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ABSTRACT

Ansari, Nirwan. Ph.D., Purdue University. August 1988. Shape Recognition:
A Landmark-Based Approach. Major Professor: Edward J. Delp.

Shape recognition has applications in computer vision tasks such as
industrial automated inspection and automatic target recognition. When
objects are occluded, many recognition methods that use global information
will fail. To recognize partially occluded objects, we represent each object by a
set of landmarks. The landmarks of an object are points of interest which
have important shape attributes and are usually obtained from the object
boundary. In this study, we use high curvature points along an object boun-
dary as the landmarks of the object. Given a scene consisting of partially
occluded objects, the hypothesis of a model object in the scene is verified by
matching the landmarks of an object with those in the scene. A measure of
similarity between two léndmarks, one from a model and the other from a
scene, is needed to perfo‘rm this matching. One such local shape measure is
the sphericity of a triangular transformation mapping the model landmark
and its two neighboring landmarks to the scene landmark and its two neigh-

boring landmarks.

Sphericity is in general defined for a diffeomorphism. Its invariant pro-
perties under a group of transformation, namely, translation, rotation, and

scaling are derived. The sphericity of a triangular transformation is shown to
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be a robust local shape measure in the sense that minor distortion in the land-

marks does not significantly alter its value.

To match landmarks between a model and a scene, a table of compatibil-
ity, where each entry of the table is the sphericity value derived from the
mapping of a model landmark to a scene landmark, is constructed. A hopping
dynamic programming procedure which switches between a forward and a
backward dynamic programming procedure is applied to guide the landmark
matching through the compatibility table. The location of the model in the
scene is estimated with a least squares fit arﬁong the matched landmarks. A

heuristic measure is then computed to decide if the model is in the scene.



CHAPTER 1
INTRODUCTION

1.1. Shape

A tremendous amount of research has been undertaken to understand how
the human visual system functions. The present state of the art computer vision
systems are still a long way off from being able to mimic trivial visual tasks that
human beings perform routinely. Shape recognition is one such task that
remains a difficult computer vision problem.

The visual perception of an object is determined by many factors such as
luminance, chromaticity, contrast, acuity, texture, and the shape of the object.
We shall use the word shape to refer to the invariant geometrical properties of
the relative distances among a set of static spatial features of the object. These
static spatial features are known as the shape features of the object. Two objects
are said to have the same shape if there exists a similarity transformation, which
consists of a combination of translation, rotation, and scaling, that maps the
shape features of one object into those of the other object.

1.2. A General Shape Recognition System

The computer vision task of shape recognition is that of identifying specific
objects in one or more images of a scene. The images may be acquired from
sensors that respond to one of several possible physical stimuli such as light,
heat, or motion. The sensor data are usually arranged in a discrete array. Each
element of an (image) array is known as a pixel, and it represents the energy of
a physical stimulus in a particular area. For example, an infrared image
corresponds to the thermal energy of a scene. Though other imageries are
equally applicable to the shape recognition task, we shall only consider gray
level intensity images.

‘A general computer shape recognition system using a single view is
illustrated in Figure 1.1. Given an image of a scene, the system tries to
recognize and identify the objects in the scene by mapping them to models
stored in a library. The system consists of three functional blocks — feature
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Figure 1.1 A general shape recognition system.



extraction, feature matching, and a decision strategy. Each model of the object
is represented by its associated shape features which are extracted in advance
and stored in the library. The complexity of the feature extractor depends on
the kind of shape features to be detected. Model features can be extracted in a
well controlled lighting condition. They can also be derived from computer aided
design (CAD) models, or chosen based on a prior: knowledge. In a bottom-up
(data-driven) approach, shape features of objects in the scene are extracted from
raw image data without knowledge of the geometric structures or other visual
properties of the models. Extracted shape features of objects in the scene are
then compared to those of each model. Based on a decision strategy on how well
the shape features of each model are matched to those in the scene, objects in
the scene are identified. If knowledge of what is to be expected in a scene and a
high level description of each model is available, a top-down (goal-directed)
approach can be used to aid the shape recognition task. The shape features of a
model usually form a high level description of the model, such as its geometric
structure. Knowledge of each model is used to guide extracting shape features in
the scene. Again, based on a decision strategy on how well shape features of each
model are matched to those in the scene, objects in the scene are identified.

A shape feature is classified as either a global or a local representation. A
global shape feature represents the entire object region such as the silhouette or
contour of the object; local shape features represent portions of the object region
such as line segments, edges, and corners of the object. After extracting the
shape features from a model and a scene, some kind of similarity or dissimilarity
measures must be used to quantify the difference between the shape features.
These similarity or dissimilarity measures are referred to as shape measures.
Since the shape of an object refers to the invariant geometrical properties about
the relative distances among the shape features of the object, it should remain
the same when the object is viewed at a different scale or orientation. This does
not suggest that size and orientation are not important for the shape recognition
task. They are in fact important attributes that will be estimated either as a
part of the shape recognition system, or as a separate task. Shape measures
should thus be invariant to translation, rotation, and scaling. A shape measure
is classified as either a global or a local shape measure. A global shape measure
quantifies the similarity or dissimilarity between two entire objects; a local shape
measure quantifies the similarity or dissimilarity between portions of the objects.
A global shape measure is derived from the global shape features of the objects;
a local shape measure is derived from the local shape features. A shape
recognition method that uses global shape features and global shape measures to



achieve recognition is known as a global shape recognition method; one that uses
local shape features and local shape measures is known as a local shape
recognition method.

1.3. Problem Statement

Extensive research work on two-dimensional (2-D) global shape recognition
has been done in the past two decades. Applications include recognition of
handwritten characters, biological cells, and industrial parts. Surveys of various
2-D global shape recognition methods such as Fourier shape descriptors, moment
shape . descriptors, and template matching can be found in
[Pav78,Pav80, Lev85, Ott88]. These approaches are applicable only when the
entire object contour or silhouette is available.

The problem we want to address is that of recognizing and locating planar
objects that may be occluded or touching each other. A typical situation is
shown in Figure 1.2, where there are three objects occluding each other. These
objects are almost flat with one dimension being much smaller than the other
two. Our task in this situation is to identify and locate the three individual
objects in the scene. Since entire object contours or silhouettes are not
available, global shape recognition methods will fail to identify such partially
occluded objects.

1.4. Landmark-Based Approach

Recent work [Bol82, Bha84, Pri84, Bha87, Aya86, Koc87, Tur85, Kno$86,
Gor88] on 2-D partial shape recognition have exhibited an increasing interest in
developing methods capable of recognizing objects when global information
about the objects are not available. Most of the approaches use as their shape
features line segments resulting from a polygonal approximation to the object
contour. They will all be reviewed in Chapter 4.

For the purpose of recognition, much of the visual data perceived by a
human being is highly redundant. It has been suggested from the viewpoint of
the human visual system’ [Att54] that some dominant points along an object
contour are rich in information content and are sufficient to characterize the
shape of the object. This concept of dominant points has been applied in the
field of morphometrics [Boo78] to study and observe the growth of biological
objects. One such application is the study of craniofacial growth [Boo84] by
observing the changes of dominant points of a cranial face at two time intervals.
Cardiac images can also be analyzed by observing the changes of some dominant
points along the cardiac wall in a sequence of echocardiograms [Boo85, Sko86).



Figure 1.2. A typical scene consisting of occluding objects.



These dominant points of an object are usually referred to as the landmarks of
the object. However, we shall define the landmarks of an object as the points of
interest of the object that have important shape attributes. Examples of
landmarks are corners, holes, protrusions, and extreme curvature points. They
can be problem specific based on ¢ priori knowledge. For example, in medical
imaging, landmarks could be the location of important bone joints. Figure 1.3
shows the potential landmarks of an object. The landmark-based shape
recognition approach that we shall present is motivated by the above concept of
dominant points. It uses landmarks as shape features to recognize objects in a
scene. One of the merits of landmark-based shape recognition is that the
extraction of the entire object contour is not required to achieve recognition. It
only requires a landmark extractor that can detect and order the landmarks in a
sequence that corresponds to consecutive points along the object boundary. If all
the landmarks of an object in the scene are available, global recognition of the
object can be achieved. If only a portion of the landmarks of the object are
available, the identity of the object may be deduced by recognizing a portion of
the object.

A landmark-based shape recognition system is shown in Figure 1.4. It is
similar to the general shape recognition system shown in Figure 1.1. Landmarks
extracted from a model object and from the scene are referred to as model
landmarks and scene landmarks, respectively. Properties of landmarks of each
model can be used to guide the extraction of landmarks in the scene. The
hypothesis of a model object in the scene is made by matching the model
landmarks to the scene landmarks. Based on a decision strategy on how well the
landmarks of each model are matched to those of the scene, objects in the scene
are identified.

1.5. The Scope of Work

In the remaining chapters, we shall discuss in detail all the functional
blocks shown in Figure 1.4. We shall define two local shape measures known as
dilatation and sphericity in Chapter 2. Both measures can be used to quantify
the similarity or dissimilarity between a model landmark and a scene landmark.
Their invariant properties will also be derived. Sphericity will be shown to be a
robust local shape measure in the semse that a small perturbation in the
landmark locations does not significantly alter its value. The landmark-based
shape recognition approach does not require the extraction of the entire object
contour. However, for illustrative purposes, we shall discuss two data-driven
landmark extraction methods in Chapter 3. We shall only consider one type of
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Figure 1.3. Potential landmarks of a tank. Each landmark is indicated by a
diamond symbol.
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Figure 1.4. A landmark-based shape recognition system.



landmark — extreme curvature points along object contour. The object contour
can be the boundary of an object region which may consist of more than one
object overlapping each other. Other problem specific types of landmarks will
not be considered. The first landmark extraction method is known as curvature
guided polygonal approximation. It uses extreme curvature points along an
object contour as an initial starting set of break points for a subsequent
polygonal approximation algorithm. The subsequent polygonal approximation
algorithm is a split-and-merge algorithm similar to the one described in [Pav74].
The second method is based on the cardinal curvature points along an object
contour. The cardinal curvature points are obtained from successive Gaussian
smoothing of a contour. In Chapter 4, we shall review the recent literature on
2-D partial shape recognition methods, and compare them with our landmark-
based approach. We shall use landmarks as shape features and sphericity as a
shape measure. Hypothesis of matches between model landmarks and scene
landmarks is made by a HOPPING dynamic programming procedure. Final
matches as well as the location of the object in the scene are presented. In
Chapter 5, we shall present further experimental results. We shall conclude and
present future directions in Chapter 6.
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CHAPTER 2

MATHEMATICAL PRELIMINARIES:
THE PROPERTIES OF A LOCAL SHAPE MEASURE

2.1. Introduction

All shape recognition methods employ some kind of shape measure,
whether global or local, ad hoc or robust, derived from features that are
extracted from different shapes to achieve recognition. In landmark-based
shape recognition, as discussed in Chapter 1, we represent each object by a set
of landmarks. To determine if a model object matches a scene object one must
determine how well their corresponding landmarks match each other. Since
each object is approximated by its associated landmarks with a polygon,
matching landmarks of a model object with those in the scene becomes the
problem of matching vertices of the two polygons associated with the model
and the scene, respectively. A measure of similarity between two vertices, one
from a model polygon and the other from a scene polygon, is needed to achieve
this matching. One such local shape measure is the sphericity of a triangular
transformation which maps one triangle into another triangle.

This chapter justifies the use of the sphericity of a triangular
transformation as a local shape measure. Before describing the sphericity, we
shall first define a related local shape measure known as the dilatation of a
triangular transformation. The dilatation of a triangular transformation is also
known as the anisotropy from the work of Bookstein [Boo78,Boo84] in the field
of morphometrics. We have adopted the term, dilatation, that is used in the
mathematics community. Bookstein [Boo84] computes the dilatations derived
from various manually chosen points of a cranial outline at two time intervals
to study craniofacial growth. However, he does not show how the dilatation of
a triangular transformation is computed. It will be shown that the dilatation
can be computed by means of three different mathematical approaches: direct
geometric method, quasiconformal mapping, and through the use of strain
tensors. The dilatation is not only defined for a triangular transformation, but
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it will also be defined for a diﬂ“eomorphism.1 In Section 2.3, we shall derive the
invariant properties of the dilatation. Sphericity will be introduced in Section
2.4 and will be shown to be more mathematically tractable. Its invariant
properties will also be derived. The sphericity takes on values in [0, 1] while
the dilatation takes on values in |1, o). In Section 2.5, we shall show that the
sphericity of a triangular transformation is a robust local shape measure. That
is, minor distortion in the landmark locations (vertices of a triangle) does not
significantly change the value of the sphericity. We assume that the distortion
in the scene landmarks can be modeled as ‘“‘noise” added to the model
landmark locations. The probability density function of the sphericity of a
triangular transformation will then be derived. In Section 2.6, we shall
empirically estimate the probability density function of the sphericity for cases
where the probability density function cannot be obtained in closed form.

To investigate the properties of dilatation and sphericity, various
mathematical principles will be used. Existing definitions and theorems which
are used to derive the desired properties of these local shape measures will be
stated without proof.

2.2. Dilatation

The dilatation of a triangular transformation that maps one triangle to
another triangle is a measure of similarity between the two triangles. Under
such a triangular transformation, the inscribed circle of a triangle is mapped
onto an inscribed ellipse of the other triangle. The dilatation of the triangular
transformation is the ratio of the length of the major axis to that of the minor

axis of the inscribed ellipse. This is shown in Figure 2.1, where the dilatation
d

= ;1— Note that if the two triangles are similar, the dilatation is 1. As
2

described below, the triangular transformation is uniquely determined by an

affine transformation. The dilatation of a triangular transformation can be

evaluated by a direct geometric approach. It can also be evaluated by means of

a quasiconformal mapping and the strain tensor of an affine transformation.

YA diffeomnorphism is a continuous one-to-one mapping whose inverse mapping is also continuous, with both the
mapping and its inverse having continuous partial derivatives.
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2.2.1. Affine Transformation

Definition 2.1: An affine transformation is a mapping of x to u, where,
x, u € IR?, defined by:

u=Ax+t , - (2.1)
where
"
_ |z _ |u _ e
(a b
A=_c 4| »and det(A)+#£0.

An affine transformation is a one-to-one mapping of the plane onto itself with
the following properties [Gan69] :

®  Collinearity is preserved under the transformation.
®  Noncollinearity is preserved under the transformation.

® DBetweenness relation is preserved under the transformation, i.e., a mid-
point of a line remains the mid-point of the transformed line.

Thus, a point is mapped into a point, a line into a line, and an angle remains
an angle. The six coefficients which describe an affine transformation are
uniquely determined if three noncollinear points and their corresponding non-
collinear image points are known. The term tmage poz'mt2 used in this chapter
is in the mathematical sense. It is not an image pixel.

By direct substitution of the equation of a circle into an affine
transformation, it is readily seen that the transformed circle is an ellipse. It can
also be shown that the area of the triangle that results from an affine
transformation is scaled by det(4 ). Coefficients of the unique affine
transformation which maps one triangle into another are computed using the
following equation, (see Figure 2.1):

a U c vy
b{=B"1]u, and d|=B"1lv,|, ' (2.2)
€ U3 f v3

2Let ACIR? and BCIR? be two sets and f be a mapping of A into B. It z€A » (=) is defined as the
tmage point of . .
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Figure 2.1. Representation of a mapping from a triangle to another triangle.
(a) Original triangles. (b) Mapping from the inscribed circle to an
inscribed ellipse. (¢) Mapping of the principal axes.
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dilatation = — sphericity = —~
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Ty y; 1
where B = lz, y, 1|, and
T3 Y3 1
(u; v;) are the image points of the points (z; ¥), i=1,2,3 under the

transformation described by Equation 2.1. Since the vertices of a triangle are
noncollinear, det( B ) # 0 and B™! exists. Assuming we know the vertices of
the first triangle, we can compute the parameters (radius and center) of the
inscribed circle. The inscribed circle is then mapped through the
transformation into an ellipse from which the parameters of the ellipse can be
obtained; and thus the dilatation of the triangular transformation can be
computed. This is the direct geometric approach.

2.2.2. Quasiconformal Mapping

Quasiconformal mapping was introduced over half of a century ago, and
in recent years, there has been a great deal of work in the area. We shall use
these results to find the dilatation described in the previous section.

2.2.2.1. Two-Dimensional Quasiconformal Mapping

Quasiconformal mapping in the plane has geometrical properties similar to
the triangular transformation mentioned above. The following is one
definition, due to Ahlfors [Ahl66], used for a two-dimensional quasiconformal
mapping.

Definition 2.2: Let w =g(2), w, z €T (w=u+1v,2=1+1y), be a
complex valued differential mapping, such that the differential

dg = g,dz + g.dz ,

where z is the complex conjugate of z,
9. and g; are the partial derivatives of ¢ with respect to z and
z, respectively.
Note that dg maps a circle around z into an ellipse around g¢(z).
Consider the case that g is sense preserving (the Jacobian is positive),
then (lg,l -—Ig;')'dzl <ldgl S('gzl +|g—z-|)'dz| . g is said to be K-
quasiconformal for some constant K if the ratio of the length of the
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major axis to the length of the minor axis of the ellipse is

D(z=]——’—l—l—2 <K <. 2.3
! ) g, —lg;l — ( )
D,(z) is the dilatation of the mapping at z.

For notational convenience, the argument of the dilatation may be omitted.
Note that the dilatation takes on values in [1, o). The mapping is conformal if
the dilatation equals 1. The following lemma follows immediately from the
above definition.

Lemma 2.3: If g is an affine transformation defined by Equation 2.1 and
lal > 0, then D, , the dilatation, is a constant and

_ Ve +1

D for gp>1, (2.4)
! Vgp —1
where
{a+d)? + (e—b)?
gp =

(a—d)® + (e+b)*

Proof: The lemma is obtained by direct substitution of Equation 2.1 into
Definition 2.2. ’ O

This provides a simple computational formula for obtaining the dilatation of
the above triangular transformation. The dilatation of a triangular
transformation is 1 if the two triangles are similar. The less similar the
triangles, the larger the value of the dilatation. We shall call gp the conformity
of the triangular transformation. The conformity ‘is more computationally
efficient than the dilatation. It can also be used as a shape measure. It is seen
from Equation 2.4 that the larger the conformity is, the smaller the dilatation
is, and vice versa. Like the dilatation, the conformity takes on values in
[1, 00). The probability density function of the conformity will be discussed in
Section 2.5.

2.2.2.2. n-Dimensional Quasiconformal Mapping

In this section, we shall define the dilatation of a diffeomorphism. A
diffeomorphism is a continuous one-to-one mapping whose inverse mapping is
also continuous, with both the mapping and its inverse having continuous
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partial derivatives [O'N66]. The following definition of n-dimensional
quasiconformal mapping is due to Vaisala [Vai61]:

Definition 2.4: A diffeomorphism, g:1—1), (12, ﬁCIR") is called K-
quasiconformal if

i%l) Dy(x) K <oc  for some constant K, (2.5)

where D (x) = max(D(x), D,(x)),

_ (423 g'(x)el)” (o) = —1I0x)

D, (x) = , -
g ) T (@l od

, and

5
N
[

e is an unit vector in IR".

J(x) and ¢'(x) are the Jacobian and the derivative (Jacobian matrix) of
g(x), respectively. D (x), Dy(x) , and D (x) are known as the inner,
outer, and maximal dilatation at x, respectively.

For notational convenience, the arguments of the various function used in
Definition 2.4 may be omitted. The following lemmas, Lemmas 2.5-2.7, relate
the dilatations to the eigenvalues of g''¢’. Note that g’ maps a unit ball in
into an ellipsoid in Q. The eigenvalues of g' g’ correspond to the lengths of the
semi-axes of the transformed ellipsoid. Since J(x) # 0, g ¢’ is positive definite

[Seb77]. The eigenvalues of g'' g are thus positive.
Lemma 2.5: ﬁ:’ﬂ g'(x)e,2 corresponds to the largest eigenvalue of g g'.
Proof: Ig’el2 =< ge, g'e >

=<g'gle,e >

=< $'Dde, e >
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where  $'D ¢ is the spectral decomposition [Fri79] of ¢" ¢’, and

Ap 2 Xgop 2 ¢ 0 2N >0, are the eigenvalues of ¢g''g'.
Since e=®de=(e;, - ,e,)}, led =1 implies |l =1.
Therefore, fﬁi“ﬂg'(x)el? =X, . O
Lemma 2.8: ﬂi:;lg’(x)e’z corresponds to the smallest eigenvalue of ¢'' ¢'.
Proof: The proof is similar to the above lemma. ]

Lemma 2.7:  J%(x) is the product of the eigenvalues of ¢" ¢,
Proof: J%(x) = det?( ¢')

=det(g"g' )=N "X, ,

where det() is the matrix determinant. O

Now, the dilatations can all be expressed in terms of the eigenvalues of g"g' by

the following:
A" '1 VSN A Il
n 2 1M 77 T Agl 2
, D, = . 2.6
l>\l>\2 ... >\nl g [ )\171 ( )

In the two-dimensional case, Definition 2.2 and Definition 2.4 are equivalent,
and provide two different approaches for analysis and computational

D, =

convenience.
Lemma 2.8: If g is an affine transformation defined by Equation 2.1, then

D, = )\—2, where, N>, are the eigenvalues of A*A.
1

Proof: The proof follows immediately from Lemmas 2.5-2.7 by noting that
g' = A for an affine transformation defined by Equation 2.1. ]

2.2.3. Strain Tensor

The purpose of this section is to show that the dilatation can also be
evaluated through the use of strain tensors. Tensor analysis is an ideal tool to
study entities that are independent of the choice of reference frames. A tensor
is an abstract quantity represented in a particular reference frame by a set of
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functions. These functions obey certain laws of transformation from one
coordinate system to another. We consider a general transformation of a pair
of n-dimensional coordinate systems, X, and X :

T = [z, 2% - z"), fori=1,2,...n ,

2t =g'(z!, 2% -, "), fori=12,.,n,

where  f'’s and ¢'’s are functions that map X to X and X to X,
respectively.

Definition 2.9: A quantity, represented by the components,

O ST LA ORI . g
T ‘... j. ,and T/ 4 ...4 , in the X and X
reference frame, respectively, is said to be a mixed tensor with &
contravariant components, m covariant components, and of weight N,

if the components obey the following rule of transformation:

Ti‘]i.-_» ik'

Iy o jm
_|g:1_:_lN 8.’1_?il o 8?,, a.'ltt] o aztm T'l rs o (2 7)
5T 8:1:” (91:" afj' BEJ"' TR A
where the general summation rule is assumed, that is,
z'e' =zglz' + 222 4 -+ 422" and

|a—il is the Jacobian of the coordinate transformation.
z

The above is a generalized form of Brand’s definition [Bra57]. In general, the

component, T'' "™ %4, ... 1, is simply referred to as a tensor. If N=0,

T t. is known as an absolute tensor. If k=0, it is known as a
covartant tensor. If m=0, it is then known as a contravariant tensor. This
section is not intended to explore the details of tensor theory which can be
found in many texts [Sok51,Bra57]. A strain tensor provides another approach
for computing the dilatation. Let g:—f{}, 0 0c IR", be a homeomorphic
mapping with orthogonal cartesian reference frame X , and X, respectively. A
homeomorphic mapping is a one-to-one mapping such that both the mapping
and its inverse are continuous [Gug63]. The square of the arc length of {2 and
{1, using the general summation rule, are, respectively:

ds? = dz'dz’ and & =dr'dt’ , =12, --- .
Thus, ds*—ds? = dz* dz* — dz* dz*
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Ik ATk .
=B 0 g — §;;dz" dz

dz' 0!
=2/t,~]-dx"dzj , 1,7,k=1,2, - -+ n,

—k ok
where ;= 1 {_é?z_ 9 _ 5,-]-] .

2 | 8z' 927
ds® — ds* dz' dz’
Therefore, 522 = W 5 ds (2.8)

Definition 2.10: The tensor Hij, which is symmetric ( Mij = Wi ), is known
as the strain tensor [Sok51].

Note that the strain tensor is related to 9''¢’ of the quasiconformal mapping
(Definition 2.4) as follows:

2u; =¢"¢' =1,
where I is the identity matrix.

The eigenvalues of K;; are known as the principal strains, and the
corresponding eigenvectors are orthogonal. The directions corresponding to the
principal strains are known as the principal directions (axes) of the strain
tensor. At any point, it is a mapping from a ball to an ellipsoid. The ratio of
the length of each semi-axis of the ellipsoid to the length of the radius of the
ball is

VI142N, , i=1,2,....n , (2.9)

where \;’s are the eigenvalues of iz -

The inner, outer, and maximal dilatations can also be obtained from the above
relationship (Equation 2.9). For example, let the homeomorphic mapping be
the affine transformation defined by Equation 2.1. The symmetric tensor,
Kijs .3 = 1,2, for the affine transformation is

1 a®+¢?—1 ab+ed 5

— . 10

2| ab+ed bEZ4d*-1 (2-10)
The dilatation of the affine transformation can thus be evaluated by finding
the eigenvalues of Equation 2.10 and using the relationship given by Equation
2.9. |
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2.3. Invariant Properties of Dilatation

In this section, the invariant properties of the dilatation will be discussed.

Lemma 2.11:  The dilatation of a triangular transformation is translation
invariant.

Proof:  From Equation 2.4, the dilatation is not a function of the
translational part of the affine transformation, and thus invariant to
translation. O

Lemma 2.12:  The dilatation of a triangular transformation is rotation
invariant.

Proof: From Equation 2.4, it is sufficient to show that the terms,
(a +d)®+ (e —b)® , and (e —d)?+(c +b)® , are invariant to
rotation. When the image points are rotated, that is,

!

u
_——sin9 cosf E

rcos@ sine- [ ]

!

Pcos@ sim9- Pa b z cosf sinf e
= | —sinf cosf e d|ly * | —sind cosf || f
(’“ T .
e blf, N cosf! sinf e
T~ v —sinf cosf ’
e d

it can be seen that

(a4+d+(c—BY =(a+d)P?+(c —b),

and

(@a—3dP+(c+8Y2=(a—d?+(c +5)?. 0

Lemma 2.13:  The dilatation of a triangular transformation is scale
invariant.
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Proof: Scaling of image points corresponds to multiplying the coefficients of
the affine transformation by a constant. From Equation 2.4, the dilata-
tion is thus invariant to scaling. O
The following theorem is thus obtained from the above three lemmas:

Theorem 2.14: The dilatation of a triangular transformation is invariant
under the group of transformations G={
translation, rotation, scaling}.

Proof: This follows immediately by Lemmas 2.11-2.13. O

The above invariant properties are not restricted only to the triangular
transformation. They also hold for a diffeomorphism.

Theorem 2.15:  The dilatations of Definition 2.4 for a quasiconformal
mapping are invariant under the group of transformations G = {
translation, rotation, scaling}.

Proof: Let g be a diffeomorphism, and assume that g is mapped to g by G,
that is,
g=coHg +h ,

where « is the scaling factor,
H is the rotation matrix, and
h is the translation vector.
Thus,

79" = (aHg')! (aHg")

=O’2g't(HtH)g' = azg'tg’ .

From Lemmas 2.5 - 2.7, the desired invariance is obtained. O

Three definitions (Definitions 2.16, 2.17, and 2.18) that can be found in
[Mui82| are given below in order to show that the dilatation of a triangular
transformation is a maximal invariant (defined below). Denote G as a group of

transformations from a space M into itself.

Definition 2.18: Let u,, u, be in M (uy, u, € Y). v, is equivalent to u,
under G, written as u; ~ uy(modG), if there exists a S € G such that

u, = Su, (S maps u, to u,).
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Definition 2.17: A function ¢(u) defined on M is said to be invariant
under G if

(Su)=¢(u) for all u€ Y and SEG.

Definition 2.18: A function ¢(u) defined on M is said to be a maximal
invariant under G if it is invariant under G and if

$(u;) = &(u,) implies u, ~ uy(mod G).

From the above definitions, we can prove the following theorem:

Theorem 2.19: Let u be a set of three two-dimensional points, that is, u €

U = R2XRIXIR?. Denote D(u) as the dilatation derived from the
affine transformation of a set of three fixed points, x, to u. D(u) is a
maximal invariant under G = { translation, rotation, scaling}.

Proof: Note that we have used D(u) to indicate that it is u which is
transformed by G. The dilatation is invariant under G by Theorem
2.14. To show that the dilatation is a maximal invariant under G, it is

sufficient to show that if u, € 4, and u, € M, then
D(u;)=D(u;) implies u, = Su, for some S € G.

Given u; and u, in [, there exist affine transformations that map the
set of three fixed points x to u, and u,, respectively. Let A, and t; be
the linear part and the translation part of the affine transformation
that maps x to u,, and likewise for A, and t,.

From Lemma 2.8, if D(u;) = D(u,), then the eigenvalues of AlA,
are multiples of the eigenvalues of A2tA2. That is,

A2 = kq>A1

for some constant k, and ¢ is an orthogonal matrix. Note that the
vertical vectors of ¢ form an orthogonal basis in IR2. ¢ corresponds to
a rotation matrix and k corresponds to the scaling. Finally, the
translation part does not contribute to the evaluation of the dilatation.

Therefore, wu, =Qu, . ]
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The importance of a maximal invariant is shown by the following theorem.

Theorem 2.20: If ¢(u) on U is a maximal invariant under G, then Y(u) is
invariant under G if and only if ¢ is a function of é(u).

Proof:  The proof can be found in [Mui82]. : o

2.4. Sphericity

Sphericity is an alternative shape measure relative to the dilatation
mentioned earlier. This shape measure will be used throughout this report due
to its properties. The sphericity has the same invariant properties of the
dilatation. For a triangular transformation, as shown in Figure 2.1, the
sphericity is defined as the ratio of the geometric mean to the arithmetic mean
of the lengths of the principal axes of the inscribed ellipse; i.e., the sphericity

2N/ d,d
T d _Hli *. We define the sphericity of a diffeomorphism as follows:
1Ta;

Deﬁnitio_n 2.21: The sphericity of a diffeomorphism, g:ﬂ——»ﬁ,
(£, 2 CR*), for x € (), is defined as
' 1

(desioon |
[%tf(g"g’)]

where det() and tr() are the determinant and the trace of a matrix.

Ty(x) = , (2.11)

For the notational convenience, the argument of the sphericity may be
omitted.

Lemma 2.22: The sphericity can be expressed in terms of the eigenvalues
of ¢g" g’ as follows:

(xlxz x,,]"
T, = , (2.12)

9
[%m+&+-~+n>

where \;, i=1,2, - -+ ,n , are the eigenvalues of g'tqg’.
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Proof: Note that
det(g" ¢") = det($' D $) (spectral decomposition)

= det(D d' D)
= det(D)
=NA\ - A

and

tr(g"g’) = tr(®' Do)
= tr(Dd' )
= tr(D)

=>\1+>\2+"‘+xn.
The result thus follows. 0

Note that the sphericity is the ratio of the geometric mean to the arithmetic
mean of the eigenvalues of g''g’. Since the geometric mean of a sequence of
positive real numbers is always greater than or equal to the arithmetic mean of
the same sequence of numbers '[Bar76], the ratio of the geometric mean to the
arithmetic mean is between 0 and 1. The sphericity thus takes on values in
[0, 1]. If Ty(x) =1 for all x€f), g(x) is a conformal mapping. For a triangular
transformation, the sphericity is 1 if the two triangles are similar. The less
similar the two triangles are, the smaller the value of the sphericity. We shall
next derive the relationship between the sphericity and the dilatation, and the
invariant properties of the sphericity.

2\/D,

Lemma 2.23: In the two-dimensional case, T, = T+ D
g

, where D, is the
dilatation as defined in Definition 2.4.

Proof: The result is obtained by using Definition 2.4 and Lemma 2.22. O

Theorem 2.24: The sphericity of a triangular transformation is invariant
under G = { translation, rotation, scaling}.
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Proof: By using Theorems 2.14, 2.19, 2.20 and Lemma 2.23, the sphericity
of a triangular transformation is invariant under G. 0O

Theorem 2.25: The sphericity of a diffeomorphism of Definition 2.21 is
invariant when the diffeomorphism undergoes the group of
transformations G = { translation, rotation, scaling}.

Proof: The proof is similar to Theorem 2.15. o

Theorem 2.26: The sphericity of a triangular transformation is a maximal
invariant under G = { translation, rotation, scaling}.

Proof: The proof is similar to the proof of Theorem 2.19. 0

Lemma 2.27 The sphericity of an affine transformation defined by
Equation 2.1, for the case when | Al >0, is: '
7+t —(t§ +12)
9= T2 2 2 2 (2.13)
ty +ty +it5 + 4

where ¢, =a +d,
t2=a_d,
l3=0b—c, and

t4=b+c.

Note that Equation 2.13 expresses the sphericity, Tg , in terms of the
coefficients of the affine transformation. It is equivalent to the ratio of
the geometric mean to the arithmetic mean of the lengths of the
principal axes of the inscribed ellipse, as shown in Figure 2.1.

Proof: From Equations 2.1 and 2.11,
) .
det(A'4) o
(—;—tr (At4))?

T

g
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a>+¢? ab + ¢d

b 4 cd 524 a2

rr——
05 [

lé-(az—i-b2+c2+d2)

2(ad — be)
(a® + 5% + ¢ + 4%

t7 +12 — (12 +12)
t2+tf 12+ 12

Lemma 2.27 will be used to determine the probability density function of the
sphericity of a triangular transformation in the following section.

2.5. The Probability Density Function of The Sphericity

As mentioned earlier, the sphericity is introduced because it has the same
invariant properties of the dilatation and it is more mathematically tractable
for analysis. The sphericity of a triangular transformation which maps three
model landmarks to three scene landmarks is a local shape measure that
indicates the similarity between the two sets of landmarks. Let
{(u1, v1), (ug, vy), (u3, v3)} be the coordinates of a sequence of three
consecutive landmarks belonging to a scene, and let {(z,, v,), (295 ¥3), (Z3, ¥3)}
be those of three consecutive landmarks belonging to a model. The sphericity
of the triangular transformation which maps {(z,, v;), (zs ¥a), (23, y3)} to
{(v1, v1), (ug, vy), (u3, v3)} determines how well the model landmarks
{(z1, 11), (29 ¥3), (23, ¥3)} match the scene landmarks
{(u1, v1), (us, vy), (u3, v3)}.

If the object in the scene is the rotated, translated, scaled, or a distorted

version of the model, how well do the associated landmarks match each other?
In other words, is the shape measure (sphericity) robust with respect to
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rotation, translation, scaling, and distortion? It has been shown in Section 2.4
that the sphericity is rotation, translation, and scale invariant. In this section,
we shall show that the sphericity is relatively robust with respect to distortion
in the landmark locations. If the set of three scene landmarks are duplicates of
the three model landmarks, the sphericity derived from the mapping of the
model landmarks to the scene landmarks should be 1. We assume that the
distortion in the scene landmarks can be modeled as “noise” added to the
locations of the model landmarks by the following:

u; =z1; + n;, t =123, and
v =y; +mn,.4, 1 =123,
where n;, 1=1,2, -6, are independent identically distributed

(t.i.d.) normal (Gaussian) random variables with mean zero
and standard deviation o.
That is,

u; ~ n(z,, 02) ) ‘;1 ~ n(y,, 02) )
uy ~ n(z,, 0'2) y vy ~n(y,, 02) , and

uz ~ n(z3, 02) ) vz ~ n(y;, 02)

where n(y, 0%) denotes a normal probability density function with
mean, i, and standard deviation, o.

u; ~n(z;, 0°) means that the random variable t; has a normal probability
density function with mean z, and standard deviation 0. The Li.d. normal
random variables are used to make the analysis tractable. With the above
assumptions, the sphericity is a random variable. We want to determine the
probability density function, the mean, and the variance of the sphericity. We
would hope that the sphericity has a mean close to 1 and variance close to 0
when o is small; this thus indicates that the sphericity is robust with respect to
the above model of distortion. We thus have:

Lemma 2.28: The vector u is a multivariate normal random vector with
mean vector, 4, and covariance matrix, 0> ; that is, ¥ ~ mvn (g, o’ ),
where:
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Uy le
Uy Iy
u= :f , and y= ;?
Vg Y2
V3 | Y3

u ~mvn (Y, 02]) means that the random vector u has a multivariate

normal probability density function with mean vector i and covariance
matrix o°1.

Proof: The lemma follows from the above assumption. ]

From Equation 2.13, the sphericity of a triangular transformation is described
in terms of the coefficients of the linear part of the affine transformation. We

shall next determine the probability density function of these coefficients with
the above assumption.

Lemma 2.29 Let g = . The elements of g are the coefficients of the

A O

linear part of the affine transformation defined by Equation 2.1. Then,
a ~mvn(y, X), where

T(712 o 0 0 -
(1) 0 03 0 0
L= ’ Y= 2 ’
0 0 0 01 Oj9
1
0 0 o0y, 0|
and where
o
ol = '2—A‘T((yz‘y3)2+(y3—y1)2+(y1—!/2)2)’
o
Oyp = [-ﬁ-T((gz—ys)(zs—z2)+(!/3—!/1)(31—33)‘*'(!/1—!!2)(-"2"31))’
o
o3 = —2_ZT((zs‘-"z)z'*'(zx—33)24‘(32“‘”1)2)’ and




29

T, ¥y 1
1
= —det| |z 1
9 2 Yo

I3 Y3 1
= area of a triangle with vertices (z}, y,), (z,, v2), and (z3, y3).

Proof: From Equation 2.2, we have

a -
g = ’c’ = Ty (2.14)
d
-
Y2—Y3 Y3—¥1 Y1—y; O 0 Y
1 13T z1—z3 zp—z 0 0 0
2A] O 0 0 ¥o—v3 ¥s—v1 ¥1—v |
0 0 0 =z3—zy z,—2z5 zy,—1,
If T has full rank, i.e., rank ( T ) = 4, g is multivariate normal. By

noting the fact that rank ( T ) = 2 if and only if

Y2~ Vs I3—I,
y¥3—V; | = (non-zero constant) X |z,—z;| ;
Y17Y2 : To—1,

that is, (z,, y,), (29, y3), and (z3, y;) are collinear, it follows that T
has full rank if and only if (zy, y,), (24, ¥,), and (z3, y3) are not
collinear.

Hence, 2 ~ mvn(Ty, 2 TIT?).
The expressions for v and ¥ are obtained by further simplification. O

Note that ¥ is block diagonal, and {a, b} are statistically independent of
{¢, d}. From the expression of the sphericity (see Lemma 2.27), we make the
following transformation:
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t)
t
1 = 2=C’_a"
t3
t4J
10 0 1
10 0 -1
where C = 01 -1 0
01 1 OJ

Lemma 2.30 1 ~ mvn(w, =), where

2
W= g , and

0

'012+022 ot—0? 0 207,
_ 012—02? 012+022 20y, 0
Tl o 201,  oi+oy  —(0f—03)

| 20 0 —(of—0]) of+a]

Proof: Since C is orthogonal, we have 1 ~ mvn(CL, CZC‘). By direct
algebraic manipulation, we obtain the above expressions for w and =. O

Note that ¢, and ¢; are statistically independent, and so are t, and t,. From
the above lemma and Lemma 2.27, it is difficult to find the probability density
function of the sphericity in closed form because the elements of f are
correlated. We shall examine the special case where the elements of f are
mutually independent. For this case, the probability density function of the
sphericity will be shown to have a non-central Beta probability density
function. The special case is the following lemma.

Lemma 2.31 If the set of points (z;, y;), (23, ¥5), and (z3, y3) form an
2
equilateral triangle, then £ ~ mvn( 0

o b (0 + DI
0



31

Proof: By simple geometric and algebraic manipulation, it is seen that if
(21, ¥1), (23, ¥5), and (z3, y;) form an equilateral triangle,

(23—22)*Hz,—23)*+H(zy—2,)? = (va—v3)*+Hys—v1)*+Hy1—v,)’

and (3/2_!/3)(133—12)+(ys—yl)(xr‘%)‘*‘(y1—92)(%“11) =0 .

Equivalently, af — 03 =0 and 019 = 0. Therefore, the elements of £
are mutually independent. g

Before deriving the probability density function of the sphericity for this
special case, we need to discuss the properties of the non-central Beta
probability density function.

Definition 2.32 Let

n,
U= EU,’z, U,’ ~n(a',v,02), and
1=1

no
V=YV Vi~n(0, ),
5=1

where U;’s and V’s are statistically independent.

U

U+V
probability density function [Hod55, Seb63] with n, and n, degrees of

freedom, and the non-centrality, p, denoted by:

Then, the random variable W = has a non-central Beta

ny, ny
fW(w) = 'B(w;_é—’—;’p) ’
where fy(.) denotes the probability density function of the random

variable W,

w is the variable of the function f(.), and

Note that W is (central) Beta distributed if p = 0. We shall use the notation of
the probability density function of a non-central Beta random variable without
the non-centrality term to denote the probability density function of a
(central) Beta random variable.

Theorem 2.33 The probability density function of the random variable W
described by Definition 2.32 can be expressed as an infinite sum of the
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probability density functions of the central Beta random variables as

follows:
n, ny ok n) ny
=(J ST T P) =N F——p s +k,—),
I w(w)=p(w P 1) k_=,0€ k![(w 5 2)
where . M 2
n, Ny 3 2 tht 2 ) (2'+k—l) (%i—l)
[J’(w;‘2—+kﬁ2—) = w (1-w)

ICSHIES

denotes the probability density function of a central Beta

n n
random variable with parameters ?l'+lc, ?2- , and

I"is the I-function [Kap81].
Proof: The proof can be found in [Gra61]. O

Having defined the non-central Beta probability density function, we can now
derive the probability density function of the sphericity in closed form for the
above special case.

Theorem 2.34  The sphericity derived from the triangular transformation
of an equilateral triangle has the following probability density function:

+1
fT (Ug) = lﬁ(&;—; 11 11 2 ) ’

' 27" 2 or+o;

where f 'r,(-) is the probability density function of the sphericity, Tg,
and v, is the variable of the function f T, ()

Proof: Manipulating Equation 2.13, we have

t2 +t}
t + 2
T, =2 2 : 2 : —1
iy +1i3
2 z +1
ty +1i4
Note that ¢,, t,, t3, and ¢, are mutually independent. By Definition
2 2
iy +13
. ty + 1t}
2.32, the random variable R has a non-central Beta
1 3

t2 +t}
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probability density function with 2, 2 degrees of freedom, and

noncentrality, By simple transformation, the probability

crf-l-(r?? .
density function of T, is obtained. ]
tf +tf tf +t2 . .
We shall later show that 5 .2 | 9p = 5, see Equation 2.4) is a
ty + 1, ty + 14

non-central F-distributed random variable [Joh70]. We shall next compute the
mean and variance of the sphericity. Hence, we must compute the mean and
the variance of a non-central Beta random variable. We shall briefly show how
to compute the mean and variance using Theorem 2.33. A detailed proof of
Lemma 2.36 is provided in the Appendix.

Lemma 2.35 Let W be a Beta random variable with parameters p,q. That
is, fw(w) = B(w;p,q). Then,

E(W)=—2—|
p+g
p+agllp+qg+1
Var(W) = 2

(p+glp+qg+1)

Proof: This is verified by noting the following [Bic77]:

1
fw”_l(l—w)q_ldw = ﬂﬂlﬂﬂ O

0 'p+4q)°

Lemma 2.36 If W is a non-central Beta random variable, with 2, 2 degrees
of freedom, and the noncentrality, p, that is, f w(w) = B(w;1,1,p)
then

1_1 .,
2 2 ’

Ewy=1-14
PR

-
EwWy=1-2423_1,°7)
e pr P
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2 1 — 1 1 AR
Var(W)= (1 -2 - L qoern+ L4 Ly 20
14 PFoop P p P

Proof: It is not obvious that there are any published results on the
moments of a non-central Beta random variable. The moments can be
computed by noting that the probability density function of a non-
central Beta random variable can be expressed in terms of an infinite
sum of the product of the probability density functions of the Poisson
and the central Beta random variables in a separable fashion as
indicated by Theorem 2.33. The moments of a Poisson random variable
can be obtained by using its moment-generating function. The mean
and the variance of a central Beta random variables are given in
Lemma 2.35. With further algebraic manipulation, the desired result is
obtained. A detailed proof of this lemma is provided in the Appendix. O

In general, the moments of a non-central Beta random variable with other
degrees of freedom can be obtained in a similar way. We shall now determine
the mean and the variance of the sphericity.

Theorem 2.37  Using the same notation and assumption of Theorem 2.34,

we have
2 2 2
E(T)=1— =+ = — Z¢r, 2.15
R (215)
' -
Var(T) =0 -2 - L o1 Ly Loy (o14)
p P p P p p
Proof: The result is obtained by using Lemma 2.36 and Theorem 2.34. O

For an equilateral triangle, the non-centrality of the sphericity,

. 2
p= 51de12e;12 th . If the set of three scene landmarks are duplicates of the

three model landmarks, the sphericity derived from mapping the model
landmarks to the scene landmarks should be 1. With minor distortion in the
landmark locations, we would hope that the sphericity would be close to 1; i.e.,
we would hope the sphericity has a mean close to 1 and variance close to 0.
This indicates that the sphericity is relatively robust with respect to the
distortion. Minor distortion in the landmark locations implies that the
variance, 0%, of the i.i.d. normal random variables corresponding to the
distortion in the scene landmarks is small. From Equation 2.15 and 2.16, if



mean of sphericity

Figure 2.2.
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.863 1

.513 4

3

A plot of the mean of the sphericity, E (T,), given by Equation

2.15 versus l. Note that 1 =—i2——§-, where o and
p P  (sidelength)

sidelength are the standard deviation used for the i.i.d. zero mean
normal random variables that model the distortion in the scene
landmarks, and the length of a side of the equilateral triangle,
respectively.
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-196 4

.168 4

-140 1

.112 -

variance of sphericity

Figure 2.3. A plot of the variance of the sphericity, Var(T,), given by Equa-
1 20

tion 2.16 versus l. Note that — = — where o and
p P (sidelength)

sidelength are the standard deviation used for the i.i.d. zero mean
normal random variables that model the distortion in the scene
landmarks, and the length of a side of the equilateral triangle,
respectively.
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o — 0,

E(T,)—1 and Var(T,) — 0.
The mean (Equation 2.15) and the variance (Equation 2.16) of the sphericity
are shown in Figures 2.2 and 2.3. Note that if % <0.02 ( m <0.1),

Var(T,) <0.015 and E(Y,) >0.96. This means that if the standard
deviation of the i.i.d. normal random variables, the distortion, is less than
10% of the sidelength of the equilateral triangle, the mean of the sphericity is
greater than 0.96 and the variance is less than 0.015. Since the sphericity of a
triangular transformation indicates the similarity between the two triangles
formed from the model and the scene landmarks, respectively, the two
triangles are less similar as the distortion increases. We thus expect that, as the
distortion increases (¢ increases), the mean of the sphericity decreases from 1,
and the variance of the sphericity increases, as are shown in Figures 2.2 and
2.3. Hence, the sphericity is relatively robust with respect to distortion in the
sense that a small perturbation in the landmark locations does not significantly
change its value.

We shall next define a non-central F random variable and show that the
conformity (see Equation 2.4) has a non-central F probability density function.

Definition 2.38 Let

n;
U=YU?, U ~N(,1), and

t=1

no
V=2Vi2! Vi ~N(0,1),
j=1

where U;’s and V;’s are statistically independent.

: n
Then, the random variable —2—% is non-central F-distributed [Joh70],
n

",
with n;, n, degrees of freedom, and non-centrality, ) a,?.
i=1

Theorem 2.39 The conformity derived from the triangular transformation
of an equilateral triangle with the above assumptions is non-central F-
4

distributed with 2, 2 degrees of freedom and non-centrality, P, 2
oy + o
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Proof: From Equation 2.4,
tf + 12
t +t3

9p

Dividing both the numerator and the denominator of gp by (012 + (722),
it is seen that the random variable gp is non-central F-distributed by
Lemma 2.31 and Definition 2.38. (]

Since the mean and the variance of a non-central F random variable do not
exist for 2, 2 degrees of freedom [Joh70], likewise, the mean and the variance of
the conformity do not exist.

We have derived the probability density function, the mean, and the
variance of the sphericity of a triangular transformation in closed form for the
special case of an equilateral triangle. We shall next empirically estimate the
probability density function of the sphericity for cases where the probability
density function cannot be obtained in closed form.

2.6. Empirical Estimation of The Probability Density Furiction of
Sphericity and Dilatation

We have derived the probability density function of the sphericity in
closed form for the special case of the equilateral triangle. It is not clear how
the sphericity is distributed for the general case. With the same assumptions
used in the case of modeling the distortion in the scene landmarks described in
the previous section, we empirically estimate the probability density function,
the mean, and the standard deviation of the sphericity for several types of
triangles using histograms. Each type of triangle is specified by an angle with
a fixed height and a fixed base length such that an angle of 60° corresponds to
an equilateral triangle, as shown in Figure 2.4. We refer to the smallest
perpendicular distance of a triangle as the smallest perpendicular distance from
a vertex to the opposite side of the triangle, as shown in Figure 2.5. Each of
the i.i.d. normal random variables that is used for modeling the distortion is
assumed to have zero mean, and standard deviation equal to a percentage of
the smallest perpendicular distance of the triangle. Ten thousand samples are
used for the estimation for each case.

The sphericity is distributed on [0, 1], which is quantized into 50 regions
for the cases studied. Figures 2.6-2.11 show the estimated probability density
function of the sphericity for six types of triangles specified by their angles.
Each value of the “noise level” corresponds to a percentage of the smallest
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perpendicular distance of the triangle; the length corresponding to this
percentage is used as the standard deviation of the zero mean i.i.d normal
random variables used to model the distortion in the scene landmarks. Figures
2.12 and 2.13 show some profiles of the plots shown in Figure 2.7 and 2.9,
respectively. The estimated mean of the sphericity for various types of
triangles and ‘“‘noise levels” is shown in Figure 2.14, and the estimated
standard deviation is shown in Figure 2.15. With a low noise level, the
sphericity has an estimated mean close to 1, and standard deviation close to 0.
The sphericity is thus relatively robust with respect to distortion in the sense
that a small perturbation in the landmark locations does not significantly
change its value.

With the same assumptions as mentioned above, we also estimate the
probability density function, the mean, and the standard deviation of the
dilatation using histograms as shown in Figures 2.16-25. From Equation 2.4,
the dilatation is distributed on [1.0, 00). Since samples of the dilatation that
fall beyond 5.0 are negligible for the cases studied, only the range [1.0, 5.0] is
shown in Figures 2.14-23. This range is also quantized into 50 regions. With a
low noise level, the dilatation has an estimated mean close to 1, and a very
small standard deviation compared to the range of the dilatation. This
indicates that the dilatation is also relatively robust with respect to distortion.
Since the value of the dilatation may be too large for computer manipulation,
the use of the sphericity as a local shape measure is preferable.

2.7. Summary

Two local shape measures, the dilatation and the sphericity, have been
studied in detail. We have defined the dilatation of a triangular
transformation, and shown that it can be evaluated by three different
mathematical approaches: direct geometric method, quasiconformal mapping,
and through the use of strain tensors. The sphericity has also been introduced
and defined as a shape measure.

Both the dilatation and the sphericity of a triangular transformation are
translation, rotation, and scale invariant. To demonstrate the effect of these
shape measures with respect to distortion in the scene landmark locations, the
coordinates of the model landmarks are assumed to be corrupted and modeled
as random variables. For a set of three model landmarks that form an
equilateral triangle, the probability density function of the sphericity of the
triangular transformation is shown to have a non-central Beta probability
density function. The probability density function of both the sphericity and
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dilatation for cases which cannot be obtained in closed form are empirically
estimated. We conclude from these results that these shape measures are
relatively robust with respect to distortion. The following chapters will
demonstrate the application of the sphericity for object recognition.
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N
< base -

Figure 2.4. Types of triangles used for -estimating probability density func-
tion of the sphericity and dilatation: each specified by an angle.

Figure 2.5. An example showing the smallest perpendicular distance from a
vertex to the opposite side of a triangle.
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Figure 2.12. Profiles of the plot of Figure 2.7. They correspond to the
estimated probability density function of the sphericity for
angle=30" at noise levels of 4, 8, and 16.
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angle=60" at noise levels of 4, 8, and 16.
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angle=15

estimated p.d.f.

Figure 2.16. Estimated probability density function of the dilatation for
angle==15° at various noise levels. Each value of the ‘“‘noise
level” corresponds to a percentage of the smallest perpendicular
distance of the triangle. The length corresponding to the
percentage value is used as the standard deviation of the zero
mean ii.d. normal random variables used for modeling the
distortion in the landmarks.
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Figure 2.17. Estimated probability density function of the dilatation for
angle==30° at various noise levels. Each value of the ‘“‘noise
level” corresponds to a percentage of the smallest perpendicular
distance of the triangle. The length corresponding to the
percentage value is used as the standard deviation of the zero

mean i.i.d. normal random variables used for modeling the
distortion in the landmarks.
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Figure 2.18. Estimated probability density function of the dilatation for
angle=45° at various noise levels. Each value of the “noise
level” corresponds to a percentage of the smallest perpendicular
distance of the triangle. The length corresponding to the
percentage value is used as the standard deviation of the zero
mean i.i.d. normal random variables used for modeling the
distortion in the landmarks.
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Figure 2.19. Estimated probability density function of the dilatation for
angle=60"° at various noise levels. Each value of the “‘noise
level”” corresponds to a percentage of the smallest perpendicular
distance of the triangle. The length corresponding to the
percentage value is used as the standard deviation of the zero
mean ii.d. normal random variables used for modeling the
distortion in the landmarks.
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Figure 2.20. Estimated probability density function of the dilatation for
angle=75° at various noise levels. Each value of the “‘noise
level” corresponds to a percentage of the smallest perpendicular
distance of the triangle. The length corresponding to the
percentage value is used as the standard deviation of the zero
mean i.i.d. normal random variables used for modeling the
distortion in the landmarks.
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angle=90

estimated p.d.f.

Figure 2.21. Estimated probability density function of the dilatation for
angle=75° at various noise levels. Each value of the “noise
level” corresponds to a percentage of the smallest perpendicular
distance of the triangle. The length corresponding to the
percentage value is used as the standard deviation of the zero
mean i.i.d. normal random variables used for modeling the
distortion in the landmarks.
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estimated probability density function of the sphericity for
angle=60" at noise levels of 4, 8, and 16.



60

2.5 - estimated mean of dilatation

2.31 4

2.13 4 -7

§ 1.4:

o

€

°

8 s

]

€

o

@

v 1.5
1.38
1.19 4
l.oo L) L Ll L] R

000 4.3 9060 135 180 225 2o a1 20

W
3
0
et
D
]
[
@)

--------------- angle = 30
————————-angle = 45
------------angle = 60
’S
S0

b
|

.
P
b
b
|

o
o
o
J 3
rafiite)
—
™
H n

Figure 2.24. Estimated mean of the dilatation corresponding to different types
of triangles specified by angles 15°, 30°, 45°, 60°, 75°, and
90°.




61

estimated standard deviation of dilatation

estimated standard deviation

000 4.3 990 125 100 225 270 1.5 260
noise level

13
30
————————— angle = 43
------------ angle = 60

——————— angle = 73
90

angle

|
l
|
|

|
|
|

|

|

|

|

|

|

|

|
1)
3J
0

Pt

M
|

I
|
|
!
|
|
|
|
|
w
J
0
b
)
"

Figure 2.25. Estimated standard deviation of the dilatation corresponding to
different types of triangles specified by angles 15°, 30°, 45°,
60°,75°,and 90°.



62

CHAPTER 3
LANDMARK EXTRACTION

3.1. Introduction

The shape features of each model in a library as well as those of the
objects in a scene have to be extracted before the shape recognition task can be
performed. The complexity of the feature extractor depends on the desired
shape features, which in turn depend on the nature of the shape recognition
algorithm. A shape feature can be classified as either a global or a local shape
feature. Examples of global shape features are the silhouette and contour of an
object. Examples of shape recognition methods that operate on the entire
object silhouette and contour are the moment shape description method
[Hu62, Dud77], and the Fourier shape description method [Per77), respectively.
Examples of local shape features which represent portions of an object are line
segments, edges, and corners of the object. Many partial shape recognition
methods [Bha84,Pri84,Aya86,Bha87,Koc87] use line segments as shape
features to achieve recognition. This chapter discusses the feature extraction
task of the landmark-based shape recognition system shown in Figure 1.4. We
refer to this task as landmark extraction.

The landmark-based- shape recognition approach uses landmarks, which
are local shape features, to recognize objects in a scene. As mentioned earlier,
landmarks are points of interest of the object that have important shape
attributes. They are usually the extreme points, such as corners, holes,
protrusions, and points with high curvature. They can also be problem specific
based on a priori knowledge. It is important to note that the entire object
contour of an object is not needed for this approach to achieve recognition; the
approach only requires knowledge of the positions of the landmarks of the
object in the image. It is necessary to order the landmarks as consecutive
points along the object boundary. However, if the interior points of the object
are used as landmarks, it is necessary to arrange them in a pre-defined order
reflecting the shape and geometry of the object.
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Among the extreme points, points with high curvature along the object
contour are features that are most attractive. An object contour is the
boundary of the object. This contour, as in the case of a model, usually
represents one object. However, in a general scene, when occlusion is allowed,
the contour could represent merged boundaries of several objects. In this
chapter, we shall consider landmarks as the points of high curvature on an
object contour. Other problem specific types of landmarks will not be
considered. Note that erroneous landmarks of objects in a scene may occur due
to object occlusion or noise in the scene. The effectiveness of the landmark
matching task with respect to erroneous scene landmarks will be discussed in
the next two chapters. For illustrative purposes, we assume that images are
obtained by orthographic projection, and the silhouette of an object region is
either given or can be easily acquired from an back-lit image by a simple
thresholding operation. Examples of back-lit images of objects together with
their corresponding boundaries are shown in Figures 3.1-3.5. The boundary of
each object region is extracted by means of a chain code [Fre74].

Many partial shape recognition methods use line segments which are
derived from polygonal approximation of an object contour as shape features.
The vertices of the approximated polygon are usually points with high
curvature along the object contour. The vertices are also known as the break
points. We shall begin by discussing two commonly used polygonal
approximation algorithms [Ram72,Pav74] in Section 3.2. We shall then present
two methods of detecting landmarks from contours, the curvature guided
polygonal approximation method and the cardinal curvature points method, in
Section 3.3 and Section 3.4, respectively. Finally, a summary of this chapter
will be given in Section 3.5.

3.2. Polygonal Approximation

Polygonal approximation is the representation of an object boundary by a
polygon. It has been used to extract line segments used as shape features for
many partial shape recognition algorithms [Bha84, Pri84, Aya86, Bha87 , Koc87].
Two commonly used polygonal approximation approaches will be discussed.
The first approach is Ramer’s algorithm [Ram72]. The second approach is a
split-and-merge algorithm similar to the one discussed in [Pav74]. A common
function shared by most polygonal approximation algorithms is the collinearity
test that checks if points along a boundary portion are collinear with respect to
a straight line. Collinearity is usually determined by the maximum
perpendicular distance from a point of the boundary portion to the straight
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image of a wrench together with its boun-
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Figure 3.2. A 512X512 back-lit image of a needle-nose plier together with its
boundary.
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Figure 3.3. A 512X512 back-lit image of a wire cutter together with its boun-
dary. '
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Figure 3.4. A 512X512 back-lit image of a specialty plier together with its
boundary.
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Figure 3.5. A 512X512 back-lit image of a wire stripper together with its
boundary.
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line. Consider a boundary portion between two points, A and B, we compute
the maximum perpendicular distance from the boundary portion to the
straight line AB. If the distance is within tolerance, that boundary portion is
approximated by the straight line segment AB. Otherwise, the point along the
boundary portion that yields the maximum distance becomes a new break
point, say C, and the boundary portion is approximated by two line segments
AC and CB.

Ramer’s algorithm finds a set of break points along a given closed or open
boundary using the above collinearity criterion repeatedly. The boundary is
then approximated with a polygon by joining the break points with straight
lines. Consider a closed boundary, Ramer suggests that the top left most point
and the bottom right most point of the boundary be used as the two initial
break points. Based on these initial break points, new break points along the
boundary are iteratively determined.

We shall illustrate the algorithm by means of the following example:

The two initial break points are point 1 which is the top left most point, and
point 4 which is the bottom right most point of the contour. Along the upper
right portion of the boundary between the two initial break points, point 5 has
the maximum perpendicular distance from the boundary portion to the
straight line joined by points 1 and 4. It is greater than a given tolerance, and
hence becomes a new break point. Similarly, point 2 along the lower left
portion of the boundary between the two initial break points becomes a new
break point. The maximum perpendicular distance from the boundary portion
between points 4 and 5 is within tolerance, and hence no new break point is
found along this boundary portion. Along the boundary portion between points
1 and 5, point 8 which yields the maximum perpendicular distance to the
straight line between points 1 and 5 that is greater than the tolerance becomes
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a new break point. Continuing in this fashion for the remaining portions of
the boundary that have not passed the collinearity test, new break points along
the boundary are found as shown. The algorithm stops when no more break
point can be found in which case all break points have passed the collinearity
test.

Figure 3.6a shows a closed boundary extracted from a 512X512 image.
The boundary at a different orientation and a different scale are shown in
Figures 3.7a and 3.8a, respectively. Applying Ramer’s algorithm to these
boundaries results in the approximated polygons shown in Figures 3.6b, 3.7b,
and 3.8b, respectively. A tolerance of 20 pixels is used for the algorithm. These
examples show that the number of break points and their locations along the
boundary obtained by Ramer’s algorithm are not the same if the same
boundary is at a different orientation or a different scale. That is, break points
along the boundary obtained by this algorithm are sensitive to the orientation
and the scale of the boundary. '

The split-and-merge algorithm requires a slightly more complex procedure
than Ramer’s algorithm. There are several versions of the split-and-merge
algorithm. The one similar to [Pav74] will be discussed. Pavlidis and Horowitz
[Pav74] approximate boundary points by interpolating straight line segments.
Consequently, the break points of the approximated polygon do not usually lie
on the original boundary, and in fact, can be far from it. In contrast, the
following split-and-merge algorithm will find break points along a given
boundary. It is briefly outlined below:

(1) Assign an arbitrary number of points along the boundary as the initial set
of break points. The initial approximated polygon is formed by joining the
sequence of break points along the original boundary with straight lines.

(2) For each pair of adjacent break points, determine the point along the
boundary portion that yields the maximum perpendicular distance to the
straight line segment joined by the two break points. If the maximum
perpendicular distance is greater than a given tolerance, that point
becomes a new break point; i.e., the line segment is replaced by two line
segments. This is the “splitting” part of the algorithm.

(3) For each pair of adjacent line segments comprising of three consecutive
break points, say A, B, and C, compute the maximum perpendicular
distance from the boundary portion between A and C to line AC. If the
distance is within tolerance, break point B is removed. That is, line
segments AB and BC are replaced by line segment AC. Note that each
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=,

(c) (d)

Figure 3.6. Results of polygonal approximation of a contour using different
methods. (a) A contour extracted from a 512X512 image. (b)
The approximated polygon of the contour obtained by Ramer’s
algorithm. (c¢) The approximated polygon of the contour
obtained by the split-and-merge algorithm. (d) The landmarks
of the contour obtained by curvature guided polygonal approxi-
mation. Each landmark is indicated by an “X.”
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(a) (b)
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Figure 3.7.

(c) (d)

Results of polygonal approximation of the rotated contour using
different methods. (a) The rotated contour of Figure 3.6a. (b)
The approximated polygon of the rotated contour obtained by
Ramer’s algorithm. (c) The approximated polygon of the rotated
contour obtained by the split-and-merge algorithm. (d) The
landmarks of the rotated contour obtained by curvature guided
polygonal approximation. Each landmark is indicated by an “X.”
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Figure 3.8.

(c) @)

Results of polygonal approximation of the enlarged contour using
different methods. (a) The enlarged contour of Figure 3.6a. (b)
The approximated polygon of the enlarged contour obtained by
Ramer’s algorithm. (c) The approximated polygon of the
enlarged contour obtained by the split-and-merge algorithm. (d)
The landmarks of the enlarged contour obtained by curvature
guided polygonal approximation. Each landmark is indicated by
an “X.”



replacement is immediately tested for merging with the next line segment.
This is the “‘merging” part of the algorithm.

(4) Repeat Steps (2) and (3) until an equilibrium is reached; i.e., no more
splitting and merging is necessary.

Applying the split-and-merge algorithm to the same set of boundaries that
are used for Ramer’s algorithm results in the approximated polygons shown in
Figures 3.6c, 3.7c, and 3.8¢c. Ten equally spaced points along the boundary are
assigned as the initial set of break points. As in Ramer’s algorithm, a tolerance
of 20 pixels is again used. Like Ramer’s algorithm, the number of break points
and their locations along the boundary obtained by the split-and-merge
algorithm are not the same if the boundary is at a different orientation or a
different scale. )

Both algorithms are very sensitive to the tolerance. The original starting
set of break points will also affect the final result. Regardless of the scale and
the orientation of an object, the number of landmarks of the object should not
vary, and their locations relative to the object should not deviate. Break
points obtained by the above polygonal approximation algorithms that vary
with the orientation and the scale of the boundary are thus not desirable
landmarks. Two approaches that obtain more stable break points are
discussed in the following sections.

3.3. Curvature Guided Polygonal Approximation

As mentioned above, different starting sets of break points used in a
polygonal approximation algorithm will result in different approximated
polygons. A good starting set of break points is thus important to the
polygonal approximation algorithm. Points with extreme curvature are
potential break points for approximating a boundary with a polygon. Since
these extreme curvature points are likely to be break points, we propose to use
these points as a starting set of break points for the polygonal approximation
algorithm. The split-ang-merge algorithm will be used as the polygonal
approximation algorithm to correct and modify the original starting set of
break points. We shall call such an approach curvature guided polygonal
approzimation.

Due to the discrete boundary representation and quantization error, false
local concavities and convexities along a boundary are introduced. Smoothing
is thus necessary to reduce these false concavities and convexities. It has been
shown that a Gaussian filter is an ideal smoothing filter for numerical
differentiation [Tor86]. We use the approach of smoothing a planar curve with
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a Gaussian filter to find a starting set of break points for the polygonal
approximation. A planar curve can be represented by a set of points in
parametric form,

(z(1), y(t)) ER?
where ¢ is the path length along the curve. Smoothing the curve with a
Gaussian filter is the same as convolving z(t) and y(t), respectively, with a
one-dimensional Gaussian filter,
14,
120
nit, w) = e
( ) V 2mw ’
where « is the width (spatial support) of the filter. Denote the Gaussian
smoothed curve by the set of points (X(¢, w), Y(t, w)). That is,

X(t, w)=1z(t) * n(t, ) , (3.1)

Y(t, W) =y(t) * n(t,w) , (3-2)

where * indicates convolution. It can be shown using elementary calculus

[Tho72] (as was shown in [Mok86]) that the curvature of the smoothed curve is:
XY - YX
K,(t, w) == W ’ (33)
where ¢ is the path length along the curve,
w is the width of the Gaussian filter,
K is the curvature of the curve at ¢,

- dX . dX
X=—">, 6 X=—%
dt dt?
R 1
Y=ﬂ, _4ay
dt dt?

Note that the arguments of X(¢, w) and Y(t, w) have been dropped. As we
“traverse’ along t in increasing values of ¢, a positive curvature corresponds to
a concavity on our left, and a negative curvature corresponds to a concavity on
our right. We therefore propose to select points along a curve that corresponds
to the positive maximum and the negative minimum curvature points of the
Gaussian smoothed curve as the starting set of break points for polygonal
approximation. From now on, we refer to an extreme curvature point as either
a positive maximum or a negative minimum curvature point.
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The curvature guided polygonal approximation algorithm as applied to a

closed boundary can be summarized by the following procedure:

(1)

Remove all one-pixel wide protrusions. Figure 3.9 shows an example of a
one-pixel wide protrusion which may result due to the discrete boundary
representation and quantization error.

Xl o o @

X XX
XX X XX X
(2) (b)

Figure 3.9. An example of a one-pixel wide protrusion. (a) One-pixel wide

(2)

(4)

(5)
(6)

protrusion. (b) After removing the protrusion. X indicates a
boundary pixel. o indicates a boundary protrusion pixel.

Smooth the boundary with the above Gaussian filter.

Find the set of positive maximum and negative minimum curvature points
along the Gaussian smoothed boundary.

The points along the original boundary (with one-pixel wide protrusions
removed) that correspond to the set of points found in Step (3) are used as
the starting set of break points for polygonal approximation of the
original boundary.

Employ the split-and-merge polygonal approximation algorithm
mentioned in Section 3.2.

The resulting break points are the landmarks of the boundary.

Two parameters, ‘w of the Gaussian filter and the tolerance for

collinearity, must be set in using the algorithm. There is a trade-off when
choosing the value of w. A large value will remove small details of the
boundary curvature, while a small value will permit false concavities and
convexities. Since we only want to estimate a starting set of break points for
the split-and-merge polygonal approximation algorithm, a flexible range of
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values for w is feasible. The tolerance is scale dependent; i.e., using the same
tolerance for a boundary at a different scale may yield a different result. It is
usually chosen by trial and error, or based on a priori knowledge about the
scale of the boundary. The curvature guided polygonal approximation
algorithm is thus sensitive to scaling. It does, however, eradicate two
undesirable characteristics associated with most polygonal approximation
algorithms; it provides a good starting set of break points, and it is less
sensitive to orientation.

The results of applying curvature guided polygonal approximation
algorithm to the same set of boundaries that are used for Ramer’s algorithm
are shown in Figures 3.6d, 3.7d, and 3.8d, respectively. A width of 5 pixels for
the Gaussian filter and a tolerance of 20 pixels for the collinearity test are used.
The examples indicate that break points obtained by this algorithm are less
sensitive to orientation, but remains sensitive to scaling.

A step by step pictorial depiction of extracting the landmarks of a
“wrench” image (Figure 3.1) using curvature guided polygonal approximation
algorithm is described below. Figure 3.10 shows the Gaussian smoothed
contour of Figure 3.1 with w=10. The corresponding curvature function is
shown in Figure 3.11, where a ‘“*” symbol indicates a break point which is
either a local positive maximum or a local negative minimum curvature point.
Only points on straight line segments have curvature value -of zero. Since
extreme curvature points with curvature values close to zero are likely lying on
curve segments that are almost straight, we consider only those positive
maxima which lie above a specified threshold. Likewise we consider only those
negative minima which lie below another specified threshold. From empirical
results, we have found that using 0.0035 and -0.0035 as the respective positive
and negative threshold provides reasonable results. The initial break points
along the original boundary are shown in Figure 3.12. After the split-and-
merge polygonal approximation using a tolerance of 15 pixels, the final set of
landmarks along the original boundary are shown in Figure 3.13. Using the
same parameters as above, the extracted landmarks of the needle-nose plier
(Figure 3.2), the wire cutter (Figure 3.3), the specialty plier (Figure 3.4), and
the wire stripper (Figure 3.5) are shown in Figures 3.14-3.17, respectively.
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Figure 3.10. The Gaussian smoothed boundary of a wrench (Figure 3.1) using
w=10. Each ‘X" indicates an extreme curvature point.
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Figure 3.12. The initial set of break points, each indicated by an “X," used
for a subsequent polygonal approximation.

Figure 3.13. The landmarks of the wrench obtained by the curvature guided

polygonal approximation. Each landmark is numerically labeled,
and is indicated by an *“X.”
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Figure 3.14. The landmarks of the needle-nose plier (Figure 3.2) obtained by

the curvature guided polygonal approximation. Each landmark is
numerically labeled, and is indicated by an *“X.”

Figure 3.15. The landmarks of the wire cutter (Figure 3.3) obtained by the

curvature guided polygonal approximation. Each landmark is
numerically labeled, and is indicated by an *X.”
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Figure 3.16. The landmarks of the specialty plier (Figure 3.4) obtained by the

curvature guided polygonal approximation. Each landmark is
numerically labeled, and is indicated by an “X.”

Figure 3.17. The landmarks of the wire stripper (Figure 3.5) obtained by the

curvature guided polygonal approximation. Each landmark is
numerically labeled, and is indicated by an “X.”
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3.4 Cardinal Curvature Points

In the curvature guided polygonal approximation algorithm, if the
boundary is smoothed by a Gaussian filter with a large w, false local
concavities and convexities are unlikely because of the smoothness of the
boundary. The extreme (positive maximum and negative minimum) curvature
points of such a smoothed boundary are stable with respect to orientation and
scaling; i.e., their locations along the unsmoothed boundary remains relatively
unchanged when the boundary is rotated, or scaled within a reasonable range.
We shall refer to these stable local extreme curvature points as the cardinal
curvature points.

The cardinal curvature points along the boundary of an object are
suitable landmarks of the object. They are extreme curvature points of the
boundary that are stable with respect to Gaussian smoothing for a reasonable
range of values of w and, at the same time, possess the shape attributes of the
boundary. Since w determines the degree of detail (smoothing) of the smoothed
boundary, stability of the cardinal curvature points for a reasonable range of
values of w implies that the cardinal curvature points are stable with respect to
a reasonable degree of scaling. Since cardinal curvature points are obtained by
Gaussian smoothing with a larger w than the w used for the curvature guided
polygonal approximation, the number of landmarks obtained from the cardinal
curvature points is usually less than that by the curvature guided polygonal
approximation.

Given a library of model objects, the cardinal curvature points of each
object boundary are obtained by successively smoothing the boundary with a
Gaussian filter with various widths until the extreme curvature points do not
change (their number remains the same, and their locations deviate only a
small amount) for a reasonable range of w. Figures 3.18-3.33 depict the
extreme curvature points of the Gaussian smoothed boundaries of a wire cutter
(Figure 3.3) and the corresponding curvature functions at various degrees of
smoothing. The extreme curvature points of the wire cutter shown in Figure
3.23 are the cardinal curvature points. They are stable for w ranging from 16
to 28.5. The locations of the cardinal curvature points along the original
boundary are the locations of the landmarks of the wire cutter, as shown in
Figure 3.34. The landmarks obtained for other objects by this approach are .
shown in Figures 3.35-3.38, and their corresponding range of stability for the
values of w are summarized in Table 3.1. Stability with respect to a reasonable
degree of scaling is demonstrated by the examples shown in Figures 3.39 and
3.40, where the locations of the landmarks obtained for the specialty plier
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which has been scaled by an area factor of 0.5 and 2.1, respectively, are
relatively invariant. One drawback of this approach is that small desirable
details may be deleted by the smoothing. On the other hand, an algorithm that
can detect small details may at the same time introduce many false details.

3.6. Summary

Two widely used polygonal approximation algorithms along with their
drawbacks have been discussed. We have developed two new methods to
detect landmarks from contours. The first method is known as the curvature
guided polygonal approximation. It is based on the fact that break points
resulting from a polygonal approximation of an object boundary are mostly
extreme curvature points of the boundary. Smoothing is carried out to avoid
excessive false concavities and convexities. A more robust approach is
introduced that uses the cardinal curvature points of an object boundary as
the landmarks. The number of landmarks obtained using this approach is
usually smaller than that using the curvature guided polygonal approximation;
hence, less computation is required for the higher level landmark matching
processing stage.

Table 3.1.
Range of w values used to obtain the landmarks
of various objects based on cardinal curvature points

Models Figures | Range of w
wrench 3.35 14.5-24
needle-nose plier | 3.36 14.5-(>100)
wire cutter 3.34 16-28.5
specialty plier 3.37 14-40.5
wire stripper 3.38 16.5-36.5
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Figure 3.18. The Gaussian smoothed boundary of the wire cutter using w=1.
Each “X” indicates an extreme curvature point.

Figure 3.19. The Gaussian smoothed boundary of the wire cutter using w=2.
Each “X" indicates an extreme curvature point.
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Figure 3.20. The Gaussian smoothed boundary of the wire cutter ﬁsing w=4.
Each “X” indicates an extreme curvature point.

Figure 3.21. The Gaussian smoothed boundary of the wire cutter using w=8.
Each “X” indicates an extreme curvature point.
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Figure 3.22. The Gaussian smoothed boundary of the wire cutter using w=12.
Each ‘X" indicates an extreme curvature point.

Figure 3.23. The Gaussian smoothed boundary of the wire cutter using w==20.
Each “X" indicates an extreme curvature point.
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Figure 3.24. The Gaussian smoothed boundary of the wire cutter using w=30.
Each “X” indicates an extreme curvature point.

Figure 3.25. The Gaussian smoothed boundary of the wire cutter using w=40,
Each “X” indicates an extreme curvature point.
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Figure 3.34. The landmarks of the wire cutter based on the cardinal curvature

points. Each landmark is numerically labeled, and is indicated
by an “X-”

Figure 3.35. The landmarks of the wrench based on the cardinal curvature

points. Each landmark is numerically labeled, and is indicated
by an “X-”
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Figure 3.36. The landmarks of the needle-nose plier based on the cardinal

curvature points. Each landmark is numerically labeled, and is
indicated by an “X.”

Figure 3.37. The landmarks of the specialty plier based on the cardinal

curvature points. Each landmark is numerically labeled, and is
indicated by an “X.”
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Figure 3.38. The landmarks of the wire stripper based on the cardinal

curvature points. Each landmark is numerically labeled, and is
indicated by an “X.”

Figure 3.39. The landmarks of the specialty plier, scaled by an area factor of
0.5, based on the cardinal curvature points. Each landmark is
numerically labeled, and is indicated by an ““X.”
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Figure 3.40. The landmarks of the specialty plier, scaled by an area factor of
: 2.1, based on the cardinal curvature points. Each landmark is
numerically labeled, and is indicated by an ““X.” '
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CHAPTER 4

LANDMARK MATCHING AND LOCATION ESTIMATION

4.1. Introduction

In the previous chapters, we have developed two methods to extract
landmarks. We have also shown that sphericity is a robust shape measure. In
this chapter, we shall describe the landmark matching task and the decision
strategy of our landmark-based shape recognition approach (see Figure 1.4).
Before we discuss the landmark matching task, we shall first review recent
work on 2-D partial shape recognition in Section 4.2. Landmark matching,
location estimation, and matching verification will be discussed in Section 4.3.
The computational complexity of the landmark matching task will be
evaluated. Some experimental results will be presented in Section 4.4. A
summary of this chapter will then be given in Section 4.5.

4.2, Literature Review

Recent work on 2-D partial shape recognition has exhibited an increasing
interest in developing methods capable of recognizing objects when global
information about the objects are not available. We shall discuss several
methods reported in the recent literature.

Bolles and Cain [Bol82] use a hypothesis generation and verification
approach to recognize and locate partially visible objects. The shape features
of an object are holes and corners (right-angled corners are used in the paper).
The physical description of the features, such as the size of a hole and the
included angle of a corner, are used to indicate the similarity between a model
feature and a scene feature. The structural relationships among the shape
features are then exploited to construct a structured graph. A node of the
graph corresponds to an assignment pair indicating a possible match between a
model and a scene feature based on their physical description. Two nodes that
are mutually compatible in structure and meet certain criteria are connected
with an arc. Two nodes are said to be structurally compatible if the physical
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distance and the relative orientation between two scene features are within
certain limits with respect to those of the two model features. The'hypothesis
of a model in a scene is generated by finding the largest completely connected
subgraph using an algorithm known as a mazimal-cligue algorithm. The
largest connected subgraph corresponds to the largest set of structurally
compatible matches of the graph. The location and orientation of the model in
the scene is estimated from the matched pairs of the largest connected
subgraph. The model is then translated and rotated onto the scene. The
hypothesis is then verified by checking the boundary consistency between the
scene and the coordinate transformed model. Since the goodness of match
between the model features and the scene features is determined by the
physical and structural descriptions of the features which are not scale
invariant, this approach is susceptible to scale variations. In addition, the
clique finding algorithm is very complex and computationally intensive.

Bhanu and Faugeras [Bha84] cast the shape matching problem as a
segment matching problem. An object contour is first approximated by a
polygon from which feature values such as the length of a segment, the slope of
a segment, the angle between two adjacent segments, and the intervertice
distance are computed. The sum of the weighted absolute differences of the
feature values between a model and a scene segment is the shape measure
between the two segments. This measure indicates the goodness of match
between the two segments. A stochastic labeling scheme is then used to label
each model segment either as one of the scene segments or NIL (no match).

This approach exemplifies an application of the relaxation labeling method
in the computer vision area. It is computationally intensive. A good estimate of
the initial assignment of the label is important to the convergence of the
approach and the validity of the result. In addition, feature values such as the
length of a segment and the intervertice distance are scale dependent, the
shape measure based on these feature values are thus sensitive to scale
variations. Therefore, the algorithm cannot recognize objects in a scene that
have a different scale from that of the models.

A simple technique to solve the occlusion problem has been proposed by
Price [Pri84]. The shape features of an object are the line segments of the
approximated polygon of the object. Each model segment is then compared
with every scene segment in terms of their lengths, and the included angles
between successive segments. If the lengths and the angles are within certain
thresholds, the model segment is said to be compatible with the scene segment,
and their orientation difference is stored in an array known as a disparity
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array. Since segments of an object are arranged sequentially along the object
contour, segments between the mode! and the scene are likely to be matched in
a sequence. The longest consecutive sequence of matching segments between
the model and the scene corresponds to the longest compatible consecutive
diagonal entries of the disparity array that have similar orientation differences.
A transformation that aligns the model segments with the matched scene
segments is evaluated. Applying this transformation to the model segments,
disparity values based on the segment positions and orientations are updated
and stored in the disparity array. The final matches between the model and
the scene segments are determined by finding the longest compatible
consecutive diagonal entries of the new disparity array.

Price’s procedure is simple, but not computationally efficient since every
entry of the disparity array has to be considered for the starting location of the
longest sequence. Furthermore, the technique is sensitive to scale variations
because the feature value, such as the length of a line segment, used in this
technique is inherently scale dependent.

Bhanu and Ming [Bha87] improve upon Price’s approach by using the
same disparity array but with a different matching process. The matching
process first applies the K-mean clustering algorithm iteratively on the
disparity array until the optimal number of clusters is found. It then checks for
the elements of each cluster that are in a sequential order, and finds the
sequences. Several heuristics are included to determine the sequences. The
process then clusters the sequence averages using the same clustering algorithm
described above. The cluster which contains the largest number of sequences
determines the final matches between the model and the scene segments. A
confidence value which is the ratio of the cumulative length of the segments in
the final matching to the total length of all segments of the model is evaluated
to verify the final matching.

The approach is capable of recognizing occluded objects. However, it
suffers the same sensitivity to scale variations. Though it is computationally
more efficient than Price’s approach, it remains computationally expensive
because of the iterative nature of the algorithm.

Ayache and Faugeras [Aya86] develop a method' known as HYPER
(HYpotheses Predicted and Evaluated Recursively) to recognize and position
2-D objects. The shape features of an object are the line segments of the
approximated polygon of the object. The longest model segments are called the
“privileged” segments. A hypothesis is made by matching a “‘privileged” model
segment with a scene segment based on some compatibility criteria. The two
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segments are compatible if (1) the included angles of the segments made with
their respective preceding segments are approximately equal to each other, and
(2) the ratio between the lengths of the two segments is close to an a priors
estimated scale factor. Such criteria will usually generate many hypotheses.
The number of hypotheses is reduced by limiting the number of “privileged”
model segments and selecting only the best few hypotheses for further
processing. A coordinate transformation including translation, rotation, and
scaling taking the ‘‘privileged’”’ model segment onto the scene segment is
estimated. Based on a matched pair between a “privileged” model segment
and a scene segment, additional segments between the model and the scene
having a small dissimilarity measure are matched. The dissimilarity measure
between a model and a scene segment is a weighted sum of the differences of
the orientations, lengths, and the Euclidean distance between the two
segments. For each additional matched pair, the coordinate transformation is
updated by a Kalman filter, and a quality measure which accounts for the
relative length of the model segments that have been identified is computed.
The matching process ends when a large enough number of hypotheses have
been evaluated, or when a very high quality measure of a hypothesis is
reached. The hypothesis bhaving the highest quality measure is finally
reexamined using the last estimated parameters of the coordinate
transformation as the initial estimation. Using these parameters as the initial
estimates of the coordinate transformation, the process is repeated until it
converges. The reexamined hypothesis is finally validated or rejected based on
its quality measure.

The shape measures (the compatibility measure and the dissimilarity
measure) used in this approach are not unique; i.e., segments that are locally
different could yield similar shape measures. Unless an estimate of the scale
factor based on a prior: knowledge is provided, the approach is sensitive to
scale variations. The iterative nature of this approach also makes it
computationally expensive.

Koch and Kashyap [Koc87] use a hypothesis generation and verification
approach, a concept similar to [Bol82], to solve the partial recognition problem.
However, the shape features, the shape measures, and the matching method are
different from those of [Bol82]. Each object is first approximated by a polygon
from which corner points are extracted. According to [Koc87], a corner defines
a group of line segments centered at a corner vertex. To match two corners,
the polygon fragments associated with each corner are first quantized into a
same number of points. Then a coordinate transformation consisting of
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rotation and translation that minimizes the squared error between the points of
the polygon fragments is determined. The resulting minimum squafed error is
the shape measure used to indicate the dissimilarity between the two corners.
It involves the first-order, second-order, and cross moments of the polygon
fragments of the two corners. These moments can however be computed by
using the vertices of the polygon fragments, and thus a large amount of
computation is reduced.

The hypothesis generation involves two steps. The first step determines
the compatibility of the matches between the model and the scene corners.
Matches that are considered compatible must satisfy certain constraints. The
final hypothesis is reached by growing a cluster around a good match. The
resulting cluster is a group of matches between the model and the scene
corners. The least squared coordinate transformation that transforms a group
of model corner points onto a group of scene corner points in a least squares
sense is also obtained. To verify the hypothesis that the model is in the scene,
the hypothesized model polygon is applied with the above least squared
coordinate transformation. The match error of the hypothesis is the difference
between the area enclosed by the scene polygon and the area enclosed by the
scene polygon unioned with the transformed model polygon. A large match
error results in the rejection of the hypothesis while a small one results in the
acceptance of the hypothesis. The algorithm has assumed that the model and
the scene are of the same scale. It is sensitive to scale variations because the
least squared error between a model and a scene polygon will depend on the
scale of both the model and the scene polygons.

Turney et al. [Tur85] employ a template matching algorithm to recognize
partially occluded objects. The template of an object is its boundary. It is
subdivided into subtemplates which are portions of the object boundary. Each
subtemplate is associated with a value known as its significant value which
indicates the importance of the subtemplate. A subtemplate baving a high
significant value is considered as a distinctive feature, Matching is done by
cross-correlating each subtemplate with the scene boundary in the angle versus
arc length space. The angle at a boundary pixel is the angle of the tangent at
that pixel. A matching coefficient which indicates the goodness of match
between a scene boundary segment and a subtemplate is computed. This
coefficient is weighted by the significant value of the subtemplate.

This algorithm can recognize a partially occluded object provided that the
distinctive boundary segments associated with the object is not occluded. A



106

training phase is required to determine the weight of each subtemplate of an
object template. Again, matching in the angle versus arc length space is
sensitive to scale variations.

In contrast to Turney et al.’s use of distinctive features, Knoll and Jain
[Kno86] emphasize features that are common to several objects to hypothesize
for object identities and orientations. A list is associated with each feature
that indicates where it occurs in each model. When a match of a feature with
the scene is found, models having such a feature are hypothesized for their
identities and orientations from the feature’s list. Each of these hypotheses is
then tested and verified. Knoll and Jain call this approach the feature indexed
hypotheses method.

The features used are fixed length boundary segments of an object. The
shape measure between two features is the sum of the point-wise Euclidean
distances between the two appropriately aligned boundary segments. The
hypothesis test involves a variation of template matching and the use of several
heuristics. A score is generated for each hypothesis test. A negative score
indicates a negative evidence of the hypothesis. The hypothesis having the
highest score is the most confident hypothesis.

This approach alleviates the problem of having distinctive features
occluded. If the number of matches per feature can be controlled, the
recognition time can be made proportional to the square root of the size of the
model set. However, this number is usually difficult to determine especially
when objects are occluded in which case features may disappear or multiply.
Since the features are fixed length boundary segments and their number is
restricted, this approach is also sensitive to scale variations.

Gorman and Mitchell [Gor88] represent an object contour by breaking the
contour into contour segments. The break points of the contour are the
vertices which result from a polygonal approximation of the contour. Each
contour segment is a portion of the object contour and consists of three
consecutive vertices. It begins from a vertex which is considered as the first
vertex and then ends at the third vertex along the object contour. The feature
values of each contour segment are the Fourier coefficients derived from
tracing along the segment from the beginning to the end and then back to the
beginning of the segment. The shape measure between a model and a scene
contour segment is the norm squared distance between the Fourier coefficients
of the two segments. An inter-segment distance table measuring the norm
squared distances between the model and the scene contour segments is
constructed. The row index of the table indicates a model segment, and the
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column index indicates a scene segment. Entry (1, j) is referred to as the ith
row and the jth column entry of the table. It stores the norm squared distance
between the Fourier coefficients of the sth model segment and the jth scene
segment. The table is augmented by repeating the rows.

A backward dynamic programming procedure is used to determine the
minimum distance path starting from the first column to the last column of
the augmented table. An entry along the minimum distance path that results
from a diagonal transition corresponds to a match between the model and the
scene segment, indicated by the row and the column index of the entry. They
use a criterion for path completeness requiring that the path must make use of
all scene segments. This means that the path must traverse through every
column of the table, from the first column to the last column of the table.
This criterion seems inadequate for two reasons. First, the scene may consist of
more than one object overlapping each other, and hence has more segments
than the model. Second, the scene may also have only one object being
occluded and have less segments than the model. Therefore, the path should
not necessarily make use of all scene segments. In addition, if the first segment
of the scene contour does not match with any segment of the model, the
minimum distance path may be swayed from the path of true matches
resulting in false matches. However, this approach is not sensitive to scale
variations because the Fourier coefficients have been normalized.

4.3. Landmark-Based Shape Recognition — Landmark Matching,
Location Estimation, and Matching Verification

Our shape recognition algorithm is based on an approach that is
completely different from the above methods. We use different shape features,
a different shape measure, and a different feature matching algorithm. Qur
shape features of an object are the landmarks associated with the object. In
Chapter 3, we have presented two methods of extracting landmarks. Instead
of evaluating many feature values in order to characterize the similarity
between two line segments, we use sphericity to discriminate the dissimilarity
between two landmarks. Sphericity has been discussed in detail in Chapter 2,
and has been shown to be translation, rotation, and scale invariant. It is also
relatively robust with respect to distortion. In contrast to all the above
methods except [Gor88], our approach is not sensitive to scale variations. Our
feature matching algorithm is not iterative. We use an algorithm which we call
HOPPING dynamic programming which switches between a forward and a
backward dynamic programming procedure to perform the landmark matching
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task. Before we describe our matching procedure, we shall first discuss
properties of dynamic programming in the next section.

4.3.1. Dynamic Programming

Dynamic programming has found applications in many areas. It is the
study of multistage decision processes. Dreyfus and Law [Dre77] have concisely
described dynamic programming as follows:

“Dynamic programming is an optimization procedure that is
particularly applicable to problems requiring a sequence of
interrelated decisions. Each decision transforms the current
situation into a new situation. A sequence of decisions, which in turn
yields a sequence of situations, is sought that maximizes (or
minimizes) some measure of value. The value of a sequence of
decisions is generally equal to the sum of the values of the individual
decisions and situations in the sequence.”

We shall illustrate the concept of a multistage decision process with a
simple classical example. We consider a path problem shown in Figure 4.1a.
Letters {4, B, --- , I } denote the names of the cities. The number along the
line joining two cities indicates the distance between the two cities. The
problem is to find the shortest path traveling from city A to city I. To travel
from city A to city I, we have to pass through several intermediate cities.
Each of these intermediate cities can be thought of as the state of the overall
process at an intermediate stage. Since there are more than one city that is
‘reachable from a given city, a decision of which city to reach has to be made at
each stage. Consequently, this process is called a multistage decision process.
We need a policy of making decisions at each stage so as to achieve the shortest
path between city A and city I. Such a policy must satisfy the principle of
optimality [Bel65]:

, ““An optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first
decision.”

The above path problem can be mathematically formulated as follows:
Let S5={A,B, ---, I} be the state space,
.5',- € S be the state at which the process is at the ith stage,
89 = A be the state at the initial stage,
8, = I be the state at the final stage.
We want to determine the multistage decision process {sg, 51, *** , s,} such
that the total distance from stage s4 to s, is minimum.
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Denote Rp as the minimum distance path from D to I, and

d(A, D) as the distance between A and D.
Using the principle of optimality, we reach the following recursive solution for
the shortest path problem:

d(A, D)+R)
RA = Imnin d(A,B)+RB y

d(D, E)+Ryp d(B, C)+R,
RD = min d(D, G)+RG y RB = Imin d(B, E,)+RE 5

Rp=d(F,I) , Ry=4d(H,1I) .

The above formulation is known as a backward dynamic programming
procedure [Dre77] since the multistage decision process is determined by
working backward from the destination point to the starting point. The
shortest path using this formulation is shown in Figure 4.1b. The feature
matching procedure of [Gor88] is such a procedure where the starting point
and the destination point can be any point in the first and the last column,
respectively, of their augmented inter-segment distance table.

We can paraphrase the reverse version of the principle of optimality as
follows:
“An optimal policy has the property that whatever the final state and final
decision are, the decisions that have been made so far with regard to the state
prior to the final decision must constitute an optimal policy.”
A different formulation of the above path problem can be obtained using the
reverse version of the principle of optimality. Using the same notations as
above except that R}, now denotes the shortest distance path from A to D, we
reach another recursive solution to the problem:

d(F, I)+Rp
F=MG(H, )+Ry °

 [d(C, F)+Re d(E, H)+Ry
RF == 1min d(E, F)+RE , RH = min d(G, H)+RG ’
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Figure 4.1.  An example of a classical shortest path problem. (a) A shortest
path problem. (b) The shortest path shown by arrows results
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gramming procedure.
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RB=d(A,B) y RD=d(A,D) .

This formulation is known as a forward dynamic programming procedure
[Dre77] since the multistage decision process is determined by working forward
from the starting point to the destination point. The shortest distance path
using this formulation is shown in Figure 4.1c.

In general, each formulation yields a different solution. The backward
dynamic programming is usually applied when only the destination point is
available, while the forward dynamic programming is applied when only the
starting point is available. When both the starting and the destination point
are known, either backward or forward procedure can be applied.

4.3.2. Landmark Matching by Hopping Dynamic Programming

Our problem of matching landmarks of a model to those of a scene is
equivalent to that of matching two sequences of landmarks associated with the
model and the scene.

Let {(z1, ¥1)s (%2, ¥2), * - * , (Zn» ¥a)} be the coordinates of a sequence of
landmarks associated with a model, and
{(u1, v1), (ug, v3), * -+, (Up, v,,)} be the coordinates of a sequence of

landmarks associated with a scene.

Note that n is the number of model landmarks, and m is the number of scene
landmarks. The subscripts denote the order of the landmarks. The goodness
of match between the sth model landmark and the Jth scene landmark is
given by the sphericity (Equation 2.13) derived from a triangular
transformation mapping {(Zi—1s Yim1)s (%2 4 )s (g1 Yig1)} to
{(uj-1s vj_1), (45 v;), (441, vj41)}. At the end points, when §=1, i—1 is
replaced by n; when j=1, j—1 is replaced by m; when & =n, t+1 is replaced
by 0; when i=m, i+1 is replaced by 0. These replacements are to account for
the periodic arrangement of the landmarks. A mapping is said to be
orientation or sense reversing [O'N66] if the Jacobian of the mapping is
negative. To account for the sense of a mapping, we negate the value of the
sphericity if the triangular transformation is sense reversing. Thus, the
sphericity derived from mapping the sth model landmark to the Jth scene
landmark having a value close to 1 implies that these two landmarks are
locally similar.

A table of compatibility is constructed between the sequence of model
- landmarks and the sequence of scene landmarks. The row index indicates a
model landmark while the column index indicates a scene landmark. Entry
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(1, 7) is referred to as the ith row and the Jth column entry of the table. The
(1, j) entry of the table is the sphericity value of the triangular transformation
mapping the ith model landmark and its two adjacent landmarks to the jth
scene landmark and its two respective adjacent landmarks. Consider a simple
example of a scene where there are two objects overlapping each other as
shown in Figure 4.2. The extracted landmarks in the scene are based on the
cardinal curvature points using w=20. A table of compatibility between the
wire stripper (Figure 3.38) and the scene (Figure 4.2) is shown in Figure 4.3a.
Since the landmarks of an object are obtained by tracing sequentially along
the object boundary, it is likely that matches between the model and scene
landmarks correspond to a sequence of high-valued entries that are diagonal to
each other in the table. This sequence will correspond to a path in the table.
A brute-force approach of finding such a sequence is impractical. We will
instead formulate a dynamic programming procedure to achieve this
matching. '

Our matching procedure is slightly similar to the feature matching
algorithm of [Gor88]. As mentioned earlier, Gorman and Mitchell [Gor88] use
a backward dynamic programming procedure to find a minimum distance
path from the first column to the last column of their augmented inter-
segment distance table. Their assumption that the path must make use of all
the scene features is inadequate because the scene may have extraneous or
missing features due to occlusion. Instead of this assumption, we shall only
require that our path covers the range of either all the model landmarks or al]
the scene landmarks; i.e., the path traverses through either all the rows or all
the columns of the table of compatibility. Unlike the shortest path problem,
neither the starting point nor the destination point of a path which
corresponds to a sequence of matches between the scene and model landmarks
are known. It is not @ priors known how many landmarks of a model will
match with those of a scene. Instead of having a starting and a destination -
point, a support entry, which is an entry in the table that provides strong
evidence of a true match between a model and a scene landmark, is used to
guide the matching process. This evidence js strong if the entry as well as its
diagonal neighboring entries have sphericity values close to 1. That is, the
model landmark and its neighboring landmarks match well locally with the
scene landmark and its neighboring landmarks. Denote s(f, j) as the
sphericity value at the (i, 7) entry of the table. The (#, 7) entry of the table is
said to be the support entry of the table if the sum
s(v—1, j—1)+s(s, J)+s(i+1, j41) is maximum. In the example shown in
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Figure 4.2. A scene which consists of a wire stripper and a wrench overlap-

ping each other. Each scene landmark is labeled and indicated by
an “X.H
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Figure 4.3a, the support entry can either be entry (3, 12) or (4, 1). Since the
sphericity is a local similarity measure between a model and a scene landmark,
the overall goodness of match between the model and the scene is determined
by the sum of the sphericity values of those landmarks that match with each
other. The sequence of matches should correspond to a path in the table that
passes through the support entry and maximizes the sum of the sphericity
values of the path with the following two constraints:

(1) A model landmark cannot match with more than one scene landmark.
(2) A scene landmark cannot match with more than one model landmark.

By the above two constraints, a vertical or a horizontal transition of the path
should not be considered as a match between the model and the scene
landmark. )

Unlike backward or forward dynamic programming, we want to search
for a path that passes through the support entry, rather than from a starting
point to a destination point, or vice versa. Since the backward procedure is
applicable when the destination point is available, and the forward procedure
is applicable when the starting point is available, the support entry can be
treated both as a starting and a destination point. That is, we work both
forward and backward from the support entry.

Denote (k, I) as the support entry,
ay (7, 7) as the accumulated sum of the sphericity values from (k, I) to
(¢, ) entry in the backward procedure, and
a;(1, 7) as the accumulated sum of the sphericity values from (k, I) to
(¢, 5) entry in the forward procedure.
Treating the support entry as the destination point, we have the following set
of transition rules for the backward procedure:

(1) ay(i—1,5-1) = maX{a,,(i,j)+s(i—1,j-—1),a,,(:'—l,j),a,,(:',j—-l)}

(2) ay(i—1,0) = max{s(1,l),s (¢ —1,1)}

(3) ay(k,y—1) = max{s(k,5),s(k,j—1)}

(4) ay(k,0) =s(k,l).

A diagonal transition according to Rule (1) implies a possible mateh between
the (+—1)th model and the (j—1)th scene landmark, and hence the sphericity
value at (1—1,7—1) is added to the accumulated sum of sphericity values at
(¢, 7) to produce the accumulated sum of sphericity value at (f—1,5—1). Since

a horizontal or a vertical transition does not constitute a match, the
accumulated sum of sphericity values remains the same as before the
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transition. Rules (2) and (3) are the boundary conditions. Rule (4) is the
initial condition. To account for the periodic nature of the landmarks we are
matching, when 1—1 <1, the value of i—1 is replaced by n+i—1; when
J—1 <1, the value of j—1 is replaced by m+j5—1.

Treating the support entry as the starting point, we have the following
set of transition rules for the forward procedure:

(1) ar(i41,5+1) = ma.x{af(z',]')+s(i+1,j+1),af(i+1,j),af(i,j+1)}

(2) e (141,1) = max{s(s,!),s (i +1,1)}

(3) as(k,j+1) = max{s (k,j),s(k,j+1)}

(4) as(k,0) =s(k,l).

Again, according to Rule (1), a diagonal transition implies a possible match
between the (#+1)th model and the ( J+1)th scene landmark, and hence the
accumulated sum of sphericity values at (41, j+1) is obtained by the sum of
the sphericity value at (51, J+1) and the accumulated sum of sphericity
value at (7,7). Likewise, Rules (2) and (3) are the boundary conditions, and
Rule (4) is the initial condition. To account for the periodic nature of the

landmarks we are matching, when 41 > n, the value of 71 is replaced by
t+1—n; when j+1 > m, the value of J+1 is replaced by j4+1—m.

How do we switch between the forward and the backward procedure?
Taking a forward and a backward step alternately is not a good strategy
because matches are not usually equally divided between the forward and the
backward path. Let (7, j) entry be where the backward procedure has reached
at the present stage, and (z'A, f) entry be where the forward procedure has
reached at the present stage. We define the backward average sphericity value
at entry (3, 7) as ¢;(3, 7) divided by the number of transitions made by the
backward procedure traversing from entry (k, I) to entry (3, 7) of the table.
Similarly, we define the forward average sphericity value at entry (i“, f) as
as (f, f) divided by the number of transitions made by the forward procedure
traversing from entry (k, {) to entry (i, f) of the table. The procedure which
has a larger average sphericity proceeds one stage. That is, if the backward
average sphericity value at entry (%, 7) is larger than the forward average
sphericity value at entry (iA, f), the backward procedure will proceed to entry
(-1, 7-1); otherwise, the forward procedure will proceed to (11, J+1). In
other words, the procedure that has a more promising path of matches
proceeds one stage. The algorithm continues in this fashion until the combined
path of both the forward and the backward procedures covers the range of
either all the model landmarks or all the scene landmarks. The combined path
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is called the mazimum value path. Because of the periodic nature of the
landmarks we are matching, either path can wrap around the table. We call
this hopping dynamic programming (HDP). Continuing from the earlier
example, and using entry (3, 12) as the support entry, HDP yields the result
shown in Figure 4.3b. Each entry of the upper left portion of the table
represents the sum of the sphericity values at that entry resulting from the
backward dynamic programming procedure. Likewise, each entry of the lower
right portion of the table represents the sum of the sphericity values at that
entry resulting from the forward dynamic programming procedure. The
resulting maximum value path is shown in Figure 4.3c.

After determining the path, several heuristics are used to further refine
the matches between the model and the scene landmarks along the path.
From the two constraints mentioned earlier, entries along the path that result
from horizontal or vertical transitions cannot be considered as matches. Only
entries along the path that result from diagonal transitions are considered as
possible matches. Since each entry is a sphericity value, it indicates the
similarity between a model and a scene landmark; a small value signifies that
these two landmarks do not match well locally with each other. Such an entry,
if included as a match, will also introduce error in the estimation of the
location of the object in the scene. We thus require that the entries along the
path must be above a certain threshold to be considered as possible matches.
A threshold of 0.7 is used as it provides reasonably good results. In the above
example shown in Figure 4.3, entries (2, 11), (3, 12), (4, 1), (5,2) are
considered as possible matches. Isolated entries that have been considered as
possible matches so far are then eliminated because they are not locally
supported by their neighbors. At this point, entries along the path that are
considered as matches must be sequences consisting of at least two consecutive
diagonal entries. The example shown in Figure 4.3 does not have any isolated
entry, and hence entries considered as matches remain the same. Since the
sphericity value of each entry is derived from mapping a model landmark and
the adjacent landmarks to a scene landmark and the adjacent landmarks, a
high sphericity value that is close to 1 not only indicates that the model and
the scene landmark match well locally with each other but also implies that
their two respective adjacent landmarks match well with each other. The final
step is to check the values of the entries that are considered as matches along
the path. If the entry has a value that is greater than 0.95, its adjacent
diagonal entries will also be considered as matches. In Figure 4.3, since all
entries that are considered as matches between the model and the scene
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landmarks have sphericity value greater than 0.95, their respective adjacent
diagonal entries are considered as matches. Thus, entries (1, 10) and (6, 3) are
also considered as matches; they are adjacent to entries (2, 11) and (5, 2),
respectively. In this example, model landmarks 1,2, 3,4, 5, and 6 match with
scene landmarks 10, 11, 12, 1, 2, and 3, respectively.

The overall matching scheme between 2 sequence of model landmarks and

a sequence of scene landmarks can be summarized by the following:

(1)

(2)
(3)

(4)

(5)
(6)

Construct the table of compatibility between the sequence of model
landmarks and the sequence of scene landmarks.

Find the support entry.

Perform HDP by switching between backward and forward dynamic
programming. The backward procedure treats the support entry as a
destination point and traces backward using the set of transition rules
described earlier. The forward procedure treats the support.entry as a
starting point and advances forward using the set of transition rules also
described earlier. At each stage, the procedure having a larger average
sphericity proceeds one stage. The procedure stops when the combined
path of both the backward and the forward procedure covers the range of
either all the model landmarks or all the scene landmarks, i.e., either all
the rows or all the columns of the table. The resulting path is known as
the maximum value path.

Find the entries along the maximum value path that result from diagonal
transitions and are greater than 0.7. These entries are considered as
possible matches between the model and the scene landmarks indicated

" by the indices of the entries.

Isolated entries having no adjacent diagonal entries are nullified.

Check for entries that have sphericity values greater than 0.95. The
immediate adjacent diagonal entries of such high valued entries are then
considered as matches. ‘
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4.3.3. Location Estimation and Matching Verification

After determining the landmarks of a model that match well with those of
scene landmarks by HDP discussed in the previous section, we shall next
estimate the location of the model object in the scene, and verify whether the
hypothesis that this model object is in the scene is true. Location of the object
in the scene is estimated by finding a coordinate transformation consisting of
translation, rotation, and scaling that maps the matched landmarks of the
model to the corresponding matched scene landmarks in a least squares sense.
A score based on the least squared error of the mapping is used to quantify the
overall goodness of match between the model and the scene.

Let k be the number of pairs of the model and scene landmarks that
match with each other,
{(z1 v1)s (225 92), * - -, (z, yr)} be the coordinates of the set of
matched model landmarks, and
{(ug, v1)s (ug, vy), - -+, (4, v)} be the coordinates of the set of the
corresponding matched scene landmarks.

We want to find a coordinate transformation,

a b
[ ]___ [_b . H_,_ [;} , (4.1)
with  the scale factor = (a® +b%),

the angle of rotation = tan—l(_b.) ,

<, 8,

the translation coefficients = ;},
such that
e=3 e +e,’ (4.2)
=1

where e, = Iu‘,-—u,—l =|az,- +by; +¢ — u,~|

e =t;—v] =|—bz; + ay; + f — v

is minimized. Note that € is the least squared error of the transformation. By
finding the partial derivatives of Equation 4.2 with respect to each coefficient
of the coordinate transformation described by Equation 4.1, we can obtain the
following coefficients of the least squares coordinate transformation:
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Continuing from the earlier example, the wire stripper is mapped into the
scene, as shown in Figure 4.4, by the least squared coordinate transformation
derived from the matching pairs of landmarks between the model and the
scene.. Note that if a priori knowledge of the scale of the object in the scene is
available, the scale factor derived from the least squared coordinate
transformation can be used as an additional parameter for verifying the match.

The above least squared error only quantify how well a portion of the
mode] landmarks match with the corresponding scene landmarks. A small error
indicates that the portion of the model landmarks match well with the
corresponding scene landmarks. It does not, however, account for the overall
goodness of match. To account for the overall goodness of match between the
model and the scene, we use the following heuristic measure which penalizes
incomplete matching of the landmarks of the model:

n—2 n—2.—
O4+H— — >
(1.0 2 Nog,( —2 ))e for k > 3,

e =
00 : for k =0,1,2. (4.3)

where n is the total number of landmarks of the model,
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Figure 4.4. The result of mapping the wire stripper into the scene by the
least squared coordinate transformation.
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k is the number of the model lapdmarks that match with the scene

landmarks, and
€

k(scale factor)
The heuristic measure, €/, which can be regarded as the error measure for the

overall goodness of match between the model and scene, is referred to as the
maltch error. If only one or two model landmarks match with those in the
scene, the least squared error is always zero because there always exists a
coordinate transformation that perfectly maps a set of one or two points into
another set. We consider such cases where only two or less model landmarks
match with those in the scene as undetermined cases; i.e., these cases have
insufficient evidence of match between the model and the scene. Thus, in

€=

, i.e., € is the normalized least squared error.

tead of —.
instead o k

Equation 4.3, we have € = co when k=0,1,2, and we use —

Note that when k=n, € =7; i.e., no penalty is added to the normalized least
squared error when all model landmarks match with those in the scene. The

penalty is higher if k is smaller. According to [Gal68], if 5 is considered as

the probability of the event that k of the n model landmarks match with those
n—2
k—2

information of the event. The term, (%:j—), in front of the self-information

in the scene, logy( ) can be interpreted as the uncertainty or the self-

can be thought of as the penalty incurred per amount of uncertainty.

In the earlier example, since all model landmarks match with those in the
scene, the match error value of 0.62 is the same as the normalized least squared
error. The hypothesis of the model in the scene is finally determined by the
value of the match error — a small error verify the hypothesis while a large
error nullify the hypothesis. The decision strategy of the landmark-based shape
recognition is thus a thresholding operation. If a match error is above a
threshold, the match is considered correct; otherwise, the match is considered
incorrect. In our study, this threshold is set empirically.

4.3.4. Computational Complexity of Hopping Dynamic Programming

In the landmark matching task, we first determine the support entry of
the table of compatibility. From earlier discussion, the support entry is the one
where the sum of the entry and its two immediate adjacent diagonal entries is
maximum. If the table has n model landmarks and m scene landmarks, it will
require 3nm additions and nm comparisons to determine the support entry.
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To determine the computational complexity of HDP, we shall determine
the complexity of both the forward and the backward procedures. Consider a
4X4 table with row indices 1, 2, 3, and 4, and column indices 1,2,3,and 4. It
requires 9 additions and 24 comparisons to find the accumulated sum of
sphericity values for each entry of the table using the forward procedure of
HDP. These numbers for additions and comparisons are determined by the
transition rules of the forward procedure (see Section 4.3.2). Note that each
move according to Rule (1) requires 1 addition and 2 comparisons, Rule (2) 1
comparison, Rule (3) 1 comparison, and Rule (4) which is the initial condition
requires no computation. In this example of the table, entry (1, 1) is the initial
condition. Entries along the first row of the table are determined by transition
Rule (3), and entries along the first column by transition Rule (2). Besides the
initial entry, there are 3 entries along the first row as well as along the first
column of the table, and thus it requires 6 comparisons to determine the
accumulated sum of sphericity values for these entries. The remaining 9 (3X3)
entries which are determined by transition Rule (1) require 9 additions and 18
comparisons. Thus, a total of 9 additions and 24 comparisons are required.
Generalizing this analysis, we can conclude that if the table is nXn, it will
require 2(n—1) comparisons to determine the values for entries along the first
row and the first column, and (n—1)? additions and 2(n—1)? comparisons for
the remaining entries; a total of (n—1)? additions and 2n(n—1) comparisons.
By the same reasoning, the backward procedure has the same computational
complexity as the forward procedure.

Let N=min(n, m) denote the minimum between the number of model
landmarks and the number of scene landmarks. Since HDP stops when the
range of either all the model landmarks or all the scene landmarks is covered,
only an NXN portion of the nXm table of compatibility will be used in the
procedure. Of the N XN portion of the table, the upper left portion, which we
denote as having a size of pXp, results from the backward procedure, and the
lower right portion of size (N—p +1)X(N —p-+1) from the forward procedure.
The computational complexity is proportional to the total number of entries
that are covered by HDP. The total number of entries is p2+(N —p +1)2.

By finding the derivative of the total number of entries with respect to p,

1 yields the least number of entries. In this case, when N

the value of p= N

is odd, by adding the number of computations required for both the forward
and backward procedures of HDP, a total of .
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—;—(N —1)? additions and (N®—1) comparisons ' (4.4)

are required. If N is even, the complexity is least expensive when one
N+1

procedure covers ( 2 and the other ( 2 where ” is the ceiling

operator, i.e., the smallest integer greater than or equal to the argument, and
is the floor operator, i.e., the largest integer less than or equal to the

argument. In this case, HDP requires
N2
( -2——N +1) additions and N? comparisons . (4.5)
The computation is the most expensive when the procedure covers all NXN
entries, in which case it requires

(N-1)? additions and 2N (N—1) comparisons . : (4.6)

This happens when either only a forward or only a backward procedure is
used.

The splitting of the NXN table into a portion governed by the forward
procedure and the other by the backward procedure is'problem dependent.
The computational complexity of HDP is thus bounded between the amount of
computation defined by Equétion 4.6 and that of Equation 4.4 or 4.5.
Additional computational overhead is required by HDP to decide to which
procedure to switch. This overhead requires N comparisons and N divisions.
Each division is used to calculate the average sphericity value mentioned in
Section 4.3.2. In general, as will be seen in examples presented in the next
section and the next chapter, each object is usually represented by no more
than 100 landmarks. It is thus computationally inexpensive to determine
matches between landmarks of a model and a scene.

4.4. Experimental Results

We shall present three examples of a scene which contain overlapping
tools. Further experimental results which takes into account. the effect of noise
and larger occlusion will be discussed in the next chapter.

Consider again the scene shown in Figure 4.2, the results of performing
the landmark matching task between the scene and each of the models shown
in Figures 3.34-3.38 are summarized in Table 4.1. Models that match well with
the objects in the scene are those with the smallest match errors. Though the



125

Table 4.1.
The summary of the results of matching a
library of objects with the scene shown in Figure 4.2,

Models Model figure | Total Number of Match Error
numbers Number of matched
Model land- | model land-
marks marks
wrench 3.35 6 6 1.98
needle-nose plier 3.36 4 2 0o
wire cutter 3.34 6 5 7.39
specialty plier 3.37 6 2 %)
wire stripper 3.38 6 6 0.62

wire cutter is not in the scene, the match error between the wire cutter and the
scene is quite small. This is because the scene contains the wire stripper, and
the relative positions of the landmarks of the wire stripper are similar to those
of the wire cutter. Figures 4.5-4.7 show the results of mapping other models
into the scene.

Figure 4.8 shows another example of a scene in which the landmarks are
extracted based on the cardinal curvature points using w=20. Using the same
library of models as the previous example, the results of matching each model
with the scene are summarized in Table 4.2. Again, models that match well
with the objects in the scene are those with the smallest match errors. The
results of mapping the two correctly matched models into the scene are shown
in Figures 4.9-4.10.

The last example of a scene is shown in Figure 4.11, where the landmarks
are obtained by the curvature guided polygonal approximation using w=10,
and a collinear factor of 15. A library of models in which landmarks are
obtained by the same method and using the same parameters are shown in
~ Figures 3.13-3.17. Each of the models and the scene contains more landmarks
than the previous examples. The results of matching are summarized in Table
4.3. Note again that correct matches between the models and the scene have
the smallest match errors. Figures 4.12-4.15 show the results of mapping some
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of the models into the scene. Note that some of the objects in the scene
contains extraneous and missing landmarks due to occlusion.

4.56. Summary

We have reviewed recent work on partial shape recognition, and compared
it with our approach. Our approach is unique and efficient — we use landmarks
as the shape features, sphericity as a shape measure, and hopping dynamic
programming for matching the landmarks. Instead of computing several
feature values to quantify the similarity between two features, we use a single
shape measure, sphericity, which is easy to compute. The landmark matching
task is computationally less expensive than other feature matching tasks which
involve iterative procedures. We have presented some experimental results.
Further experimental results will be presented in the next chapter.

Table 4.2.
The summary of the results of matching a
library of objects with the scene shown in Figure 4.8.

Models Model figure | Total Number of Match Error
numbers - Number of matched
Model land- | model land-
marks marks
wrench 3.35 6 5 2.89
needle-nose plier 3.36 4 3 14.97
wire cutter 3.34 6 3 8.01
specialty plier 3.37 6 6 2.16
wire stripper 3.38 6 3 11.65
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Table 4.3.
The summary of the results of matching a

library of objects with the scene shown in Figure 4.11.

Models Model figure | Total Number of | Match Error
numbers Number of | matched
Model model
landmarks | landmarks
wrench 3.13 10 7 1.11
needle-nose plier 3.14 10 8 3.72
wire cutter 3.15 12 11 1.28
specialty plier 3.16 8 10.23
wire stripper 3.17 10 2 .' 00
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Figure 4.5. The result of mapping the wrench into the scene shown in Figure
4.2,
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Figure 4.6. The result of mapping the wire cutter into the scene shown in
Figure 4.2.
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Figure 4.7.  The result of mapping the specialty plier into the scene shown in
Figure 4.2.
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Figure 4.8. A scene which consists of a .specialty plier and a wrench

overlapping each other. Each scene landmark is labeled and
indicated by an ‘““X.”
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Figure 4.9. The result of mapping the wrench into the scene shown in Figure
4.8.
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Figure 4.10. The result. of mapping the specialty plier into the scene shown in
Figure 4.8.
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Figure 4.11. A scene which consists of a wire cutter, a wrench, and a needle-

nose plier overlapping each other. Each scene landmark is labeled
and indicated by an “X.”



135

Figure 4.12. The result of mapping the wrench into the scene shown in Figure
4.11.
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Figure 4.13. The result of mapping the needle-nose plier into the scene shown
in Figure 4.11.
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Figure 4.14. The result of mapping the wire cutter into the scene shown in
Figure 4.11.
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Figure 4.15. The result of mapping the specialty plier into the scene shown in
Figure 4.11.
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CHAPTER 5

FURTHER EXPERIMENTAL RESULTS

5.1. Introduction

In Chapters 1 through 4, we have presented the overall scheme along with
some experimental results of landmark-based shape recognition. In this
chapter, we shall present further experimeﬁtal results to demonstrate the
effectiveness of the approach with respect to noise and larger occlusion. Four
examples will be studied. An example on noise effects will be presented in
Section 5.2, two examples on larger occlusion will be presented in Section 5.3,
and one example on the combined effects of noise and occlusion will be
presented in Section 5.4. We shall summarize the chapter in Section 5.5.

5.2. Experiments with Noisy Data

We consider an image of a spacecraft shown in Figure 5.1a. The gray level
value of the object region is 160, and the background is 96. The silhouette of
the spacecraft is shown in Figure 5.1b, the contour in Figure 5.1c, and the
landmarks in Figure 5.1d. The landmarks are extracted based on the cardinal
curvature points using w = 20. We shall consider the image shown in Figure
5.1a as the image of a model object. To simulate the effects of noisy data, a
zero mean i.i.d. Gaussian random variable is added to each pixel of the
noiseless image. The noisy image is then thresholded at 128. The contours of
the resulting regions in the thresholded image are traced, and the longest
contour from which landmarks are extracted is used to represent the object
contour in the noisy image. The landmarks are also extracted based on the
cardinal curvature points. We shall consider the noisy image as the image of a
scene. Note that no attempt has been made to clean the noisy image.

Denote o as the standard deviation of the Gaussian random variables. The
signal to noise ratio (SNR) of the noisy image is defined as:
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(c) (d)

Figure 5.1. Experiments with noisy data: noiseless case. (a) A 256X256 gray
level image of a spacecraft. (b) The silhouette of the spacecraft.
(c) The contour of the spacecraft. (d) Landmarks of the space-
craft based on the cardinal curvature points. Each landmark is
labeled and indicated by an ‘““X.”
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Experiments with noisy data: SNR=04dB. (a) The noisy image of
the spacecraft having a SNR=0dB . (b) The result of threshold-
ing the noisy image. (c) The corresponding object contour in the
noisy image. (d) Extracted landmarks. Each landmark is labeled
and indicated by an “X.”
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Figure 5.3. Experiments with noisy data: SNR=3dB. (a) The noisy image of
the spacecraft having a SNR=3dB . (b) The result of threshold-
ing the noisy image. (c) The corresponding object contour in the
noisy image. (d) Extracted landmarks. Each landmark is labeled
and indicated by an “X.”
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(c) (d)

Experiments with noisy data: SNR=6dB. (a) The noisy image of
the spacecraft having a SNR=6dB . (b) The result of threshold-
ing the noisy image. (c) The corresponding object contour in the
noisy image. (d) Extracted landmarks. Each landmark is labeled
and indicated by an “X.”
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(c) (d)

Experiments with noisy data: SNR=10dB. (2) The noisy image
of the spacecraft having a SNR=10dB . (b) The result of thres-
holding the noisy image. (c) The corresponding object contour in
the noisy image. (d) Extracted landmarks. Each landmark is
labeled and indicated by an “X.”



145

<9 =5

(=) (b)
© (@)

Figure 5.6. The results of mapping the model into the scenes with
SNR=0, 3, 6, 10 dB are shown in (a), (b), (c), and (d), respec-
tively.
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SNR = 20log 22 4B |
ag

where 64 is the difference between the gray level values of the object region
and the background.

Images having SNR’s of 0 dB, 3 dB, 6 dB, and 10 dB are shown in Figures
9.2a, 5.3a, 5.4a, and 5.5a, respectively. Their corresponding thresholded images
are shown in Figures 5.2b, 5.3b, 5.4b, and 5.5b, respectively; their
corresponding object contours are shown in Figures 5.2¢, 5.3¢, 5.4c, and 5.5¢,
respectively; their corresponding extracted landmarks are shown in Figures
5.2d, 5.3d, 5.4d, and 5.5d, respectively. Notice that when the SNR is low, the
landmark extractor produces many erroneous and extraneous landmarks. As
compared to the model which has only 7 landmarks, 33 landmarks are
extracted from the scene which has a SNR = 0 dB. The match error between
the model and the 0 dB scene is 36.53. The result of mapping the model
contour into the scene is shown in Figure 5.6a. The match errors between the
model and the scenes with SNR = 3 dB, 6 dB, and 10 dB are 45.13, 2.55, and
0.66, respectively. The results of mapping the model contour into these scenes
are shown in Figure 5.6b, 5.6¢, and 5.6d, respectively.

As seen from these experiments, when too many erroneous landmarks
occur and the sequential order of the landmarks is lost, the local structures of
the scene landmarks become completely different from those of the model
landmarks. In this case, the landmark matching task fails to determine the
correct matches. As compared with the model landmarks, when a part of the
sequential order of the landmarks in the scene is still preserved, although there
may have minor distortion in the landmark locations, the landmark matching
task can successfully detect correct matches. In Figures 5.2d and 5.3d, the
sequential order of the scene landmarks is totally lost as compared with that of
the model, and hence the matching task fails. In Figure 5.4d, the locations of
the landmarks along the object contour in the scene deviate a small amount
from those of the model landmarks. In addition, part of the sequential order of
the landmarks of the object in the scene has also been rearranged by two
extraneous landmarks. However, the matching task can still correctly match
model landmarks 6, 7, 1, 2, and 3 with scene landmarks 8, 9, 1, 2, and 3,
respectively, yielding a small match error. It is seen from these experiments
that the sequential order of the landmarks is important to the matching task,
but minor distortion in landmark locations does not significantly degrade the
performance.
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5.3. Experiments with Occlusion

In Chapter 4, we have considered scenes that comprise of at most three
overlapping objects. Before we consider more complicated scenes, we shall
expand the library of model objects. In addition to the set of tools discussed in
Chapter 3, we shall include the spacecraft, and the outlines of some islands
shown in Figures 5.7-5.12. The islands, which are not man-made, have
interesting and complicated shapes. Figures 5.7-5.12 show the silhouettes and
the corresponding landmarks of the islands of Borneo, Halmahera, Luzon,
Mindanao, New Guinea, and Sulawesi, respectively. The landmarks of the
islands are extracted based on the cardinal curvature points, and the
corresponding range of w values that can be used for extracting landmarks of
each island are summarized in Table 5.1. Notice that the outlines of the
islands are very curvy, and the corresponding range of w values that can be
used for extracting their landmarks are smaller than those of the tools.

Table 5.1.
Range of w values used to obtain the landmarks of the additional
objects of the enlarged library based on cardinal curvature points

Models - Figures | Range of w
spacecraft 5.1d 19.5-25.5
Borneo 5.7b 19.5-24
Halmahera 5.8b 20-23
Luzon 5.9b 14-19.5

Mindanao 5.10b 17.5-21.5
New Guinea | 5.11b 18-21
Sulawesi 5.12b 19.5-29

Figure 5.13 shows an example of a scene which consists of four objects
overlapping each other. Compared to their respective models, the wire stripper
has been scaled by an area factor of 0.6, and the island of New Guinea by an
area factor of 1.4. The spacecraft has been rotated by 45°. Landmarks in the
scene are extracted based on the cardinal curvature points using w=20.
Compared to their respective model landmarks, one out of six of the landmarks
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of the wire stripper, one out of seven of the landmarks of the spacecraft, one
out of nine of the landmarks of Sulawesi, and five out of eleven of the
landmarks of New Guinea are missing. With respect to each model, those
landmarks in the scene not belonging to the model are considered as
extraneous landmarks. The results of matching each model object of the
library with the scene are summarized in Table 5.2. Notice that the models
that correctly match the scene have the smallest match errors. Although the
scene does not contain the wire cutter, the match error between the wire cutter
and the scene is quite small. This is due to the fact that the scene contains the
wire stripper and the relative locations of the landmarks of the wire cutter are
quite similar to those of the wire stripper. The landmarks of the wire cutter
are thus matched with those of the wire stripper in the scene. Figures 5.14-5.17
show the results of mapping the models that correctly match with the scene
back into the scene.

Figure 5.18 shows a more complicated scene which consists of six
overlapping objects. Compared to their respective models, the specialty plier
has been rotated by 20° and scaled by an area factor of 0.5. The wrench and
Halmahera has been rotated by 90 °; the spacecraft has been rotated by 180°.
Luzon has been scaled by an area factor of 1.4, and Borneo has been rotated
by 90° and scaled by an area factor of 0.6. The landmarks in the scene are
also extracted based on cardinal curvature points using w=20. Compared to
their respective model landmarks, three out of six of the landmarks of the
specialty plier, one out of six of the landmarks of the wrench, two out of seven
of the landmarks of the spacecraft, two out of eight of the landmarks of
Halmahera, five out of eighteen of the landmarks of Luzon, and three out of
seven of the landmarks of Borneo are missing. Again, with respect to each
model, those landmarks in the scene not belonging to the model are considered
as extraneous landmarks. The results of matching each model object of the
library with the scene are summarized in Table 5.3. Also note that the models
that correctly match the scene have the smallest match errors. Figures 5.19-
5.24 show the results of mapping the models that correctly match with the
scene back into the scene.
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b.4. Experiments on The Combined Effects of Noise and Occlusion

In this section, we shall investigate' the effectiveness of our landmark
matching task with regard to the combined effects of noise and occlusion. We
consider a scene which consists of three overlapping objects, as shown in Figure
5.25a. Compared to their respective models, the needle-nose plier has been
scaled by an area factor of 0.3, and the spacecraft has been rotated by 90° and
scaled by an area factor of 0.6. Figure 5.25b shows the landmarks in the scene
that are extracted based on the cardinal curvature points using w=20,
Although all the landmarks of the needle-nose plier appear in the scene, part of
their sequential order is lost due to occlusion. Six out of the seven landmarks of
the spacecraft appear in the scene, but only three (17, 18, 19) are in the correct
sequential order. Nine out of thirteen landmarks of Mindanao are in correct
sequential order. The results of matching each model object of the library with
the scene are summarized in Table 5.4. The results of mapping some of the
models into the scene are shown in Figures 5.26-5.27.

The effect of noise is similarly simulated as in Section 5.2. The object
contour and the landmarks of a noisy image are similarly obtained as described
in Section 5.2. The image of the scene having a2 0 dB SNR is shown in Figure
5.28a; the corresponding extracted landmarks are shown in Figure 5.28b.
Table 5.5 summarizes the results of matching each model object of the library
with the scene. Note that the sequential order of the landmarks in the scene
compared to those of their respective models is totally rearranged. All the
resulting matches are either incorrect or undetermined. The image with a 3 dB
SNR is shown in Figure 5.29a; the corresponding extracted landmarks are
shown in Figure 5.29b. The results of matching each model object of the
library with the scene having a SNR = 3dB are summarized in Table 5.6.
Again, the sequential order of the landmarks in the scene compared to the
respective model landmarks is lost. Only the match between Mindanao and the
scene has a smaller error, and the rest are either mismatched or undetermined.
Images with 6 dB and 10 dB SNR along with related experimental results are
shown in Figures 5.30-5.35. The experimental results are summarized in Tables
5.7 and 5.8. When the sequential order of the landmarks in the scene is not
severly rearranged compared to those of the respective models, matches are
correctly determined yielding small match error values.
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5.5. Discussion and Summary

The above experiments have demonstrated that our landmark matching
task can handle occlusion reasonably well. When experimenting with the effects
of noise, we have not included any preprocessing to enhance the landmark
extraction task. The performance of the matching task could improve
significantly if the landmarks in noisy images can be extracted more
accurately. It is difficult to theoretically analyze the performance of our
landmark matching method which is, in many cases, problem dependent. The
performance depends on the quality of the extracted landmarks, and the
number of correct landmarks in the scene that are detectable. From Chapter 4,
the match error is undefined if less than three landmarks of a model are
correctly matched with the scene landmarks. Therefore, when matching
landmarks of a model with those of a scene, at least three landmarks in a scene
that correspond to the model must be detectable. In addition, part of the
sequential order of the detectable landmarks must be preserved. From the
above experiments, it is safe to say that an object in a scene can be recognized
as long as more than half of its landmarks in the scene can be detected in the
correct sequential order. It is also important to note that the distortion in the
landmark locations does not degrade the matching performance as much as the
distortion in the sequential order of the landmarks.
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(a) (b)

Figure 5.7. The silhouette and the extracted landmarks of the island of

Borneo are shown in (a) and (b), respectively. Each landmark is
labeled and indicated by an “X.”

(a) v (b)

Figure 5.8. The silhouette and the extracted landmarks of the island of

Halmahera are shown in (a) and (b), respectively. Each
landmark is labeled and indicated by an “X.”
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(a) (b)

Figure 5.9. The silhouette and the extracted landmarks of the island of

Luzon are shown in (a) and (b), respectively. Each landmark is
labeled and indicated by an “X.”

(&) (b)

Figure 5.10. The silhouette and the extracted landmarks of the island of
Mindanao are shown in (a) and (b), respectively. Each landmark
is labeled and indicated by an “X.”
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(a) - (b)

Figure 5.11. The silhouette and the extracted landmarks of the island of New

Guinea are shown in (a) and (b), respectively. Each landmark is
labeled and indicated by an “X.”

oo

(=) ®)

Figure 5.12. The silhouette and the extracted landmarks of the island of

Sulawesi are shown in (a) and (b), respectively. Each landmark
is labeled and indicated by an “X.”
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Figure 5.13. A scene which consists of four overlapping objects. Each scene
landmark is labeled and indicated by an *“X.”
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Table 5.2.
The summary of the results of matching a

library of objects with the scene shown in Figure 5.13.

Models Model figure | Total Number of | Match Error
numbers number of | the model
model landmarks
landmarks | that match
with the
scene
wrench 3.35 6 2 o0
needle-nose plier 3.36 4 2 00
wire cutter 3.34 6 5 7.56
specialty plier 3.37 6 3 53.93
wire stripper 3.38 6 6 2.49
Borneo 5.7b 7 0 00
Halmahera 5.8b 8 4 18.22
Luzon 5.9b 18 2 o0
Mindanao 5.10b 13 3 42.94
New Guinea 5.11b 11 6 5.49
Sulawesi 5.12b 9 8 0.34
spacecraft 5.1d 7 6 0.93
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Figure 5.14. The result of mapping the wire stripper into the scene shown in
Figure 5.13.
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Figure 5.15. The result of mapping New Guinea into the scene shown in
Figure 5.13.
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Figure 5.16. The result of mapping Sulawesi into the scene shown in Figure
5.13.
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Figure 5.17. The result of mapping the spacecraft into the scene shown in
Figure 5.13. :
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Figure 5.18. A scene which consists of six overlapping objects. Each scene
landmark is labeled and indicated by an ‘“X.”
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. Table 5.3.
The summary of the results of matching a

library of objects with the scene shown in Figure 5.18.

Models Model figure | Total Number of | Match Error
numbers number of | the model
model landmarks
landmarks | that match
with the
scene
wrench 3.35 6 4 0.74
needle-nose plier 3.36 4 0 o0
wire cutter 3.34 6 2 00
specialty plier 3.37 6 3 7.89
wire stripper 3.38 6 2 o0
Borneo 5.7b 7 5 11.75
Halmahera 5.8b 8 6 0.57
Luzon 5.9b 18 14 0.78
Mindanao 5.10b 13 3 54.59
New Guinea 5.11b 11 4 77.81
Sulawesi 5.12b 9 4 18.08
spacecraft 5.1d 7 5 0.55
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Figure 5.19. The result of mapping the wrench into the scene shown in F igure
5.18.
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Figure 5.20. The result of mapping the specialty plier into the scene shown in
Figure 5.18.
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Figure 5.21. The result of mapping Borneo into the scene shown in Figure
5.18.
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Figure 5.22. The result of mapping Halmahera into the scene shown in Figure
5.18.
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————

Figure 5.23. The result of mapping Luzon into the scene shown in Figure 5.18.
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Figure 5.24. The result of mapping the spacecraft into the scene shown in
Figure 5.18.
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Figure 5.25. Experiments on the combined effects of noise and occlusion:
noiseless case. (a) A scene which consists of three overlapping

objects. (b) Extracted scene landmarks. Each landmark is labeled
and indicated by an “X.”
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Table 5.4.
The summary of the results of matching a

library of objects with the scene shown in Figure 5.25b.

Models Model figure | Total Number of | Match Error
numbers number of | the model
model landmarks
landmarks | that match
with the
scene
wrench 3.35 6 2 s}
needle-nose plier 3.36 4 4 0.24
wire cutter 3.34 6 2 o0
specialty plier 3.37 6 2 o'e)
wire stripper 3.38 6 4 13.96
Borneo 5.7b 7 2 o0
Halmahera 5.8b 8 2 0
Luzon 5.9b 18 4 261.62
Mindanao 5.10b 13 10 1.40
New Guinea 5.11b 11 2 00
Sulawesi 5.12b 9 3 140.39
spacecraft 5.1d 7 3 8.22
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(b)

Figure 5.26. The results of mapping the needle-nose plier and Luzon into the
scene (Figure 5.25b) are shown in (a) and (b), respectively.
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Figure 5.27. The results of mapping Mindanao and the spacecraft into the
scene (Figure 5.25b) are shown in (a) and (b), respectively.



(b)

Figure 5.28. Experiments on the combined effects of noise and occlusion:
SNR=0dB. (a) The noisy image of Figure 5.25a having
SNR=0dB. (b) The corresponding extracted landmarks from
(2). Each landmark is indicated by an *X.”
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Table 5.5.
The summary of the results of matching a

library of objects with the scene shown in Figure 5.28b.

Models Model figure | Total Number of | Match Error
numbers number of | the model
model landmarks
landmarks | that match
with the
scene
wrench 3.35 6 0 o)
needle-nose plier 3.36 4 3 10.78
wire cutter 3.34 6 0 00
specialty plier 3.37 6 0 o0
wire stripper 3.38 6 0 00
Borneo 5.7b 7 3 34.28
Halmahera 5.8b 8 3 38.63
Luzon 5.9b 18 7 51.33
Mindanao 5.10b 13 6 54.32
New Guinea 5.11b 11 4 8.89
Sulawesi 5.12b 9 4 54.68
spacecraft 5.1d 7 2 o
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Figure 5.29. Experiments on the combined effects of noise and occlusion:
SNR=3dB. (a) The noisy image of Figure 5.25a having
SNR=3dB. (b) The corresponding extracted landmarks from
(a). Each landmark is indicated by an “X.”
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Table 5.6.
The summary of the results of matching a

library of objects with the scene shown in Figure 5.29b.

Models Model figure { Total Number of | Match Error
o numbers number of | the model
model landmarks
landmarks | that match
with the
scene
wrench 3.35 6 2 00
needle-nose plier 3.36 4 0 00
wire cutter 3.34 6 0 oo
specialty plier 3.37 6 0 00
wire stripper 3.38 6 3 78.17
Borneo 5.7b 7 3 14.42
Halmahera 5.8b 8 2 00
Luzon 5.9b 18 4 604.01
Mindanao 5.10b 13 6 18.09
New Guinea 5.11b 11 3 116.42
Sulawesi 5.12b 3 71.35
spacecraft 5.1d 7 4 16.08
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(b)
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Figure 5.30. Experiments on the combined effects of noise and occlusion:
SNR=6dB. (a) The noisy image of Figure 5.25a having
SNR=6dB. (b) The corresponding extracted landmarks from
(a). Each landmark is indicated by an *“X.”
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Table 5.7.
The summary of the results of matching a

library of objects with the scene shown in Figure 5.30b.

Models Model figure | Total Number of | Match Error
numbers number of | the model .
model landmarks
landmarks | that match
with the
scene
wrench 3.35 6 0 00
needle-nose plier 3.36 4 3 2.92
wire cutter 3.34 6 3 62.56
specialty plier 3.37 6 2 00
wire stripper 3.38 6 4 7.75
Borneo 5.7b 7 3 121.68
Halmahera 5.8b 8 3 158.96
Luzon 5.9b 18 3 41.83
Mindanao 5.10b 13 6 14.47
New Guinea 5.11b 11 3 20.70
Sulawesi - 5.12b 9 2 o0
5.1d 7 3 17.02

spacecraft
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Figure 5.31. The results of mapping the needle-nose plier and Mindanao into
the scene (Figure 5.30b) are shown in (a) and (b), respectively.
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Figure 5.32. The result of mapping the spacecraft into the scene shown in
Figure 5.30b.
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Figure 5.33. Experiments on the combined effects of noise and occlusion:
SNR=10dB (a2) The noisy image of Figure 5.25a having
SNR=10dB. (b) The corresponding ‘extracted landmarks from
(a). Each landmark is indicated by an “X.”
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Table 5.8.
The summary of the results of matching a

library of objects with the scene shown in Figure 5.33b.

Models Model figure | Total Number of | Match Error
numbers number of | the model
model landmarks
landmarks | that match
with the
_ scene
wrench 3.35 6 2 00
needle-nose plier 3.36 4 4 0.48
wire cutter 3.34 6 2 00
specialty plier 3.37 6 3 18.48
wire stripper 3.38 6 4 15.34
Borneo 5.7b 7 2 o0
Halmahera 5.8b 8 2 00
Luzon 5.9b 18 4 460.50
Mindanao 5.10b 13 10 1.78
New Guinea 5.11b 11 2 00
Sulawesi 5.12b 9 128.62
spé,cecraft 5.1d 7 3 18.18
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Figure 5.34. The results of mapping the needle-nose plier and Mindanao into
the scene (Figure 5.33b) are shown in (a) and (b), respectively.
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Figure 5.35. The result of mapping the spacecraft into the scene shown in
Figure 5.33b.
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value of 1 indicates that the two tetrahedra are similar. Recall that HDP has
made use of the sequential arrangement of the landmarks to achieve the
landmark matching task. If the sequential order of the landmarks in the 3-D
space can be preserved, HDP can also be used to achieve the landmark
matching task. When the order of the landmarks is not known, we conjecture
that it is possible to construct a graph based on the sphericity values of
tetrahedral transformations mapping model landmarks to scene landmarks.
This graph will reflect the compatibility of the geometric structures between
the model and the scene landmarks. It is worth pursuing the concept of this
structured graph to achieve 3-D landmark-based shape recognition.
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APPENDIX

A DETAILED PROOF OF LEMMA 2.36

Lemma 2.36 If W is a non-central Beta random variable, with 2, 2 degrees
of freedom, and the noncentrality, p, that is, fw(w)=PB(w;1,1,p) ,

then
B(w)y=1-+4+< _ L -
P p P
1 —
Ewy=1-2424q_ 1, 7",
pp pop
1 2 1 R N T
Var(W)= —(1 === =>4 271+ = + = + <)) .
p pop po0

Proof: By making use of Theorem 2.33, Lemma 2.35, and the moments of a
Poisson random variable, we have

E(w) ={wfw(w) dw

1
= fw B(w;1,1,p) dw
0

By Theorem 2.33,
1

= f w
0

o0 1
= 2 ef"%fwﬂ(w;lfi,l)dw]

J=0 °0

2

€ dw
J=0

"”%ﬂ(w;l-l-j,l)
7!
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By Lemma 2.35,
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Using the moments of a Poisson random variable with parameter p,
Ew=1-+ 4L L.~ (A1)
2

Note that moments of a Poisson random variable can be obtained by
using the moment generating function of the Poisson random variable.

Similarly,

o0 51
E(Wh) =y |e £ fwzﬁ(w;1+j,1)dw]
§=0 J:' o

§ e_,,p_jﬁ__j_
o ' 743

“~

oo g
= 5 5 |G+t L
p

=0 (7+3)!
- ;13-3"33 (=2 (i—1)e Lo
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o !
= % " (1'3-51'2+8i~—4)e-"L_)— + 4e™*
o '
A li=o LR
2 4 1 e’
=1->+—(1-=45"). (A-2)
P pt p p

The variance is obtained by using Equations A.1 and A.2:
Var(W) = E(W?) — (E(W))?

1 2 1 — 1 -
—2-(1-———*2—+2e ’(l+l+—2+ 62 ) .
p pp PP )
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