

Development of the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University

Presented at ONERA, Paris, France, 9 July 2003

Steven P. Schneider

Purdue University, School of AAE

A 50-minute summary of the tunnel development and the progress towards achieving quiet flow. For more details, see http://roger.ecn.purdue.edu/~aae519/BAM6QT-Mach-6-tunnel/

School of Aeronautics and Astronautics

Acknowledgements

- Boeing/AFOSR/BMDO/Purdue/Sandia/Langley, Development of Mach-6 Quiet Ludwieg Tube (\$1m, 1995-2001)
- Based on three decades of work by NASA Langley and others
- AFOSR research, transition on generic scramjet forebody
- Generic forebody geometry from the Hyper-X program office
- Sandia/Northrop-Grumman research, transition on RV's
- Langley research, transition on generic RLV

Schlieren of Transition on Sharp Cone at Mach 4

5-deg. half-angle cone in NOL Ballistics Range at Mach 4.31. Shot 6728, Dan Reda, AIAA Journal v. 17, number 8, pp. 803-810, 1979. $Re_{\infty}=2.66E6/inch$, cone length is 9.144 inches. Cropped

S.P. Schneider, Purdue AAE

Aeroheating Rises By a Factor of 3-8 at Transition

13-foot Beryllium Cone at Mach 20 in Reentry CFD predicts heating well --ONLY IF-transition location picked to match flight

Existing Correlations Have a Large Uncertainty

Kuntz, Sandia SWERVE maneuvering flight vehicle Empirical Correlations Typically Scatter by a Factor 3 in Re_{θ} , or a factor 10 in Re_{x} , for fairly general datasets

S.P. Schneider, Purdue AAE

Hypersonic Transition is Critical to Large Scramjet Accelerator Vehicles

- Multistage Airbreathing to Orbit will still be similar to NASP -- a large hypersonic scramjet-powered vehicle
- National Aerospace Plane Review by Defense Science Board, 1988: Estimates [of transition] range from 20% to 80% along the body ... The estimate made for the point of transition can affect the design vehicle gross take off weight by a factor of two or more.
- National Aerospace Plane Review by Defense Science Board, 1992: *The two most critical [technology areas] are scramjet engine performance and boundary layer transition... Further design development and increased confidence in these two technical areas must be of paramount importance to the NASP program.*
- The propulsion problems are being worked under various programs. However, transition research is reduced to a shell. Will transition technology be ready when the combustor is?

AD-A201124, Report of the DSB Task Force on the NASP Program, Sept. 1988 AD-A274530, Report of the DSB Task Force on the NASP Program, Nov. 1992

Transition is Critical to RLV Reentry Aeroheating

- Aeroheating affects TPS weight, type, and operability a low-maintenance metallic TPS may not be possible if transition occurs early
- Reentry trajectory is iterated to achieve acceptable aeroheating, and therefore depends on transition
- Crossrange is critically dependent on aeroheating
- TPS selection affects roughness and surface temperature and therefore boundary-layer transition
- Uncertainty in transition drives TPS temperature margin, 200+F for shuttle (per Stan Bouslog)
- A metallic TPS may have a more repeatable and smaller roughness which might permit delaying transition

Conventional Wind and Shock Tunnels are Noisy!

- 1. Fluctuation level typically 1%: > 10 times higher than flight
- 2. **Major Source: Acoustic radiation** from turbulent boundary layers on the nozzle walls.
- 3. Causes early transition: perhaps 3-10 times earlier than in flight.

4. Can change trends in transition:

a) Sharp cone transition data in conventional tunnels scales with noise parameters alone, independent of Mach number.

b) $\text{Re}_{T, \text{CONE}} = 2 \text{Re}_{T, \text{PLATE}}$ in conv. tunnel, but $\text{Re}_{T, \text{CONE}} = 0.7 \text{Re}_{T, \text{PLATE}}$ in quiet tunnel and e**N analysis. Flat Plate is later, NOT cone!

c) Bluntness, crossflow, and roughness effects all differ in quiet and noisy conditions.

d) Transitional extent typ. 2-4 times longer in conv. tunnel than in flight or quiet tunnel.

5. Transition in Conventional Facilities is NOT a reliable predictor for flight! Except for certain limiting cases, such as transition that occurs at a roughness element.

S.P. Schneider, Purdue AAE

Quiet Tunnels Have Been Under Development Since the 1960's to Address the Noise Problem

- 1. Must solve the Acoustic Radiation Problem
- 2. Must Control Laminar-Turbulent Transition on the nozzle walls!
- 3. Quiet Tunnels also require low-noise core flows.
- 4. Laminar Nozzle-Wall Boundary Layers requires mirror-finish nozzle walls, specially designed nozzles, particle-free flow
- 5. Accurate Fabrication of the Nozzle with tight tolerances and a mirror finish is expensive and risky.
- 6. NASA Langley built a dozen nozzles between 1970 and 1990, and worked out many of the problems: Mach 3.5 since 1982, Mach 6 from 1990-97 (presently boxed)
- 7. No High Reynolds Number Hypersonic Quiet Tunnel presently in operation anywhere. Purdue effort leads. Langley Mach-6 may be reinstalled ca. 2004.

Need Measurements of the Mechanisms of Transition

- Transition data by itself is ambiguous. What caused the transition? Roughness? Crossflow? 1st mode? All 3? Tunnel noise? stray roughness? AOA errors?
- Need detailed measurements of the transition mechanisms (rare field measurements of small fluctuations, preferably with controlled disturbances).
- Detailed measurements and computations of the mechanisms can provide physical understanding.
- Can improve scaling from wind-tunnel to flight conditions
- Such measurements are difficult; development of the capability requires a sustained effort. Purdue is now the only U.S. lab making hypersonic hot-wire measurements

Reliable Predictions Must Be Based on Mechanisms

- Instabilities that lead to transition can be computed (now or soon) (1st & 2nd mode, crossflow, Gortler, algebraic, etc.)
- Seek semi-empirical mechanism-based methods similar to e**N, where N=ln(A/A0) is the integrated growth of the most-amplified instability, incorporates all mean-flow effects on wave growth
- Computations must be developed and validated based on detailed measurements in ground facilities
- Computations must be compared to flight data
- Dominant Mechanisms on Shuttle, X-33, X-38, Hyper-X remain to be determined; little or no data at present
- Bridge gap between users and researchers

Summary of Purdue Effort, 1990-99

- 1. Development of Mach-4 Ludwieg Tube, Quiet to Re = 400,000, 1990-94.
- 2. Tests of Heated Driver Tube (Munro, 1996)
- 3. Development of Hot-Wire and Glow-Perturber Technique
- 4. Controlled Wave Growth of factor 2-3 on Cone at AOA under quiet conditions (Ladoon Ph.D., 1998)
- 5. Development of Pulsed Laser-Perturber for Generating Local Perturbations in Freestream for Receptivity Work (Schmisseur Ph.D., 1997)
- 6. Controlled Measurements of Damping in Forward-Facing Cavity, Explained Low Heat Transfer in 1961 Flight Data (1997-99)
- 7. Developed of High-Sensitivity Laser Differential Interferometer ala Smeets. Receptivity on Blunt Nose. (Salyer Ph.D., 2002)
- 8. Development of High-Reynolds Number Mach-6 Quiet Ludwieg Tube (1995-present)

Boeing/AFOSR Mach-6 Quiet Tunnel

About \$1 million in fabrication cost. \$0.5m for nozzle

Schematic of Mach-6 Quiet Nozzle

Nozzle Designed Using Linear Stability Theory (e**N)

Mach-6 Nozzle and Test Area, Feb. 2003

Entrance to Electroformed Nozzle Throat Section

shows bleed lip and mirror finish on inside of throat section. Purdue nozzle

Nozzle and Diffuser, Looking Upstream

Sliding Sleeve, Slow Valve, Burst Diaphragm, Looking Upstream

Cone at AOA, Preparing to Insert in Nozzle, Window View

Probe in Nozzle, Viewed With Window Removed

Probe Traverse with Vertical Automation

Contraction and Bleed Vacuum with Heaters

Double-Wedge Second-Throat Section

Double Wedge during Fabrication

Double Wedge Sting Support

Side Access Port for Model Wiring

Downstream Bleed-Slot Vacuum System

Diffuser for Mach-6 Tunnel

dimensions in inches

Looking Upstream into Diffuser

Upstream End of Driver Tube

Driver Tube

Power Supplies for Driver Heating

Driver-Air Filters, Circulation Heater, and Clean Supply Piping.

Vacuum Tank(s) and Bldg. Extension

Vacuum Tanks and Lines

Compressor and Vacuum Pump Room

Automated

Air Dryer

Summary of Purdue Effort, 1999-2003

- 1. **Completion of Mach-6 Quiet-Flow Ludwieg Tube**. Rufer, M.S. 2000, burst diaphragm tests. Skoch, M.S. 2001, heaters and initial tests. Initial Operation, April 2001.
- 2. **Development of Automated Vertical-Plane Traverse** (probe profile in single run). Swanson, M.S. Dec. 2002
- 3. Modifications to Bleed-Slot Throat Yield Initial Quiet Flow (but only at low Reynolds number).
- 4. Hot-wires survive in Mach-6 flow, stable CTA operation, 2001-2003 (up to 50 runs at total pressures to 10 atm.).
- 5. Skoch/Rufer operate Ladoon's glow perturber and hot wire apparatus in Mach-4 tunnel, 2002. (New student education).
- 6. Matsumura/Swanson develop temperature-sensitive paints for measuring stationary vortex growth, 2001-2003.
- 7. Matsumura measures streak/vortex growth on Hyper2000 with controlled roughness perturbers.
- 8. Schneider surveys flight data for transition, summer 2002-2003

Deviation of Mandrel Coordinates from Design

Mandrel for electroform for nozzle throat.

Four rows of measurements at 90-deg. azimuthal angles.

3rd attempt.

See AIAA Paper 2000-2592, June 2000.

S.P. Schneider, Purdue AAE

Throat Detail, Deviation of Mandrel Coordinates

Mandrel for electroform for nozzle throat.

3rd attempt.

See AIAA Paper 2000-2592, June 2000.

contour flaws held below 0.001 inches (25 microns)

Waviness of Mandrel Coordinates

Mandrel for electroform for nozzle throat.

3rd attempt.

See AIAA Paper 2000-2592, June 2000.

waviness held below 0.001 inch/inch

Tunnel Quiet Only at Low Reynolds No. – Why?

- 1. Fluctuations generated at bleed-slot lip? (Tried Case 7)
- 2. 0.001-0.002-in. step at aft end of electroform? Lack of polish on downstream sections? (Polished downstream)
- 3. Leaks which we have not found yet?
- 4. Upstream effect of diffuser fluctuations? (current focus) LaRC quiet tunnels all open jet
- 5. Vibrations of tunnel & bleed lip?? M4 had no lip. But these damp with time, no time dependence observed
- 6. Residual noise in driver? Plan hot-wire measurements
- 7. Something else?
- 8. Nozzle length twice Langley Mach-6 quiet nozzle (was quiet to 145 psia). We drop quiet at 8 psia in downstream half of nozzle. Bypass!?

Design of Seventh Bleed Slot Throat

- 1D streamtube analysis ala Beckwith, full 1D both sides of bleed lip. See AIAA 2003-1130, Jan. 2003
- Increase from 30% to 38% suction
- Move stagnation point from 2/3 below top of hemicircle to 4/5 below top

Effect of Centerbody on Upstream Mach Number

Effect of Centerbody on Upstream Pitot Fluctuations

Inviscid Mach Number on the Nozzle Centerline

Mach Number in the Quiet Nozzle

Pitot Fluctuations in the Quiet Nozzle

Pitot Traces with Throttled Bleeds

S.P. Schneider, Purdue AAE

Suction-Plenum Pressures with Throttled Bleeds

S.P. Schneider, Purdue AAE

Pitot Fluctuations with Throttled Bleeds

S.P. Schneider, Purdue AAE

Diffuser Static Pressures with Throttled Bleeds

S.P. Schneider, Purdue AAE

Detail of Diffuser Pressures with Throttled Bleeds

Summary

- Tunnel runs quiet, now without separation, at 8 psia, Mach 5.7. Model support/second throat had excessive blockage.
 A new streamlined support is under construction.
- Bypass causes nozzle-wall transition at 8 psia
- Prime suspect is still fluctuations from downstream
- Work toward quiet flow continues

What Next?

- Are Disturbances Fed from Downstream Tripping the Upstream Boundary Layer? Centerbody DID cause separation. Now plumbing bleed air direct to vac. tank. Modify diffuser further? How?
- Oil-Flow on Nozzle Walls to Look for Gortler instability
- Need computation of flow in Bleed Slots, more measurements
- Measure flow in contraction entrance, confirm low noise
- Check for leaks with helium sniffer
- Measure on diffuser and with hot-wire on nozzle wall
- Make sled-mounted probe to measure wall b.l. upstream?