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In this paper, we first propose schemes for segmenting out the visible part of the topmost
object from a pile of planar and curved objects. We then describe our work on using B-splines
for the characterization of the topmost object surface when it is curved; the B-splines are used
for deriving operators that yield the Gaussian and mean curvatures. This is followed by a
description of our identification strategies which depend upon whether the topmost object is
Jjudged to be planar or curved. The identification strategy for planar objects revolves around
the EGI representation of their visible surfaces and is a function of whether the number of
visible planar surfaces is one, two, three, or more. In case the number of sufficiently visible
planar surfaces is less than or equal to two, we have incorporated surface boundary informa-
tion with angular relation between adjoining surfaces to improve the identification process.
For curved objects, the identification strategy depends upon the signs of the Gaussian and the
mean curvatures and the EGL. While these identification strategies are not guaranteed to work
in every case, we expect them to be practically useful for a wide range of industrial objects.
© 1986 Academic Press, Inc.

1. INTRODUCTION

Seemingly simple operations like picking up the topmost object from a pile of
objects can be exceedingly difficult for even a robot that is endowed with sensory
capabilities for the purpose of dealing with a random environment. For many years,
it was hoped by the computer vision community that we would succeed in
implementing on a computer the laws of Gestalt organization and stereo perception
that allow us humans to perform such tasks so effortlessly. More recently, the
attitude has been that while research must continue in simulating these human
abilities, which appear to be guided by knowledge and driven by expectation, we
must in the meantime also look for purely engineering solutions to the sensory
feedback problems of robots.

During the past few years, many engineering solutions have been shown to be
feasible. For example, if the aim is to simply pick objects from a bin and if the
object surfaces are smooth it is possible to use a vacuum gripper [14]. If the aim is a
bit more sophisticated, such as sorting a pile of objects on the basis of shape, one
must now use the sensory data (in most cases, vision) to not only locate the least
occluded object—usually topmost—but also recognize its shape in two or three
dimensions; in addition, it may be necessary to compute optimum holdsites.

With vision sensing, because of difficulties with the segmentation and grouping of
photometric information, it is now generally believed that when the objects involved
are inherently 3D in nature (as opposed to being flattish), one must resort to range
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maps for scene analysis. Of course, the ideal would be to use the human-like stereo
vision capability for generating the range maps with two or more cameras [13]; but,
in practice, for reliable and sufficiently dense data, a more engineering solution must
be used—which is either laser based or structured-light based.

The main purpose of this paper is to describe our strategies for analyzing
structured-light range maps for determining the identity, position, and orientation
of the topmost object in a pile. The extent to which the topmost object must be free
of occlusion for our strategies to work depends, in general, upon how many different
types of objects there are in the pile. Currently, if the topmost object lacks sufficient
visibility and /or cannot be matched with any of the known descriptions, it will be
declared unidentifiable. In a future system, at this point the robot would presumably
disturb the pile and the scene would be reexamined. ,

The problem of locating and identifying the topmost object in a pile could be
considered to be a specialized case of scene analysis with 3D vision. Limiting our
citations to those that deal specifically with multi-object scenes: Oshima and Shirai
[16] have segmented scenes consisting of polyhedral and curved objects by using a
region growing technique; the overall scene was then described in terms of proper-
ties of regions and relations between them. Using information generated by photo-
metric stereo, Horn, and Ikeuchi [10] have used the extended Gaussian image to
determine the identity and orientation of an object that is a part of a small pile.
Bolles [4] has used structured light range data to quickly and reliably locate
cylinders of a specified diameter in a pile of cylinders. We have described in [5] a
procedure for pile analysis that correctly segments a structured light generated
edge-vertex description of a scene consisting of convex polyhedral objects. Dessimoz
et al. [7] have used a matched filter type of implementation in which one first takes
note of the geometry and the mechanics of how the robot end-effector picks up
objects; this consideration then leads to a set of features that can be invoked to
identify the object if it is successfully grasped by the robot.

The approach presented in this paper first extracts local surface definitions from
structured-light range maps. In the vicinity of the topmost point of the scene, as
discussed in Section 2, surface definition is tested for planarity; subsequent
processing depends upon the outcome of this test. Depending upon whether the
topmost object is planar or curved, we invoke different heuristics for the segmenta-
tion of its visible patch; these heuristics are described in Sections 3 and 4. After the
visible part of a curved object is isolated, special operators must be used to estimate
its characteristics—of course, we want these characteristics to possess the property
of visible-invariance [3]. In Section 5, we have shown how B-splines can be used for
computing curvature properties, which possess this feature of visible-invariance, for
curved surfaces. As discussed in Sections 6 and 7, depending upon whether the
topmost object is judged to be planar or curved, different procedures are used for
object identification—to the extent such identification is possible from the char-
acteristics of the visible patch.

2. TESTING THE TOPMOST VISIBLE SURFACE FOR PLANARITY

Before we can test the topmost surface for planarity, it must first be located.
Fortunately, with 3D vision data that is trivially accomplished by seeking out the
pixel with the largest z coordinate, which corresponds to the max1mum height above
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the work table. (If there exist many pixels whose heights are maximal and identical
—this can happen when a straight edge of the topmost object is positioned parallel
to the work table—it is possible to choose any one of them as the topmost pixel.)
An N X N set of pixels containing the topmost pixel is then defined as the topmost
patch; and a 3 X 3 set of patches, containing the topmost patch at the center, is
then tested for the planarity of the topmost surface. The size of the patches
(N X N) is heuristically determined; if it is too small, the planarity test may not be
reliable, and if it is too large, the implicit assumption that all continuous surfaces,
even curved ones, are locally plane will be violated. We have used N = 8.

- The planarity test measures the variation in surface normals over this 3 X 3 set of
patches; each surface normal being calculated by performing a least-mean-squares
fit of a plane to the corresponding 8 X 8 cluster of pixels. To give greater credibility
to the planarity test, we can also examine the Gaussian and mean curvatures, since
over regions that are declared to be planar, both should be zero. (For details about
the estimation of local Gaussian and mean curvatures, the reader is referred to Sect.
5.) If with these tests it is determined that the surface region under examination is
indeed planar, the object (or, at least its topmost surface) is declared planar;
otherwise, it is assumed to be curved. In some cases it is possible that the 8 X 8
patch containing the topmost pixel might straddle an edge; clearly we do not wish
such a patch to contribute to planarity decisions. These can be discarded from
further consideration by putting a threshold on the error between the fitted plane
and the pixel positions, as was done first in [16].

3. SEGMENTATION OF THE VISIBLE PART OF A TOPMOST PLANAR OBJECT

If the topmost visible surface is declared planar by the preceding procedure, the
rest of the surface is extracted by a region growing algorithm utilizing the simple
heuristic that all the surface normals of the patches of the topmost surface must
point in essentially the same direction (surface normal constraint) and that the
patches be adjacent (adjacency constraint). A region is allowed to grow until either
there is nothing more to merge, or until we have exceeded some specified distance
from the starting patch; this distance reflecting our knowledge of the maximum
expected size of the objects in the scene. _

The process of merging can be made somewhat faster if at the beginning we also
estimate the direction toward which most of the topmost surface lies from the
vantage point of the starting patch. For example, if we knew that the starting patch
was at the top right corner of the surface, then the growing process could be
confined to the left of and below the starting patch. Determination of where the
starting patch lies in relation to the rest of surface can in some cases be made by
examining a neighborhood set of patches.

After the topmost surface is extracted, the rest of the visible portion of the
topmost object must be segmented out; this means extracting the visible portions of
adjoining surfaces. In a sense, this is a continuation of the region growing process

Al processing is done over an array of numbers each column of which corresponds to range values
along one illuminated light stripe in the scene. If the reader wants to know how much of an object
surface area corresponds to an 8 X 8 patch in our illustrations, one of the linear dimensions of this area
is equal to the length spanned by eight light stripes. The other dimension depends upon the sampling rate
along a stripe; in our case that corresponds to the raster lines generated by the camera, which was 512.




232 YANG AND KAK

Alv,

S,: topmost surface

S,: adjoining surface
N,: surface normal of S,
N,: surface normal of S,

Fic. 1. Illustrated here is a concave polyhedral object in which the topmost surface (S;) and its
adjoining surface (S,) satisfy the convexity constraint.

mentioned above, and a similar set of heuristics is now called for; the ones that we
use are:

1. Adjacency constraint. To act as a starting patch for an adjoint surface, a
patch must be a neighbor of one of the patches of the extracted topmost surface.

2. Surface normal constraints. Patches on an adjoining surface must have the
same surface normals as the starting patch for that surface. In some cases, based on
the knowledge available about the objects, constraints may be imposed on the
permissible angles for the patch surface normals on adjoining surfaces. For example,
if the objects are known to be rectangular, we may not accept a patch as a seed for
an adjoining surface unless its surface normal is perpendicular to the normal
associated with the topmost surface.

3. Object convexity constraint. All surfaces that adjoin the topmost surface must
also satisfy the convexity condition. Which is the same as saying that points that lie
on a straight line connecting any location on the topmost surface and a point in the
adjoining surface must all lie behind both surfaces when those points are viewed
along the direction which is the inverse of surface normal of either the topmost
surface or its adjoining surface. As shown in Fig. 1, P; which is on a line connecting
P, and P, is behind S, when it is viewed along V, which is the inverse of the surface
normal of the topmost surface; and behind S, when it is viewed along V. The
object convexity constraint obviously limits us to objects that are convex. For most
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F16.2. (a) Another scene consisting of a pile of objects with a cube at the top. (b) Light stripe image
of the scene. (c) Illustrated here is the visible part of the cube as extracted by the segmentation algorithm.

complex planar objects, via this constraint we will only be able to extract the convex
part of what is visible for the topmost object.

Figure 2a illustrates a scene consisting of a pile of objects with a cube at the top;
Fig. 2b shows the light stripe image of the scene, and Fig. 2c shows the topmost
planar object (a cube) segmented out by the region growing procedure.

The reader might notice a certain lack of registration between (a) and (b) in Fig. 2
—in the sense that the relative orientations of some of the edges in the two displays
are not the same. The reason for that is experimental: the reflectance image of (a) is
taken from a particular point-of-view, which bears no relationship with the point-
of-view in (b). In fact, it is not even possible to associate a single point-of-view with
the stripe image in (b) because it is taken with a robot-mounted scanner with both
the light projector and the camera undergoing linear motions during the scan. The
reader is referred to [19] for further details on this approach to structured-light 3D
vision.

4. SEGMENTATION OF THE VISIBLE PART OF A TOPMOST CURVED OBJECT

Region growing is not the best strategy for extracting the visible portion of a
topmost curved object; the difficulty being caused by the variations in the surface
normals over such surfaces.
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F1G. 3. TP is the topmost point. The continuous line with arrows represents the outer boundary of a
hypothetical topmost curved object. The posts, on the eight cardinal directions from the topmost point,
used for boundary tracking are shown also.

A better strategy for curved objects is to locate the outer boundary of the topmost
curved surface by finding the defining range discontinuities. This is accomplished in
the following manner. From the topmost point, we sequentially proceed outwards in
eight directions, E, W, N, S, NE, NW, SE, SW, until along each direction we reach a
point of a significant range discontinuity (Fig. 3); this pursuit being abandoned if a
discontinuity is not found within a certain distance, which depends upon our
a priori knowledge of the maximum dimension of the objects in the scene. After the
range discontinuity points are detected in the eight or fewer directions, we select one
of those as a starting point for outer boundary tracking. The rest are designated as
“posts” on which the extracted outer boundary must “hang.” Suppose, after
tracking out from the starting point for a certain predetermined distance, a post is
not encountered, we abandon that track, and select. one of the other posts as a
starting point. Tracking proceeds from post to post. After one complete attempt at
going around all the posts in one direction, we go back to those post pairs where
tracking proved unsuccessful; for these the tracking is then attempted in the
opposite direction. If that also fails, we either connect the two posts by a straight
line; or if greater precision is demanded, we might set up another post between the
offending pair and retry the procedure.

However, for an object like a torus, whose range map from many viewpoints
contains a hole inside the outer boundary, some posts may not reside on the outer
boundary at all. As shown in Fig. 4, for the viewpoint shown there, post 5 is located
on the inner boundary of the torus, therefore the tracking process from post 4 to
post 5, and from post 5 to post 6, will fail even if we subdivide the sectors between
post pairs. As a result, we could lose almost half of the topmost object surface if we
simply connected posts 4 and 6. To overcome this flaw, whenever there exist post

A
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F16. 4. An example of a torus, where the first range discontinuity along the south post, Ps, does not
reside on the outer boundary of the torus. If points around P have negative Gaussian curvature, the
third range discontinuity to the south, located at P,, is taken to be on the outer boundary of the torus.

pairs between which tracking fails, one must meticulously examine regions around
those posts to find out if there really exists a hole there, implying a torus like object.
This examination can be carried out by checking the polarity of the Gaussian
curvature of the points around those posts. (Negative Gaussian curvature indicates
that the region around the point is locally saddle shaped.) If it is verified that a post,
such as P;, is located on the rim of a hole, we must then try to locate the third range
discontinuity along that direction (P, in Fig. 4) and use it as a new post for the
purpose of further tracking.

scanline

FiG. 5. Tllustrated here are the intersection points of a scan line with the object boundary approxi-
mated by a polygon. Points that liec on the chords between P, and P,, P; and P,, P; and P, belong to
the interior of the boundary.
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After the outer boundary of the topmost curved object is extracted, we are faced
with the not so simple task of extracting the interior points.

This is accomplished by first extracting a minimum bounding rectangle contain-
ing the outer boundary points; although this operation is trivial, it does reduce the
amount of data for further processing. To extract from this rectangle those points
that are within the object boundary, we have devised a procedure which uses the
polygon filling technique of computer graphics.

The procedure is based on the principle that when a straight line intersects a
closed boundary at, say, P1, P2, P3,..., Pn, then all the points that lie on a chord
between P1 and P2 must belong to the interior of the boundary; those that are on a
chord joining P2 and P3 must be exterior to the boundary; those that are on a
chord joining P3 and P4 must again be interior to the boundary; and so on (Fig. 5).

The determination of the intersections of the scan lines with the boundary is
aided by the fact that the computer representation of the boundary is that of a
polygon. The points of intersection of a scan line with each side of the polygon can
be found by the following simple routine.

FIG. 6. () A scene consisting of pile of objects with a sphere at the top. (b) Light stripe image of this
scene. (c) Shown here is the visible part of the sphere as extracted by the segmentation algorithm.

If
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Let (I, J;), and (1, J,) be the two vertices of a particular side of the polygon.
We then calculate

‘3 Isan—:Il
| it (1)
i 2 1

If r <0.0 or r > 1.0, then the scan line does not touch the line segment; if r = 0.0
or 1.0, then the scanline intersects the start or ending vertices of the line segment,
respectively. On the other hand, if 0.0 < r < 1.0, then the scanline intersects the
interior of the line segment and the coordinates of the intersection point are given

by

Ii = Iscan

2
Ji=Jy +r*(J, = Jp). @

] For each scanline, the intersection points with all sides of the polygon are

’ collected, sorted from left to right in the order of increasing horizontal coordinate;

!’ and then the points between each pair are considered as the interior points of object
region provided, of course, the range data is available at such points.

F1G6.7. () A scene consisting of a pile of objects with a torus at the top. (b) Light stripe image of this
scene. Stripes reflected from the box beneath the torus are visible through the hole. (c) Visible part of the
torus as extracted by the segmentation algorithm.
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Figure 6a illustrates a piled scene in which a sphere is located at the top of the
heap; Fig. 6b depicts a light stripe image of Fig. 6a; Fig. 6¢ describes the visible part
of the topmost object as segmented by the procedure described here. The comments
made at the end of Section 3 also apply here with regard to any percelved
differences in registration between (a) and (b) in Fig. 6.

This algorithm can run into trouble with torus-like objects when other objects are
showing through the hole, since in such cases not all the visible points within the
outer boundary belong to the object. Fig. 7a shows a scene consisting of a pile of
objects with a torus at the top; Fig. 7b shows its light stripe image. As is evident
from the latter image, light stripes reflected from a box beneath the torus are visible
through the hole. The algorithm described above for segmenting out a curved object
would include this “false” region as a patt of the torus. However, it is possible to
eliminate such extraneous regions by using the range discontinuity information; a
successful result is shown in (c).

5. SURFACE CURVATURE ESTIMATION WITH B-SPLINES

After the visible surface of the topmost curved object is isolated, we need to
represent its shape by a set of descriptors, which could then be used for object
identification and orientation determination, the reliability of such computations
being determined by the extent of the visible surface. As Besl and Jain [3] have
eloquently pointed out, the mean curvature and the Gaussian curvature are the local
second-order surface characteristics that possess several desirable invariance proper-
ties and can be used to classify surface shapes. As long as a surface region is visible,
these two curvatures are invariant to changes in surface parameterization and to
translations and rotations of object surfaces. A most noteworthy feature of these
two curvatures is that their signs can be used to classify a surface region into one of
eight basic types; these being flat, peak, pit, minimal, ridge, saddle-ridge, valley,
and saddle-valley. The reader is referred to [3] for a pictorial depiction of the
elemental shapes.

In what follows, we will first very briefly present the expressions for the first and
the second fundamental forms that uniquely characterize and quantify a general
smooth surface and then, using the coefficients in these forms, we will show how the
Gaussian and mean curvatures are related to-the first and the second partial
derivatives of a range map. Although all these expressions can be found in [3] and
almost any book on differential geometry [8, 15] we show them here again for two
reasons: they give a sense of completeness to the presentation in this section and
because they provide us with a framework for introducing B-splines that we use for
deriving operators for curvature estimation.

Note that an explicit parametric representation of a surface in E3 is described as

x(u,v) = (x(u,v), y(u,v), z(u, v)). (3)

where x is a vector from the origin of E> to a point on the object surface.
The first fundamental form is given by

Y(du, dv) = dx - dx
= (x,du+x,dv) - (x,du+ x,dv)
= Edu® + 2Fdudy + G dv* ) (4)

w o
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where x, and x, are partial derivatives of x with respect to the parametrization
variables, u and v, and where

E=x,-x,
F=x,-x, (5)
G=x,-x,.

E, F, and G are called the first fundamental coefficients. The utility of the first
fundamental form should be evident from the definition I(du, dv) = dx - dx, that is
it allows one to compute simple metrics on the surface, such as the lengths of curves
and areas of regions.

While the first fundamental form does not contain partial derivatives of x higher
than the first, the second fundamental form depends upon the second-order partial
derivatives of the surface and is given by

O(du, dv) = —dx - dN
= —(x,du+x,dv) - (N, du+ N, dv)

= Ldu®?+ 2Mdudv + N dv? (6)
where
L=x,-N
M = Xuv : N (7)
N=x,-N
with
X, XX,
N=——-" (8)
., X x,]

being the surface normal at position x(u, v) on the object surface. L, M, and N are
called the second fundamental coefficients. :

It is clear that the functions E, F, G, L, M, and N completely determine the two
fundamental forms. We will now present formulas for the Gaussian and the mean
curvatures in terms of these functions. The Gaussian curvature, denoted by K, is
given by

LN - M?
K= 2657 ©)

and the mean curvature, denoted by H, is given by

EN + GL — 2FM "
- 2(EG-F?) (10)

The reason why H is called the mean curvature is that in terms of the.two principal
curvatures, k; and k, at a point, H is given by

ki+k
12 = (11)
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FiG. 8. Depicted here is a B-spline surface fitted to the 16 control vertices.

To also show the dependence of the Gaussian curvature on the principal curvatures,
it is given by

K = kik,. | (12)

So, while H is the arithmetic mean of the principal curvatures, K is the square of
the geometric mean.

It is clear that the numerical computation of K and H requires that we first
calculate the first, second, and mixed derivatives of x(u, v).

Assuming x(u, v) to be of form (u, v, z(u, v)), a form that corresponds to what is
known as a graph surface (which is also known as a Monge patch), Besl and Jain [3]
have used a procedure, originally proposed by Beaudet [2] for the computation of
the required derivatives of z(u, v) by first fitting a quadratic function to the range
data and then computing analytically the derivatives of this fitted surface.? They
showed how all these computations can be combined into the form of a separable
window convolution operation that possesses a fast implementation.

The approach used here will consist of fitting B-splines to x(u, v); we will now
assume that the arguments u and v are discrete and that x(u, v) corresponds to an
experimentally recorded range map, with the range values x recorded for a discrete
set of (u, v). The required partial derivatives can then be obtained analytically.

For the 1-dimensional case, it is known that a parametric form must have at least
a cubic dependence on the parameter in order to guarantee the continuity of
positions and slopes at points where curve segments meet. There exist many ways o
define such cubic forms; examples include Hermite, Bezier, B-spline, B-spline poly-
nomials. However, among all these the B-spline form usually yields the smoothest

2As has been pointed out in [3] all experimentally recorded range maps are sampled graph surfaces (0f
Monge patches), implying that the parametric dependence of any range map must be expressible by
(u, v, z(u, v)).
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fit, since it also guarantees the continuity of the second-order derivatives at the data
points; the data points used for this purpose are also called control points. The data
set that is required for a B-spline fit must contain at least four control points; and if
we do use only four control points at a time, the B-spline curve thus generated is
called a cubic segment. In some applications, it might be desirable to fit overlapping
cubic segments to a data stream. It is noteworthy that when we fit a cubic segment
to four control points, control points themselves may not lie on the segment. As
with B-spline segments for the 1-dimensional case, a B-spline surface patch is
formed by using 16 control points—which may not lie on the fitted patch (Fig. 8).
In analogy with the cubic segment for the 1D case, such surface patches are also
called bicubic.

For the 1-dimensional case, a B-spline fit to a set of four equispaced data points
is given by [1, 9]

x(u) = UM,G, (13)
-1} -4 -1 11011
LI Telo L T4l ol 4
T T
1 4 1 -1 01
1 4 1 1] -2 1
1 1
Xuy Py -2 -81-2 Xy, Py 41-8]| 4
1 4 1 171-2]1
1
X' w000 Pgy | Py | Py

F16. 9. Operators of size 3 X 3 for computing the derivatives of a range map.
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where
U= (u*u?ul)
] -1 3 -3 1
1l 3 -6 3 0
M=%l-3 o 3 ¢ (14)
1 4 1 0

be (Py, Py, Py, P,)

and P, i = 1,2,3,4 are the ordinate values at the four data points. The continuous
function x(u) as given by the above formula is good only for the interval between
the data points P, and P;, and can be mapped over this interval by allowing u to
vary from O to 1. If the continuous function was desired over, say, the interval P; to
P,, the four data element computation window will have to slide to the right by one
element. '

Extending the above formulation to the 2-dimensional case, a B-spline surface
patch is given by

x(u, U) = UM,’,PMgV’ (15)

1 |-23] 23] -1 a5 51

. X,:
*u . -5 |-115{-115] -5 v . | 23|-115| 115 23
384 | 5 115|115 5 384 | o3 |-115{ 115{ 23
1{23]2]1 a5 1
1|23]23]1 1111

xuu xvv
. a1 |-23]-23] -1 . 23 | -23 | -23 | 23
9 | .3 |-23]-23] -1 96 | 93 |-23|-23] 23
1|23]23]1 1]-1]-1]1
X 1 5 51 -1 Py P12 Py [Py

uyv

1 5 125 |-251 -5 Py Py [ Pos Py4
64 1 5 |.25(25] 5 Py, | Py [Py | Py

FiG.10. Operators of size 4 X 4 for computing the derivatives of a range map.
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where
P=[P)].i,j=1,2,34, and V= (0201) (16)

Note that P, ;'S represent the 4 X 4 matrix of data points to which the bicubic
surface patch is fitted; each data point is a vector in E3. In keeping with the
1-dimensional case, the analytic form given by the above formula applies only over
the “rectangular” cell whose vertices are given by Py, P,,, P,,, and P3; under the
assumption that the 2D region defined by0<u<1,0<uv<1 maps onto this cell

12| 1
L 2122
24
1| 21{1
(a)
-1{-61]-10] -6 | -1 12| 0) 2] 1
xu: xv:
-2 1-20]-52|-20{ -2 -61-200] 0| 2! 6
1 1
288 0 0 0|0 0 288 -10[{-52| 0| 521} 10
212 152[2]/ 2 -6 [-20| 0 {2/ s
1|6 (10|61 A1 (2101} 211
16 (10]6]1 1{o0[-2]01]1
xuu xVV'
081132810 6 | 8°]1-28!/ 8 | 6
1 1
1aa | 2| -28|-84]-28| -2 144 | 10| 32 | -84 32| 10
0| 832810 6 | 8 1-28/ 81| 6
16|10 6] 1 1 (0{-2|01]1
112 (0]-2]a
Xuv 2 112] 0 |-121] -2

L dololololol] ®

F1G. 11. (a) Smoothing operator (3 X 3) with Gaussian weights. (b) Operators of size 5 X 5 for
computing the derivatives of a range map.
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(see Fig. 8). To obtain this analytical form for other cells, the 4 X 4 window will
have to be shifted over accordingly.

Given this analytic description of the fitted surface patch, the partial derivatives
required for the computation of curvatures at any point within this patch are given

= UM,PM}V*
= UM,PM/V"

U"M,PMV"* (17)
= UM,PMV"
= UM,PMV".

Since u = v = 0 corresponds to the point P,,, the values of the partial derivatives at

.300

.100

line through the range map.

b c
263 012 o
.225 ] -0.75
.188 -.162
150 -.250
13 -.338
: .075 -.h25]
.037 -.513
; ooobrl A1) S— —_—
; 0 32 64 96 128 159 191 223 255 0 32 64 96 128 159 191 233 255

F16.12. (a) Illustrated here is 2 256 X 256 synthetic range map of a sphere of radius 2 units (1 unit in
the continuous domain equals 43 samples in the range map). (b) Gaussian curvatures computed along the
middle horizontal line through the range map. (c) Mean curvature computed along the middle horizontal
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this reference point are given by

x,(0,0) = 5(—Py; — 4P, — Piy + Py + 4P, + P33)

x,(0,0) = $5(—=Py; — 4Py — Py + Py + 4Py, + Pyy)
x,u,(0,0) = §(Pyy + 4Py, + Pyy — 2Py, — 8P, — 2Py, + Py + 4P;, + Py;) (18)
xvv(070) = %(Pu = 2P, + Py + 4Py — 8Py, + 4Py + Py5 — 2Py; + P33)

X, (0,0) = £(P;; — Py — Py + Pyy).

In Fig. 9 we show the finite difference operators generated by the equations above.
Each of these operators yields the corresponding partial derivative of the range map
at the center of the 3 X 3 array.

If instead of computing the partial derivatives at ¥ = v = 0, we compute them at,
say, u = v = 0.5, we obtain 4 X 4 operators; these are shown in Fig. 10.
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F16. 13. Depicted here is a 256 X 256 synthetic range map of a torus whose minor axis is of length 1
unit and major axis 3 units. (b) A rendition of the sign of the calculated Gaussian curvature: with whites
representing positive values, blacks negative, and gray the zero value. (c) Gaussian curvatures computed
along the middle horizontal line through the range map. (d) Mean curvatures computed along the middle
horizontal line through the range map.
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Since in most cases an experimentally measured range map may be noisy, 3 X 3
operators may be too small for computing reliable derivatives. In such cases, one
may use the 4 X 4 operators, or even larger sized operators that can be constructed
by the following procedure. Operators of size 5 X 5 can be constructed by convolv-
ing our 3 X 3 operators of Fig. 9 with the 3 X 3 window (Fig. 11a) used by Brady
et al. [6] for smoothing range maps; the resulting operators are shown in Fig. 11b. It
is also possible to construct derivative operators of size larger than 5 X 5 by
repeatedly convolving the 3 X 3 operators of Fig. 9 with the 3 X 3 smoothing
window of Fig. 11a. As pointed out the Brady et al. [6], an n times repeated average
with this smoothing window corresponds approximately to filtering the range map
with a Gaussian whose standard deviation is proportional to v .

In all the results we have shown on experimental data, the derivatives of range
maps were computed by using the 5 X 5 operators of Fig. 11b; from these
derivatives, in each case, we subsequently compute the Gaussian and mean curva-
tures. Note the weight distribution in the operators of Fig. 11b: the points closer to
the center—where the derivative information is being computed—have larger
values. This means there is a greater emphasis on range values closer to the point
where the derivative is actually being computed.
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F1G. 14. (a) A light stripe image of a box. (b) Gaussian curvature histogram obtained from the range
map. (c) Mean curvature histogram obtained from the range map. ’
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Measured range maps can almost always be represented by the graph surface
from (also called the Monge patch): x{(u,v) = (4, v, z(4, v)). In this case, the
required partial derivatives can be obtained by applying the operators shown in Fig.
9, 10, or 11b to z(u, v), the relationships between these derivatives and those of x
being given by

x, = (1,0,z,)
x,=(0,1,z,)
qu = (O’ O’ Zuu)
xvv = (O’O’ Zvu)
qu = (O’ 0’ Zuv)'
When the derivatives, as calculated above, are plugged into Egs. (5)-(10), we
obtain values for the local Gaussian and mean curvature. We have tested the
accuracy of this computational procedure by using synthetic range maps. Figure 12a

illustrates a 256 X 256 synthetic range map of a sphere of radius 2 units (1 unit in
the continuous domain equals 43 samples in the range map). Figures 12b and ¢

,}
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FiG. 15. (a) A light stripe image of a cylinder. (b) Gaussian curvature histogram. (¢) Mean curvature
histogram.
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show the Gaussian and the mean curvatures, respectively, computed along the
middle horizontal line through the range map of the sphere. The synthetic range
data consisted of floating point numbers and did not suffer from quantization
errors. The two principal curvatures for this sphere are both equal to —0.5;
therefore the Gaussian curvature must equal 0.25, and the mean curvature —0.5.

Figure 13a shows a 256 X 256 synthetic range map of a torus whose minor axis is
“of length 1 unit (1 unit in the continuous domain equals 21 samples in the range
map) and major axis of length 3 units. Again, the range data consists of floating
point numbers and incorporates no quantization effects. Figure 13b depicts the sign
of the calculated Gaussian curvature, with whites representing positive values,
blacks negative, and gray and zero value. Figures 13c and d show, respectively, the
Gaussian and the mean curvatures computed along the middle horizontal line
through the range map in Fig. 13a.

We have also tested the computational procedure on experimentally recorded
range maps obtained with structured light. In Fig. 14a is shown the light stripe
image projected by a structured light sensor on a box; Figs. 14b and ¢ show the
Gaussian and mean curvature histograms constructed from the range data. We can
see a peak at zero for both curvature histograms, which is what we should expect for
an object consisting only of planar surfaces.

We would also like to show some results with experimental data for an object
containing a cylindrical surface. Figure 15a illustrates the light stripe image for such
an object. Figures 15b and ¢ show again the curvature histograms. We can see a
peak at zero in the Gaussian curvature histogram, while there is a peak at —0.32 in
the mean curvature histogram. Since the radius of the cylinder used in the experi-
ment was 1.375 units, the peak must occur over a cell corresponding to a value of
—0.36. From the peak in our curvature histogram, the radius of the cylinder can be
estimated as 1.563.

6. DETERMINATION OF THE IDENTITY AND ORIENTATION OF THE
TOPMOST PLANAR OBIECT

Our identification scheme for topmost planar objects is based on the EGI
(extended Gaussian image, also known as the orientation histogram) representation
of visible surfaces. We will not elaborate on how we generate the EGI representa-
tion, that subject is treated in some detail in [17] and a bit more briefly in [12].

To make the EGI representation invariant to object size, we have constructed
normalized EGI’s. This can be done by normalizing the value of each cell in the
orientation histogram by the total count in all the cells. Note that, in general, a
normalized EGI will remain invariant to object size only under certain constraints.
For example, the normalized EGI of a rectangular box remains invariant only if the
length, width, and height change by the same scale; for both a cylinder and a cone,
only if the ratio of the height to the radius remains invariant; for an ellipsoid, only
if the ratio of the major to the minor axes remains invariant; for a torus, only if the
product of the lengths of the major and minor axes remains invariant; etc.

In Fig. 16 we have laid out the identification strategy that is invoked when the
topmost object is declared to be planar. As is clear from the figure, the strategy
depends upon the number of visible planar surfaces as given by the number of peaks
in the EGI representation.
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Find the number of EGI peaks
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F16. 16. Illustrated here is the strategy for determining the identity and orientation of the topmost
object if it is found to be planar. N, denotes the number of EGI peaks corresponding to the sufficiently
visible planar surfaces. '

'The most natural thing to do with an experimentally obtained EGI representation
is to match it against the EGI’s of candidate objects; the matching process being
carried out over all allowable rotations between the unknown object-part and the
candidate object. If the matching succeeds, it also yields the orientation of the
object part. :

As Fig. 16 shows, in general we only perform matching when the number of
major visible surfaces (as given by the number of distinguished peaks in the EGI)
exceeds three. Whether or not an EGI peak is distinguished is determined simply by
thresholding the EGI—a threshold of 0.2 has worked well for a number of scenes
we have examined.?

When the number of visible planar surfaces on the topmost object is equal to or
less than three, we try to avoid identifying the object by EGI matching; the reason

*A peak acceptance threshold of 0.2 means that we want at least one fifth of all range cells that
<ontribute to the EGI to correspond to only one planar surface. Clearly, a threshold of 0.2 means that
“when we detect major surfaces, we do not expect to find more than five of them in a single object.
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F1G. 17. Shown here is the EGI of the topmost planar object (a cube) isolated from the scene of
Fig. 2a. :

being that for such cases there is not enough “peak structure” in the experimentally
obtained EGI and we might as well depend directly on the angles between the
adjoining surfaces. When the number of major visible surfaces is only one or two,
clearly this angular information would not be enough, so we also include the shape
of the boundary of the topmost planar surface (from among all the planar surfaces
that are visible for the topmost object). Of course, depending upon what part of
the topmost surface of the topmost object is visible, this strategy does not always
work. '

Figure 17 shows (in a linear format) the EGI of the topmost planar object (a
cube) isolated from the scene of Fig. 2a. We detect two distinguished peaks from its
EGI. The center coordinates of the EGI cell for the first peak are
(—0.6388, —0.1036,0.7623), and the value of the EGI at this cell is 0.53, meaning
that 53% of the visible area for the topmost object is taken up by the surface
corresponding to this peak. The other cell is at center coordinates
(—0.6875, —0.1563, —0.7031) with an EGI value of 0.28—this again qualifies as a
distinguished peak. The angle between two surfaces is measured to be 94.6°. Since
we only have two major surfaces, in such a case the boundary shape would be
included in the identification process.

7. DETERMINATION OF THE IDENTITY AND ORIENTATION OF THE
TOPMOST CURVED OBJECT

For curved objects, after extracting the visible part we compute the local surface
normals and surface curvatures. We then construct the Gaussian and mean curva-
ture histograms; in the rest of this discussion we will refer to the Gaussian curvature
histogram as the K-histogram and the mean curvature histogram as the H-histo-
gram. From the surface normals, we again construct an EGI.

In our identification strategy, we first constrain the object type by using the
characteristics of the K-histogram and the H-histogram. For this purpose, a curva-
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ture histogram is classified into one of the following six categories:

1. Positive only with peak. A histogram falls in this class if the curvature values
are practically all positive, and there exists a peak value over these values. If the
histogram had zero counts in all cells except for where the peak occurs, that would
mean all points on the curved surface have the same curvature.

2. Positive only without peak. This is the same as the previous class, except that
the positive half of the histogram is not peaked anymore. This situation,corresponds
to a surface which has positive, but varying, curvature everywhere it is visible.

3. Negative only with peak. The same as for case 1, except that the histogram is
confined to the negative half.

4. Negative only without peak. The same as for case 2, except that the histogram
is confined to the negative half.

5. Peak at zero. A curvature histogram falls in this class if it has only one peak
and that occurs over the bin corresponding to zero curvature.

6. Positive and negative without peak. This corresponds to surfaces with con-
tinuously varying curvatures.

We also have a category called unclassified, which is used when a histogram, on
account of the thresholds used for peak detection, cannot be classified into one of
the six categories listed above. Table 1 shows the characteristics of the curvature
histograms for different curved surfaces.

When dealing with noisy experimental data, one has to be careful with char-
acterizing curvature histograms that have no peaks; the reason being that in
particular cases the thresholds used for peak detection might simply be too high.
When we run into such histograms, we treat them with a bit of suspicion and
supplement the evidence with the EGI representation.

Figures 18a and b depict the K and H histograms constructed from the visible
portion of the topmost object (a sphere) in the scene of Fig. 6a. The K-histogram
falls into the class positive only with peak and the H-histogram into the class
negative only without peak.* From Table 1, we therefore constrain the object type to
be either spherical or elliptical. _

With the object type thus constrained, we proceed to use the prototype EGIs for a
sphere and an ellipse for final identification. Figure 18c shows the observed EGI of
the topmost object (a sphere). In this case, the process of matching this EGI with
the prototypes for a sphere and an ellipsoid, yielded a smaller sum with the sphere
case.

Figures 19a and b show the K- and H-histograms constructed from the topmost
object, in this case a torus, for the scene of Fig. 7a. Figure 19¢ is the observed EGL.
The K-histogram falls into the class positive and negative without peak, whereas the
H-histogram falls into the unclassified class; the reason being that although the

4 For all K-histograms, we have used 0.5 for peak detection, meaning that 50% of the recorded surface
points must fall in the bin corresponding to the peak—in other words, 50% of the points on the visible
surface must have the same Gaussian curvature, whose value corresponds to where the peak occurs. For
all H-histograms, we have used 0.25 for peak detection, meaning that 25% of the points on the visible
surface must have a mean curvature corresponding to the peak in the histogram.
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TABLE 1
Characteristics of Curvature Histograms for Different Curved Surfaces
Curvature
C\Jistogram
Surface K-histogram , H-histogram
Cylindrical Peak at zero Negative only
' with peak
Conical Peak at zero Negative only
‘ without peak
Spherical Positive only Negative only
with peak with peak
Elliptical Positive only Negative only
without peak without peak
Toroidal Positive and negative Negative only
without peak without peak
or
positive and negative
without peak
.00 1.00
! a b
.8754 .875
W <750 750
=]
=
S .625- .625 1
i .
ﬁ .5004 .5004
S
< ] ;
g .375 .375
S
S 2501 .2501
125 125
0.00 ; . . , . , . 0.00 , . . , . . .
-.900-.662-.425-.187.050 .288 .525 .763 1.00  -.900-.662-.425-.187.050 .288 .525 .763 1.00
Gaussian curvature mean curvature
.500
[
.438
B .375
(=]
8
g 313
-~
E 250
s
§ .188+
=]
L1254
.0621
0.00 Ji\ P M b4

0 31 62 93 12k 155 186 217 248
cell number

F1G. 18. (a) Gaussian curvature histogram constructed from the visible portion of the topmost object
(a sphere) in the scene of Fig. 6a. (b) Mean curvature histogram constructed from the same region. (¢)
The EGI calculated from the range map data for the topmost object.
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F16.19. (a) Gaussian curvature histogram constructed from the topmost object (a torus) of the scene
in Fig. 8a. (b) Mean curvature histogram constructed from the same region. (¢) The EGI calculated from
the range map data for the topmost object.

distribution is approximately negative only without peak, however, the percentage of
the negative curvature values is below the acceptance threshold of 0.85.°

From Table 1, the classification for the K-histogram tells us that the topmost
object might be a torus. A confirmation of this fact could then be made by matching
the EGI for the visible surface against the, prototype EGI of a torus. However, for
the example shown that did not work because of the small size of the visible surface
of the torus in relation to the total surface of the object.

Note that if both the K and the H histograms had been declared unclassified, at
this point we would-have given up attempting to determine the identity and attitude
of the topmost object; this kind of situation can only happen when either the range
data is full of errors or the topmost object is not sufficiently visible—both of these
factors would cause the EGI to also become unreliable. In such cases, the robot can
disturb the scene and reexamine it.

*For a histogram to be characterized by one of the six classes, the total count in all the bins
corresponding to the distinguishing feature of that class must exceed a threshold—we have used 0.85. So,
if a histogram is to be called regative only with peak, at least 85% of the points on the visible curved
surface must have negative curvature. '
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F1G. 20. (a) Shown here is a skeleton of the visible part of the topmost object (a torus) of the scene of
Fig. 7a. (b) Needle diagram illustrating the surface normals computed at the points on the skeleton; only
the points on the skeleton where Gaussian curvatures are approximately zero have been used.

For a torus, positive identification can sometimes be obtained by skeletonizing
the extracted surface; this procedure would clearly not work if the torus is heavily
occluded. Such skeletons can also be used for attitude determination if we use the
heuristics that the skeleton points are characterized by zero Gaussian curvature and
the surface normals of the points on the torus at which Gaussian curvatures are zero
are parallel to the axis of revolution of a torus.

In Fig. 20a is shown a skeleton of the visible surface extracted in Fig. 7d. Figure
20b shows a needle diagram illustrating the surface normals computed at the points
on the skeleton. (Note that only the points on the skeleton whose Gaussian
curvatures are close to zero have been used.)

8. CONCLUDING REMARKS

The research reported in this paper was motivated by our interest in how to best
use vision feedback for robot tasks such as bin picking and heap sorting. The
techniques we have presented should work for a large number of industrial type
objects. Do our techniques represent the best in terms of speed of execution and
performance—we do not yet have an answer to that question. Processing 3D vision
data is inherently expensive from a computational standpoint, but then one does
gain in reliability in relation to photometric data. It remains to be seen whether
algorithms, such as those reported here, will prove viable for the intelligent robotics
of the near and distant future
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A justifiable criticism of this report would be that we have not conducted any
statistical studies on the reliability and robustness of our algorithms—in that regard
we have not departed from the long, but nevertheless unfortunate, tradition in much
of archival literature in computer vision. Our future research will focus on such
reliability and robustness issues.
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