
Purdue University: ECE438 - Digital Signal Processing with Applications 1

ECE438 - Laboratory 6:
Discrete Fourier Transform and Fast Fourier

Transform Algorithms (Week 2)
October 6, 2010

1 Introduction

This is the second week of a two week laboratory that covers the Discrete Fourier Transform
(DFT) and Fast Fourier Transform (FFT). The first week introduced the DFT and
associated sampling and windowing effects. This laboratory will continue the discussion of
the DFT and will introduce the FFT.

2 Continuation of DFT Analysis

This section continues the analysis of the DFT started in the previous week’s laboratory.

(DFT) XN(k) =
N−1
∑

n=0

x(n)e−j2πkn/N (1)

(inverse DFT) x(n) =
1

N

N−1
∑

k=0

XN(k)ej2πkn/N (2)

2.1 Shifting the Frequency Range

In this section, we will illustrate a representation for the DFT of equation (1) that is a bit
more intuitive. First create a Hamming window x of length N = 20, using the Matlab
command x = hamming(20). Then use your matlab function DFTsum to compute the 20
point DFT of x. Plot the magnitude of the DFT, |X20(k)|, versus the index k. Remember
that the DFT index k starts at 0 not 1!

INLAB REPORT:
Hand in the plot of the |X20(k)|. Circle the regions of the plot corresponding to low frequency
components.

Questions or comments concerning this laboratory should be directed to Prof. Charles A. Bouman,
School of Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907; (765) 494-
0340; bouman@ecn.purdue.edu

http://engineering.purdue.edu/VISE/ee438L/lab6/pdf/lab6a.pdf

Purdue University: ECE438 - Digital Signal Processing with Applications 2

Our plot of the DFT has two disadvantages. First, the DFT values are plotted against
k rather then the frequency ω. Second, the arrangement of frequency samples in the DFT
goes from 0 to 2π rather than from −π to π, as is conventional with the DTFT. In order to
plot the DFT values similar to a conventional DTFT plot, we must compute the vector of
frequencies in radians per sample, and then “rotate” the plot to produce the more familiar
range, −π to π.

Let’s first consider the vector w of frequencies in radians per sample. Each element of w
should be the frequency of the corresponding DFT sample X(k), which can be computed by

ω = 2πk/N k ∈ [0, . . . , N − 1] . (3)

However, the frequencies should also lie in the range from −π to π. Therefore, if ω ≥ π,
then it should be set to ω − 2π. An easy way of making this change in Matlab 5.1 is
w(w>=pi) = w(w>=pi)-2*pi.

The resulting vectors X and w are correct, but out of order. To reorder them, we must
swap the first and second halves of the vectors. Fortunately, Matlab provides a function
specifically for this purpose, called fftshift.

Write a Matlab function to compute samples of the DTFT and their corresponding
frequencies in the range −π to π. Use the syntax

[X,w] = DTFTsamples(x)

where x is an N point vector, X is the length N vector of DTFT samples, and w is the length
N vector of corresponding radial frequencies. Your function DTFTsamples should call your
function DFTsum and use the Matlab function fftshift.

Use your function DTFTsamples to compute DTFT samples of the Hamming window of
length N = 20. Plot the magnitude of these DTFT samples versus frequency in rad/sample.

INLAB REPORT:

1. Hand in the code for your function DTFTsamples.

2. Hand in the plot of the magnitude of the DTFT samples.

2.2 Zero Padding

The spacing between samples of the DTFT is determined by the number of points in the
DFT. This can lead to surprising results when the number of samples is too small. In order
to illustrate this effect, consider the finite-duration signal

x(n) =

{

sin(0.1πn) : 0 ≤ n ≤ 49
0 : otherwise

(4)

In the following, you will compute the DTFT samples of x(n) using both N = 50 and
N = 200 point DFT’s. Notice that when N = 200, most of the samples of x(n) will be zeros

Purdue University: ECE438 - Digital Signal Processing with Applications 3

because x(n) = 0 for n ≥ 50. This technique is known as “zero padding”, and may be used
to produce a finer sampling of the DTFT.

For N = 50 and N = 200, do the following:

1. Compute the vector x containing the values x(0), · · · , x(N − 1).

2. Compute the samples of X(k) using your function DTFTsamples.

3. Plot the magnitude of the DTFT samples versus frequency in rad/sample.

INLAB REPORT:

1. Submit your two plots of the DTFT samples for N = 50 and N = 200.

2. Which plot looks more like the true DTFT?

3. Explain why the plots look so different.

3 The Fast Fourier Transform Algorithm

We have seen in the preceding sections that the DFT is a very computationally intensive
operation. In 1965, Cooley and Tukey [1] published an algorithm that could be used to
compute the DFT much more efficiently. Various forms of their algorithm, which came to
be known as the fast Fourier transform (FFT), had actually been developed much earlier
by other mathematicians (even dating back to Gauss). It was their paper, however, which
stimulated a revolution in the field of signal processing.

It is important to keep in mind at the outset that the FFT is not a new transform. It is
simply a very efficient way to compute an existing transform, namely the DFT. As we saw,
a straight forward implementation of the DFT can be computationally expensive because
the number of multiplies grows as the square of the input length (i.e. N2 for an N point
DFT). The FFT reduces this computation using two simple but important concepts. The
first concept, known as divide-and-conquer, splits the problem into two smaller problems.
The second concept, known as recursion, applies this divide-and-conquer method repeatedly
until the problem is solved.

Consider the defining equation for the DFT and assume that N is even, so that N/2 is
an integer:

X(k) =
N−1
∑

n=0

x(n)e−j2πkn/N . (5)

Here we have dropped the subscript of N in the notation for X(k). We will also use the
notation

X(k) = DFTN [x(n)]

Purdue University: ECE438 - Digital Signal Processing with Applications 4

to denote the N point DFT of the signal x(n).

Suppose we break the sum in (5) into two sums, one containing all the terms for which
n is even, and one containing all the terms for which n is odd:

X(k) =
N−1
∑

n=0

n even

x(n)e−j2πkn/N +
N−1
∑

n=0

n odd

x(n)e−j2πkn/N . (6)

We can eliminate the conditions “n even” and “n odd” in (6) by making a change of variable
in each sum. In the first sum, we replace n by 2m. Then as we sum m from 0 to N/2 − 1,
n = 2m will take on all even integer values between 0 and N − 2. Similarly, in the second
sum, we replace n by 2m + 1. Then as we sum m from 0 to N/2 − 1, n = 2m + 1 will take
on all odd integer values between 0 and N − 1. Thus, we can write

X(k) =
N/2−1
∑

m=0

x(2m)e−j2πk2m/N +
N/2−1
∑

m=0

x(2m + 1)e−j2πk(2m+1)/N . (7)

Next we rearrange the exponent of the complex exponential in the first sum, and split and
rearrange the exponent in the second sum to yield

X(k) =
N/2−1
∑

m=0

x(2m)e−j2πkm/(N/2) + e−j2πk/N
N/2−1
∑

m=0

x(2m + 1)e−j2πkm/(N/2). (8)

Now compare the first sum in (8) with the definition for the DFT given by (5). They have
exactly the same form if we replace N everywhere in (5) by N/2. Thus the first sum in (8)
is an N/2 point DFT of the even-numbered data points in the original sequence. Similarly,
the second sum in (8) is an N/2 point DFT of the odd-numbered data points in the original
sequence. To obtain the N point DFT of the complete sequence, we multiply the DFT of
the odd-numbered data points by the complex exponential factor e−j2πk/N , and then simply
sum the two N/2 point DFTs.

To summarize, we will rewrite (8) according to this interpretation. First, we define two
new N/2 point data sequences x0(n) and x1(n), which contain the even and odd-numbered
data points from the original N point sequence, respectively:

x0(n) = x(2n) (9)

x1(n) = x(2n + 1),

where n = 0, ..., N/2 − 1. This separation of even and odd points is called decimation in
time. The N point DFT of x(n) is then given by

X(k) = X0(k) + e−j2πk/NX1(k) for k = 0, ..., N − 1. (10)

where X0(k) and X1(k) are the N/2 point DFT’s of the even and odd points.

X0(k) = DFTN/2[x0(n)]

X1(k) = DFTN/2[x1(n)] (11)

Purdue University: ECE438 - Digital Signal Processing with Applications 5

While equation (10) requires less computation than the original N point DFT, it can
still be further simplified. First, note that each N/2 point DFT is periodic with period N/2.
This means that we need to only compute X0(k) and X1(k) for N/2 values of k rather than
the N values shown in (10). Furthermore, the complex exponential factor e−j2πk/N has the
property that

−e−j2π k
N = e−j2π

k+N/2

N .

These two facts may be combined to yield a simpler expression for the N point DFT:

X(k) = X0(k) + W k
NX1(k)

X(k + N/2) = X0(k) − W k
NX1(k)

}

for k = 0, ..., N/2 − 1 (12)

where the complex constants defined by W k
N = e−j2πk/N are commonly known as the twiddle

factors.

x(0)

x(2)

x(N-2)

x(1)

x(3)

x(N-1)

N/2 point

 DFT

X0(0)

X0(1)

X0(N/2-1)

X1(0)

X1(1)

X1(N/2-1)

X(0)

X(1)

X(N/2-1)

X(N/2)

X(N/2+1)

X(N-1)

WN
0

WN
1

WN
N/2-1

N/2 point

 DFT

-

+

-

+

-

+

+

+

+

+

+

+

Figure 1: Divide and conquer DFT of equation (12). The N -point DFT is

computed using the two N/2-point DFT’s X
(N/2)
0 (k) and X

(N/2)
1 (k) .

Figure 1 shows a graphical interpretation of (12) which we will refer to as the “divide-
and-conquer DFT”. We start on the left side with the data separated into even and odd
subsets. We perform an N/2 point DFT on each subset, and then multiply the output of
the odd DFT by the required twiddle factors. The first half of the output is computed by
adding the two branches, while the second half is formed by subtraction. This type of flow
diagram is conventionally used to describe a fast Fourier transform algorithm.

3.1 Implementation of Divide-and-Conquer DFT

In this section, you will implement the DFT transformation using equation (12) and the
illustration in Fig. 1. Write a Matlab function with the syntax

X = dcDFT(x)

Purdue University: ECE438 - Digital Signal Processing with Applications 6

where x is a vector of even length N , and X is its DFT. Your function dcDFT should do the
following:

1. Separate the samples of x into even and odd points. Hint: The Matlab command
x0 = x(1:2:N) can be used to obtain the “even” points.

2. Use your function DFTsum to compute the two N/2 point DFT’s.

3. Multiply by the twiddle factors W k
N = e−j2πk/N .

4. Combine the two DFT’s to form X.

Test your function dcDFT by using it to compute the DFT’s of the following signals.

1. x(n) = δ(n) for N = 10

2. x(n) = 1 for N = 10

3. x(n) = ej2πn/10 for N = 10

INLAB REPORT:
Do the following:

1. Submit the code for your function dcDFT.

2. Determine the number of multiplies that are required in this approach to computing
an N point DFT. (Consider a multiply to be one multiplication of real or complex
numbers.) HINT: Refer to the diagram of Fig. 1, and remember to consider the N/2
point DFTs.

3.2 Recursive Divide and Conquer

The second basic concept underlying the FFT algorithm is that of recursion. Suppose N/2
is also even. Then we may apply the same decimation-in-time idea to the computation of
each of the N/2 point DFT’s in Fig. 1. This yields the process depicted in Fig. 2. We now
have two stages of twiddle factors instead of one.

How many times can we repeat the process of decimating the input sequence? Suppose
N is a power of 2, i.e. N = 2p for some integer p. We can then repeatedly decimate the
sequence until each subsequence contains only two points. It is easily seen from (5) that the
2 point DFT is a simple sum and difference of values.

X(0) = x(0) + x(1)

X(1) = x(0) − x(1) (13)

Purdue University: ECE438 - Digital Signal Processing with Applications 7

x(0)

x(4)

x(N-4)

x(2)

x(6)

x(N-2)

N/4 point

 DFT

N/4 point

 DFT

WN/2
0

WN/2
1

WN/2
N/4-1

x(1)

x(5)

x(N-3)

x(3)

x(7)

x(N-1)

N/4 point

 DFT

N/4 point

 DFT

X(0)

X(1)

X(N/2-1)

X(N/2)

X(N/2+1)

X(N-1)

X(3N/4-1)

X(3N/4)

X(3N/4+1)

X(N/4-1)

X(N/4)

X(N/4+1)

WN
0

WN
1

WN
N/4-1

WN
N/4

WN
N/4+1

WN
N/2-1

Combining N/4-point DFT's to form N/2-point DFT's Combining the N/2-point DFT's to form an N-point DFT.
This stage is identical to that shown in Fig. 1.

WN/2
0

WN/2
1

WN/2
N/4-1

+
+

+
+

+
+

+
+

+
+

+
+

-
+

-
+

-
+

-
+

-
+

-
+

+
+

+
+

+
+

-
+

-
+

-
+

-
+

-
+

-
+

+

+

+

+

+

+

Figure 2: Recursion of the decimation-in-time process. Now each N/2-point is
calculated by combining two N/4-point DFT’s.

Fig. 3 shows the flow diagram that results for an 8 point DFT when we decimate 3
times. Note that there are 3 stages of twiddle factors (in the first stage, the twiddle factors
simplify to “1”). This is the flow diagram for the complete decimation-in-time 8 point FFT
algorithm. How many multiplies are required to compute it?

Write three Matlab functions to compute the 2, 4, and 8-point FFT’s using the syntax
X = FFT2(x)

X = FFT4(x)

X = FFT8(x)

The function FFT2 should directly compute the 2-point DFT using (13), but the functions
FFT4 and FFT8 should compute their respective FFT’s using the divide and conquer strat-
egy. This means that FFT8 should call FFT4, and FFT4 should call FFT2.

Test your function FFT8 by using it to compute the DFT’s of the following signals.
Compare these results to the previous ones.

Purdue University: ECE438 - Digital Signal Processing with Applications 8

W4
0

W4
1

W8
0

W8
1

W8
2

W8
3

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

x(0)

x(4)

x(2)

x(6)

x(1)

x(5)

x(3)

x(7)

W4
0

W4
1

+

-
+

+

+

-
+

+

+

-
+

+

+

-
+

+

+

-
+

+

-
+

-
+

-
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

-
+

-
+

-
+

-
+

Figure 3: 8-Point FFT.

1. x(n) = δ(n) for N = 8

2. x(n) = 1 for N = 8

3. x(n) = ej2πn/8 for N = 8

INLAB REPORT:

1. Submit the code for your functions FFT2, FFT4 and FFT8.

2. List the output of FFT8 for the case x(n) = 1 for N = 8.

3. Calculate the total number of multiplies by twiddle factors required for your 8-point
FFT. (A multiply is a multiplication by a real or complex number.)

4. Determine a formula for the number of multiplies required for an N = 2p point FFT.
Leave the expression in terms of N and p. How does this compare to the number of
multiplies required for direct implementation when p = 10?

If you wrote the FFT4 and FFT8 functions properly, they should have almost the exact
same form. The only difference between them is the length of the input signal, and the
function called to compute the (N/2)-pt DFTs. Obviously, it’s redundant to write a separate
function for each specific length DFT when they each have the same form. The preferred
method is to write a recursive function, which means that the function calls itself within the
body. It is imperative that a recursive function has a condition for exiting without calling
itself, otherwise it would never terminate.

Purdue University: ECE438 - Digital Signal Processing with Applications 9

Write a recursive function X=fft stage(x) that performs one stage of the FFT algorithm
for a power-of-2 length signal. An outline of the function is as follows:

1. Determine the length of the input signal.

2. If N = 2, then the function should just compute the 2-pt DFT as in equation (13),
and then return.

3. If N > 2, then the function should perform the FFT steps described previously
(i.e. decimate, compute (N/2)-pt DFTs, re-combine), calling fft stage to compute
the (N/2)-pt DFTs.

Note that the body of this function should look very similar to previous functions written
in this lab. Test fft stage on the three 8-point signals given above, and verify that it returns
the same results as FFT8.

INLAB REPORT:
Submit the code for your fft stage function.

References

[1] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex
Fourier series,” Mathematics of Computation, vol. 19, no. 90, p. 297-301, April 1965.

