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A 50-minute summary of the tunnel development and the progress towards achieving quiet flow.  For more details, see
http://roger.ecn.purdue.edu/~aae519/BAM6QT-Mach-6-tunnel/
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Schlieren of Transition on Sharp Cone at Mach 4

5-deg. half-angle cone in NOL Ballistics Range at Mach 4.31.  Shot 6728, Dan
Reda, AIAA Journal v. 17, number 8, pp. 803-810, 1979.  Re∞=2.66E6/inch, 
cone length is 9.144 inches. Cropped 

turb. spot wave from spot turb. spot shock

noise radiated from turbulent boundary layer

laminar
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Aeroheating Rises By a Factor of 3-8 at Transition
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Hamilton, Re-Entry F, NASA-TP-3271.

13-foot Beryllium Cone at Mach 20 in Reentry
CFD predicts heating well --ONLY IF--
transition location picked to match flight

Transition Uncertainty 300%
Laminar Uncertainty 15%
Turbulent Uncertainty 20%
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Existing Correlations Have a Large Uncertainty
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Kuntz, Sandia SWERVE maneuvering flight vehicle
Empirical Correlations Typically Scatter by a Factor 3 in Reθ,or a factor 10 in Rex, for fairly general datasets

From Schneider, JSR, Jan. 99.
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Hypersonic Transition is Critical  to Large 
Scramjet Accelerator Vehicles

• Multistage Airbreathing to Orbit will still be similar to NASP -- a large 
hypersonic scramjet-powered vehicle

• National Aerospace Plane Review by Defense Science Board, 1988: 
Estimates [of transition] range from 20% to 80% along the body …
The estimate made for the point of transition can affect the design 
vehicle gross take off weight by a factor of two or more.

• National Aerospace Plane Review by Defense Science Board, 1992: 
The two most critical [technology areas] are scramjet engine 
performance and boundary layer transition…  Further design 
development and increased confidence in these two technical areas 
must be of paramount importance to the NASP program.

• The propulsion problems are being worked under various programs.
However, transition research is reduced to a shell. Will transition 
technology be ready when the combustor is?

AD-A201124, Report of the DSB Task Force on the NASP Program, Sept. 1988
AD-A274530, Report of the DSB Task Force on the NASP Program, Nov. 1992
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Transition is Critical to RLV Reentry Aeroheating

• Aeroheating affects TPS weight, type, and operability –
a low-maintenance metallic TPS may not be possible if 
transition occurs early

• Reentry trajectory is iterated to achieve acceptable 
aeroheating, and therefore depends on transition

• Crossrange is critically dependent on aeroheating
• TPS selection affects roughness and surface temperature 

and therefore boundary-layer transition
• Uncertainty in transition drives TPS temperature margin, 

200+F for shuttle (per Stan Bouslog)
• A metallic TPS may have a more repeatable and smaller 

roughness which might permit delaying transition
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Conventional Wind and Shock Tunnels are Noisy!
1. Fluctuation level typically 1%: > 10 times higher than flight
2. Major Source: Acoustic radiation from turbulent boundary layers on 

the nozzle walls.
3. Causes early transition: perhaps 3-10 times earlier than in flight.
4. Can change trends in transition:

a) Sharp cone transition data in conventional tunnels scales with noise 
parameters alone, independent of Mach number.
b) ReT, CONE = 2 ReT, PLATE in conv. tunnel, but  ReT, CONE = 0.7 ReT, PLATE
in quiet tunnel and e**N analysis.  Flat Plate is later, NOT cone!
c) Bluntness, crossflow, and roughness effects all differ in quiet and 
noisy conditions.
d) Transitional extent typ. 2-4 times longer in conv. tunnel than in flight 
or quiet tunnel.

5. Transition in Conventional Facilities is NOT a reliable predictor for 
flight! Except for certain limiting cases, such as transition that occurs at a 
roughness element. 
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Simple Conventional Transition Measurements              
Often Don’t Give “Correct” Trends
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Quiet Tunnels Have Been Under Development Since 
the 1960’s to Address the Noise Problem

1. Must solve the Acoustic Radiation Problem
2. Must Control Laminar-Turbulent Transition on the nozzle walls!
3. Quiet Tunnels also require low-noise core flows.
4. Laminar Nozzle-Wall Boundary Layers requires mirror-finish nozzle 
walls, specially designed nozzles, particle-free flow

5. Accurate Fabrication of the Nozzle with tight tolerances and a mirror 
finish is expensive and risky.

6. NASA Langley built a dozen nozzles between 1970 and 1990, and 
worked out many of the problems: Mach 3.5 since 1982, Mach 6 
from 1990-97 (presently boxed)

7. No High Reynolds Number Hypersonic Quiet Tunnel presently in 
operation anywhere.  Purdue effort leads.  Langley Mach-6 may be 
reinstalled ca. 2004.
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Need Measurements of the Mechanisms of Transition

• Transition data by itself is ambiguous.  What caused the 
transition?  Roughness?  Crossflow? 1st mode?  All 3?  
Tunnel noise? stray roughness? AOA errors?

• Need detailed measurements of the transition mechanisms 
(rare field measurements of small fluctuations,          
preferably with controlled disturbances).

• Detailed measurements and computations of the 
mechanisms can provide physical understanding.

• Can improve scaling from wind-tunnel to flight conditions
• Such measurements are difficult; development of the 

capability requires a sustained effort.  Purdue is now the 
only U.S. lab making hypersonic hot-wire measurements



S.P. Schneider, Purdue AAE

Reliable Predictions Must Be Based on Mechanisms
• Instabilities that lead to transition can be computed (now or 

soon)  (1st & 2nd mode, crossflow, Gortler, algebraic, etc.)
• Seek semi-empirical mechanism-based methods similar to 

e**N, where N=ln(A/A0) is the integrated growth of the 
most-amplified instability, incorporates all mean-flow 
effects on wave growth

• Computations must be developed and validated based on 
detailed measurements in ground facilities

• Computations must be compared to flight data
• Dominant Mechanisms on Shuttle, X-33, X-38, Hyper-X 

remain to be determined; little or no data at present
• Bridge gap between users and researchers
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Summary of Purdue Effort, 1990-99

1. Development of Mach-4 Ludwieg Tube, Quiet to Re = 400,000, 1990-94.
2. Tests of Heated Driver Tube (Munro, 1996) 
3.  Development of Hot-Wire and Glow-Perturber Technique
4. Controlled Wave Growth of factor 2-3 on Cone at AOA under quiet 

conditions (Ladoon Ph.D., 1998)
5. Development of Pulsed Laser-Perturber for Generating Local Perturbations 

in Freestream for Receptivity Work  (Schmisseur Ph.D., 1997)
6. Controlled Measurements of Damping in Forward-Facing Cavity,  

Explained Low Heat Transfer in 1961 Flight Data (1997-99)
7. Developed of High-Sensitivity Laser Differential Interferometer ala 

Smeets.  Receptivity on Blunt Nose.  (Salyer Ph.D., 2002 )
8. Development of High-Reynolds Number Mach-6 Quiet Ludwieg Tube 

(1995-present) 



Boeing/AFOSR Mach-6 Quiet Tunnel

steves
About $1 million in fabrication cost.  $0.5m for nozzle



Schematic of Mach-6 Quiet Nozzle
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8 window openings
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Nozzle Designed Using Linear Stability Theory (e**N)

xc, in.

N
-fa
ct
or
en
ve
lo
pe
s

40 60 80 100
0

1

2

3

4

5

6

7

8

9

10
1st-mode N
Gortler N
2nd-mode N
sqrt(sum of sq.)

See AIAA Papers 98-0547
(Jan. 1998) and
2001-0457 (Jan. 2001).
Adapted from Fig. 5 of -0457.

Pt = 150 psia (10 bar) and Tt=160°C.Nozzle-wall temperature estimated from finite-element
computation, unheated throat.

steves

steves
transition?



Mach-6 Nozzle and Test Area, Feb. 2003
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Entrance to Electroformed Nozzle Throat Section

shows 
bleed lip 
and 
mirror 
finish on 
inside of  
throat 
section.  
Purdue 
nozzle



Nozzle and Diffuser, Looking Upstream



Sliding Sleeve, Slow Valve, Burst Diaphragm, Looking Upstream



Cone at AOA, Preparing to Insert in Nozzle, Window View



Probe in Nozzle, Viewed With Window Removed 
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Probe Traverse 
with Vertical 
Automation



Contraction and Bleed Vacuum with Heaters



Double-Wedge Second-Throat Section



Double Wedge
during Fabrication



Double Wedge Sting Support



Side Access Port for Model Wiring



Downstream Bleed-Slot Vacuum System
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Diffuser for Mach-6 Tunnel

steves
dimensions in inches

steves

steves
jets with air from bleed-slot throat.  Are these downstream disturbances acceptable?



Looking Upstream into Diffuser



Upstream End of Driver Tube



Driver Tube



Power Supplies for Driver Heating



Driver-Air
Filters,
Circulation
Heater, and Clean
Supply Piping.



Vacuum Tank(s) and Bldg. Extension



Vacuum Tanks and Lines



Compressor and Vacuum Pump Room

steves
37 kW compressor, 20kW vacuum pump.  Low cost and low maintenance.



Automated

Air Dryer



S.P. Schneider, Purdue AAE

Summary of Purdue Effort, 1999-2003
1. Completion of Mach-6 Quiet-Flow Ludwieg Tube.  Rufer, M.S. 

2000, burst diaphragm tests.  Skoch, M.S. 2001, heaters and initial 
tests.  Initial Operation, April 2001.

2. Development of Automated Vertical-Plane Traverse (probe profile 
in single run).  Swanson, M.S. Dec. 2002 

3. Modifications to Bleed-Slot Throat Yield Initial Quiet Flow (but 
only at low Reynolds number).

4. Hot-wires survive in Mach-6 flow, stable CTA operation, 2001-
2003 (up to 50 runs at total pressures to 10 atm.).

5. Skoch/Rufer operate Ladoon’s glow perturber and hot wire 
apparatus in Mach-4 tunnel, 2002.  (New student education).

6. Matsumura/Swanson develop temperature-sensitive paints for 
measuring stationary vortex growth, 2001-2003.

7. Matsumura measures streak/vortex growth on Hyper2000 with 
controlled roughness perturbers.

8. Schneider surveys flight data for transition, summer 2002-2003
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Deviation of Mandrel Coordinates from Design
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Throat Detail, Deviation of Mandrel Coordinates

Mandrel for 
electroform for 
nozzle throat.

3rd attempt.

See AIAA Paper 
2000-2592, June 
2000.
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(10 microns)

steves
contour flaws held below 0.001 inches 
(25 microns)
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Waviness of Mandrel Coordinates

Mandrel for 
electroform for 
nozzle throat.

3rd attempt.

See AIAA Paper 
2000-2592, June 
2000.
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Tunnel Quiet Only at Low Reynolds No. – Why?
1. Fluctuations generated at bleed-slot lip? (Tried Case 7)
2. 0.001-0.002-in. step at aft end of electroform?  Lack of 

polish on downstream sections? (Polished downstream)
3. Leaks which we have not found yet?
4. Upstream effect of diffuser fluctuations? (current focus)  

LaRC quiet tunnels all open jet
5. Vibrations of tunnel & bleed lip??  M4 had no lip.  But 

these damp with time, no time dependence observed
6. Residual noise in driver?  Plan hot-wire measurements
7. Something else?
8. Nozzle length twice Langley Mach-6 quiet nozzle (was 

quiet to 145 psia).  We drop quiet at 8 psia in downstream 
half of nozzle.    Bypass!?
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Design of Seventh Bleed Slot Throat

• 1D streamtube analysis ala Beckwith, full 1D both sides of 
bleed lip.  See AIAA 2003-1130, Jan. 2003

• Increase from 30% to 38% suction
• Move stagnation point from 2/3 below top of hemicircle to 

4/5 below top

steves




S.P. Schneider, Purdue AAE

Effect of Centerbody on Upstream Mach Number  
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Had caused separation when boundary layer became laminar

steves

steves

steves
Now attached

steves
separation

steves
3 runs with centerbody removed. 
5 runs with centerbody present.
Averaged over 0.1-sec. intervals as 
    driver pressure drops.
z=84.3 inches on centerline

steves
Pitot measurements with fast Kulite
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1 bar
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Effect of Centerbody on Upstream Pitot Fluctuations  
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Pitot fluctuations at z=84.3 in. on centerline

steves

steves
was separated

steves
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now attached
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Inviscid Mach Number on the Nozzle Centerline  
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Very long nozzle has 4.0 deg. angle at inflection point.  Longest ever built (?)

Measure with long pitot well upstream -- how does transition vary with location in the nozzle?
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Mach Number in the Quiet Nozzle  
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Consistent with design, 0.1-0.2 below it.

steves
curve fit used for Ptotal(t) due to failed sensor
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Pitot Fluctuations in the Quiet Nozzle  
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Noise falls at about 8 psia (1/2 atm.),
independent of axial location!
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Pitot Traces with Throttled Bleeds  
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steves
runtime is longer without bleed air bypassing nozzle
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Suction-Plenum Pressures with Throttled Bleeds  
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sonic bleed slot blocks noise
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subsonic bleed slot will cause noise
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Pitot Fluctuations with Throttled Bleeds  
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Diffuser Static Pressures with Throttled Bleeds  
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noise rises in diffuser inlet when pitot drops low noise and boundary layer drops laminar
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Detail of Diffuser Pressures with Throttled Bleeds  
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steves
noise from bleed jets?

steves
noise about 50% of mean
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Theory for Mach 5.8 from 
10 psia.
Limited accuracy in p.
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Summary

• Tunnel runs quiet, now without separation, at 8 psia, Mach 
5.7.  Model support/second throat had excessive blockage.  
A new streamlined support is under construction.

• Bypass causes nozzle-wall transition at 8 psia
• Prime suspect is still fluctuations from downstream
• Work toward quiet flow continues
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What Next?

• Are Disturbances Fed from Downstream Tripping the 
Upstream Boundary Layer?   Centerbody DID cause 
separation.   Now plumbing bleed air direct to vac. tank.    
Modify diffuser further?  How?

• Oil-Flow on Nozzle Walls to Look for Gortler instability
• Need computation of flow in Bleed Slots,                     

more measurements
• Measure flow in contraction entrance, confirm low noise
• Check for leaks with helium sniffer
• Measure on diffuser and with hot-wire on nozzle wall
• Make sled-mounted probe to measure wall b.l. upstream?   
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