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PREFACE 

This document is the final technical report on the 

Material Characterization task of the SAMSO PTP-II program, 

Contract F04701-77-C-0126. This report presents character- 

ization information on 45 ground tested specimens (24 ablation 

models and 21 erosion samples) examined in this program. 

This task was conducted under the direction of 

D. A. Eitman as principal investigator. The program manager 

was J. F. Courtney. Captain J. W. Bohlen provided technical 

direction on this task for SAMSO. 

Active support from the following agencies and corporations 

is acknowledged in supplying models and test information: 

Aerospace, AVCO, General Electric, McDonnell-Douglas, Naval 

Surface Weapons. 
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1.0 INTRODUCTION 

A wide range of carbon-carbon composites are available for 

use as reentry vehicle nosetip material. These include several 

varieties of well-defined baseline materials, which are being 

evaluated in current flight-test programs, as well as develop- 

mental materials aimed at altering either performance character- 

istics or end-item costs and availability for DOD selection. Key 

variables in the microstructural makeup of these materials 

include the yarn type, weave geometry and processing history. 

Each of these contributes to the finished composite's ablation 

and erosion performance and are, to a large extent, elements 

which can be easily changed by material developers. These 

various carbon-carbon materials can be assessed by performing 

ablation and erosion ground tests and subsequently obtaining 

microstructural characterization information on the tested model 

to determine the role of each parameter of the material's makeup 

in the simulated flight test environment. In addition, the 

characterization information may also be used for makinq com- 

parisons between test materials to define material variability 

and for a general assessment of weaving and process related 

defects which have been observed in the microstructure of prior 

materials. 

For this program a selection was made of materials which 

represented several areas of interest to the Air Force. A list 

of these materials and the objective addressed in each case, is 

shown in Table I. A total of 24 ablation models and 21 erosion 

specimens have been characterized and documented in this report. 

A complete list of the ablation models is presented in Table 2 

which delineates the characterized models according to construc- 

tion, billet identification, processing history, and final tested 

model appearance (laminar or turbulent). 



TABLE 1. Materials Selected for Post-Test Ablation Model 

Characterization 

OBJECTIVE 

Flight Test Support 

MATERIAL DESCRIPTION 

New Material Construc- 

Processing Variation 
Effects 

New Yarn Examination 

• 223 material with both 
PAN and T-50 reinforce- 
ment. 

• Five FWPF (PAN) mat- 
erials 

• One billet of 223 PAN 
with no CVD and 10 ksi 
processing 

AVCO "Jellyroll" with 
LoPIC densification 

• 223 PAN (No CVD) with 
and without initial 
LoPIC 

• 223 PAN with low temper- 
ature graphitization 
(2300°C) 

Pitch yarn material 
processed both with 
and without CVD 

ISSUES ADDRESSED 

Differences in processor's 
end product. 

Comparison with prior 
material characteristics 

• General material quality 

0 

Q 

Relate microstructure to 
existinq data base 

Effect of initial LoPIC 

Effect or graphitization 
temperature on microstruc- 
ture 

Initial comparison of 
pitch yarn reinforcement 
to T-50 and HM 

i m 0 • m • 

m m  m m m , m  m m m m m  n n mmm m m  m m 



TABLE 2. List of Samples Characterized 

According to Material 

223 (or Equivalent Construction) FWPF Jellyroll 

t~ 

Standardi T-50 
GE-01A(399, L) 
GE-02A3(408, L) 
GE-07A (425,T) 

PAN 
-with CVD 

GE-39A (426, L) 
GE-44A (427, L) 
SR-13D (1819-2.L) 
"427-HSI (427, L) 
"427-HS2 (427, L) 
"668-II-HS2 (668-11, L) 

-No CVD 
GE-04A3 (HAT, T) 
SR-10D (1819-3, L) 
SR-12D (1819-5, L) 
HAT 5 (T) 

Pitch Yarn 
-with CVD 

SR-08AD(IIIP2, L) 

-No CVD 
SR-07AD (1lIP1, L) 

• T-50, LoPIC 
AFML-23R (881, L) 

AFML-19R(JR-4-2, L) 

PAN 
AC-02N (921, L) 
AC-03N (921, L) 
GE-06A3 (PF920, L) 
GE-02PA (PF928, L) 
SR-25PA (903-I-RZ2, L) 
*PF928-HS2 (PF928,L) 
*PF928-HS3 (PF928,L) 

LEGEND 

Model (billet number, laminar or 
turbulent model) 

Test Mode For All Samples except* 
is Ramp, Peaked Enthalpy 

*Tested in Steady State Mode 



Erosion samples from single particle impact tests, and 

various range tests (Holloman, AEDC K and AEDC G) are shown in 

Section 3 of this report. These samples clearly show that dif- 

ferences exist in material response between single particle impact 

and range tests. The coupling of flowfield and impact damage ap- 

pears to be responsible for the major differences observed. 

2~0 MATERIAL CHARACTERIZATION 

Material characterization of post-test ablation models pro- 

vides both qualitative and quantitative information for consid- 

eration of the influence of material microstructure on ablation 

performance. 

The characterization plan relies on obtaining information 

from the tested ablation model to accurately represent local 

microstructural effects. A typical cutting plan is shown in 

Figure i. The ablated portion is ~sed for microscopy while 

other characterization tests are being run on the aft end of 

the specimen. A flow diagram of the complete model character- 

ization cycle is shown in Figure 2. A series of computer pro- 

grams developed for coupled data reduction (Figure 3) are used 

to provide quantitative descriptions for modeling efforts. 

Subjective information from microstructural observations 

may be used to indicate processing parameters having the poten- 

tial for improving ablation and performance. These observations 

include the response of each constituent in the carbon-carbon 

composite to the processing environment and to the resultant 

structure. Quantitative measurements are made using photo- 

micrographs to determine surface roughness, pore structure, and 

weave geometry. Further tests are conducted to determine per- 

meability, internal surface area, and open and closed porosity. 

The data is then reduced to arrive at a format which is con- 

sistent with its application in analytical ablation models. 
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2.1 Description of Characterization Tests 

A description of characterization methods being used on this 

program is presented in the following paragraphs. Data obtained 

is presented in Sections 2.2 and 2.3. 

2.1.1 Microscopy - Following an initial inspection, macrophoto- 

graphs were taken to characterize the developed shape and symmetry 

of each ablation model. These photographs included an overall 

view and sufficient top views (including a stero pair) to show 

asymmetries and/or preferential transition locations. The models 

were then sectioned and vacuum mounted in thermosetting plastic 

for maximum edge retention during subseguent polishing. Photo- 

micrographs were taken at approximately 25, 50, and 350X (see 

Section 2.3). Structural parameters and pore sizes were mea- 

sured optically on the 25X photomicrographs, macroroughness was 

measured at 50X and microroughness was measured at 350X. 

The structural measurements made are shown schematically in 

Figure 4 and are reported in Section 2.3. This information is 

used to describe the unit cell geometry for calculatina the area 

of each composite consituent on the ablated surface and for cal- 

culating optical pore volumes from measurements made on each 

cross-section. 

Roughness measurements of the height (h), width (w) and 

peak-to-peak distance (Lp) were made at both 50 and 350X. The 

roughness height measurements were made from an optically defined 

mean surface as indicated in Figure 5. This procedure was used 

to eliminate undue influence of deep pores intersecting the 

ablation surface. The measured roughness heights, distributions 

and calculated roughness quantities are reported in Section 2.3. 

2.1.2 Density - Composite densities were measured usimg several 

different techniques. Dimensions and weights on regularly shaped 
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specimens were used to determine bulk density (po). The apparent 

density was measured using an immersion technique on irregular, 

larqe samples. Helium density (PHe) was determined using a helium- 

qas pycnometer to measure the volume of helium gas the specimen 

displaced. Since the helium permeates open pores of a sample, 

this measurement, combined with the bulk densfty, gives the open 

porosity of the composite. 

2.1.3 Permeability - Permeability measurements were made on 

machined samples 0.3 inches diameter by 0.3 inches long. The 

apparatus is shown schematically in Figure 6. The flowmeters 

used are capable of measuring flow rates as low as 5 X 10 -5 CFM 

(1.3 cm3/min.). 

The permeability test procedure involves measuring the flow 

rate of nitrogen gas through a sample for selected values of 

gas pressure incident on the upstream face of the sample. Flow 

rate was then directly related to pressure differential by the 

test measurements. The viscous and inertial resistance coeffi- 

cients of each material were determined from permeability data 

using plots such as those shown in Figure 7 (Ref. 5). Plotted in 

this manner, experimental data should fall in a straight line. The 

intercept on the abscissa is the viscous resistance coefficient, 

~, while the slope is the inertial resistance coefficient, 8. 

Additional calculations of the molecular permeability, B, 

and tortuosity, T 2, were made using this data in combination with 

other information about the pore structure. 

2.1.4 Internal Surface Area - The internal open surface area 

(S o) was measured using the BET method (Reference I). This 

method assumes multilayer adsorption of gases on solid surfaces 

using a modification of the Langmuir equations. In general, this 

technique requires measurement of gas adsorption at several dif- 

ferent pressures. The type of gas used must also be considered, 

i0 
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since chemisorption and catalytic effects can influence the 

results. Based on the results reported in Reference 2, krypton 

gas adsorption was selected for use in determining internal 

surface area. 

2.1.5 Mercury Porosimetry - Mercury porosimetry measurements 

were made on material from the aft end of most tested ablation 

models. The technique used was to immerse the sample in a mercury 

bath and raise the hydrostatic pressure gradually to 60,000 psi 

(4080 ATM) while recording the volume of mercury intruded. When 

the mercury volume was corrected for compressibility, a measure 

of the specific void volume of the sample (V a) was obtained as a 

function of apparent pore size. The apparent pore diameter was 

obtained using the contact angle for mercury and indicates the 

smallest size of the microporosity connecting the larger pores in 

the material. This data is used to evaluate the molecular per- 

meability, tortuosity, and mean viscous molecular pore diameters 

in combination with the permeability.data. 

2.1.6 porosity - The total porosity of each composite was deter- 

mined using several techniques. The open porosity calculation 

used helium and bulk density data (PHe and Po respectively.) The 

closed porosity was calculated by using both the helium density 

and the final density (pf) of the material obtained in the mercury 

porosimetry tests. In this case, the assumption was made that 

60,000 psi, which corresponds to pore diameters of 0.003 microns, 

filled virtually all of the closed porosity. The porosity cal- 

culations were made as follows: 

= 1 
o 

= 1 
c 

Po 

PHe 

PHe 

Pf 

(Open Porosity) 

(Closed Porosity) 
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The data from helium density, bulk density and mercury porosimetry 

tests were then combined with optical pore measurements for an 

overall description of the porosity. Porosity data is presented 

in Section 2.2. 

2.2 Data Summaries 

Data obtained from measurements on photomicrographs and 

various characterization tests have been reduced and are pre- 

sented in this section. Some limited analytical considerations 

which have been applied to improve the utility of the numerical 

output for modeling are also presented. 

A reference page (Table 7) at the end of this report 

detailing model numbers, ablation environment, and material 

descriptions is provided for convenient reference while review- 

ing data presented in this section. 

2,.2.1 Structural Measurements - The structural measurements 

made are tabulated in Table 3. Figure 4 is a schematic of a 

unit cell in a 3-D composite with appropriate labels designating 

the measurements taken. Since, for 3-D composites, the Z yarns 

are either square or, for the case of Fine Weave Pierced Fabric 

(FWPF), are round in cross-section, these measurements are suf- 

ficient to completely describe the composite unit cell. It 

should be noted that the difference between £ and Lx/2 indicates 
x 

the degree of transverse yarn billowing (£ > Lx/2) or shrinking 
x 

(£x < Lx/2)" 

2.2.2 Permeability and Porosity - Critical tests to define the 

microstructural characteristics of carbon-carbon composites con- 

sist of bulk and helium density measurements, permeability 

measurements of porosity. Data from these tests and some analyt- 

ical permeability terms are presented in Table 4. Porosity data 

is also summarized in Figures 8 through 17. 
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TABLE 3 UNIT CELL STRUCTURAL MEASUREMENTS 

MODEL MATERIAL CONDITION £ L £ 
X X Z 

(MILS) (MILS) (MILS) 

L 
Z 

(MILS) 

AFML-19R 

AFML-23R 

GE-01A 

GE-02A3 

GE-04A3 

GE-06A3 

SR-07AD 

SR-08AD 

SR-10D 

SR-12D 

SR-13D 

GE-07A 

GE-39A 

GE-44A 

AC-02N 

AC-03N 

Jellyroll Laminar 

FWPF (LoPIC) Laminar 

GE-223 T-50 Laminar 

223 

223 (PAN, HAT) 

FWPF (PAN) 

FMI (Pitch) 

T-50(MDAC)Laminar 

Turbulent 

Lamlnar 

Laminar 

FMI (Pitch, CVD) Laminar 

223 ~oP~cvD> Lamlnar 

PAN 
223 ~No CVD~ Laminar 

223 (PAN,CVD) Lamlnar 

22 3 T-50 Turbulent 

223 (PAN) Laminar 

22 3 (PAN) Laminar 

FWPF (PAN) Laminar 

FWPF (PAN) Laminar 

(8.42 Layer Spacing) 

11.81 22.05 22.00 

15.91 33.30 17.30 

17.32 36.22 17.13 

15.75 32.48 17.52 

12.95 19.97 25.40 

20.87 45.43 17.66 

21.30 49.41 15.71 

15.75 36.13 18.47 

15.45 33.75 19.56 

15.14 35.40 18.17 

15.75 33.07 16.93 

16.26 35.00 17.22 

18.70 42.52 16.93 

13.58 21.46 21.26 

13.98 21.26 24.21 

51.07 

29.66 

29.53 

29.33 

52.06 

32.56 

31.72 

30.39 

30.62 

29.50 

29.53 

28.08 

28.94 

50.98 

52.56 



Table 3 (Cont.) UNIT CELL STRUCTURAL MEASUREMENTS 

MODEL MATERIAL CONDITION £ L £ 
X X Z 

(MILS) (MILS) (MILS) 

L 
Z 

(MILS) 

UI 

GE-02PA 

SR-25PA 

HAT 5 

427-HSI 

427-HS2 

PF928- 
HS2 

PF928- 
HS3 

668-11- 
HS2 

FWPI.' (PAN) 

FWP F ( PAN, 
LoPIC) 

223 (PAN) 

223 (PAN, CVD ) 

223 (PAN, CVD) 

FW~F (PAN) 

FWPF (PAN) 

Laminar 12.44 20.79 25.35 52.91 

Laminar 10.55 20.31 26.77 52.60 

Turbulent 7.87 12.91 7.87 11.81 

Laminar 14.09 35.12 15.75 27.40 

Laminar 13.23 33.39 16.85 28.66 

Laminar 9.45 17.48 24.25 54.33 

Laminar 9.39 14.27 21.54 52.00 

223(PAN,CVD) Laminar 16.94 34.87 16.91 28.79 



The items listed in Table 4 are summarized below: 

Po = Bulk density 

PHe = Helium density 

£ 
o 

= % Open porosity 

c 
c 

= % Closed porosity 

£ 
opt 

= % Porosity from cptical measurements 

= Viscous resistance coefficient 

= Inertial resistance coefficien~ 

D v = Visceus mean pore diameter 

D M = Molecular mean pore diamezer 

B = Permeability coefficient 

2 T = Tortuosity 

S = Open internal surface area 
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Table 4 PERMEABILITY AND POROSITY MEASUREMENTS 

MODEL MATERIAL CONDITION 

O 

(g /cc )  

:He C O C c £oF t ~ B D V 

( g / c c )  % • • ( 1 0 1 0 i r ' l )  ( l O l i n  " l  ) (U) 

DM B ,2  S 

(~) L (~a "9| 

F~ 
~J 

AF~L-19R 

AF,%L-23R 

GE-01A 

GE-02A3 

GE-04A3 

GE-06A3 

SR-07AD 

SR-OBAD 

SR-10D 

SR-12D 

SR-13D 

GE-07A 

GE-39A 

GE-44A 

AC-O2N 

AC-03N 

GE-02PA 

SR-25PA 

HAT 5 

427-HS1 

427-H52 

PF928-HS2 

PF928-HS3 

668-11-HS2 

J e l l y r o 1 1  Lam£nar  

FWPF(LoPIC) L a m i n a r  

GE 223 (T -50 )  L a m i n a r  

223(T -50 ,  Pfl)AC) Laminar 

223 (PAN, HAT) T u r b u l e n t  

FWPF (PAN) I~mlnar 

FMZ ( P i t c h )  Laminar 

1~!I (PITCH,CVD) Lamxnar  

PAN 
223 (No CVD) Laminar 

PAN 223 (.o 

223 (PAN, CVD) I~uuinar  

223(T-50)  t u r b u l e n t  

223 (PAN, C~)) Laminar  

223 (PAN, C ~ )  Laminar  

FTdPP (pAN) L a m i n a r  

FWPF (pAN) L a m i n a r  

FWPF (pAN) L a m i n a r  

FWPP (PAH, LoPIC) Laminar 

223(,AN, I~T)  T u r b u l e n t  

223(PAN,CVD) Lamznar 

223(P/W,CVD) Lzuainar 

FWPF (PAN) Laminar 

t~fPF(PAN) Laminar 

223(PAN,CVD) Laminar 

1.92 2.035 5 .65 2 .48  - 

1 . 9 2 8  2.011 4 .13  2 .73  4 .619  47 .7  3 .79  2 .457 

1.830 1 .940 5 .67 5 .06 7 .545  4 .61  3 .91 3 .743 

1.827 1.978 7.63 3 .67 4 .634  6 .40  5.62 3.O13 

Z.883 2.032 7 .33  3 .85 5.587 34.4 218.00 1 .426 

1 .929 2 .079  7 .22 4 .30  5 .568 11.7 57.1  2 .909  

1.919 2.071 7.34 3 .40  4 .486  7.65 5 .72 2.404 

1.918 2 .068 7 .25  3 .95 3 .834  4 .87  4 .60  2 .513 

1.917 2.082 7 .93 2 .50  3.823 11.40 10.7  2 .616  

1.957 2 .089 6 .32  2 .23  7 .085 4 .46  3 .66  5 .140 

1.830 1.930 5 .18  3.32 5 .478 6 .88  3 .66  5.449 

1.837 1.965 6.51 5 .59 5 .218  5 .78  6 .87  2 .379  

1.849 2.021 8 .51  2 .60  2 .429  17.70 5 .50 1 .280  

1.880 2.023 7.07 2 .98  2 .980  14.60 9 .03  1 .839 

- 3 .044 - - - 

" " - 4 .930  - - - 

2 .014 2 .097  3 .96 3 .66  3 .089 6.61 8.~4 5.200 

1.892 2 .040 7 .25 2.22 4 .705  13.72 36.05 2 .800  

1.892 2.033 6 .94  1.22 4 .403 46.38 140.29 2 .000  

1 .899 2.038 8 .9?  1.44 3.692 14.47 5 .69  1 .100  

1 .901 2.038 6 .72  1 .88 3.467 17.R 7 .75  1.O00 

2 .016  2 .097 3 .86 4 .08  .3.932 14.1 16.91 2 .400  

2.014 2 .135 5.67 1 .09  3 .679 1 4 . , ~  12.80 1 .600 

1.921 2.025 5.14 3 .39  3 .548 20.61 1.25 2 .300  

0.2037 

2 ,010  14 .41  11.52 0.2431 

3,021 96,58 3.547 0 .2906 

1.828 64.94 4 .297 0.3203 

0 .9284 27.37 4.974 0.346C 

1.945 40 .69  6 .899  0 .3090 

1.574 84.54 2.732 0 . 3 ~  

1.649 110.60 2 , 1 f 2  0.3456 

1 .62 ]  42 .82 5.999 0.2434 

3.497 61 .26  7.714 O.2261 

4 .334 43.81 10.250 0.2501 

1 .606 101.40 2.064 0.3367 

0 .7789 55.42 2.392 0.3152 

1,205 50.48 3,375 0.3683 

4 ,900  56.599 6 ,853  0.2605 

2 .500  47,983 7 .560 0.2265 

1.700 18.918 12.465 0.2012 

0 .900  10.612 1.157 0.4299 

0 .800  92.787 1.159 0.3854 

2 .300  58.466 1.792 0.2257 

1 ,400  80,301 2,352 0.2206 

2 ,200  41 .659  5,424 0.2866 



o0 

H 
U~ 

o 

O 

Z 
u 

12 

i0 

4 

2 

GE- 02A3 

i m ~  m m  m ~ m ~ u m m  ~ ~ 

O Total Open Porosity (Helium Density) 

O Total Porosity (Open and Closed) 

GE-07A 

GE-01A 

10-3 10-2 i0-i i00 

PORE DIAMETER (MICRONS) 

i01 

Figure 8. POROSITY DISTRIBUTION FOR 223 T-50 MATERIALS 



%D 

12[ 

i 
H 

o 
o 

Z 
u 

4 

2 

10-3 

O Total Open Porosity (Helium Density) 

O Total Porosity (Open and Closed) 

SR-10D 

SR-12D 

I I I I 
10-2 I0-i 0 

10 i01 

PORE DIAMETER (MICRONS) 

Figure 9. POROSITY DISTRIBUTION FOR 223 PAN MATERIALS 



O 

12 

10 

8 

q 
H 

o 6 

z q 

4 

m ~  m m 

GE- 39A 

O 

O 

GE44A 

Total Open Porosity (Helium Density) 

Total Porosity (Open and Closed) 

SR-13D 

10-3 

Figure i0. 

10-2 i0-i i0 u 

PORE DIAMETER (MICRONS) 

POROSITY DISTRIBUTION FOR 223 PAN, CVD MATERIALS 



10[ 
O Total Open Porosity (Helium Density) 

O Total Porosity (Open and Closed) 

8 

H 

o 
o 

54 
z 

6 

_ 

_ ~ ~% 

-3 i0 

427-HSI 
f 

427-HS2 

II-HS2 

I I I 

10 -2 i0-i i0 0 

PORE DIAMETER (MICRONS) 

Figure ii. POROSITY DISTRIBUTION FOR 223 PAN, CVD MATERIALS 

i0 

I 

1 



12 

Total Open Porosity (llelium Density) 

O Total Porosity (Open and Closed) 

~o 

H 

o 
O 

u 

m 

..... i 

10 -3 10 -2 

Figure 12. 

5 

GE-04A3 

I I - I 

i0 -I I00 i01 

PORE DIAMETER (MICRONS) 

POROSITY DISTRIBUTION FOR 223 PAN, HAT ~TERIAL 
! • i  • • D II • 

i m 

m m m m m 



i0 
O Total Open Porosity (Helium Density) 

O Total Porosity (Open and Closed) 

NI 

W 

I- I  
u~ 
o 

o 

E~ 
Z 

L) 
4 

2 

SR-25PA 

E-06A3 

GE-02PA 

I I ...... I I 

10 - ~  10 - 2  10 - 1  10 0 10 

PORE DIAMETER (MZCRONS) 

Figure 13. POROSITY DISTRIBUTION FOR FWPF PAN MATERIALS 



10 -- 

O 

O 

Total Open Porosity (Helium Density) 

Total Porosity (Open and Closed) 

k) 

-H 
m 
O 

O 

~ \\ PF928-HS2 

4J 

_ 

10-3 

PF928-HS3 

I , I I 
10 -2 i0-i i00 

Pore Diameter (Microns) 

Figure 14. POROSITY DISTRIBUTION FOR FWPF PAN MATERIALS 
• i • t 

m m m e  m m m ~ m m m 

I 
i01 

• ~ m •G , 

m m n m m n m m 



~O 
Ln 

I - ' t  

O 

z 

12 

O Total Open Porosity (Helium Density) 

O Total Porosity (Open and Closed) 
1 

SR-07AD 

6 

4 

2 

I .. I I I 

10 -3 10-2 10-1 10 0 101 

PORE DIAMETER (MICRONS) 

Figure 15. POROSITY DISTRIBUTION FOR PITCH MATERIALS 
(Model SR-07AD without CVD, Model SR-08AD with CVD) 



i0 - 

I 

O 

Total Open Porosity (Helium Density) 

Total Porosity (Open and Closed) 

O~ 

H 
U] 

o 

10-3 

AFML-23R 

I I , [ 
i ||i 

10-2 i0-I 100 I0 

PORE DIAMETER (MICRONS) 

. ' ,. Figure 16. POROSITY DISTRIBUTION FOR FWPF, LoPIC PROCESSED MATERIAL ,' • 
m m m m m n m m m m m m  m m m m m n m m 



12 _ 

~O 
~4 

H 

o 
o 

Z 
u 

i0 O Total Open Porosity (Helium Density) 

O Total Porosity (Open and Closed) 

41 

2 

_ 

i0 

i ~ ~  AFML-19R 

I I I I 
-3 10-2 10-1 10 0 10 £ 

PORE DIAMETER (MICRONS) 

Figure 17. POROSITY DISTRIBUTION FOR JELLYROLL MATERIAL 



The bulk density (po) and helium density (PHe) were calculated 

as follows: 

m 
Po = 9-- 

o 
= bulk density 

and 

m p 
He VIle 

= helium density 

where 

m = mass 

V 
o 

VHe 

= bulk volume 

= volume of helium gas displaced by a specimen. 

These measurements were used to calculate the open porosity 

(c o ) where 

Vo - VHe VHe Po 
e = = 1 - - 1 
o V o Vo PHe 

Closed porosity (e c) was obtained similarly by: 

VHe - Vf PHe 
e - = 1 
c VHe pf 

where the subscript f denotes measurements taken on a specimen 

immersed in mercury at a hydrostatic pressure of 60,000 psi. 

Optically measured porosity (eop t) was determined from 

measurements made on photomicrographs and, since this measure- 

ment is restricted to one plane, can be influenced by local 

variations. These variations, such as an isolated large crack 

in a Z yarn, were included in the calculated optical porosity 

values since adjustment for their frequency would require con- 

siderably more data than the sections examined. However, where 
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their influence is large enough for the optical values to exceed 

those obtained using mercury porosimetry, an indication of vari- 

ability inherent in the material is suggested. 

The permeability test yields the viscous and inertial resis- 

tance coefficients ~ and B respectively using: 

(p2 

2 LRT Z • = s + 8 m 

where M and T are the viscosity and temperature of the gas, R is 

the gas constant, L is the sample thickness, m is the flow rate 

and ~(p2) is the difference in the sauares of the upstream and 

downstream pressures. 

Microstructural properties governing molecular permeability 

(B) and tortuosity (T 2) were then calculated using the relations: 

B = 0.2e O DM/T 2 

2 DV2/16 
= ~E O 

where 

D M = molecular mean pore diameter 

D V = viscous mean pore diameter 

D M and D V were calculated from the porosity data using a correla- 

tion due to Wiggs (Reference 3). 

/.ooD 2 - DV 2 
' ~ ~ 0 

4 ÷ 2 2 dv 
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~0 ~D - DM dV 
5 ¥ 2 D s 

= 0 

The open internal surface area, S e, was obtained by measuring 

krypton adsorption as a function of pressure and reducinq the 

data using the BET method (Reference i). This information, 

when coupled withpermeability considerations, may be of use 

in modeling efforts to define the relative accessability of 

internal surfaces for thermochemical reaction. 

2.2.3 Microroughness Measurements - Microroughness measure- 

ments for the ablation models are presented in Table 5. These 

measurements are separated into four groups, the composite (as 

a system) and the individual components -- Z yarns, transverse 

yarns, and matrix pockets. The technique for making these measure- 

ments has been discussed in Section 2.1.1. 

For the composite, values of the average roughness height, 

(h)av, and the median roughness height, (h)m, are shown. The 

average roughness height for the composite is a weighted average 

of the three components. Also in Table 5 are the values for the 

average and median roughness heights for each component along 

with its second statistical moment. 

Satistical moments are used to describe the statistical 

nature of the roughness height distribution. For each value 

of the average roughness height, approximately fifty discrete 

measurements were taken. The average of these individual 

measurements is the first statistical moment. The second statis- 

tical moment, E [(h-u)2], is the variance of the distribution 

and the square root of the variance is the standard deviation. 

These roughness height distributions, in the form of 

cumulative histograms, are presented in Figures 18 to 38. Each 
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figure compares the Z yarn contribution to the composite rough- 

ness height. This comparison illustrated the dominant behavior 

of the Z yarn in microroughness measurements. 

A summary of the headings on Table 5 are as follows: 

(h) 
av 

(h) m 

[ (h) av ] Z 

[ (h)m] z 
2 

E[ (h)-~) 

[ (h) ] 
av xy 

[ (h)m] xy 

2 
E [ (h) -U) 

[(h) ] 
av M 

[ (h) m] M 
2 

E[ (h-u) ] 

= Average roughness height for composite 

= Median roughness height for composite 

= Average roughness height for z-yarn 

= Median roughness height for z-yarn 

] = Second statistical moment for z-yarn 
roughness height (Variance) 

= Average roughness height for transverse 
yarn 

= Median roughness height for transverse 
yarn 

] = Second statistical moment for transverse 
yarn roughness height (Variance) 

= Average roughness height of matrix 

= Median roughness height of matrix 

= Second statistical moment for matrix 
roughness height (Variance) 

2.2.4 Macroroughness Measurements - The macroroughness measure- 

ments as described in Section 2.1.1, are presented in Table 

6. The measurements include a complete statistical descrip- 

tion of the roughness height (as explained in Section 2.2.3), 

i.e., average roughness height, median roughness height, and 

the second, third, and fourth statistical moments. To provide 

physical insight of these roughness heights, Figures 39 to 

60 illustrate the macroroughness height distributions (in the 

form of cumulative histograms). Also included are the measured 
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Table 5 MICROROUGIINESS MEASUREMENTS 

CO~!POSITES Z YARNS TRANSVERSE YARNS HATRIX 

(n)av ("~m [(h)av]z [(h)m]z E[(~-.) 2] [(h)av]xy [(h)m]xy E[(h-_) 21 [(h)a":~ [(h)m]~ El(n-_) ~] 
MODEL ~ATKRIAL CO~DI'ILCN MILS ":ILS (MILS) (MTLS) (MILS) 2 (MILS) (MILS) (MILS]: (MILS) (MILS) (~ILS)" 

W 

AFML-23R E'WPF (LoPiC) Laminar 0.3~4 .'.501 0.765 0.610 O. ] :~6 0.173 0.148 0.0085 0.328 0.207 0.:)94 

GE-01A GE-223 {1-~0) Laminar 0.183 [..233 0.207 0.197 0.013 0. !4~ 0.118 0.0067 0.315 0.177 0.102 

GE-02A3 22] (T-50, MDAC) Lam~nor 0.321 3.40a 0.415 0.394 0.059 0.169 0.148 0.00-~6 0.264 0.I,'2 0.052 

GE-O4A3 223 (I'A.N~ HAT) Turbulent 0.451 0.574 0.982 1.063 0.220 0.151 0.148 0. 002~. 0.975 1.20] 0.345 

GE-06A3 FW-PF (PAN) Laminar 1. '.)26 1. 306 2. 023 2. 087 0.519 0. ~ 13 O. 207 0. 0040 0. 469 0. 394 0. 103 

SR-O7AD FM7 [PTTC.H ) Lamlnar 0.248 0.316 0.456 0.354 0.i01 O.152 0.118 0.0088 0.258 0.197 0.026 

SR-OI~.~D ~I (P ITCH, CVD) Laminar 0.242 0.308 0.448 0.374 0.114 0.16g 0.118 0.0095 0.222 0.177 0.073 

SR-10D 223 (PAN, No C'v'D) Laminar 0.990 1.26.-. 1.462 1.491 0.588 0.128 0.]97 0.0134 0.463 0.276 0.23J 

SR-12D 223 (PAN, Nc CVD) Lamlnar 1.108 1.411 1.703 1.885 1.190 0.178 0.177 0.0064 0.285 0.236 0. C ~,i 

SR-13D 223.(PA.N, CVI)) L~mlnar 1.235 1.573 1.698 1.905 0.317 0.189 0.148 0.0119 0.459 0.394 0.134 

GE-O7A 223(r-50) Turbulent 0.247 -.315 0.253 0.217 0.015 0.151 0.148 0.0022 0.913 0.768 0.3.%9 

GE-39A 223 (PAN) Lamanar 0. 240 O. 306 O. 392 0.295 0.068 O. 126 0.c~8 0.0032 O. lq8 O. 148 0.024 

GE-44A 223 (PA.'J) Lamlnar 0.374 0.476 0.590 0.472 0.161 0.196 O. lfn 0.016 0.348 0.268 0.075 

GE-02PA FW'PF (PAN} Laminar 1.114 1. 063 1. 447 1. 396 0. 408 0. 149 O. 126 0. 00264 0. 313 0. 252 f'. 0465 

SR-25PA FWPF (PA=W, LoPIC) Lamlnar 0.734 0. 788 0.888 0.981 0.141 0.202 0. I~ ~9 O. 00809 0. 555 0.421 0. 114 

HAT 5 223(PP2~, HA".') Turbuh,nt 1.426 1.450 1.734 1.774 0.627 0.229 0.1"26 0.00780 0.923 0.799 0.359 

427-HSI 223 (PAN, CVD) Lamlnar 0.398 0.389 0.491 0.483 0.0434 0.209 0.211 0.00854 1.075 0.63] 0.864 

427-HS2 223 (p~t CVD ) Laminar 0.460 0.487 0.808 0.854 0.0565 0.2?8 0.248 0.00837 0.345 0.272 0.0338 

PF92R-HS2 FWPF (PAN) Lamlnar 0.681 0.688 0.865 0.867 0.06,1 ~ C.~1% O. 223 0.00481 0.809 0.879 0.246 

PF928-HS3 FWPF (P.~N) I~minar 0.440 0.438 0.493 0.487 0.0307 (,.176 0.177 0.00345 0.223 0.197 0.0119 

668-II-Hs2 223 (PA_N, CVD) Laminar 0.471 0.455 0.636 0.671 0.0748 0.204 0.194 0.00511 0.343 0.194 0.148 
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values for the average width of the roughness element and the 

average peak-to-peak spacings between roughness elements. 

Two other roughness measurements are presented -- that 

of adjusted roughness height and equivalent sand roughness 

height. The adjusted roughness height is given by the formula: 

4 
(k) av T (h) av 

where, (h) 
av is the average measured roughness height. The 

factor from a probabilistic view, accounts for the failure r 

of a plane cross-section to pass through the peak of a hemis- 

pherical roughness element. The eauivalent sand roughness 

height is determined from Figure 61, (Reference 4). The equiva- 

lent sand roughness height is k s , where k is the adjusted 

macroroughness height, (Ap/A s) is a shape factor given by the 

ratio of element surface areas projected noraml to the flow, 

Ap and actual windward surface area, A S (for this case, Ap/A S 

= 0.45), and the spacing defined as: 

(W2) av 

D = (Lp) av (W) av 

where (Lp) av is the average peak-to-peak spacing between rough- 

ness elements and (W) av is the average width of a roughness 

element as shown in Figure 5. 
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A summary of the data presented in Table 6 is: 

(h)  a v  - Average roughness height 

(h) 
m 

- Median roughness height 

Z[(h-u)'] Second statistical moment for 
Macroroughness height (Variance) 

E[(h-~)*] - Third statistical moment for 
Macroroughness height (Skewness) 

E [ (h-u) ~ ] = Fourth statistical moment for 
Macroroughness height (Peakedness) 

(w) av 
= Average width of roughness element 

(Lp) av s Average peak-to-peak spacing between 
roughness elements 

(k) av 
s Average adjusted roughness height 

k 
s 

= Equivalent sand rouchness height 
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Table 6. MACROROUGIINESS MEASUREMENTS 

XlODEL ~IERIAL CONDITION 

(h) (h) E{(h-. ~" ) E{ (h-_) s } 
a v  m 

(.'111.~) (MILS) (MII.S) z (MILS) ~ (MILS) ~ 

(w) 
a v  

(MILS) 

(L) 
P av 

(MILS) 

(K) 
a v  

(MILS) 

K 
% 

(MII 5) 

O~ 

AFML-19R 

AFML-23R 

GE-OIA 

GE-02A3 

GE-04A3 

GE-06A3 

SR-07AD 

SR-OSAD 

SR-IOD 

SR-12D 

SR-13D 

CE-07A 

GE-39A 

GE-44A 

GE-O2PA 

SR-25PA 

HAT 5 

427-H51 

427-HS2 

PF928-HS2 

PF928-HS3 

668-11-HS2 

Jellyroll 

FNPF (LoPIC) 

GE 223 (T-50) 

223 (T-50,MDAC) 

223 (PAN, HAT) 

I~PF (PAN) 

l~I  (P icrh)  

FMI (P i t ch ,  CVD) 

223 (PAN, No CVD) 

223 (PAN, No CVD) 

223 (P~N, CVD) 

223 (T-50) 

223 (PAN, CVl)) 

223 (PAN, CVD) 

FWPF (PAN) 

FNPF (PAN, LoPIC) 

223 (PAN. HAT) 

223 (PAN, CVD) 

223 (PAN, CVD) 

~'PF (PAN) 

FWPF (PAN) 

223 (PAN, CVD) 

Ldmlnar 

Laminar 

Laminar 

Laminar 

Turbulent  

Laminar 

Laminar 

Laminar 

Laminar 

Laminar 

Ldmlnar 

Turbulent  

Laminar 

Laminar 

Laminar 

Laminar 

Turbulenc 

Laminar 

Laminar 

Laminar 

Laminar 

Laminar 

3.892 4.632 2.857 -3.025 

4.749 4.701 0.479 fl.Oll 

6.459 6.581 1.996 -1.575 

2.807 2.605 0.460 0.018 

2.289 2.316 0.582 0.199 

2.148 1.822 1.070 0,412 

2.484 2.258 2.093 1.903 

3.382 3.474 1.298 0.849 

3.902 3.936 0.446 0.039 

4.644 4.632 0.667 0.079 

2.524 2.432 0.290 O.105 

1.824 1.679 O.194 0.O67 

3.301 2,997 1.236 1.717 

3.745 4.053 0.39R -O.O72 

2,687 2.520 0.607 0.084 

3 .O l l  2.992 1.O24 0.70 

4.~t19 ~.325 4.666 14.613 

2.O51 1.853 0.467 O.IO6 

1.423 1.274 0.338 0.025 

1.550 1.245 0.529 0.319 

1.014 0.954 0.098 O.007 

1.489 1.352 0.1831 -0.007 

16.136 

0.424 

11.31 

0.487 

07.734 

2.062 

9. 302 

5. 363 

O.451 

1.196 

0.218 

0.088 

6.68L 

0. 306 

0.80 

3.140 

14R.099 

O. 3914 

0. 230 

O. 702 

0.018 

0.137 

5.10 

18.09 

IO.80 

9.767 

10.22 

8. 700 

9.069 

10.466 

9.034 

IO.943 

8.974 

9.130 

9.249 

11.17 

14.436 

14.246 

1U.722 

6.571 

3.190 

7.121 

7.075 

5.868 

15.75 

38.80 

30.05 

29.11 

25.57 

22.35 

28,80 

27.60 

27.0? 

30.48 

28.67 

29.69 

29.09 

29.38 

33.441 

30.925 

33.918 

19.232 

10. 309 

9.677 

11. 381 

13.954 

4.955 

6.047 

8.224 

3.574 

2.914 

2. 736 

3.162 

4. 306 

4.968 

5.913 

3.213 

2.322 

4.203 

4.768 

3.421 

3.834 

5.614 

2.611 

1.811 

1.974 

1.291 

1.895 

21.34 

5.089 

28.85 

2.898 

1.592 

1.276 

2.071 

4.665 

8.311 

10.763 

2.191 

0.830 

4.571 

5.892 

1.17:, 

1 ,791  

7.43.;, 

2.08.' 

1.988 

1. 360 

0.227 

1 .029  
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Figure 61 EFFECT OF ROUGHNESS ELEMENT SPACING AND 
SHAPE IN EQUIVALENT SAND ROUGHNESS 

It should be noted that while k values are reported in 
s 

Table 6 for laminar models, the utility of equivalent sand 

roughness values for describing laminar flow phenonmena has 

not been established. 

2.3 Microscopy 

Macro - and microphotographs of each ablation model are pre- 

sented in this section. Descriptive information regarding 

the material, test conditions and model number is contained 

on each sheet. 
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Figure 62 (continued) PHOTOMICROGRAPHS OF GE 223 T-50 GE-01A 
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Figure 63 PHOTOMICROGRAPHS OF 223 T-50 GE-07A 
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Figure 64 PHOTOMICROGRAPHS OF 223 T-50, MDAC GE-02A3 
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Figure 64 (continued) PHOTOMICROGRAPHS OF 223 T-50, MDAC GE-02A3 
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Figure 65 PHOTOMICROGRAPHS OF 223 PAN, no CVD SR-10D 
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Figure 65 (continued) PHOTOMICROGRAPHS OF 223 PAN, no CVD SR-10D 
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Figure 67 PHOTOMICROGRAPHS OF 223 PAN, CVD SR-13D 
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Figure 68 PHOTOMICROGRAPHS OF 223 PAN, CVD GE-39A 
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Figure 68 (continued) PHOTOMICROGRAPHS OF 223 PAN, CVD GE-39A 
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Figure 69 PHOTOMICROGRAPHS OF 223 PAN, CVD GE-44A 
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Figure 69 (continued) PHOTOMICROGRAPHS OF 223 PAN, CVD GE-44A 
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Figure 73 (continued) PHOTOMICROGRAPHS OF 223 PAN, HAT GE-04A3 
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Figure 75 (continued) PHOTOMICROGRAPHS OF FWPF PAN GE-06A3 
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Figure 75 (continued) PHOTOMICROGRAPHS OF FWPF PAN GE-06A3 
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Figure 76 PHOTOMICROGRAPHS OF FWPF PAN GE-02PA 
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CD 

CROSS SECTION 

LOW MAGNIFICATION 

SIDE VIEW 

MDAC 

BILLET PF 

I ~ili '~̧  

HIP FACILITY • 7ATM 

STEADY STATE 

928 0.28 INCH DIAMETER 

Figure 79 PHOTOMICROGRAPHS OF FWPF PAN PF928-HS3 
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Figure 79 (continued) PHOTOMICROGRAPHS OF FWPF PAN PF928-HS3 
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Figure 80 (continued) PHOTOMICROGRAPHS OF PITCH, no CVD 
SR-07AD 

AFFDL 50 MW " 76 ATM 

RAMP, PEAKED ENTHALPY 

BILLET IIIPI-R2 • 0.95 INCH DIAMETER 
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Figure 81 PHOTOMICROGRAPHS OF PITCH WITH CVD SR-08AD 
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Figure 81 (continued) PHOTOMICROGRAPHS OF PITCH WITH CVD SR-08AD 
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Figure 82 PHOTOMICROGRAPHS OF FWPF T-50, LoPIC AFML-23R 

AFFDL 50 MW " 76 ATM 

RAMP, PEAKED ENTHALPY 

BILLET 881-RI • 1.00 INCH DIAMETER 
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RAMP, PEAKED ENTHALPY 

BILLET 881-RI - 1.00 INCH DIAMETER 

Figure 82 (continued) PHOTOMICROGRAPHS OF FWPF T-50, LoPIC AFML-23R 
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Figure 82 (continued) PHOTOMICROGRAPHS OF FWPF T-50, LoPIC AFML-23R 
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Figure 83 PHOTOMICROGRAPHS OF JELLYROLL AFML-19R 
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Figure 84 PHOTOMICROGRAPHS OF FWPF PAN AC-02N 

AFFDL 50 MW " 76 ATM 

RAMP, PEAKED ENTHALPY 

BILLET 921-R2 1.03 INCH DIAMETER 
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AFFDL 50 MW " 76ATM 

RAMP, PEAKED ENTHALPY 

BILLET 921-R7 " 1.02 INCH DIAMETER 



2.4 Ablation Model Observations 

2.4.1 Yarn Effects on Matrix Microstructure (Figure 73 - 223 

HAT, Figures 80 and 81 - pitch yarn). The 223 HAT material 

was a composite fabricated without CVD and processed at i0 KSI 

to provide a microstructure which typically transitions at 

high altitudes. This material, as expected, had large pores 

in the matrix pockets which were uniform throughout the sections 

examined. Its surface roughness was also approximately twice 

that of a standard 223 material, which had transistioned during 

a peaked enthalpy test (1.56 vs .83 mils equivalent sand rough- 

ness). An interesting comparison, however, can be made between 

this material, which was processed at 10 KSI, and the pitch- 

yarn materials, which were processed at 5 KSI. In view of the 

lower processing pressure, it would be expected that a similar 

microstructure with large pores would also develop in the pitch- 

yarn materials. However, the pitch-yarn materials have a matrix 

pore structure which is more typical of higher pressure processed 

materials (15 KSI) rather than the large pores associated with 

low pressure processing. A careful examination of these matrix 

pockets indicates that filaments have been frayed, or spalled, 

from the pitch-yarns during processing and are located in the 

matrix pockets. These filaments are probably the major cause 
0 

for the fine porosity in the microstructure, since they provide 

a substrate for matrix formation. 

2.4.2 Processing Facility Effects at Y-12 and MDAC - Three 

standard GE 223 models scheduled for flight tests and densified 

by two different processors were examined. The two processers 

were Union Carbide (Y-12) and MDAC. There appears to be a fairly 

significant difference between these pieces of material. An 

examination of the data shows that the permeability coefficients 
O O 

for models GE-07A and GE-01A (Y-12) were 101.4 A and 96.58 A 

respectively. While earlier data (Reference 5) shows that a 
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permeability coefficient (in the range of 43 A to 92 A) is 

not uncharacteristic of material processed at Y-12, both of 

these values are high, even for Y-12. In addition, both of 

the models from material processed Y-12 transistioned in 

ground tests which is uncharacteristic of standard GE 223. 

Model GE-07A, which had the highest permeability coefficient, 

showed more complete transistion than did model GE-01A which 

is consistant with the correlation between high permeability 

and early transistion noted in reference 5. The ablation 

models also showed extremely high preferential erosion of 

axial yarns, thereby leading to a macroroughness greater than 

any seen heretofore in GE 223. The model which was made from 

MDAC-processed material (GE-02A3) had a permeability 
O 

coefficient of 65 A, which is typical of standard GE 223 

material. Also, it did not display the large preferential 

axial yarn erosion observed in the Y-12 processed material. 

It should also be noted that larger microroughness heights 

were found in the axial yarn ends of the MDAC material than 

in the Y-12 material. This is the opposite of what would 

normally be expected since larger microroughness heights imply 

earlier transition to turbulent flow. The fact that, for both 

materials, the axial yarns receded significantly below the 

surface may be importgnt. If this recession was.enough to 

remove the axial yarns from the flowfield, then the roughness 

of the other composite constituents would govern transition 

behavior. Of the remaining constituents, (matrix and transverse 

yarn), the only differences in matrix roughness were found with 

the Y-12 material being approximately 20% rougher than the MDAC 

material. 

2.4.3 CVD Effects - (Figures 65, 66, 67) The effect of pre- 

form prestiffening was investigated on three 223 PAN models 

processed by MDAC. One of the materials had no CVD (Figure 65), 
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another had an initial low pressure carbonization (Figure 66), 

and the third had initial CVD with low temperature graphitiza- 

tion throughout processing (Figure 67). Both of the materials 

without CVD were similar in nature, even though one had an 

initial low pressure process cycle. The material with the 

initial low pressure processing cycle had approximately the 

same roughness character as the material which was all high 

pressure processed. The biggest differences between these 

two materials were in the amount of large porosity and in the 

permeability coefficients. A larger amount of porosity and a 

higher permeability coefficient were found in the material with 

initial low pressure processing. This higher permeability was 

consistent with the macrostructural observation that a large 

number of yarns were cracked on at least three sides. Both of 

the materials without CVD had few pores in the yarn bundles 

while the material with CVD exhibited extensive porosity in 

each yarn bundle cross-section. The material with CVD also 

displayed less differential erosion at the surface between each 

of the composite constituent phases. 

2.4.4 Axially Symmetric Weave Geometries - (Figure 83) One new 

material, the AVCO "Jellyroll", was characterized after ground 

test. The model retained a laminar configuration throughout 

the peaked enthalpy test in spite of the fact that it exhibited 

a large macroroughness in cross-section. Microroughenss measure- 

Ments could not be made on this material due to the unusal 

character of its surface. It can only be surmised that the 

closed cell character formed through differential erosion 

between the reinforcement layers resulted in a configuration 

which did not influence the boundary layer sufficiently to cause 

transistion to turbulent flow conditions. Analysis of flow con- 

ditions over this type of surface may provide insight into the 

nature of this behavior, as well as influence the selection of 

106 



specimens for examination taken from other materials. If a 

closed cavity consideration is necessary, then perhaps more 

emphasis should be placed on modeling surface geometries in 

transistion modeling efforts. 

2.4.5 Topographical Mapping of Ablation Models - (Figure 72) 

A surface map was made of a 223 PAN laminar ablation model to 

compare surface characteristics with those deduced using plane 

section observations under the microscope. Stero pair scanning 

electron micrographs were used in constructing this surface map 

along with standard aerial map making machines. The mapping 

shows that yarns which lie parallel to the surface (X, Y Yarns) 

have varying amounts of recession related to the constituent 

material adjacent to the yarn. In the location examined, the 

transverse yarns eroded less than the axial yarns (Z yarns) 

and more rapidly than the matrix pockets. The axial yarns 

appeared to recede slightly more than matrix pockets, but the 

differential recession between the axial yarns and matrix pockets 

appeared to be on the order of only 0.001 inches. However, there 

were much larger differences between transverse yarn recessions 

and their nearest neighbor. Where the transverse yarn ran be- 

tween two matrix pockets, its recession was significantly greater 

than the matrix pocket recession. This implies that each com- 

posite constituent is affected by the performance of its nearest 

neighbor. If this is indeed the case, then more extensive map- 

ping would be required for obtaining sufficient data on this 

interactive behavior for input into modeling activities. 
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3.0 EROSION MODEL CHARACTERIZATION 

A series of carbon-carbon specimens which had been subjected 

to erosion ground test were evaluated ~n this effort. Both 

standard GE 223 and 223 PAN were examined to compare their 

microstructural response in various ground test environments, 

Facility effects, particle velocity, and particle type were 

all addressed. Several of these specimens were also being 

studied under subcontract to California Research and Technology 

in support of modeling efforts on a program entitled Multiple 

Impact Modeling of Composites (AFML Contract F33615-78-C-5059). 

One of the primary motivations for this work was that sections 

of samples which had been tested in Track G (ballistic range) 

exhibited a character completely different than that experienced 

in single particle impact testing. The ballistic range models 

showed a distinct lack of the type of subsurface damage commonly 

found in the microstructure of single particle impact specimens. 

The potential mechanisms for the lack of damage were: 

i. Loss of material in the recovery tube. 

2. Multiple particle impact effects. 

3. Particle size effects. 

4. Flowfield interaction. 

5. Debris shielding. 

6. Elevated temperature material response in the 
ballistic range. 

3.1 Single Particle Impact Specimens 

A total of 5 samples which had been subjected to single particle 

impact tests were examined. Three of the samples were standard 

GE 223 T-50 and two were GE 223 PAN. The initial four samples 

had been tested using 1000 micron glass beads at both room and 

elevated temperature. The intent of evaluating these samples 

was to determine if elevated temperature effects were strong 

enough to account for the loss of, or inhibition of, the in- 
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depth damage in the material. The fifth sample was 223 T-50 

and was impacted with 350 micron glass beads at three locations 

to determine if particle size effects significantly altered 

the in-depth damage. All specimens were examined with cross- 

sections showing both the axial yarns (yarns parallel to the 

impact direction) and the transverse yarns (yarns perpendi- 

cular to the impact direction. 

Cross-sections of the specimens which were impacted with 

1000 micron glass beads at room temperature are shown in 

Figures 85 through 88. The standard 223 material shows con- 

siderable in-depth damage immediately below the impact site 

with extensive crushing at the bottom of the crater. The view 

with yarns parallel to the impact direction shows both shear 

failures immediately under the impact site and tensile failures 

in one yarn immediately to the right of the crater center as 

evidenced by the separations in the Z yarn. The damage appears 

much more extensive to the transverse yarns (Figure 86) which 

were immediately adjacent to the view shown in Figure 85. Yarn 

damage occurs well beyond the central location of the impact 

site and approaches the edge of the crater. In some instances 

there appears to be damage extending out beyond the edge of the 

crater. In addition there is considerable in-depth deformation 

of the weave geometry which, upon measuring, extends several 

unit cells below the readily observable damage. In order to 

characterize this deformation measurements were made of the 

space between the transverse yarns immediately below, to the 

right, and to the left of the impact site (two unit cell measure- 

ments to the right and left of the impact site). A plot of the 

unit cell spacing as a function of depth from the specimen sur- 

face is also shown in Figure 86. 

The 223 PAN material is shown in Figures 87 and 88. While the 

damage immediately under the impact site appears much more 
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Figure 85 CROSS SECTION SHOWING EFFECT OF SINGLE PARTICLE IMPACT AT 

ROOM TEMPERATURE ON AXIAL YARNS OF 223 T-50 (1000~ glass bead, 

13.2 kfps, 70°F) 
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CROSS SECTION SHOWING EFFECT OF SINGLE PARTICLE IMPACT AT 
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Figure 87 CROSS SECTION SHOWING EFFECT OF SINGLE PARTICLE IMPACT 

AT ROOM TEMPERATURE ON AXIAL YARNS OF 223 PAN 

(I000~ glass bead,18.4 kfps, 70°F) 
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extensive than for Standard 223 T-50, it should be noted that the 

velocity of the impacting particle was much higher (18.4 versus 

13.2 kfps). As was observed earlier the damage extends further 

toward the edge of the crater in the transverse section 

(Figure 88) than in the section with yarns parallel to the 

impact direction (Figure 87). Similarily a large amount of 

in-depth weave deformation was measured on this specimen as 

is shown by the plot included in Figure 88. 

The elevated temperature test cross-sections are shown in 

Figures 89 through 92. The crater in the standard 223 T-50 ma- 

terial appears very similar to the room temperature test when yarns 

parallel to the impact direction are examined. However there 

is a great deal of difference in the cross-section with trans- 

verse yarns. The most apparent difference is that the yarns 

at the impact site bow upward toward the crater surface where- 

as in the room temperature test, which was shown in Figure 86, 

all of the yarns remained bent downward. In addition the trans- 

verse yarns are fractured well beyond the crater edge and de- 

formation appears to have occurred deep in the composite. As 

with the specimens shown earlier, a plot of yarn spacing as a 

function of depth from the surface reveals deformation of the 

geometric structure of the composite well below the area of 

readily observable damage. 

The elevated temperature test on 223 PAN is shown in Figures 

91 and 92. Extensive tensile fracture can be observed in the 

view where yarns are parallel to the impact site. As was 

found in the standard 223 T-50 material, damage where yarns are 

transverse has also occurred well beyond the impact zone. Also, 

the in-depth deformation of the weave structure extends further 

than that experienced in the other specimens as is seen by the 

plot shown on Figure 92. 
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Figure 89 CROSS SECTION SHOWING EFFECT OF SINGLE PARTICLE IMPACT AT 

ELEVATED TEMPERATURE ON AXIAL YARNS OF 223 T-50 (i000~ glass bead, 

14.3 kfps, 3100°F) 
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Figure 90 CROSS SECTION SHOWING EFFECT OF SINGLE PARTICLE IMPACT AT 

ELEVATED TEMPERATURE ON TRANSVERSE YARNS OF 223 T-50 (i000~ 

glass bead, 14.3 kfps, 3100°F) 
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Figure 91 CROSS SECTION SHOWING EFFECT OF SINGLE PARTICLE IMPACT 

AT ELEVATED TEMPERATURE ON AXIAL YARNS OF 223 PAN 

(i000~ glass bead, 14.6 kfps, 3900°F) 
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Figure 92 CROSS SECTION SHOWING EFFECT OF SINGLE PARTICLE IMPACT 

AT ELEVATED TEMPERATURE ON TRANSVERSE YARNS OF 223 PAN 

(I000~ glass bead, 14.6 kfps, 3900°F) 



The photomicrographs of these four specimens clearly reveal 

that elevated temperature is not responsible for inibiting 

in-depth damage in ground test erosion models. They also show 

that the damage present in both standard 223 T-50 and 223 PAN is 

similar in nature with more tensile fracture occurring in the 

223 PAN. Further, the measurements made on unit cell spacing 

under the impact site indicate that damage to the composite 

has occurred to a depth beyond that where yarn breakage can 

be observed. This observation is consistent with results 

obtained at ETI (Reference 6) in which the shear strength of 

material immediately below an impact site was measured. ETI 

reported that the shear strength of the material was degraded 

for an extensive distance below the point where microstructural 

yarn breakage had been previously observed. 

The issue of small particle size was addressed in a single 

particle impact test in which three 350 micron particles were 

shot at a piece of standard 223 T-50 at room temperature at a 

velocity of approximately 12,000 ft/second. Cross-sections of 

these impacts are shown in Figure 93. As can be seen in these 

photomicrographs, in-depth damage is present in all views ex- 

amined except when the impact was directly on the matrix pocket. 

However, the size of the impact site was such that the photo- 

micrograph showing the matrix pocket is slightly off center 

from the immediate impact zone thereby accounting for the lack 

of observable in-depth damage. 

3.2 Holloman Sled Test Specimens 

Another series of five samples which had been tested in the 

rainfield on the Holloman sled were evaluated. The materials 

included 223 T-50, 223 PAN, Fine Weave Pierced Fabric PAN, a 1-1-1-3 

4-D material (T-50) and a material designated SSN which has the 

standard 223 construction with metal in place of the carbon yarns 
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Figure 93 VIEW OF IN-DEPTH DAMAGE RESULTING FROM SMALL PARTICLE IMPACTS 

(350~ glass particles, i2 kfps) 



in the direction par~llel to the impact. All of the specimens 

were tested in a field which had raindrops with a mean diameter 

of 1.73 mm at a velocity of 4.2 kfps and an impact angle of 60 °. 

It was anticipated that if flowfield effects were indeed important 

then the 60 ° orientation of the specimen would show drastic re- 

ductions in the amount of subsurface damage present even with the 

relatively low velocity experienced in the rainfield. 

Typical cross-sections of the specimens evaluated are shown 

in Figures 94 through 99. As can be seen in these photomicro- 

graphs, the primary impact damage present is small cracks obser- 

vable only at high magnification in the axial yarns. However, 

in some isolated cases more severe cracking was also observed 

(Figure 97) but to a much lesser extent than that observed in 

single particle impact tests. 

It was not possible to ascertain whether any in,depth damage oc- 

curred in the SSN material. Since it appeared that the metal 

was relatively discontinuous, added damage was difficult to 

identify. 

3.3 Ballistic Track (K) 

A total of four samples were examined after recovery from ground 

tests in ballistic track K. All of these samples had been im- 

pacted using 700 micron particles at a velocity of 13 kfps. Both 

standard 223 and 223 PAN materials were subjected first to impact 

with a single particle and then to impact with two particles im- 

pacting in the same site. The standard 223 T-50 showed extensive 

in-depth damage retained in the impact crater with much of that 

damage being lost in the specimen which experienced two coincident 

impacts (Figure 100). The buckling and shearing of yarns parallel 

to the impact direction is obvious for the single impact case 

whereas for the double impact specimen only straight tensile 

fractures are present in these yarns. 
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TEST NUMBER 3OR-MIIC 

MATERIAL 223 

VELOCITY 4202.25 kfps 

ANGLE OF IMPACT 60 ° 

PARTICLE 1.37r~ Rain Drop 
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Figure 94 CROSS SECTION OF HOLLOMAN SLED TESTED 223 T-50 
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MATERIAL 223 PAN 
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TEST NUMBER 3OR-M12C 

MATERIAL FWPF PAN 

VELOCITY 4205.46 kfps 
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Figure 96 CROSS SECTION OF HOLLOMAN SLED TESTED FWPF PAN 
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MATERIAL ]-1-1-3 
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Figure 97 CROSS SECTION OF HOLLOMAN SLED TESTED 1-1-1-3 SHOWIN~ 

ISOLATED IN-DEPTH DAMAGE 
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Figure 98 CROSS SECTION OF HOLLOMAN SLED TESTED SSN MATERIAL 
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Figure 99 CROSS SECTION SHOWING TRANSVERSE YARNS IN HOLLOMAN SLED TESTED 

SSN MATERIAL 
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contrast, the 223 PAN material (Figure i01) showed no extensive 

in-depth yarn fracture even after the single particle impact. 

The subsequent impact into the same zone appeared primarily 

to widen the impact site rather than increase its depth. For 

223 PAN (Fiqure 102), the transverse yarns and matrix 

pockets appear to be removed around the impact crater with Z 

yarns protruding from the surface. The behavior of these 

materials in track K under single and multiple particle impact 

appears to point to the fact that both flowfield effects and 

multiple particle impact phenomena are responsible for the 

lack of in-depth damage in multiple impacted ballistic range 

samples. 

3.4 Ballistic Track (G) 

A total of 8 ballistic range models which had been tested in 

track G and recovered for post-test examination were evaluated. 

The initial sample had been impacted by large welding debris 

on the initial part of its flight down the range. While the 

character of this welding debris is not specifically known, the 

value of this specimen is that it clearly indicates that loss 

of predamaged material in the recovery tube is not a likely 

mechanism for removal of material which has been damaged during 

the impact event. While this type of material removal cannot be 

completely ruled out, the prior photomicrographs shown earlier 

indicate that multiple particle effects combined with a dynamic 

flowfield is a more likely cause for removal of predamaged 

material (Figure 103). Typical examples of the remaining 

materials tested are shown in Figures 104 through 107. These 

include standard 223 T-50 and 223 PAN tested with both dust and snow 

as the impacting particle. In all cases microcracks observable 

only at very high magnifications could be found in these samples. 

Yarn failures, such as that shown in Figure 103 and in typical 

single particle impact tests, were totally absent. In most cases, 
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PAN (13 kfps, 700~ particles Track K) 
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Figure 103 CROSS SECTIONS OF GE 223 T-50 SHOWING EFFECT OF IMPACT BY 

WELDING DEBRIS ON INITIAL PART OF FLIGHT (16 kfps, Track G) 
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Figure 104 CROSS SECTIONS OF GE 223 T-50 IMPACTED BY DUST (17 kfDs, Track G) 
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Figure 105 CROSS SECTIONS OF GE 223 T-50 IMPACTED BY SNOW (17 kfps, Track G) 
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Figure 106 CROSS SECTIONS OF 223 PAN IMPACTED BY DUST (16.9 kfps, Track G) 
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Figure 107 CROSS SECTIONS OF 223 PAN IMPACTED BY SNOW (16.9 kfps, Track G) 



as seen in Figures 104 and 107, axial yarns protrude from the 

surface of the specimen after testing. This indicates that 

both the transverse yarns and the matrix pockets were signi- 
O 

ficant contributors to mass loss in the impact event. This 

further indicates that improvements in material performance 

which address these material constituents (transverse yarns 

and matrix pockets) may have the potential for improving the 

erosion performance of the carbon-carbon family of materials. 

4.0 CONCLUSIONS AND RECOMMENDATIONS 

The results presented in this document, when considered in 

light of the analytical modeling efforts described in Reference 

5, and with ongoing erosion modeling activity (AFML contract 

AF33615-78-C-5059), show that definite relationships exist 

between the microstructural chracteristics of carbon-carbon 

composite materials and their performance in a simulated reentry 

environment. Based on this data the following conclusions and 

recommendations can be made. 

i. The molecular permeability coefficient, B, has been 

shown to be a strong correlator of transition per- 

formance (Reference 5). Ablation models from billets 

fabricated by two different vendors were characterized 

prior to flight tests with the results showing that 

one of these materials, (Billet 399), had considerably 

higher permeabilitythan did the other (Billet 408). 

This difference was pointed out in an interim report 

on this program (Reference 7). Subsequent flight test 

results showed that the material with the high perme- 

ability coefficient had a recession rate which was 

typical of fairly high altitude transistion. The 

material with lower permeability appeared to stay 

laminar throughout the flight. While the flight test 

137 



. 

. 

conditions were not exactly the same - the low reces- 

sion material was on a "bent" nosetip configuration - 

the differences in recession during flight were too 

significant to be explained by the configuration 

difference. In view of this correlation with flight 

test results, it is recommended that all carbon- 

carbon nosetip billets be characterized to determine the 

molecular permeability coefficient as a part of their 

receiving-inspection data package. This would involve 

tests to determine the bulk density, open porosity, 

data obtained from a permeability test, and data 

obtained from a mercury porosimetry test. All of these 

tests require less than .5-inch 3 of material. 

Topographical mapping and the appearance of the AVCO 

"Jellyroll" material strongly suggests the influence 

of macroscale roughness (on the order of yarn bundle 

size) on transition behavior. Modeling efforts to 

date have concentrated on utilizing roughness measure- 

ments made on much smaller scale discontinuities. It 

is therefore recommended that future analytical modeling 

efforts address the influence of gross surface topography 

in transition performance. 

Sufficient microroughness data has now been obtained 

on laminar ablation models to input in future trans- 

ition modeling efforts. However, it should be noted 

that the microroughness measurements on Fine Weave 

Pierced Fabric were considerably less consistent than 

those obtained for woven constructions. It is recom- 

mended that the data obtained in both this report and 

in Reference 5 be utilized in any current or future 

ablation modeling efforts. 
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. Microstructural examination of erosion models clearly 

show that major differences exist in the material 

response for various ground tests. This information 

is currently being used to provide comparisons with 

erosion modeling efforts on contract F33615-78-C-5059. 

Particle size, elevated temperature, and flowfield 

effects continue to be issues that should be addressed 

in modeling efforts in order to provide material 

developers with direction in their material improve- 

ment efforts. It is therefore recommended that con- 

tinued microstructural examination of tested erosion 

samples be conducted to provide material response 

information in support of these modeling efforts. 
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TABLE 7 MODEL TEST AND MATERIAL DESCRIPTION 

MODEL 

AFML-19R 

AFML-23R 

GE-01A 

GE-02A3 

GE-04A3 

GE-06A3 

SR-07AD 

SR-08AD 

SR-10D 

SR-12D 

SR-13D 

GE-07A 

GE-39A 

GE-44A 

AC-02N 

AC-03N 

TEST CONDITIONS 

Peaked Enthalpy 

BILLET NO. 

JR-4-2-RI 

881-RI 

399-RI 

408-R2 

HAT-2-R2 

PF920-RI 

IIIPI-R2 

IIIP2-R2 

1819-3-R2 

1819-5-R2 

1819-RZI 

425-R3 

426-R4 

427-R4 
! 

921-RZ 

921-R7 

MATERIAL DESCRIPTION 

AVCO low pressure process, pitch and resin 
matrix precursor, "Jellyroll" construction 

AVCO low pressure process, pitch and resin 
matrix precursor, FWPF 

Standard GE 223T-50 (ANT III Billet) 

MDAC densified 223 T-50 (ANT III Billet) 

223 PAN, A-240 pitch matrix precursor, no 
CVD, 10 ksi process (ANT IIIA Billet) 

FWPF with PAN (ANT II Billet) 

FMI processed pitch yarn material, no CVD 

FMI processed pitch yarn material with CVD 

223 PAN, no CVD, 2750°C qraph temp. 

223 PAN, no CVD, initial LoPIC, 2750°C graph 
temp. 

223 PAN with CVD, 2300°C graph temp. 

223 ENKA (T-50), Y-12 standard process, 
(ANT II Billet) 

223 PAN, standard process, (ANT II Billet) 

223 PAN, standard process (ANT III Billet) 

FWPF 

FWPF 



TABLE 7 (continued) MODEL TEST AND MATERIAL DESCRIPTION 

MODEL 

GE-02PA 

SR-25PA 

HAT-5 

427-HSI 

427-HS2 

PF928-HS2 

PF928-HS3 

668-II-HS2 

TEST CONDITIONS 

Peaked Enthalpy 

Peaked Enthalpy 

Peaked Enthalpy 

Steady State 

Steady State 

Steady State 

Steady State 

Steady State 

BILLET NUMBER 

PF928 

903-I-RZ2 

427 

427 

PF928 

PF928 

668-11 

MATERIAL DESCRiPTiON 

FWPF PAN, Standard GE Five-Cycle 

processing (HPIC), ANT-3A material. 

FWPF PAN, HIPIC four-cycle processing 

at MDAC, 2300°C graphitization 223- 

PAN, 10KSI processing 

223-PAN 

223-PAN 

FWPF PAN, EISP Process 

FWPF PAN, EISP Process 

223-PAN EISP Process 
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