder of this section, we will describe the method
used in IRAS for regrasping and for updating uncertainties.

Regrasping actions are generated by treating the regrasping
problem as a discrete one. This is accomplished by quantizing
the space of grasp configurations of each object and using
stable classes to characterize its placement on the table.

198 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO 2, APRIL 1996

Associated with each stable class is a set of orientations for
regrasping, i.e., an instance of a stable pose is specified by a
placement-orientation pair. This representation is similar to
that described in [21], [30], and [25]. Since regrasping is
preceded by the need to put down the object, we have reserved
some free space on the table for that purpose.

We construct a grasp-placement graph, G, for an object as
follows. Each placement-orientation pair is a vertex in G. G has
two additional vertices, Po and Pf , representing the initial and
final positions and orientations of the object, respectively. Two
vertices in G are connected together if and only if there is a
common grasp that is feasible for the placement corresponding
to the vertices, the arc joining the two vertices is labeled by
the set of all such grasps.

The construction of G requires an exhaustive enumeration
of pairs of placements and grasps. This is not as difficult as
it might seem, since the grasps are characterized by grasping
features associated with each stable pose, and the number of
stable poses for an object is often fairly small. Furthermore,
the subgraph G* = 6 - {Po, Pf} is the same for each object
regardless of its initial and final position and orientation, i.e.,
G* is independent of the task that requires the object. There-
fore, we can precompute G* and store it in the knowledge base
of the system. Once G has been constructed, the problem of
finding a sequence of regrasping operations can be formulated
as finding a shortest path from Pf to Po.

Once an action has been successfully executed, the assembly
execution planner updates the uncertainties of the objects
affected by the action according to the specifications described
in Section VI. Since all of the uncertainty constraints are of
the forms C < E and E < C, where C is a constant and E
is a symbolic expression in terms of uncertainty variables, the
evaluation of these constraints can be done in a straightforward
manner-for each symbolic expression, it is only necessary to
find the lower and upper bounds on the expression, subject
to a set of constraints. In IRAS, finding bounds on symbolic
expressions is accomplished by using a SUP/INF algorithm.
The reader is referred to [2], [4], [5], and [29] for a more
detailed description of the SUP/INF method.

Ix . EXECUTION MONITORING AND SENSING

The execution-monitoring system is devised for a work cell
equipped with a PUMA762 robot manipulator. The sensors
consist of a parallel-jaw gripper (used as a sensor to measure
the width of the part of the object that is grasped), a wrist-
mounted forcehorque sensor, as well as various kinds of
cameras. As discussed presently, the cameras are used to
determine the positions and orientations of the part specified in
a sensory request. The sensor system monitors the execution of
each action to ensure its success. In the case of a pickup action,
the width of the opening of the gripper is used to determine
the success of the operation. If this action cannot be executed
successfully, perhaps because the part was located too close to
other parts, the assembly execution planner is informed of the
failure so that it can issue a new sensory request to locate the
part and replan the regrasping steps. For the assemble action,
the forceltorque sensor is used to ensure the success of the

mating operation. The method described in [151 is employed to
recover from mating errors. Other operations such as putdown
and fixturing objects are assumed to always succeed.

Regarding the vision part of sensing, it is important to note
that in light of the great strides that have been made in 3-D
vision 191, [16], [19], [17], [20], [l l] , [13], it would certainly
be possible today to endow IRAS with a sophisticated and
robust vision module for recognizing and locating the objects
needed for assembly. However, the focus of this research
is more on planning than on vision. So, for the purpose of
establishing the feasibility of the planning notions presented
here, we developed a special 2-D vision module for IRAS that
is simple and fast. This module is based on the assumption that
the objects are recognizable from their 2-D bounding contours,
the objects resting in arbitrary stable poses on a flat surface.
This module uses two cameras. One of the cameras, mounted
overhead so that it can view the entire work area, is used for
coarse location of all the objects in the work area. The other
camera is mountable in the gripper and is used as needed for
the determination of the positions and orientations of the parts.
The gripper-held camera is oriented so that its image plane is
parallel to the worktable. For an object in one of its stable
configurations, the image taken by the camera will contain
the bounding contour of the object that can then be used
for identifying the pose. The bounding contour is represented
by a differential chain code, which is refined using a least
square fit method to yield analytic forms. From the bounding
contour, the stable pose of the object is recognized using a
minimum least squares classifier. For an object in a stable pose,
it only has one rotational degree of freedom-a rotation about
a direction perpendicular to the table. Thus, the identification
of this stable pose in conjunction with the angle of rotation
specifies the orientation of the object. This angle, along with
the displacement of the object, is computed using the contour
of the object. Fiducial marks are placed on the different faces
of the objects; these marks help determine the location of the
origin of the local coordinate frame attached to the object. To
illuseate, the parts used for the assembly shown in Fig. 3 are
marked with triangular markers, as illustrated in Fig. 15.

Regarding the processing of the overhead camera image,
a histrogram derived threshold is applied to the image and
the resulting components labeled. Since the objects to be
manipulated are not very large, the image provided by the
overhead camera does not provide enough data that can
be used to differentiate the parts. But we can compute the
center of mass of each component, that after application of
the inverse perspective transform for the camera yields the
world coordinates of the center of mass of the object. The
inverse perspective transform is performed using the two-plane
method of camera calibration [24].

Once a rough estimate of the object’s location is available,
the robot moves its9 gripper-held camera so that it is, at a
predesignated height, directly above the center of the object
as ascertained from the overhead camera image. The camera is
oriented such that its image plane is parallel to the table. With
this arrangement, the entire object is within the field of view of
the camera. Because the object is in a stable configuration, the
image taken by the camera will contain the bounding contour

TUNG AND KAK: INTEGRATING SENSING, TASK PLANNING, AND EXECUTION FOR ROBOTIC ASSEMBLY 199

X
X

Z

4 Y

World
Frame

/ o /I

I

2

Fig. 15.
in Fig. 3.

The fiducial markers for the parts for the sample assembly shown

of the object, which is used to identify and compute the pose
of the object. This process is carried out in three steps: image
segmentation, feature extraction, and pose estimation.

First, the image is thresholded and components labeled.
This uses the same component labeling algorithm as for the
overhead camera image. In our experiments, because of the
camera placement, the largest component in the image will
always correspond to the object of interest. Once the image
has been labeled, feature extraction can be performed. The
system extracts five features from the image: the perimeter of
the object, the area of the object, the number of comers of the
object, the number of holes in the object, and the location of
the fiducial mark.’ The perimeter of an object is defined to be
the total number of border pixels of the object. The area of
the object is defined to be the total number of pixels of the
object. This is computed by the image segmentation routines
described above. The number of corners refers to the number
of comers in the border of the object. These five features form
the feature space which is used to identify the object and its
stable pose.

Initially, each straight line segment is represented by a
differential chain code. Subsequently, linear regression is used
to fit the standard analytic form y = a + bx to each straight
segment and the values of the parameters a and b computed for
the segment. Simple formulas then yield the precise locations
of the intersections of these straight segm%s. Finally, in
order to locate the fiducial marks, search is conducted along
a bisector of the angle formed at each intersection point. In
order to determine whether or not an object face contains a
hole, a search is conducted along the two principal axes in the
vicinity of the center of the object.

Of the five features mentioned above-area, perimeter,
number of comers in the contour, number of holes, and
location of the fiducial mark-the first four are used for

nearest to the fiducial mark.
2Note. Location of the fiducial mark refers to the location of the comer

constructing a 4-D feature space that is used for distinguishing
between the different stable pose classes of an object, each
stable pose class characterized by the object face in contact
with the table. Each stable pose class is represented by an
examplar and the classification consists of selecting that pose
class which yields the minimum least squares error for the
distance between the measured features and the exemplar. The
exemplar for each stable pose class is selected by simply aver-
aging the feature values corresponding to the many instances
of that stable pose class shown to the camera system during
a training session.

Once the stable pose class of an object on the table is
determined, its precise pose is computed from the location
of the fiducial mark. Note that in each stable pose class, the
only degree of freedom in the object pose is its rotation about
the world Z-axis, which is perpendicular to the worktable.
The rotation of the object around this axis (or, more precisely,
the rotation of the local object-centered coordinate frame with
respect to the world Z-axis) is computed using the two edges
adjacent to the fiducial mark associated with this stable pose.

A pictorial illustration of this algorithm is given in Fig. 16.
This figure consists of three snapshots taken during an assem-
bly session similar to that of Fig. 3. In particular, it depicts
the steps for finding the position and orientation of the peg
object. Fig. 16(a) shows the image obtained with the overhead
camera. The centroids of the objects are drawn as crosses and
superimposed over the image. These values are converted into
their respective world coordinates. The gripper-held camera
is then placed directly over the object to be classified, as
shown in Fig. 16(b). The image obtained with the gripper-
held camera is subsequently analyzed in the manner described
above. Fig. 16(c) shows the image of the peg object on which
are superimposed the extracted boundary and the principle
axes of the object face visible to the camera. The diagonal
line in the lower right corner illustrates the search direction
for finding the fiducial marker.

X. CONCLUSION
In this paper, we presented IRAS, an implemented robotic

assembly system where planning, sensing, and task execution
are tightly integrated as interleaved operations. The planning
process divides very naturally into two phases. In the first
phase, which we term the “assembly task planning” phase,
a nonlinear planner is invoked to create a family of general
plans that is independent of the dynamic aspects of the
work cell. The second phase, which we call the “assembly
execution planning” phase, is intertwined with the execution
of the plan-the module issues sensory requests, adds detailed
steps to the plan in accordance with the current status of
the work cell and schedules them for execution. The plans
generated by these planners are guaranteed to be correct,
since the assembly task planner guarantees that the plans it
generates are correct [8], and the steps added by the assembly
execution planner are themselves correct and do not clobber
planned steps generated in the first phase. Also, the efficient
handling of both geometric and kinematic constraints greatly
reduces the amount of search during plan generation. Efficient

200 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 12, NO. 2, APFUL 1996

Fig. 16. Locating the peg using the overhead and the gripper-held cameras.
(a) Centroids superimposed on the regions extracted from the image from
overhead camera. (b) Placing the hand-heald camera over the peg. (c)
Orientations and boundary of peg.

uncertainty propagation and constraint evaluation improves the
system’s ability to detect and to recover from potential errors.
Furthermore, the system’s ability to plan for sensory requests
enhances both the robustness and flexibility of the system.
Since only a rudimentary vision module is plugged into the
system at this time, the experiment shown in Fig. 3 works
all the time as long as the parts thrown on the table form
nonoverlapping images in the overhead camera and as long
as these parts lie within a prescribed portion of the robot
workspace.

APPENDIX
DESCRIPTION OF FIG 3

For interested readers, here is a brief description of what is
being depicted by the different frames of Fig. 3.

Shown in frame Fig. 3(a) is a human throwing the parts in
front of the robot. The photo in Fig. 3(b) shows the robot using
a gripper-held camera for the localization and pose calculation
of the parts in the work area. Since only 2-D vision is used,
the different surfaces of the parts are marked with fiducials to
aid in pose calculation. The camera is removed subsequently.
The sequence of frames in Fig. 3(c) through (f,) demonstrates
the robot employing two grasping and regrasping operations
that are needed to place the block in a pose that then permit
the robot to put it down in the fixture, as shown by the pickup
operation in Fig. 3(g) and fixturing of the block in Fig. 3(h).

The robot then goes about the business of locating the
second part, the peg, needed for the assembly. The robot has
the freedom to either use the overhead camera, not shown, or
request that the human provide it again with the gripper-held
camera for this purpose. In the particular experiment depicted
here, an extra grasping operation is needed for the peg in
order to make the assembly feasible; the pickup and putdown
corresponding to this step are shown in Fig. 3(i) and 0). Shown
in Fig. 3(k) is the final pickup of the peg prior to its assembly
with the block that is already in the fixture. The assembly itself
is shown in the frame Fig. 3(1).

REFERENCES

[l] J. Allen, J. Hendler, and A. Tate, Readings in Planning. Los Altos,
CA: Morgan Kaufmann, 1990.

[2] W. W. Bledsoe, “The SUP-INF method in Presburger arithmetic,” Dep.
Math., Univ. Texas, Austin, Memo. ATP-18, Dec. 1974.

[3] R. P. Brent, Algorithms for Minimization Without Derivatives. Engle-
wood Cliffs, NJ: Prentice-Hall, 1973.

[4] R. A. Brooks, “Symbolic reasoning among 3D models and 2D images,”
Artificial Zntell., vol. 17, pp. 285-348, 1981.

[5] ~, “Symbolic error analysis and robot planning,” Znt. J. Robot.
Res., vol. 1, no. 4, pp. 29-68, 1982.

[6] -, “A robust layered control system for a mobile robot,” ZEEE
Trans. Robot. Automat., vol. RA-2, no. 1, pp. 14-23, 1986.

[7] ~, “A robot that walks: Emergent behaviors from a carefully
evolved network,” in Proc. AAAZ-86, 1986, pp. 626-631.

[8] D. Chapman, “Planning for conjunctive goals,” Art$ciaZ Intell., vol. 32,
pp. 333-377, 1987.

[9] C. H. Chen and A. C. Kak, “A robot vision system for recognizing
3-D objects in low-order polynomial time,” IEEE Trans. Syst., Man,
Cybern., vol. 19, pp. 1535-1563, 1989.

[lo] L. S. Hommem de Mello and A. C. Sanderson, “A correct and complete
algorithm for the generation of mechanical assembly sequences,” ZEEE
Trans. Robot. Automat., vol. 7, no. 2, pp. 228-240, 1991.

[l l] 0. D. Faugeras and M. Hebert, “The representation, recognition, and
locating of 3D objects,” Int. J. Robot. Res., vol. 5, pp. 27-52, 1986.

TUNG AND KAK INTEGRATING SENSING, TASK PLANNING, AND EXECUTION FOR ROBOTIC ASSEMBLY 20 1

[I21 R. E. Fikes and N. J. Nilsson, “STRIPS: A new approach to the
application of theorem proving to problem solving,” Artificial Intell.,

[13] P. Flynn and A. Jain, “3D object recognition using invariant feature
indexing of interpretation tables,” CVGfP: fmage Understanding, vol.
55, no. 2, pp. 119-129, 1992.

[I41 B. R. Fox and K. G. Kempf, “Opportunistic scheduling for robotic
assembly,” in Proc. IEEE Int. Con$ Robotics and Automation, 1985,
pp. 880-889.

[15] S. N. Gottschlich and A. C. Kak, “A dynamic approach to high-precision
parts mating,” IEEE Trans. Syst., Man, Cybern., vol. 19, pp. 797-810,
Aug. 1989.

[16] L. L. Grewe and A. C. Kak, “Interactive learning of a multiple-attribute
hash table classifier for fast 3D object recognition,” Comput. Vision
lmage Understanding (formerly CVGIP-IU), vol. 61, pp. 387416, May
1995.

[I71 W. E. L. Grimson and T. Lozano-Perez, “Model-based recognition and
localization from sparse range or tactile data,” fnt. J. Robot. Res., vol.
3, pp. 3-35, 1987.

[I81 S. A. Hutchinson and A. C. Kak, “SPAR: A planner that satisfies
operational and geometric goals in uncertain environments,” AI Mag.,
vol. 11, pp. 30-61, Spring 1990.

[19] K. Ikeucbi, “Generating an interpretation tree from a CAD model for
3D-object recognition in bin-picking tasks,” Int. J. Comput. Vision, vol.

[20] W. Y. Kim and A. C. Kak, “3D object recognition using bipartite
matching embedded in discrete relaxation,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 13, no. 3, pp. 224-251, 1991.

[21] T. Lozano-Perez, J. L. Jones, E. Mazer, P. A. O’Donnell, W. E. L.
Grimson, P. Tournasoud, and A. Lanusse, “Handey: A robot system
that recognizes, plans, and manipulates,” in Proc. IEEE/RSJ Int. Con$
Intelligent Robots and Systems, 1987, pp. 843-849.

[22] D. M. Lyons, A. J. Hendriks, and S. Mehta, “Achieving robustness by
casting planning as adaptation of a reactive system,” in Proc. fEEE fnt.
Con$ Robotics and Automation, 1991, pp. 198-203.

[23] D. M. Lyons and A. J . Hendriks, “Planning for reactive robot behavior,”
in Proc. IEEE Int. Con$ Robotics and Automation, 1992, pp. 2675-2689.

[24] H. A. Martins, J. R. Birk, and R. B. Kelly, “Camera models based
on data from two calibration planes,” Comput. Msion, Graphics Image
Processing, vol. 17, pp. 173-180, 1981.

[25] J. Pertin-Troccaz, “On-line automatic robot programming: A case study
in grasping,” in Proc. IEEE Int. Con$ Robotics and Automation, 1987,

[26] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipies in C: The Art of Scientific Computing. Cambridge:
Cambridge Univ. Press, 1991.

vol. 2, pp. 189-208, 1971.

1, pp. 145-165, 1987.

pp. 1292-1297.

[27] C. Ramos and E. Oliveira, “Closing the loop of task planning, action and
sensing,” in Proc. IEEE/RSJ Int. Con$ Intelligent Robots and Systems,

[28] A. C. Sanderson, H. Zhang, and L. S. Hommem de Mello, “Assembly
sequence planning,” A f Mag., vol. 11, no. 1, pp. 62-81, Spring 1990.

[29] R. E. Shostak, “On the SUP-INF method for proving Presburger
formulas,” J. ACM, vol. 24, no. 4, pp. 529-543, 1977.

[30] P. Toumassoud and T. Lozano-Perez, “Regrasping,” in Proc. IEEE Int.
Con$ Robotics and Automation, 1987, pp. 1924-1928.

[31] C.-P. Tung and A. C. Kak, “Integrating sensing, task planning and
execution,” in Proc. IEEE Int. Con$ Robotics and Automation, 1994,
pp. 2030-2037.

[32] -, “Automatic learning of assembly tasks using a DataGlove
system,” in Proc. IROS ’95, Pittsburgh, PA, pp. 1-8.

[33] X. Xia and G. A. Bekey, “SROMA: An adaptive scheduler for robotic
assembly systems,” in Proc. IEEE Int. Con$ Robotics and Automation,
1988, pp. 1282-1287.

1992, pp. 909-916.

Chao-Ping Tung (S’93-M’95) received the B.S.,
M.S., and Ph.D. degrees in 1988, 1989, and 1995,
respectively, all from Purdue University, West
Lafayette, IN.

He was a Research Associate at the Robot Vision
Laboratory at Purdue from 1990 to the spring of
1995, working in the areas of sensor-based robotics.
computer vision, and artificial intelligence. He is
currently a Senior Engineer at NEC America, Inc.

Avinash C. Kak (M’71) is currently serving a two-
year term as an IEEE Distinguised Lecturer in the
Robotics and Automation Area. He is a coauthor
of the widely used Digital Picture Processing (New
York: Academic, 1982) and a coauthor of a forth-
coming book entitled Robotic Planning

