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ABSTRACT

Beering, David R. M.S.E.E., Purdue University. December 1987. The Use of
the AT&T DSP32 Digital Signal Processing Development System: Applica-
tions and New Developments. Major Professor: Edward J. Delp.

The AT&T Western Electric DSP32 digital signal processing Develop-
ment System is a high-speed 32-bit floating-point processor designed to han-
dle many digital signal processing applications at speeds up to 8 MIPS. The
processor is equipped with a full complement of programmable inputs and
outputs, including a high-speed 8-bit CODEC (A/D and D/A). In addition to
the hardware environment, the DSP32 supports a software development
environment which includes a software simulator which aids in algorithm

development.

The DSP32 and its support functions are introduced. The hardware and
software environment are discussed in detail, and some of the supplied rou-
tines are examined and tested. In addition, we present a new library of one-
dimensional digital filtering algorithms, including rank-order operations, o
trimmed-mean operations, and median filtering. Also presented is a group of
image processing algorithms which includes morphological operations, win-

dow smoothing, Laplacian enhancement, and the median filter.

Finally, we present an experiment in real-time speech processing using

the DSP32. Comparisons are made between the DSP32 and other devices in



its class, and timing comparisons are made with several minicomputers run-

ning similar algorithms.



CHAPTER 1
INTRODUCTION

The AT&T DSP32 Digital Signal Processing Development System is a
32-bit, 16 MHz, VLSI processor which is capable of operating at speeds up to
8 million floating-point operations per second. It is the third member of a
family of single-chip digital signal processors developed by AT&T. The need
for a fast, versatile processor migrated from telephone switching systems,
where a variety of signal processing functions must be performed within the
switch. These applications, among others, include filtering, high-speed
modems, speech recognition, and multichannel signaling [AI86].

The DSP family of architectures provides a single device capable of
handling any of these tasks at high speed. To fit the DSP to a certain
application, the device is merely mask-programmed for the particular
application. As the technology evolved, and VLSI techniques became a
reality, the DSP family was strengthened with the DSP20 (the predecessor to
the DSP32). The DSP20 was pin and architecture compatible with the
original DSP, but offered twice the speed [BoHS6].

Most recently, the DSP32 was released, capable of speeds of 4 million
floating point operations per second, with the capability to run twice as fast
if the internal architecture is utilized properly. Now the DSP32 is available
in both the mask-programmable version as well as a part of the DSP32
Development System. The Development System consists of a DSP32
simulator which is used for program development. The simulator is
supported by a development environment which contains a library of pre-
programmed subroutines, a compiler for DSP32 programs, and an interface
to both the simulated and actual DSP32. The interface, called "dsp3sim”,
provides access to all memory and registers, disassembly of instructions
loaded in memory, breakpoint debugging, and user-defined conditional
execution [BoG86], [BoH86).



CHAPTER 2
THE AT&T DSP32 DEVELOPMENT SYSTEM

2.1 INTRODUCTION

The DSP32 is a 100-pin array manufactured using 1.5 micrometer
NMOS technology. The chip, with an area of approximately 81 square
millimeters, has nearly 155,000 transistors. The device operates on a single
external 5-volt power supply [BoH86]. The basic structure of the DSP32 is
2048 bytes of on-chip ROM memory, 4096 bytes of on-chip RAM memory, a
control arithmetic unit (CAU), a data arithmetic unit (DAU), a serial 1/0
section, a parallel I/O section, a control section, and an on-board clock
section (see Figure 2-1) [We86], [HoC86).

2.2 DATA ARITHMETIC UNIT (DAU)

The DAU is the main execution unit for signal processing algorithms. It

contains four 40-bit floating-point accumulators, a floating-point multiplier
and adder, and the data arithmetic unit control register (DAUC). The data
arithmetic unit performs all multiply and accumulate operations on signal
processing data and all data type conversion.

The DAU performs operations of the form (a = b + (¢ x d)) at 4 million
instructions per second where a, b, ¢ and d are real and floating point. The
DAU accepts inputs from memory, 1/0, registers, or from the 40-bit
accumulators. Type conversions are also facilitated in the DAU and are of
the type floating point to-and-from integer, and floating point to-and-from
pu-law and A-law.

Arithmetic and logic functions are implemented in the Control
Arithmetic Unit, since the architecture of the DAU does not lend itself to
these implementations. The DAU multiplier and adder operate in parallel.
Each requires one processor cycle. The pipeline of the CAU is not as deep as
the pipeline of the DAU, making 16-bit integer arithmetic faster there.
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Figure 2-1. Block diagram of the DSP32 digital signal processor. The
numbers in parentheses designate the size of a particular

register or bus. The symbols at the left represent pins on the
device package.

2.3 CONTROL ARITHMETIC UNIT (CAU)

Primary functions of the control arithmetic unit are generating
addresses to memory and executing 16-bit integer instructions. The CAU has
twenty-one 16-bit static general-purpose registers (r1 - r21), a 16-bit program
counter, and an arithmetic logic unit (ALU). Registers r1 - r14 are used as
general purpose registers in control arithmetic (CA) instructions and as
memory pointers in data arithmetic (DA) instructions. Registers r15 - r19 are



used as general purpose registers in CA instructions and as increment
registers in DA instructions. Registers r20 and r21 have other special
purposes. Register r20 is the pointer in (PIN) and is used as the serial 1/0
DMA input pointer. Register r21 is used as the serial output DMA pointer.
These two registers may be used as general purpose registers, however, their
impact on DMA must be considered. The CAU generates one address every
four processor clock cycles (see Figure 1-1 for the DSP32 block diagram).

The DSP32 processor cycle is divided into four stages. Due to the highly
pipelined nature of the DSP32 processor, six different instructions are in
some stage of maturity during each processor cycle. The stages of instruction
execution are instruction fetch, two memory operand reads, instruction
decode, and memory write.

2.4 MEMORY

The DSP32 provides 6 kilobytes of on-chip memory. This is allocated as
2048 bytes of ROM and 4096 bytes of RAM. Typically, fixed instructions and
operands are stored in ROM and variable operands are stored in RAM. On-
chip memory greatly increases processor efficiency, as off-chip delays due to
memory access latency can negatively impact processor performance. On-
chip RAM is dynamic and can be refreshed either automatically or by
program control. All instructions are 32-bits and are fetched in one memory
access. Three data types, 8, 16, or 32-bits, are provided. Memory is
uniformly byte addressable.

Fifty-six Kbytes of directly addressable off-chip memory is also
provided. Memory control signals from the processor are available at the
off-chip memory making the interface transparent. The RAM and ROM can
be arranged in four different configurations. These are selected on the device
with the MMD front panel switches, and in software during program
assembly (see Figure 2-2).

Memory in the DSP32 is divided into two banks, upper and lower.
Although memory access can be made without regard to bank selection,
effective memory access time can be cut in half if successive memory
accesses are made to alternating memory banks. External memory can only
be assigned to the lower bank of memory. The maximum amount of memory
that can be addressed by the DSP32 is 64 Kbytes, however, the top 2 Kbytes
of memory cannot be accessed.
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Figure 2-2. DSP32 memory address configuration.

2.6 SERIAL I/O

The serial I/O (SIO) unit allows the DSP32 to easily interface with
other serial devices. The SIO uses a double buffering scheme to convert a
serial input stream to parallel and parallel output data to serial. This is -
accomplished by loading input serial data into the input shift register in
either 8-, 16-, or 32-bit widths, followed by loading the input buffer. This
double buffering arrangement allows back-to-back transfers. Also, a second
serial transmission can be started before the first has completed. External
control signals allow a direct interface to a TDM line, a CODEC, and direct



DSP32-t0-DSP32 interface for multi-processor applications.

Also provided is the facility for program-independent DMA using the
input and output buffers. In this application, PIN and POUT are used as
user-defined dedicated pointers for DMA transfers. This allows input and
output buffers for entire frames of data to be established in memory.

2.6 PARALLEL I/O

Parallel I/O is supported by three 16-bit registers, PAR, PDR, and PIR;
an 8-bit register, PCR; and a 6-bit register, ESR. These registers are used to
interface to a microprocessor and to detect errors. Eight-bit transfers are

.accomplished between the parallel data bus and the the DSP32 using the
parallel data register (PDR). These transfers may be controlled either by
programs of DMA. If DMA mode is chosen, the microprocessor sets the
starting address for the DMA transfer in the parallel address register (PAR).
The control pins allow the microprocessor access to PDR and cause DMA
access to proceed. This allows the loading of an application program or data
with another program in progress. The parallel interrupt register (PIR)
contains the DSP32 device output for the microprocessor. It also triggers the
parallel interrupt (PINT) output pin in the PIO control group. This signal is
also used by the error interrupt section. All registers and their functions are
summarized in Table 2-1.

2.7 DATA TYPES AND ADDRESSING MODES

The DSP32 supports three data formats: floating point, integer, and
companded data. Floating point representation is 32-bit format and is used
for multiply and accumulate commands. Integer format is 16-bit and is used
for addresses and fixed point data. Companded data format is 8-bit and is
used with A-law and p-law.

Floating point data is defined by a 24-bit mantissa and an 8-bit
exponent. The most significant bit of the mantissa is the sign bit (see Figure
2-3). Each DAU multiply /accumulate instruction has three floating point
operands. Two of these operands are multiplied together, and the result is
added to the third. The result of the addition is stored in an accumulator.
The resolution of multiply /accumulate operations is 40-bits. Therefore, the
result of a multiply /accumulate operation must first be truncated to 32-bits



before it may be written to memory. As a result, tighf loops with successive
multiply /accumulate commands followed by memory writes are likely to
produce truncation errors.

s AT ffeceeceece
L2 > < -8 >

Figure 2-3. DSP32 floating point format.

The integer data type is 8 or 16-bit two’s complement integers. The 16-
bit integers can either be signed (value between -32768 and 32768) or
unsigned absolute addresses (range 0 to 65535). Companded data are 8-bit
compressed PCM formats.

The four addressing modes supported by the DSP32 instruction set are
immediate, memory direct, register direct, and register indirect. While these
addressing modes lend themselves well to the DSP32 architecture, they also
provide a set of primitive addressing modes upon which to build more
complex addressing modes. The DSP32 addressing modes are summarized in
Table 2-2.

2.8 CONNECTING THE DSP32 TO THE HOST COMPUTER

The DSP32 is designed to interface directly to a host computer running
either the UNIX operating system or MS-DOS. Connections are supplied for
either parallel or serial operation. The particular DSP32 Development
System discussed here is connected to an AT&T 3B2/310 running UNIX
System V. The DSP32 communicates with the 3B2 through a 9600-baud RS-
232 serial line. The hardware configuration of the Development System and
supporting peripherals is depicted in Figure 2-4.

The DSP32 is connected to the 3B2 on the console terminal port with
an IBM 3151 terminal controlling I/0. For normal operations, the DSP32
passes all communications between the console terminal and the 3B2,
essentially "listening” for special instructions. As a result, the 5620 terminal
operates as /dev/ttyll rather than as the console, since the DSP32 is
completely disabled (confused) when "layers" is invoked on its terminal. The
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Figure 2-4. The DSP32 development environment.

IBM 3151 terminal emulates a Wyse50 terminal.

Two commands directly affect DSP32 operation; dsp3sim and
dsp3init. When dsp3sim is used with the -d1 option, the Development
System is reset and readied for a run. If a file is supplied on the command
line, the DSP32 is loaded with the file. dsp3init is used to initialize the
DSP32 for a particular computer system. The two options used with
dsp3init are the hardware port to which the DSP32 is connected and the
number of DSP32 units connected to the system (up to seven Development
Systems may be connected in series). For single-system implementation,



when the system is properly initialized, the LED display on the front panel
of the unit will show ".1", with the "1" representing the logical unit number
of the Development System, and the decimal point indicating that the
Development System is selected for operation.
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Table 2-1: The DSP32 registers.

Reg. Name Bits Description
Ceotrol Arithmetic Unit (CAU)
pec 16 Program Counter
r1—rl4 16 Pointers (Data Arithmetic)
or General-Purpose (Control Arithmetic)
r15—r19 16 Increments (DA) or General-Purpose (CA)
r20 16 PIN, Serial DMA Input Pointer, or
General-Purpose (CA)
121 16 POUT, Serial DMA Output Pointer, or
General-Purpose (CA)
Data Arithmetic Unit (DAU)
a0—a3 40 Accumulators
DAUC 3 Data Arithmetic Control Register
Serial I/ O (SIO)
10C 16 Serial I/ O Control Register
IBUF 8/16/32 | Serial Input Buffer
OBUF 8/16/32 | Serial Output Buffer
Parallel I/ O (P10)
PCR 8 PIO Control Register
PAR 16 PIO Address Register
PDR 16 PIO Data Register
PIR 16 PIO Interrupt Register
EMR 10 Error Mask Register
ESR 6 Error Source Register
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Table 2-2: DSP32 addressing modes.

Mode

Notation

Description

Immediate

The operand is supplied by the instruction. Since all
DSP32 instructions are a single 32-bit memory
reference, this mode is not possible for DAU 32-bit
operands.

Memory
Direct

°N

In the direct mode, the instruction contains the
address of an operand. That operand can be
contained in any storage location, but if the operand
is in memory, the mode is usually referred to as
direct. A direct address is 16 bits and therefore
cannot be applied to DAU operands.

Register
Direct

*N

REG is the name of the register used as an operand.
In various instructions the DSP32 allows REG =
aN, rP, obuf, ibuf, etc., as register direct operands.
Compared to memory direct addressing, register
direct addressing is faster and requires fewer bits to
encode; however, it offers access to fewer operands.

Register
Indirect

For indirect modes, the instruction contains the name
of a storage location that contains the address of the
operand. Register indirect means that this storage
location is a register. These registers are always
post-modified, as indicated by the notation on the
left: by 0, by +1/ +2/ +4 (depending on the data
type: byte/inte ger/ float), by —1/ ~2/ —4 (depending
on the data type: byte/integer/float), or by the
contents of another register. This mode is useful for
signal processing algorithms in which the operands
are organized in tables.
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CHAPTER 3
THE DSP32 PROGRAMMING ENVIRONMENT

3.1 THE DSP32 INSTRUCTION SET

There are two types of instructions implemented in the DSP32 .
instruction set. They are data arithmetic (DA) instructions and control
arithmetic (CA) instructions. Data arithmetic instructions are handled by
the data arithmetic unit (DAU), whereas control arithmetic instructions are
handled by the control arithmetic unit (CAU).

The DAU performs two basic types of operations; multiply /accumulate
functions and type conversions. The DAU has a 4-stage pipeline. The CAU
instructions are 16-bit integer instructions. CA instructions perform
arithmetic and logic operations and branch control. The CAU arithmetic is
two’s-complement fixed point. With few exceptions, the CAU will complete
the current instruction before the next instruction begins execution, with the
exception being loading registers from memory. The DSP32 flags are
affected by both CAU and DAU instructions and certain 1/O instructions.
These flags are not directly accessible to the user, however, they may used
for testing by conditional instructions. Flags are summarized in Table 3-1.
A brief description of the instruction set and programming environment
follows [Wes86].

3.2 DATA ARITHMETIC INSTRUCTIONS

Data arithmetic instructions are divided into two groups;
multiply /accumulate instructions and special instructions mainly concerned
with type conversion. If a multiply/accumulate instruction uses an
accumulator as its input, the value of the accumulator is the value
established three instructions earlier due to pipeline latency. Therefore, if an
accumulator value is set in instruction I1, its value will not be accessible
until instruction I4. Any instruction referencing the value of the accumulator
during instructions I2 or I3 will see the previous value of the accumulator.
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Data arithmetic Instructions are summarized in Table 3-2.

Data types supported by the Data Arithmetic Special Functions Group
are integer, float, A-Law and p-Law companded. The special functions group
performs data type and format conversions and rounding. The data
arithmetic special functions group instructions are summarized in Table 3-3.

3.3 CONTROL ARITHMETIC INSTRUCTIONS

3.3.1 The Control Group

The control group instructions allow the alteration of instruction flow
from one instruction to the next. Included in these instructions are
conditional and unconditional branching, loop counter testing, and
subroutine call and return. The condition of branching can be based either
on an CA, DA, or 1/O events. Conditions are generated by flags set by either
CA or DA group instructions. The Control Group instructions themselves
have no effect on the flags. The CAU Control Group instructions are
summarized in Table 3-4.

The integer N, referred to in CAU instructions, is a 16-bit integer which
can be either a signed fixed point representation, or an unsigned immediate
address. N used as an immediate address may be represented in decimal, as
an unsigned octal number preceded by "0", or as an unsigned hexadecimal
number preceded by "0x". N is assembled as an unsigned binary integer.

If it is necessary to insert no-ops in the code, the command "n*nop" will
insert n no-ops in the instruction stream, where n is an integer. This is
especially useful when implementing tight loops using accumulators. The
default value of n is 1.

The instruction set supports six fundamental comparisons for signed
arithmetic. Those are: not equal (ne), equal (eq), greater than or equal (ge),
less than (Is), greater than (gt), and less than or equal to (le). Also
implemented are carry clear (cc) and carry set (cs), which are used for
multpile precision integer -arithmetic. The sign of CAU register contents
may be tested using plus (pl) and minus (mi). Replacement tables for CA
Control Group Instructions covering both CA conditions and DA conditions
are summarized in Table 3-5.
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1/O events can be tested by the CA Control Group for the following:
input buffer, output buffer, parallel data register, parallel interrupt register,

sync signal and serial frame boundary. These conditions are summarized in
Table 3-6.

3.3.2 The Arithmetic /Logic Group

These instructions perform all basic arithmetic and logical operations.
Immediate integer or float data is not provided explicitly. Rather, immediate
must be provided in the form of a CAU register. Therefore, operands in
memory must first be moved to the CAU register array by using instructions
from the data move group. The data move group allows data to be moved
between memory and the CAU registers and between CAU registers and 1/0
registers.

Memory can be addressed either in 8-bit bytes or in 16-bit words.
Likewise, data can be moved between CAU registers and memory in bytes or
words. CAU registers may also be used as pointers to memory or as
increments. Restrictions are that pointers are limited to rl1 - rl4, and
increments are limited to rl5 - r19 for DAU instructions. The
arithmetic/logic and data move operations are summarized in Table 3-7.
The entire instruction set is summarized in Appendix A.
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Table 3-1: The DSP32 flags.

Flag (s:::n Meaning (State=0) -  Meaning
N alt Result is negative age | Result not negative
z aeq Result is zer0 ane Result not zero
v avs | Result overflowed | av | Nooverfiow
U sus | Result underflowed | auc | Nounderfiow
CAU PFags
n mi Result is negative pl Result not negative
z eq Result is zero ne Result not zero
v vs Result overflowed . ve No overflow
c cs Carry or borrow out of MSB cc No carry or borrow
YO Flags
i ibf Input buffer full ibe Input buffer empty
o obf Output buffer full obe Output buffer empty
] pdf Paralle] data register full pde PDR empty
P pif Paralle] interrupt register full pie PIR empty
s sys SY (/O sync pulse) set syc SY cleared
b fbs Serial I/ O frame boundary foe Not SIO frame boundary
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Table 3-2: DSP32 data arithmetic (DA) instructions.

Instructions

DAU Nags
Affected

Description

[Z =] aN = [-]aM {+,-} Y*X

NZVU

The product of the X and Y fields
is added/subtracted to/from the
accumulator (aM) and the result
is stored in an accumulator (aN).
The result can also be output
according to the Z field.

aN = [-]aM {+,-} (Z=Y)*X

NZVU

The Y field operand is output
according to the Z field. The
product of the X and Y fields is
added to the accumulator (aM)
and the sum is stored in an
accumulator (aN).

[Z =] &N = [-]Y {+,~} aM*X

NZVU

The product of the X field and
the accumulator (aM) is

added/ subtracted to/ from the Y
field. The result is placed in an
accumulator (aM) and can also
be output according to the Z
field.

[Z =] aN = [-]Y*X

NZVU

The product of the X and Y fields
is added/ subtracted to/from zero.
The result is stored in aN and can
also be output according to the Z
field.

aN = [-](Z=Y)*X

NZVU

The value of the Y field is output
according to the Z field. The
product of the Y and X fields is
stored in an accumulator (aN).

[Z =] aN = [-]Y {+,-} X

NZVU

The sum or difference of the Y
and X fields is stored in an
accumulator (aN) and the result
output according to the Z field.

[Z =] aN = [-]Y

NZVUu

The value of the Y field is placed
in accumulator (aN) and also
output according to the Z field.
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Table 3-3: DSP32 data arithmetic, Special Function Group instructions.

DAU Flags

Instruction Affected Description
[Z=] aN = ic(Y) NZ00 Input Conversion p-law, A-law to float
[Z=] aN = oc(Y) —_ Output Conversion float to p-law, A-law
[Z=] aN = flcat(Y) NZ00 integer to float
[Z=] aN = int(Y) —_— float to integer
[Z=] aN = round(Y) NZVU float(40) to float(32)
[Z=] aN = ifalt(Y) —_ if(alt) then [Z=] aN = Y else [Z=] aN
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Table 3-4: Control Arithmetic Unit (CAU) Control Group instructions.

Instruction Flags Affected Description
if (CA COND) goto {rH, N, rH+N, rH-N} Conditional branch
if (tM - -> =0) goto {tH, N, rH+N, tH~-N} Conditional branch
if (DA COND) goto {rH, N, rH+N, rH-N} Conditional branch
if (10 COND) goto {tH, N, tH+N, rH-N} None Conditional branch
call tH, N, rH+N, tH-N} (‘M) Call subroutine
return (rM) Return from subroutine
goto {rH, N, rH+N, rH-N} Unconditional branch
[L)*nop No operation
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Table 3-5: Replacement tables for CA Control Group instructions.

Value | CAU Flags* Meaning

pl n=0 Result is nonnegative (plus)

mi n=1 Result is negative (minus)

ne z=0 Result not equal to zero

eq z=1 Result equal to zero

ve v=( Overflow clear, no overflow

v v=] Overflow set, overflowed

cc c=0 Carry clear, no carry

cs c=]1 Carry set, carry

g n'v=0 Greater than or equal to

It n'v=] Less than

gt z(n“v)=0 Greater than

le z(n"v)=1 Less than or equal to

hi ck=0 Greater than (unsigned number)

Is ck=1 Less than or equal to (unsigned number)

Value | DAU Flags | Meszning |

ane | Z=0 Not equal to zero
aeq Z=1 Equal to zero
age N=0 Greater than or equal to zero
alt N=1 Less than zero
ave V=0 Overflow clear, no overflow
avs V=1 Owerflow set, overflowed
auc U=0 Underflow clear, no underflow
aus U=1 Underflow set, underflowed
agt N{Z=0 Greater than zero
ale N|Z=1 Less than or equal to zero
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Table 3-6: CA Control Group I/O event tests.

Mpemonic | Condition ., Meaning
ibe ibf=0 Input buffer empty
ibf ibf=1 Input buffer full
obe obe=1 Output buffer empty
obf obe =0 Output buffer full
pde pdf=0 Paralle] data register empty
pdf pdf=1 Paralle] data register full
pic pif =0 Paralle] interrupt register empty
pif pif=1 Paralle]l interrupt register full
syc sy=0 Sync signal low
sys sy=1 Sync signal high
fbe fo=0 Serial frame boundary clear
fbs fo=1 Serial frame boundary set
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Table 3-7: Arithmetic/Logic and data move operations.

Instructions CAU Flags Affected Description
tD = tH+N nzve Three operand add
1D = tD+1S nzve Add
tD = fD-1S nzve Right subtract
tD-{N, 1S} nzvc Compare
1D = {N, rS§}-rD nzve Left subtract
1D = rD&(N, 1S} nz00 AND
tD& (N, 1S} nz00 Bit test
1D = rD{N, 1S} nz00 OR
1D = rD*(N, 1S} nz00 XOR
tD = 1S/2 nz0c Arithmetic right shift
1D = §>>1 0z0c Logical right shift
tD = —1§ nzve Negate
tD = r§*2 nzve Arithmetic left shift
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CHAPTER 4
THE DSP32 SIMULATOR

4.1 INTRODUCTION

The Western Electric DSP32 Digital Signal Processing Simulator,
dsp3sim, is designed for real-time development support of digital signal
processing applications. The programming environment provides a user
interface to both the actual DSP32 Development System and a software-
implemented virtual machine. Also provided is a means to manipulate both
the real and virtual machines, including breakpointing, loading and
examining registers and memory, and timing. This environment, as well as
the program development process will be discussed below in detail [HoC86].

4.2 FEATURES AND FUNCTIONALITY OF THE DSP32
SIMULATOR

The simulator provides a "virtual chip,” a software simulation of the
actual DSP32 chip. The simulator provides 64K of memory (the maximum
amount of memory the DSP32 can address). It should be noted, however,
that the actual DSP32 chip cannot address a full 64K of memory, rather it
is limited to 62K, since system functions reside in the upper 2K of memory.

The simulator provides user access to all registers, accumulators and
memory. It supports user-defined functions and variables. The user can also
define ezec files which control the setup of a simulator session. Ezec files
can contain breakpoint definitions (breakpoints may be defined by assembly
language labels, and several may be in effect at one time), lists of user
commands, user-defined functions and labels, and control constructs.

For timing, a pseudo-real-time clock keeps track of CPU cycles, wait
states, and DMA accesses. Wait states are caused when memory accesses are
not interleaved and frequently during DMA operations. Limited emulation of
I/O is also provided through the simulator. All serial 1/O is synchronous
with respect to the clock/counter above. It is also possible to set up the
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simulator to flag conditions such as a write to ROM memory. Finally, an
escape to shell feature, similar to the ":!" command in the v editor, is
provided so that dsp3sim need not be terminated to perform functions in
the shell. See Appendix B for the complete DSP32 manual pages.

4.3 AN EXAMPLE USING dsp3sim

This example was extracted directly from the Western Electric DSP32-
SL Support Software Library User Manual [We86]. In this discussion,
numeric constants will often be represented as the C programming language
would use them. They are used this way in the DSP32 assembly language
and in interacting with dsp3sim. In particular this means that when a
constant has a leading zero, as in 0010, it is octal, while to represent a
hexadecimal number, we use a leading "0x", as in Oxa4.

When interactive sessions running dsp3sim are presented here, the
users’ input will be in bold type, while automatic responses from the
computer will be in ordinary type. The following example, while extremely
simple, will illustrate much of the potential of the simulator. This 2-line
sequence will produce the absolute value of a floating point number.

In particular

al = -*r2
*r2 = al = ifalt(*r2)

has the effect of setting

*r2 = al = [*r2| (}x} == absolute value of x)
i.e. it replaces whatever is at location r2 with its absolute value, and also
leaves that same value in al. Note that the action will not be complete until

4 instructions after the 2-line sequence (due to latency). Now consider the
following short program contained in the file abs.s.

.global abs_end, x
r2 == x
al = -*r2 /¥ 2-LINE */

*r2 = al = ifalt(*r2)/* SEQUENCE */
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4*nop
abs_end: 2*nop
x: float -11.0

Note that .global is required for any label to be referred to by dsp3sim. If
we can run the program, get it to stop at location abs_end, and then display
the contents of location x and of accumulator al, then we can test the
sequence for the single value -11.0. To assemble and load abs.s type:

dsp3make abs
dsp3as -1 abs.s
dsp3ld abs.o -0 abs

The simulator can now be used as follows:

$ dsp3sim abs

DSP32 Simulator Release 2.3
$im: bpset abs_end

bp -1 set at addr Oxlc

$im: run
$im: *x.f
*x = 11
$im: al.f
al = 11
$im: quit

$im: is the simulator prompt.

The statement bpset abs_end set a breakpoint at abs_end; the
program was run halting at location abs_end, and *x and al were examined
(.f causes display to be a floating point number).

For testing a number of different values of x, it is useful to create a file
of commands that will execute when when the program is started. The file
should be names abs.ex and contain the following:

bpset abs_end;
var v= 0.0;
go{*x = v; run; *x.f; *al.f};
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In the following, the -e option is used to cause dsp3sim to read
abs.ex. The -b flag causes a message to be printed each time a breakpoint
is hit. To use the program to find |N}, set v = N and type go:

$im: dsp3sim abs

DSP32 Simulator Release 2.3

bp -1 set at addr Oxlec

$im: v = -21.3

$im: go

breakpoint -1 at 0x001c decode:nop;
*x = 21.3, al = 21.3

$im: v = 4.4

$im: go

breakpoint -1 at 0x001c decode:nop;
*x = 4.4, al — 4.4

$im: quit

v is an example of a user variable. go is a user-defined function. The -s
option and abs.ex fit together because every time the program is tested, it
may be useful to set a breakpoint at abs_end and to have the go sequence
available.

4.4 THE DEVELOPMENT PROCESS USING dsp3sim

The following describes the development process for digital signal
processing applications on the DSP32. All programs for the DSP32 Digital
Signal Processing Development System are written in a C-style assembly
language. All variables and labels used in DSP32 programs must be declared
and all constants must be defined. Care must be taken to avoid type clashes
and problems arising from pipeline latency (especially when using
accumulators).

All source programs written for the DSP32 must have a .s extension.
Similarly, all command files (files executed upon invoking the simulator)
must have an .ex extension. For instance, the source file for a sort routine
might be called sort.s, and its command file called sort.ex.

Once the program has been written, it is compiled using the dsp3make
command. The dsp3make command combines the functions of assembling
and linking the program. The dsp3make utility automatically inserts the
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appropriate library routines necessary for successful compilation.
dsp3make has options for setting memory mode and breakpoint capability.
These are described in detail in Appendix B.

' If the assembler compiles the file successfully, it creates a file with a .o
extension. Otherwise, it will output appropriate error messages and no
object file will be written. Next, the linker will output a file with a .l
extension. The executable will be output in a file with no extension. For the
sort program above, the object file would be called sort.o, the link file
called sort.l, and the executable called sort.

The program is now ready for testing on the simulator. The DSP32
simulator has two main modes: virtual and real. The virtual mode (Mode 0)
is an environment identical to the actual DSP32 machine, but implemented
entirely in software. The real, or live mode (Mode 1), is an interface to the
actual DSP32 machine. The simulator is invoked by typing dsp3sim filename
at the UNIX prompt. This will automatically load the file into the simulated
DSP32 memory to be run. dsp3sim also has several options. These options
are for memory mode, real or simulated DSP32, and whether or not a
command file is to be included in the load.

To enter a virtual DSP32 session with a command file using memory
mode 0 (MMO) with the sort program above, one would type:

dsp3sim -mO0 -e -dO sort

Similarly, to invoke the actual DSP32 machine with the same
parameters, one would type:

dsp3sim -m0 -e -d1 sort

The options for dsp3sim described in detail in the DSP32 manual
pages listed in Appendix B. g

All program testing should be performed on the virtual DSP32. This
environment supports debugging using multiple breakpoints, as well as the
capability to single-step the virtual machine. Due to pipeline latency, the
actual DSP32 cannot be single-stepped. A synopsis of the DSP32 simulator
commands is provided in Appendix C.
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CHAPTER &
SOFTWARE TOOLS

5.1 INTRODUCTION

The DSP32 Digital Signal Processing Development System is provided
with a library of digital signal processing routines for a variety of
applications. These routines are divided into three major groups: the math
group, the matrix group, and the filter group. A summary of these routines
is provided in Appendix D. The math group provides routines for
transcendental functions, floating point division and format conversion. The
matrix group includes optimized matrix multiplication routines for several
sizes of square matrices as well as a general matrix multiplication routine.
The filter group includes several varieties of Finite Impulse Response (FIR)
and Infinite Impulse Response (IIR) filters, and Fast Fourier Transforms.
Three of these routines will be discussed in detail: the Finite Impulse
Response Filter, the Infinite Impulse Response Filter, and the Fast Fourier
Transform.

5.2 THE FINITE IMPULSE RESPONSE (FIR) FILTER

The FIR filter offers absolute control over the phase characteristics of
the filter. Non-recursive FIR filters are always stable and allow one to take
advantage of the computational speed of the FFT algorithm. One
disadvantage of the FIR filter, however, is that FIR filter design techniques
are not as advanced as infinite impulse response filter design techniques.

Implementation involves limiting the impulse response of the filter by
using a window. The most straightforward approach utilizes a square
window. However, this technique causes disturbances in the cutoff band (the
Fourier Transform of a square wave is a sinc function). More common, and
less straightforward implementation involves the use of more streamlined
windows. These windows reduce the disturbance at the stopband at the
expense of wider window width, making the cutoff less defined.
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The FIR filter implemented in the DSP32. library is taken directly from
Oppenheim and Schafer [OpS75]. The filter is defined by the convolution
sum:

N-1
y(o) = ¥ h(k)x(n —k)
k=0

Where x(n) is the input sequence, y(n) the output sequence, and h(n) the
impulse response. The code requires 64 bytes of memory. Four bytes of
memory are required for each input coefficient. A complete program listing
for the FIR filter routine can be found in [Hat86]. Figure 5-1 shows the input
signal used for both IIR and FIR filter analyses, consisting of two additive
cosine waves at 500 Hz and 3250 Hz. Figure 5-3 shows the impulse response
of a lowpass FIR filter. The impulse response is 13 points long with zero
crossings every two sample points and approximates a sinc function, and
hence, an "ideal” lowpass filter. This will provide a cutoff frequency of 2
KHz, since the sampling frequency is 8 KHz, and the folding frequency of
the system is 4 KHz. The magnitude of the sinc function was normalized to
provide unity gain. Figure 5-2 shows the output of the 2 KHz lowpass FIR
filler when the signal in Figure 5-1 is used as the input. Examining Figure
5-2 shows that the FIR filter effectively removed the higher frequency cosine
signal. Program execution time is related to the input data size N by the
following [HaT86]:

Number of instruction cycles = (12 + 2 x N)

5.3 THE INFINITE IMPULSE RESPONSE (IIR) FILTER

Much of the basis for digital IIR filter design comes from analog filter
design. IIR filters provide a better amplitude response at the expense of
nonlinear phase response [OpS75]. The philosophy behind the design of IIR
filters involves the pole-zero placement of the transfer function in the z-
domain. It is the placement of the poles and zeros (and, of course, the
sampling rate) which determines the effective cutoff frequency.

Since the art of IIR filter design is so advanced, there are many ways to
implement an IIR filter function. The most straightforward of these is a
direct digital implementation of the associated analog filter function. The
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Figure 5-1. Input signal for the FIR and IIR filters consisting of two
additive cosine waves with frequencies of 500 Hz and 3250 Hz.

IIR filter implementation in the DSP32 library is the direct form I (cascade
second-order sections with four multiplies per section) taken from
Oppenheim and Schafer [OpS75).

A [(Nﬁ)/zl 1+ Bz + Byz?

H(z) = 2

-1 —
k=1 l1—oyz  — oy

The routine code occupies 68 bytes of DSP memory and the number of
DSP instructions required to run the routine varies with data size by the
following:

Number of instruction cycles = (14 + 5 x N)

The source code for the IIR filter can be found in [HaT86]. A
normalized analog second-order Butterworth filter transfer function served
as the basis for our example for generating the filter coefficients. Using a
sampling rate of 8 KHz, the effective folding frequency of the system is 4
KHz. The signal consists of the two additive sinusoids as shown in Figure
5-1.
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Output of the 2 KHz Loupass FIR Filter
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Figure 5-2. Output signal after being lowpass filtered at 2 KHz using a
FIR filter. The input signal is shown in Figure 5-1 and the
impulse response is shown in Figure 5-3.
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Figure 5-3. The impulse response of the 2 KHz lowpass FIR filter
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The normalized analog transfer function for the second-order
Butterworth filter is given by the following [StD84]:

1
1 + 1.4142136s + s?

G(s) =

Using the folding frequency f; of 4 KHz and a cutoff frequency f, of 500 Hz,
the constant multiplier C, which assures unity gain, can be determined by
the following:

P §
iy
C__ t___...
=cot (fo)

Now, by combining with:

S=C.Lz_l)_

14z}

the transfer function in terms of z can be established, with the filter
coefficients being the constant multiplier C and the coefficients of the z™!
and 2”2 terms. Figure 5-4 shows the output of the IIR filter when applied to
the input signal of Figure 5-1. The 500 Hz cutoff frequency allowed the 500
Hz cosine wave to pass, while eliminating the cosine at 3250 Hz.

5.4 THE FAST FOURIER TRANSFORM (FFT)

It is often necessary to analyze digital signals in both the time domain
and in the frequency domain. In digital systems, signals may be represented
by the Discrete Fourier Transform. The Fast Fourier Transform is an
algorithm which effectively reduces the Discrete Fourier Transform
computation. When this reduction takes place in the time domain it is
known as decimation-in-time. Reduction in the frequency domain is known
as decimation-in-frequency.

The DSP32 library provides a decimation-in-time FFT algorithm which
is capable of handling input data up to 1024-points in length. The algorithm
was adapted from Rabiner and Gold [RaG75]. The routine occupies 348
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Output of the 500 Hz Lowpass IIR Filter
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Figure 5-4. Output signal after being lowpass filtered at 500 Hz using the
IIR filter. '

bytes of DSP memory. The routine supports input data in complex format
(i.e. each input data point is composed of a real part and an imaginary
part). Therefore, each data point in the input data array occupies 8 bytes of
memory. Some timing for the algorithm follows [We86]:

Data Size No. of No. of Time

N Instructions Wait States (ms) 16 MHz
64 3415 847 0.91

128 7271 2001 1.95

256 15467 4627 4.16

512 32711 10517 8.84

1024 69067 23575 18.74

Figure 5-5 shows the output of the FFT routine when it is applied to
the test signal, shown in Figure 5-1, consisting of the additive sinusoids at
500 Hz and 3250 Hz. The graph has appropriate peaks at 500 Hz and 3250
Hz. Leakage into other frequencies is due to the signals not being exact
integer multiples of each other.
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Figure 5-5. Magnitude of the Discrete Fourier Transform of the signals
shown in Figure 5-1. :
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CHAPTER 6
CUSTOM TOOLS

6.1 INTRODUCTION

To investigate the utility of the DSP32 for specialized digitial signal
processing tasks, a series of custom digital processing algorithms were
developed. The custom program library consists of a one-dimensional rank-
order filter and an o trimmed mean filter program. These two programs are
discussed in detail below. The programs were first coded for testing using
the DSP32 simulator. Once implementation and architecture problems were
solved, the programs were implemented on the DSP32 Development System.

6.2 THE RANK-ORDER FILTER

The rank-order filter is a nonlinear that has been shown to be useful in
various applications. Nonlinear techniques have shown to have promise,
especially in environments where signals are corrupted by impulsive noise.
Linear averaging filters are not as effective on impulsive data. The output
of the filter can be chosen to be any ranked value within the window
[ArG86]. For instance, if we choose the fourth largest element from a
window of size seven, we have a fourth-ranked-order filter. These filters have
also been shown to reject impulsive noise.

The version of the rank-order filter used here is a non-recursive
implementation [ArG86]. The data is read into the input data space along
with a header containing filter parameters. These parameters describe the
window size, window center point, rank of the filter, and the size of the data
to be filtered. The center point is provided to the program rather than
calculated internally to eliminate a costly divide. The data space is limited
by the data space definition to 96 data points.

The data is read into memory at location 1400 (hex). It is then copied
to a temporary data space at 1800 (hex). The temporary data space
maintains its integrity throughout the process, since it is the source for all
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windows. Windows are extracted from the temporary data space and moved
into a temporary sort space. In the temporary sort space, a modified bubble
sort is performed on the data. Once the bubble sort has completed, the data
is in rank sorted order from lowest to highest.

Once the data in the sort space has been sorted, the pointer to the sort
space is incremented by the rank of the filter (given in input parameters).
This pointer now points to the appropriate element to repléce the middle of
the original window. This data element is moved to the input data space at
1400 (hex) which now serves to accumulate output medians. The input data
space is padded at the edges with the zeroes at the beginning and the end
repeated up to ((2 x windowsize) - 1) elements. Using this method, the first
several iterations of the window are ignored in the output data. This
practice is inconsequential, since only the valid output elements are
considered in the final analysis.

To test the operation of the filter routine, a known signal was filtered.
First, the uncorrupted signal was filtered, followed by the same signal
corrupted by guassian noise, then impulsive noise. The window size chosen
for the test was five. The data size chosen for the test was 96 elements.
Figure 6-1 shows the input signals used to test the filter routines. Figure 6-1
(a) shows the original cosine wave, corrupted by (b) gaussian noise with a
SNR of 10 dB (discussed below) and (c) by impulsive noise. Figure 6-2 shows
the output of the noise-corrupted signals after being filtered by the median
filter. Figure 6-3 shows the output after filtering with the o trimmed-mean
filter. The DSP32 ran the all of the one-dimensional filter routines in well
under one second.

6.3 THE MEDIAN FILTER

The median filter involves moving an odd-sized window across the data
in the time domain, with the filter output, Y(A) related to the filter input,
X(A) by the following [ArG86]:

¥(A) = the median values of [x(A - N),..., x(A - 1), x{A), x(A + 1),..., x(A + N)]

where 2N + 1 is the window size.

Median filters have been shown to be very effective in preserving edges
while removing impulses and rapid oscillations [ArG86]. The amount of
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smoothing performed by a median filtering operation depends on window
size. A larger window will perform more smoothing than a smaller window.

The median filter implemented on the DSP32 is merely a special case of
the rank-order filter described above, where the rank is the middle value of
the window. The input signal is shown in Figure 6-1, along with the signal
corrupted by additive gaussian noise, and impulse noise. Figure 6-2 shows
the outputs of the median filter for the two noise-corrupted input cases,
using a window five data points wide. The gaussian noise was generated
using the central limit theorem, where twelve random numbers were
combined for each noise sample point. The SNR was set at 10 dB
determined by the variance of the noise, calculated by the following:

SNR =10 log,,

Which represents the power of the signal divided by the power of the noise.
Impulsive noise was generated using Bernoulli trials on each bit, where the
probability of a bit being flipped was set at 5 percent (P,=0.05). As can be
seen in Figure 6-1 (d) and (e), the median filter was more effective removing
impulsive noise than gaussian noise. This is due to the impulse-rejecting
abilities of the median filter.

6.4 THE « TRIMMED-MEAN FILTER

The implementation of the o trimmed-mean filter using the DSP32 is
very similar to the rank-order operator in that the o trimmed-mean filter
performs ranking within the window. The o trimmed-mean operation is
similar to an olympic scoring system. The data within the window are sorted
from lowest to highest. The highest and lowest values (top and bottom
elements) are then removed, and the remaining elements are averaged. The
« trimmed-mean filter performs very well on signals corrupted by both
impulsive and additive gaussian noise, since it strongly resembles both the
median filter and linear averaging filters. The a trimmed-mean operation
involves division, which is not directly supported on the DSP32.
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As the operation proceeds, the input data is read into DSP32 memory
at location 0x1400 (hex). The data is then copied to location 0x1800 (hex) for
windowing and sorting. Each window is moved to a temporary sort space
where the sort is performed. The sorting algorithm is a modified bubblesort.
Once the data has been ranked within the window, the top and bottom
elements are removed, and the remaining elements summed. The sum is then
input into the divide routine as the numerator. The (window size - 2) is
input as the denominator. The quotient from the divide routine is then
placed at the output data location.

Figure 6-3 shows the output of the o trimmed-mean filter when applied
to the input signals of Figure 6-1. The filter performed very well on both
types of noise. Since the filter performs both ranking and averaging, it
smooths impulse noise much more effectively than the median filter (see
Figure 6-2).
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CHAPTER 7
IMAGE PROCESSING USING THE DSP32

7.1 INTRODUCTION

As an extension of the work discussed in the previous chapter for one-
dimensional signals, we now focus our attention on the two-dimensional
operations used in image processing. Several two-dimensional window
programs were developed focusing on image morphology, smoothing, median
filtering, and Laplacian operations [Ha86].

7.2 MORPHOLOGICAL OPERATIONS

Mathematical morphology uses window masks which, when operated on
image data, emphasize desired elements of shape. For our purposes, we are
concerned with binary images (pixels may either have a value of zero or
255). In order to completely describe a binary image, we need only define the
set of black pixels, or the set of white pixels. Image morphology consists of
the operations of dilation, erosion, opening, and closing. To perform the
operations of opening and closing on the image, we utilize the primitive
operations of dilation and erosion. The following sections will establish the
necessary theoretical background for an understanding of the erosion,
dilation, opening, and closing as implemented on the DSP32.

7.2.1 Dilation

Dilation combines the image data and a window in an element-by-
element addition, where elements are represented by their indices.
Physically, dilation is seen as an expansion of the set A by the set B. The

dilation of set A by set B is denoted by A @ B and is defined by [Se82]:
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C=A@§={z:B,nx;é@}=b%X_b

where A and B are subsets of the N-dimensional Euclidean space EN and B
is the symmetric set obtained by rotating B 180 degrees. B, is the translation
of set B by z.

A simple example of dilation is given in [HaS86]. If the set A contains
the elements (0,1),(1,1),(2,1),(2,2),(3,0) and the set B contains the elements
(0,0),(0,1), the result of the dilation of A by B is the set C =
{(0,1),(0,2),(1,1),(1,2),(2,1),(2,2),(2,3),(3,0),(3,1)}. The operation is shown in
Figure 7-1.

. [T-]

w
ojo|ofe

A AoB

Figure 7-1  The result of dilating set A by set B.

Since the dilation operation is one of set addition, it is commutative
and associative, since addition is commutative and associative. Even though
the set A and B are symmetric with respect to the operation, the set A is
considered to be the set being operated on and B is called the structuring
element. The structuring element can be thought of as a probe that extracts
shape information from the set A.

The dilation of the set A by the set B is most easily seen as a
translation operation on the set A by the set B. The set C is then formed as
a result of the arithmetic "OR" of all of the translations of A.
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7.2.2 Erosion

Mathematically, erosion is the morphological dual of dilation.
Physically, the erosion process shrinks the set A by the set B. The erosion

of A by B is denoted by A & B and is defined by [Se82]:

| C=A@i§={z:Bzgx}=b@BX_b

Again, if we look at the erosion process as a translation operation on
the set A by the set B, we can see that the resultant set C is formed by the
arithmetic "AND" of all of the translations of the set A. For this process, B,
intersects the original set A. To demonstrate this, consider the set A =
{(0,1),(1,1),(2,1),(2,2),(3,0)} which is to be eroded by the set B =
{(0,0),(0,1)}. If we look first at the translation of the set A by the set B, we
have the intermediate set which contains {(0,1),(1,1),(2,1),(2,2),(3,0)}, which
is the translation of the set A by the element (0,0), and also the set
{(0,2),(1,2),(2,2),(2,3),(3,1)} which is the translation of the set A by the
element (0,1). If we "AND" the elements of the two intermediate sets
together, we find the resultant eroded set C = {(2,2)}. It has been shown
[HaS86] that the erosion will be more severe if the eroding element is a
subset of the set A. It is also possible that, if the structuring element does
not contain the origin, the erosion can result in a set which has nothing in
common with the original set. This operation is shown in Figure 7-2.

7.2.3 Opening and Closing

The opening and closing operations are usually used in pairs, employing
the primitive dilation and erosion operations described above. If dilations
and erosions are applied iteratively, the result is the elimination of specific
image detail which is smaller than the structuring element, while leaving
other features geometrically undistorted.

The opening of image B by structuring element K is denoted by B O K
[HaS86] and is defined as BOK = (B © I\é) P K.

The closing of image B by structuring element K is denoted by B & K
[HaS86] and is defined by Be K = (B P K) O K.
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A AeB

Figure 7-2.. The result of eroding set A by set B.

Serra [Se82] describes the result of the opening on an image with a
disk-shaped structuring element as smoothing the contour, breaking narrow
isthmuses, and eliminating small islands and sharp peaks or capes. The
closing on the image with the same structuring element then smooths the
contours, fuses narrow breaks and long thin gulfs, eliminates holes, and fills
the gaps on the contours.

These operations are idempotent. That is, successive iterations of the
same operations will not alter the result. Simply defined, the opening
operation is an erosion of an image by the structuring element, followed by a
dilation of the result by the same structuring element. Likewise, the closing
operation is defined as a dilation on the image by the structuring element,
followed by an erosion of the result by that structuring element [HaS86).

7.2.4 Implementations on the DSP32

Since all of the image processing algorithms written for the DSP32
involve window operations, a generalized window program was developed.
This program reads in the input data from a UNIX file which has a header
containing information about data size and window size, followed by the
actual data. After the data is read in, it is copied to a temporary location
where the window operations on it can take place. The results of these
operations are written back to the input data space. Since the input data
cannot be placed in arrays, several pointers are necessary to make sure that
the two-dimensional window is extracted properly from the one-dimensional
data space. Each window is moved to a temporary window space. All of
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the DSP32 image processing programs are identical in the respect that they
move windows to the temporary window space from the one-dimensional
data space. The morphological programs perform set operations on the
window, the median filter sorts and ranks the window, the o trimmed-mean
filter program sums over the window and averages, and the Laplacian
program multiplies and sums across the window.

The results of applying the morphological operations defined above to a
64 x 64 binary image containing text are shown in Figures 7-3 and 7-4. The
structuring element chosen for the example was a lower case "e", defined in
a 5 x 5 window. The process of opening the image by the structuring
element performed essentially the task of detecting occurrences of "e" in the
text. The erosion reduced the text to several dots; one at the median
location wherever an "e" had occurred ion the original text. The dilation
which followed restored the dots to "e" in their original positions. This
process demonstrates how the structuring element can be used to extract
specific shapes from an image.

The results of the closing were not as dramatic. The dilation on the
original text expanded the text by the structuring element, creating an
image that hardly resembled the original. The following erosion reduced the
image back to a "superset" of the input image. Many of the gaps inside
letters and between letters were filled. Each morphological program ran in
less than two seconds on the DSP32.

7.3 WINDOW SMOOTHING

Window smoothing is most often the simple averaging of pixels in the
neighborhood around a pixel of interest. This straightforward averaging
results in noise reduction at the expense of image blurring. Rosenfeld and
Kak [RoK82] propose several improvements in the averaging scheme which
deliver noise reduction with less image blurring. One scheme involves
‘examination of the data in the Fourier domain, removing the noise, and
taking the inverse transform to recover the original signal without noise.
Another approach involves the assignment of probabilities to the signal and
noise. The weighted average of the neighboring points is assigned to the
point of interest.

The method of image smoothing chosen for the DSP32 smoothing
program is a two-dimensional o trimmed-mean filter. The motivation for this
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Figure 7-3. The original binary image (upper left) and the resulting images
after eroding (upper right) and dilating (lower left) with the 5 x
5 "e"-shaped structuring element (lower right).

implementation is the similarity of the o trimmed-mean filter to the median
filter. The o trimmed-mean filter ranks pixels within the window, removes
the highest and lowest points, and averages the rest. If the window size s
chosen to be small enough (3 x 3 in our case), high frequency and impulse
noise can be effectively reduced, while retaining image sharpness. The input
image used to test the filter was contaminated with zero-mean gaussian
noise. The signal-to-noise ratio was 10dB, calculated using the method
discussed in Chapter 6. Results of running the filter algorithm on the image
are shown Due to the arithmetic intensity (namely, the division subroutine)
of this algorithm, the DSP32 took nearly six seconds to filter the input data.
in Figure 7-5. The image size is 64 x 64 pixels.
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Figure 7-4. The original binary image (upper left), the opened image
(upper right), and the closed image (lower right).

7.4 IMAGE SHARPENING USING THE LAPLACIAN

The Laplacian is another neighborhood operator which performs image
sharpening by computing the second derivative of the image.
Mathematically, for discrete signals, the Laplacian has the following form
[RoK82]:

VE(i,3) = [f(i+1,5) + £(i—1,5) + f(i,i+1) + £(i,j~1)] — 41(i,j)
where f(i,j) is the gray-level value at the i** row and j*® column of the image.

When the Laplacian is combined with the original image, we arrive at
the following:

51(1,3) — [£(i41,3) + £(i~1,5) + £(1,i+1) + £(i,j—1)]



47

Figure 7-5. The original image (upper left) contaminated by gaussian noise
(upper right), and the o trimmed-mean-filtered image (lower
right).

This is known as unsharped masking and tends to enhance edge structures
in an image [RoK82]. As a window operator, the Laplacian looks like the
following:
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The DSP32 Laplacian program works similarly to the previous image
processing programs. The input data is read into DSP32 memory along with
the integer header information. The windows are extracted from the data
using the same window extraction routine. The extracted 3 x 3 window is
multiplied by the Laplacian window and the sum of the products is placed
at the label for the input data. The source code for the Laplacian operator
can be found in Appendix I. To test the Laplacian operator, a blurry image
was input to the DSP32. The input image and the enhanced output are
shown in Figure 7-6. The operation took less than one second to run on the
DSP32.

- Figure 7-6. The original image (upper left), the blurry original image
(upper right), the Laplacian-filtered blurry (lower left), and the
unsharp mask-filtered blurry image (lower right).
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7.5 THE 2-D MEDIAN FILTER

The two-dimensional implementation of the median filter on the DSP32
is similar in construction to the one-dimensional version of the program. The
program, however, uses the window algorithm described previously to define
the sort space. Again, the maximum data size supported by the program is
64 x 64 pixels. Once the window is extracted, it is sorted using a modified
bubblesort. After the window elements have been sorted, the median value
of the window is extracted and placed at the output data space. The
window size used was 3 x 3.

Figure 7-7 shows a 64 x 64 pixel image which has been corrupted by
impulse noise (probability of bit error = 5 %), and the resultant images
after the median filter operation. The 2-D median filter ran in under one
second on the DSP32.

Figure 7-7. The original image (upper left) contaminated by impulsive
noise (upper right), the median-filtered original image (lower
left), and the median-filtered noisy image (lower right).
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CHAPTER 8
REAL-TIME SPEECH PROCESSING

8.1 INTRODUCTION

Since the DSP32 has its roots in telephone communications, it is not a
surprise to find it useful for digital speech processing applications. Many of
the routines easily implemented on the DSP32 are telephone /voice-related.
Some of these include, real-time digital filtering, speech detection, tone
detection, and pulse detection [Da84]. The DSP32 is capable of doing real-
time speech processing with bandwidth up to 8 KHz. Most applications,
however, do not demand bandwidth any greater than 4 KHz.

8.2 THE DSP32 CODEC

A CODEC (Coder /Decoder) is a device which converts analog signals to
digital and digital signals back to analog (A/D and D /A conversion), by
sampling, quantizing, and companding. The DSP32 is equipped with an on-
board 8-bit CODEC to provide access to signals in real-time.

When a CODEC samples an analog signal, it converts the signal into a
Pulse Amplitude Modulated (PAM) signal. The PAM signal is the actual
value of the original analog signal at the time of sampling. This signal is
then companded and quantized. Since the signal will spend more time near
zero, a linearly quantized signal will suffer from more quantization error.
Hence, the need for companding.

The most commonly used companding processes are A-law and u-law.
A-law companding is used in the United States primarily with digital
telephone communications systems. The A-law compander uses a logarithmic
transformation on the PAM signal. A-law quantization intervals are very
closely spaced near zero, and spread farther apart as amplitude increases.
This allows a better definition of signals at low levels which reduces
quantization error and increases dynamic range. u-law companding is the
CCITT (Consultative Committee of International Telephone and Telegraph)
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standard of companding. This standard is used primarily in Europe and
Japan. p-law companding also quantizes logarithmically. The differences are
noted below. The formula for u-law companding is [Sh79]:

bl _ log(1 + P"Ix/xmxb
T log(1+ u)

The formula for A-law companding is [Sh79]:

Alx/xma.xl
ly] <T—'-|'TE(A—)’ Ogb(/xmaxlg 1/A
== 1+ ]og(A!x/xmaxl)
1+ log(A) ’ I/A < Ix/xmaxl <1

Where x is the input, y is the companded output, and Xmax 1S the maximum
input value. Typical values for A and p are 100. The DSP32 A-law
compander uses 100 as the value for A.

For our demonstration, we connected the DSP32 as shown in Figure 8-1.
The input to the DSP32 came from an audio amplifier with a microphone as
its input. The outputs of the amplifier were connected to the J4 BNC input
terminal on the back of the DSP32 enclosure. The J5 output BNC port on
the DSP32 was connected directly to an audio spectrum analyzer, and to a
speaker [At86], [T086].

Three routines were run on the device. The first simply read data into a
buffer and output it again without operating on it at all [Da84]. The second
routine read data into the buffer, ran it through a 1 KHz lowpass IIR filter,
and sent it to the output port. The third routine implemented the same
lowpass IIR filter with a cutoff frequency of 500 Hz.

A-law companding was chosen for the speech processing demonstration.
In the DSP32, all of the functions of sampling and companding are
performed by the CODEC. The filter routines are designed to work with the
PCM signal. The CODEC then expands the filter output to a PAM signal
and smooths the output to an analog approximation of the filtered digital
signal, i.e. D/A conversion.
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Figure 8-1. Diagram of the DSP32 real-time speech processing
demonstration.
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CHAPTER 9
COMPARISONS AND CONCLUDING REMARKS

9.1 COMPARING THE DSP32 TO OTHER SINGLE-CHIP DSPs

Today, several vendors offer single-chip digital signal processors. These
devices greatly reduce the overhead associated with computationally
intensive digital signal processing routines. These chips are either stand-
alone (as with the DSP32) or are offered as a co-processor in a larger system
[AIF87). The DSP32 can be used either way due to extensive interface
hardware. The DSP32 can communicate with other devices by means of
serial or parallel interfaces. The DSP32 has also been migrated into a
multiprocessor configuration which specializes in image processing
operations. This is known as the Pixel Machine [At87], [Tu87].

As single-chip digital signal processing has evolved, emphasis has shifted
from fixed-point arithmetic implementations to floating-point
implementations. The predecessor of the DSP32, the DSP16, supported only
16-bit fixed-point arithmetic. As a result, any algorithm designed for the
system had to be converted to fixed-point representation before it could be
used. Often, as with the IIR filter, this conversion took a great deal of time
to implement and reduced the accuracy of the algorithm.

The DSP32 is one of a very few DSP chips offering 32-bit floating-point
capability. Others are the TMS320C30 from Texas Instruments and the
#pd77230 from NEC. Since the TI TMS320C30 is not yet available, the
DSP32 shares only the company of the NEC upd77230 in floating point
capability. The DSP32 accumulators have a resolution of 40 bits as opposed
to the upd77230’s 32 bits. The TMS320C30, however, will also have 40-bit
floating-point accumulator precision.

Most commercial DSP chips offer optimized arithmetic hardware to
speed operations often found in digital signal processing applications, such
as repeated sums and multiplications. Many DSP chips also utilize pipelined
architectures and multiple address and data buses. The DSP32 uses a
pipelined architecture with separate arithmetic and control processors. The
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TMS320C30 uses a single processor with a DMA controller which supports
concurrent 1/O. Both the DSP32 and the TMS320C30 are clocked at 16
MHz, providing a cycle time of 60 ns.

The evolution of DSP chips is now utilizing integration in the 1 um
range. The TI TMS320C30 is leading the next generation with greatly
expanded memory addressing capability (16 M 32-bit words as opposed to
the DSP32’s 14 K 32-bit words) and compatibility with high-level languages,
such as C. The DSP32 is moving to higher levels of programmability with a
C interface in the works, as well.

The availability of higher level languages to program digital signal
processors will increase their portability and decrease development time. It
is important to note, however, that compiled high level language interfaces
may not provide the flexibility to optimize program execution on a
specialized architecture [PoD82]. Table 9-1 shows a summary of DSP chips
currently commercially available.

9.2 COMPARING DSP32 PERFORMANCE WITH
MINICOMPUTERS

In order to generate a speed comparison, we compare the DSP32 with
two high-performance minicomputers: a dual-VAX 11/780, which runs
approximately 4 million instructions per second (MIPS), and a Gould NP1
minisupercomputer, which runs approximately 10 MIPS. Both computers
operate under Berkeley UNIX 4.3 and are connected to the Purdue
University Engineering Computer Network. The optimized DSP32
architecture is capable of 8 million floating point operations per second

(MFLOPS)

The algorithm chosen for the comparison was the well-known Fast
Fourier Transform (FFT). The FFT has been optimized in C and in the
DSP32 assembly language. The performance of the DSP32 would be expected
to be better than the higher level machines since it is, by definition, a
single-user machine. Therefore, the comparison was based on CPU time, and
actual clock time for the program run.

The input data for the FFT algorithm was a 1024-point cosine signal.
Both the DSP32 FFT routine and the C Language FFT routine work with
complex input and output. Since the DSP32 routine returns only complex
numbers, the C Language FFT routine was limited to returning complex
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numbers. The magnitude calculation section of the program was turned off.

Results of the comparison follow:

DSP32 FFT routine -- CPU time -- 19 ms
DSP32 FFT routine -- clock time -- under 1 second

Dual VAX 11/780 FFT -- CPU time -- 2.5 ms
Dual VAZ 11/780 FFT -- clock time -- 32 seconds

Gould NP1 FFT -- CPU time -- 1.9 ms
Gould NP1 FFT -- clock time -- 14 seconds

Results would indicate that the DSP32 did not perform competitively with
the VAX or the NP1. One possible reason for this difference is that the
DSP32 provides on-board timing in hardware, as opposed to the UNIX-based
machines’ software-based timing. As a result, the DSP32 can generate more
accurate timing results. Clock time for the minicomputers is dependent on
user load, so the DSP32’s superior clock time performance was no surprise.

9.3 CONCLUSIONS

The DSP32 Digital Signal Processing Development System provides a
powerful development environment for digital signal processing applications.
The software interface to the machine provides access to many useful system
functions. Very few problems were ever found with the development system,
which is rare for a such a new product. The history of the DSP32 in AT&T
telephone switches obviously played an important role in speeding the
development of the DSP32 into a scientific product.

One aspect of the machine which hindered the development process was
the lack of high-speed I/O with the turnkey system. The serial port which
provides access to the machine makes the loading of large programs and
static data a time consuming process. The lack of a large amount of on-
board, off-chip memory is an indication that the DSP32 was designed with
real-time engineer in mind. Programs which ran the real-time speech
processing demonstration took little time to run and, since input came from
the CODEC in real-time, we experienced no bottleneck with the serial port.
However, when image processing applications and data were loaded into the
machine, the shortcomings of the DSP32 became evident. The image
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processing routines were much larger in size than the filter routines, and the
data was larger, as well. Typical time to load a two-dimensional application
into the development system was in excess of five minutes (the routines
typically ran in under one second).

In the future, the DSP32 will have a better development environment
under a C-like programming language. This will speed the development of
programs, like our two-dimensional programs, which rely heavily on data
structures. The DSP32 will also see use in image processing, where arrays of
DSP32s will be combined to handle image data at high rates of throughput
(in excess of 700 MIPS) [At87]. A welcome enhancement would be a larger
on-board off-chip addressable memory with the DSP32. Some applications
require large amounts of static data space for optimal operation. Our two-
dimensional applications, for example, were limited to 4096-element pictures.
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Table 9-1. Feature comparison of the leading single-chip digital signal
processors [AIF87].

Package,3| Power [instruction| . - intermal . - | Externall.
* number { fissipation,cycle time, § T “memory sizet - | | memory
ofping | - W *} - o3 | Ram, bits | AOM, bis | Sizo, bits |-
Anaiog Devices Inc.| ADSP2100 ] PGA. 100 06 125 6 x24C None 16K x 24P % 40 125
Norwood. Mass . 3K x 160
ATAT Bet WEDSP16 | PLCC. 84, 04 60 512 x 16 2K x 16 D.P] 64K x 6P % 36 60
Laboratories. CLCC. 84 o.p
Murray Hilt, N.J.
WEOSP32 | DIP. 40; 26 244 1K x 320.P 512 x 32P | 14K x 32 8 E. 8E 244
PGA, 100 o.r UM nu
Fujitsu L1d., MBa784 PGA, 88 [} 100 256 x 16D {IK x 24P | 1K x 162D 16 % 100
Tokyo, Japan PLCC, 84
Inmes Corp., IMSA100 | PGA, 84 <15 NA NA NA KA 16 36 400
Colorado Springs,
Colo.
Motorola inc.. DSPSE000 | PGA, 88; NA 98 512 % 240 |512 % 24 0,| 64K x 24P u 6 98
Phoenix, Ariz. PLCC, 88 K x 24P 128K x 24D
DSP56200 | OIP. 28 NA RA 256 % 240 NA NA 180, L 98
256 x 160 Auc
NEC Electronics #pA7TX20X | DIP. 28 0.6 250 128 x 16D §512 x 23°P. Hone ] 16 500
inc.. 510 x 230
Nountain View, (EPROM)
Callt.
#pd77230 | PGA, 68 1.7 150 K x 30 |1Kx 320 |4 x 2P 8E. 8E. 150
2K x 32P | 4K x 320 U AT M
Oxi Edectric MSM6992 | PGA. 132 04 100 K x 32P UK x 2P 64K x 320 6E. 6E, 100
inoustry Co. L1d.. 64K x 327 M 6™
Tokyo, Japan
Signetics Corp., PCBSO10 | PLCC, 68 05 125 256 x 160 {512 x 160 | 64K x 16DP| 46 40 125
Sunnyvaie, Calif. 32 x 40P 1992 x 40P
PCBSO1t PGA, 144 0.5 125 256 x 160 None §12 x 160 16 40 125
64K x 16 0P
Thomson-CSF TS68930 1 DIP. 48 1.5 160 256 x 180 {512 x 16D [ 4K x 8D 6. 32 32 160 R,
Corp., K x 327 360 C
Canoga Park,
CaHl. TS68931 PGA, 84; 1.8 160 258 x 160 {512 x 160 | 4K x 16 0. 18, 32 2 160 R,
CLCC, 84 64K x 32°P 360C
Texas Instruments TMS320C1X] DIP. 40; 0.2 160: 256 x 16D |[4K x 16P |4K x 6P % 32 320. 400
inc., PLCC, 44 200 (EPROM)
Houston, Texas
TMS32020 | PGA, 63 1.2 200 288 x 160 None 84K x 160 % 32 200
256 x 16 0.P) 64K x 18P
TMS320C25] PLCC. 68: 0.5 ] 288 % 160 |4K x 18P 164K x 160 L] R 100
PGA, 68 256 x 16 0.P! 84K x 6P
TMS320C30] OFP. 100; NA 60 2K x 320.P{4K x 320,P] 16M x 320P| B8E. 8E. 60
PGA, 176 64 x 32C UM nM
Zoran Corp.. ZR3388t LeC, 68 1.0 NA NA NA NA 8 5 50
Santa Clara, Cai. =
ZR3A161 DiP, 48 05 100 256 x 170 [256 x 170 | 84K x 16 O.P 16 5 100
1. 8asedonan fable trom OSP 18 Peregrine Rd., Newton, Masa 02159; except for the and the Texas TMS320C30,
alt [Cs are Currently available. NA—data nol available or not applicsbie
2. Except tor the digital filters IMSAT00, DSPS5200, and ZR33881 and the vector signal processor ZR3I4181, all the ICs are ¢ i digital signal most

devices handie integer-type dats; the WEDSP32, 4pd?7230, snd MSM 8992 are fioating point devices; the TMSI20C0 is designed to operate in gither an integer or a floating-
point mode; and the ZR34181 is a biock Hoating-point device; spd77X20X represents three devices: the xpd7720A, 77C20, snd 77P20; TMS 320C 1X represents six devices: (he
TMS320C10. C18. €3S, C17, E17, and TMSI2011

3. Legend: PGA—pin-grid array; PLCC—plastic, leadiess Civip cartier; CLCC —ceramic, lsadiess chip carrier; DIP—dual in-iine package: GF P——quad flat package; LCC—ieadiess
chip carrier .

4. Lagend: D—dats; P- C—cache, EPROM Q! read-only Y; K~=1024 bits; M—1048 578 bits

s : € M C

€. Lagend: R—reed [~ for OSP38200, Whe time s per filter tap




LIST OF REFERENCES



[Al86]

[AIF87]

[ArG86]

[At86]
[At87]

[BoG86]

[BoHS6]

[Da84]

[Ha86]

58

LIST OF REFERENCES

H. Alrutz, "Implementation of a multi-pulse coder on a single chip
floating-point signal processor,” Proceedings of the International
Conference of Acoustics, Speech and Signal Processing, pp. 2367-
2370, Tokyo, April 1986.

A. Aliphas and J. A. Feldman, "The versatility of digital signal
processing chips," IEEE Spectrum, Vol. 24, No. 6, pp. 40-45, June

- 1987.

G. R. Arce, N. C. Gallagher, and T. A. Nodes, "Median filters:
theory for one- and two-dimensional filters,” in Advances in

Computer Vision and Image Processing, vol. 2, T. S. Huang, Ed.
Greenwich, CT: JAI Press, 1986.

T7520 high precision PCM codec with filters, AT&T Preliminary
Data Sheet, May 1986.

"AT&T Pixel Machines, PXM 900 Series," Product Specification,
AT&T New Jersey, July 1987.

J. R. Boddie, R. N. Gadenz, R. N. Kershaw, W. P. Hays and J.
Tow, "The DSP32 digital signal processor and its application
development tools," AT &T Technical Journal, Vol. 65, Issue 5, pp.
89-104, September/October 1986.

J. R. Boddie, W. P. Hays, and J. Tow, "The architecture,
instruction set and development support for the western electric
DSP32 digital signal processor,” Proceedings of the International
Conference of Acoustics, Speech and Signal Processing, pp. 421-
424, Tokyo, April 1986.

J. W. Daugherty, "Using the WE DSP32 digital signal processor in
speech processing applications,” AT&T Technical Memorandum,
September 1984.

R. M. Haralick, "Glossary of Computer Vision," Machine Vision
International, Ann Arbor, MI, May 1986.




[HaS86)

[HaT86]

[HoC86]

[OpS75]

[PoD82]

[RoK82]
[Se82]
[shro]
[StD84

[To86]

[Tu87]

[We86]

59

R. M. Haralick, S. R. Sternberg, and X. Zhuang, "Image analysis
using mathematical morphology,"’ IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol PAMI-9, No. 4, pp. 532-550,
July 1987

J. Hartung and J. Tow, AT&T DSP32 Library Routines Manual,
Release v0.0, September 1986.

T. D. Hopmann, R. J. Canniff, M. A. Derrenberger, and P. A.
Stiling, "A System Design for Real Time Signal Processing,"
Proceedings of the International Conference of Acoustics, Speech
and Signal Processing, pp. 1341-1344, Tokyo, April 1986.

A. V. Oppenheim and R. W. Schafer, Digital Signal Processing,
Prentice Hall, 1975.

J. F. Poje and E. J. Delp, "A survey of computer architecture used
in image processing,” University of Michigan, Center for Robotics
and Integrated Manufacturing Technical Report, RSD-TR-9-82,
April, 1982.

A. Rosenfeld and A. C. Kak, Digital Picture Processing, Second
Edition, Academic Press, 1982.

J. Serra, Image Analysis and Mathematical Morphology, Academic
Press, 1982.

K. S. Shanmugam, Digital and Analog Communication Systems,
John Wiley & Sons, 1979.

W.D. Stanley, G. R. Dougherty and R. Dougherty, Digital Signal
Processing, Second Edition, Reston, 1984.

J. Tow, "Interfacing the DSP32 and AT&T PCM codecs, AT&T
Technology Systems Technical Memorandum, TM86-54332-
860212-01IM, December 1986.

D. Tunick, "Powerful display system revs up image and graphics
processing," Electronics Design, pp. 58-62, July 23, 1987.

Western Electric DSP382-SL Support So ftware Library User Manual,
AT&T Document Management Organization, July 1986.




APPENDICES




60

APPENDIX A: THE DSP32 INSTRUCTION SET

Imstructions Fermat | CAU Flags Affected

Centrel Greup:
if (CA COND) goto {tH, N, rtH+N, rH~N} 0 — - |- -
if ({M-->=0) goto {tH, N, rH+N, rH-N} 3 —_—— ] =} -
if (DA COND) goto {tH, N,tH+N,tH-N} | 0 -] -] -] -
if (IO COND) goto {rH, N, rH+N, rH-N} 1 el Bl Bl e
call (rH, N, rH+N, rtH-N} (rtM) 4 —_— - = | -
return (rM) 0 el e Rl
goto {tH, N, tH+N, rH-N} 0 - == -
[L]*nop ‘ 0 —l=1—=1=
Arithmetic Logical Group:
tD = tH+N S a z v c
tD = rD+rS 6a n z v c
tD = tD—{N, 1S} Ga n z v c

tD-{N, 1§} Sa,b n z v ¢
tD = {N, 1S}-rD 6a,b n z v c
tD = D& (N, 1S} 6ab n z 0 0

rD& (N, rS} 6a,b n z 0 0
tD = rDfN, rS} 6a,b n z 0 0
D = tD*(N, 1§} 6a,b n z 0 0
tD = §/2 6a n z 0 c
tD = 1§>>1 6a 0 z 0 c
tD = —-1§ 6a n z v c
tD = rS§°2 Ga n z v c
Data Move Group:
tD=N 5 n z 0 0
{ioc, dauc} = VALUE S - |- -] -
{MEM, °N, obuf} = {rSh, rSl} Tabe | — | — | — | —
{MEM, °N, obuf, pdr, pir} = S Tabe | — | — | — | —
rD = (MEM, °N, ibuf, pdr} Ta,be n z
{rDh, D]} = {(MEM, °N, ibuf} Ta,be n z
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Instructions

Format

DAU Flags Affected

Multiply/ Accumaulate:

[Z =] aN = [-]aM {+,~} Y*X

aN = [-]aM {+,-} (Z=Y)°X

[Z =) aN = [-]Y {+,~} aM*X

[Z =) aN = [-]Y*X

aN = [-]}(Z=Y)*X

[Z=]aN = [-]Y {+,-} X

- IN W =N ]|Ww

[y

Z|Z|Z|Z|Z|Z|Z

NININININININ

d|f|<]|<]|<|<€]|<

[Z =] aN = !—!Y
Special Functions:

lCCC.‘CC‘.CC:

[Z=] aN = ic(Y)

Z

N

o

o

[Z=] aN = oc(Y)

[Z=] aN = float(Y)

r AN

N

ol

ol

[Z=] aN = int(Y)

[{Z=] aN = round(Y)

Z

N

<

c

[Z=] aN = ifalt(Y)

aAtlbh|lbibn]is |n
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APPENDIX B: MANUAL PAGES

NAME

dsp3as — DSP3 assembler

SYNOPSIS

dsp3as [=V] [=P] [=C] [-Dn=v] [=Dn] [-Un] [-Idir] {-1] filename [...file...]

DESCRIPTION _
Dsp3as is the DSP3 assembler that runs on the UNIX System. It accepts two types
of arguments. The arguments beginning with an initial minus sign, as described
below, must appear first in the command string.

Arguments whose names end with .s or .i are taken to be DSP3 assembly source
programs. They are assembled, and each object program is left on the file whose
name is that of the source with .0 substituted for the .s or .i.

Flag arguments are interpreted by dsp3as as follows.

EXAMPLES

Print the version number of the assembler when it is invoked.

Run only the macro preprocessor on the named DSP3 programs, and leave
the result on corresponding files suffixed .i.

Include all comments in the listing file.

Define n, an identifier, to the preprocessor, as if by #define, and give it
value v.

Define n to the preprocessor as 1.
Remove any initial definition of n. n is undefined.

Change the algorithm for searching for #include files whose names do not
begin with / to look in dir before looking in the directories on the standard
list. Thus, #include files whose names are enclosed in " will be searched
for first in the directory of the filename argument, then in directories
named in —I options, and last in directories on a standard list. For
#include files whose names are enclosed in <>, the directory of the
filename argument is not searched.

(lower-case L). Produce an assembly listing.

dsp3as —Dvaluel=036 -1 filename.s

The above line causes file filename.s to be preprocessed and assembled into file
filename.o. Whenever the identifier valuel occurs, it is replaced with an octal 36. A
listing is produced.
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The command line
dsp3as ~Dvax filel.s file2.i

causes identifier vax to have value 1 when the files are assembled. The preprocessor
will be called for filel.s. The files will be assembled and output into filel.o and

file2.o respectively.

FILES
files input source file
filei preprocessed source file
file.o assembly output - object file
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NAME
dsp3ckfile — check the contents of a object file

SYNOPSIS
dsp3ckfile [—d] [-1] [—r] [=s] [=N nn] [-V] files

DESCRIPTION
The dsp3ckfile command is a common object file auditor. It cross-checks the contents

of an object file to detect all possible errors.

The dsp3ckfile command only checks the non-executable portions of the object file. It
performs no checking on internal raw text and data.
The following options are interpreted by dsp3ckfile.

~d Set a user debug flag, used to print the contents of file header, section
headers and additional information.

-1 Suppress the line number check.
-r Suppress the relocation check.
-s Suppress the symbol table check.

=N nn Set the maximum number of messages to be printed to nn. The argument
*nn" is a numeric constant. If the "=N" flag is not used, the maximum

number of messages will be 50,000.

-V Version of dsp3ckfile command executing.

FILES
SDPage? temporary file

DIAGNOSTICS
Diagnostics are intended to be self-explanatory. Some knowledge of the common

object file format is needed.
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NAME
dsp3conv — DSP3 SGS object file converter

SYNOPSIS
dsp3conv [—s] —t target [~V] files

DESCRIPTION
The dsp3cony command converts DSP3 object files from their current format to the

format of the target machine. The converted file is written to file.y.

Command line options are:

-s Causes dsp3conv to function exactly as 3bswab, i.c., to "preswab” all
characters in the object file. This is useful only for 3B20 object files
which are to be "swab-dumped" from a DEC machine to a 3B20.

—t target Indicates the machine (target) to which the object file is being shipped.
This may be another host or a target machine. Legal values for target are:
pdp, vax, ibm, i80, x86, b16, n3b and m80.

-V Version of dsp3cony command executing.

DSP3conv can be used to convert all object files in common objeci file format, not
only DSP3 object files. It can be used on either the source ("sending"”) or target
("receiving”) machine.

DSP3conv is meant to ease the problems created by a multihost cross-compilation
development environment. DSP3conv is best used within a procedure for shipping
object files from one machine to another.

EXAMPLE
* ship object files from pdpll to ibm
Secho *.out | dsp3conv —t ibm ~$OFC/foo.0
Suucp *.v my370! /rje/

DIAGNOSTICS
All intended to be self-explanatory. Fatal diagnostics on the command lines cause
termination. Fatal diagnostics on an input file cause the program to continue to the
next input file.

BLGS
Special applications, such as DMERT, must compile dsp3conv differently if it is to
convert special object files, e.g., products of ldp, correctly. Archives created on
another architecture and converted on the target machine may have members with
incorrect permissions (this has no effect so long as they remain members of the
archive).
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dsp3dump — dump selected parts of an object file

SYNOPSIS

dsp3dump [—a] [~f] [~o] [<h] [~s] [=r] [—1] [=t] [~2 name] [-V] files

DESCRIPTION

The dsp3dump command dumps selected parts of each of its object file arguments.

This command will accept both object files and archives of object files. It processes
each file argument according to one or more of the following options:

| Dump the archive header of each member of each archive file argument.
-f Dump each file header.

-0 Dump each optional header.

-h Dump section headers.

-s Dump section contents.

-r Dump relocation information.

-1 Dump line number information.

-t Dump symbol table entries.

=z name Dump line number entries for the named function.

-V Version of dsp3dump command executing.

The following modifiers are used in conjunction with the options listed above to modifs

their capabilities.

-~d number

+d number

-—n name

~t index

+t index

-V

Dump the section number or range of sections starting at number
and ending cither at the last section number or number specified by
+d. '

Dump sections in the range either beginning with first section or
beginning with section specified by —d.

Dump information pertaining only to the named entity. This
modifier applies to —h, —s, —r, -1, and -t.

Dump only the indexed symbol table entry. The —t used in
conjunction with +t, specifies a range of symbol table entries.

Dump the symbol table entries in the range ending with the indexed
entry. The range begins at the first symbol table entry or at the
entry specified by the —t option.

Dump information in symbolic representation rather than numeric
(e.g., C_STATIC instead of 0X02). This modifier can be used with
all the above options except —s and ~o options of dsp3dump.
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—2 name,number Dump line number entry or range of line numbers starting at
number for the named function.

Dump line numbers starting at cither function name or number

+z number
specified by —z, up to number specified by +z.

Blanks separating an option and its modifier are optional. The comma separating the
name from the number modifying the —z option may be replaced by a blank.

The dsp3dump command attempts to format the information it dumps in 2 meaningful
way, printing certain information in character, hex, octal or decimal representation as

appropriate.
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NAME
dsp3id — link editor for DSP3 object files

SYNOPSIS
dsp3id [—a) [—e epsym] [—f fill] [=i] [=Ix] [=m] [=r] [~s] [—o outfile] [—u
symname} (=L dir} [=V] [=X] filenames

DESCRIPTION
The dsp3ld command combines several object files into one, performs relocation,
resolves external symbols, and supports symbol table information for symbolic
debugging. In the simplest case, the names of several object programs are given and
dsp3ld combines them, producing an object module that can either be executed or used
as input for a subsequent dsp3ld run. The output of dsp3ld is left in dsp3a.out. This
file is executable, if no errors occurred during the load. If any input file, filename, is
not an object file, dsp3ld assumes it is either an ASCII file containing link editor
directives or an archive library.

If any argument is a library, it is searched exactly once at the point it is encountered

in the argument list. Only those routines defining an unresolved external reference are

loaded. If a routine from a library references another routine in the library, the

referenced routine must appear after the referencing routine in the library. Thus, the
-order of programs within libraries is important.

The following options are recognized by dsp3id.

-a Produce an absolute file; give warnings for undefined references.
Relocation information is stripped from the output object file unless the
—r option is given. The —r option is needed only when an absolute file
should retain its relocation information (not the normal case). If neither
—a nor —r is given, —a is assumed.

—e epsym  Set the default entry point address for the output file to be that of the
svmbol epsym. This option forces the —X option to be set.

~f fill This option sets the default fill pattern for "holes” within an output
section as well as initialized bss sections. The argument fill is a two-
byte constant.

-i This option specifies that separate "I" and "D" space are to be generated.

This allows 64K of instructions and 64K of data.

-1 x This option specifies a library named x. It stands for the standard
library for DSP3 assembly language programs, liba.a. It stands for
libx.a where x is up to seven characters. A library is searched when its
name is encountered, so the placement of a =1 is significant. By default.
libraries are located in LIBDIR.

-m This option causes a map or listing of the input/output sections t0 be
produced on the standard output. '

—o outfile  This option produces an output object file by the name outfile. The
name of the default object file is dsp3a.out.




-r

—u symname

~L dir

FILES

LIBDIR/lib_

dsp3a.out
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This option causes relocation entries to be retained in the output object
file. Relocation entries must be saved if the output file is to become an
input file in a subsequent dsp3id run. Unless —a is also given, the link

editor will not complain about unresolved references.

This option causes line number entries and symbol table information to
be stripped from the output object file.

Takes the argument symname as a symbol and enters it as undefined in
the symbol table. This is useful for loading entirely from a library, since
initially the symbol table is empty and an unresolved reference is needed
to force the loading of the first routine.

Change the algorithm of searching for libx.a to look in dir before
looking in LIBDIR.

Output a message giving information about the version of dsp3ld being
used.

Generate a standard UNIX System file header within the "optional
header” field in the output file.

.a libraries

output file
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NAME
dsp3make — Assemble/load Simple DSP3 Programs

SYNOPSIS
dsp3make [—s] [—{m | M}{0123}] filename

DESCRIPTION
Given that the user has created a DSP3 assembler file called filename.s, this
command creates the file which can be run on dsp3sim, or on a DSP32. It can only
be used with a program consisting of one file, but the ifiles which it uses (sec the
FILES section) can be used as models in more advanced applications. dsp3make
causes other commands to be executed which invoke dsp3as and dsp3id; these
commands are printed as it goes along.

FEATURES WHICH IT ADDS TO DSP3AS/DSP3LD
The —s option should be used when assembling a program to run on the DSP23-DS
DSP Development System. It links in special code to handle breakpoints: although
this is not generally detrimental when in simulation mode, it does use memory
locations OxFEQO—OxFFFF. These memory locations are reserved by dsp3make
regardless of whether the —s option is invoked.

The following options are used to describe the memory arrangements to the link editor.
For more information on memory, consult the DSP32 Digital Signal Processor
Information Manual. Chapter 4, in this manual, also provides more detail on memory.
If no memory mode is specified on the command line, then .bank0 and .bank1 are the
only .rsects provided, and specify memory ranges 0x0000—0xDFFF and 0xE000-—
OxFFFF respectively. When —m{0123} is used, then .rsects are provided that are
appropriate to specific memory modes, providing more precision in memory placement.
Each of the 4 modes provides .bank0 consisting of locations 0—DFFF(hex) or
800—-DFFF(hex), depending on whether ROM is from 0—7FF. Additionally, they
provide the following .rsects mapped into specific segments of bank 1:

-m0: .rom is 0—7FF; .hi_ram is FOOO—-FDFF
—m1l: .rom is 0—=7FF; .hi_ram is F800—-FDFF
—m2: .rom is EOOO—E7FF; .hi_ram is FOOO—-FDFF
-m3: .rom is EOO0O—E7FF; .hi_ram is F800—FDFF

=M {03} provides a further distinction between the on-chip RAM section in bank 0
and external memory. This is particularly useful if no external memory will be
available, in which case memory modes 1 or 3 will probably be preferred. and one
should explicitly select whether memory goes into .lo_ram, .rom, or .hi_ram. (-M0
and —M2 are identical to their lower-case counterparts and are provided for
convenience).

~M1: .rom is 0—7FF; .lo_ram is 800~ 1000; .hi_ram is F800—FDFF
=M3: .lo ram is 0—7FF; .rom is EOOO—=E7FF; .hi_ram is F800—FDFF
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In each case, locations FEOO—FFFF are reserved (as .rsect ".sbds”) for code used by
the SBDS for breakpoint processing.

EXAMPLE ~
The following program, when assembled and loaded using dsp3make —M3 will put the
machine instructions and the block of constants in rom (bank 1), and the block of
variable data in low ram (bank 0). The program as it is can be simulated, but to run
it on a DSP32, one would have to order chips with special ROM masks. Note
however that if .hi_ram is substituted for .rom, one can test the program with the same
number of wait states as in the final product.

/* biquad.s - Low Pass Filter. */

.global loop, wait, SoS, coef, s, main
.rsect ".rom"
main:
ioc = Oxff0
dauc =0
ri6 =8 :
loop: rl =s
r4 = coef
wait: if(ibe) goto wait
r3=0
a0 = jbuf
SoS: a0 = 30 — *rl4++ * *rd4++
*rl = a0 = a0 - *rl——* *r4++
nop
al = (*r] = *r]++) * *r4++
nop

al = al + *rl++ * *rd++
if(r3—— >= 0) goto SoS
a0 = al + a0 ® *r4++
goto loop
obuf = a0 = a0

.rsect “.lo_ram"”
goto main
nop

s:  4*float 0.0

.rsect ".rom”
coef: 2 * float —0.4, 0.2, 0.4, 0.2, 0.2

dsp3make —M3 biquad
(Make runnable file biquad from biquad.s —
dsp3make will print two lines)
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dsp3sim biquad

coef

coef = 0xc048
coef{0:401.f

coef [0:40] =

0x0000: —0.4 0.2 0.4 0.2
0x0010: 0.2 -0.4 0.2 0.4
0x0020: 0.20.20

coef = "new_coef”

The dsp3sim commands verify that coef has address 0xe048, in bank 1, and contains
the expected data. The last line reads in new coefficients from a file.

FILES
The following may be a good source of models for doing programs involving several

files, which dsp3make cannot do. This requires some understanding of the UNIX
System make utility, and of dsp3ld, which resembles other UNIX System loaders.

$DSP3BIN/dsp3make
$DSP3LIB/dsp3.makefile
$DSP3LIB/dsp3.ifile
$DSP3LIB/m{0-3]_ifile
$DSP3LIB/MI0-3] ifile
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dsp3nm — print name list of DSP3 object file

SYNOPSIS

dsp3am [—{ o d x}] (=v] [—n] [—e] [~f] [=u] [-V] filename . . .

DESCRIPTION
The dsp3nm command displays the symbol table of each DSP3 object file filename.
Filename may be a relocatable or absolute DSP3 object file or it may be an archive of
such DSP3 object files. For each symbol, the following information will be printed:

Name

Value

Class

Type

Size
Line

Section

The name of the symbol.

Its value expressed as an offset or an an address depending on its storage
class.

Its storage class.

Its type and derived type. If the symbol is an instance of a structure or of
a union then the structure or union tag will be given following the type
(e.g., struct-tag). If the symbol is an array, then the array dimensions will
be given following the type (e.g., charlnl(m]).

Its size in bytes, if available.
The source line number at which it is defined, if available.

For storage classes static and external, the object file section containing
the symbol.

The output of dsp3nm may be controlled using the following flags:

-0
-d

-y

A symbol's value and size will be printed in octal instead of hexadecimal.

A symbol’s value and size will be printed in decimal instead of
hexadecimal.

External symbols will be sorted by value before they are printed.
External symbols will be sorted by name before they are printed.
Only static and external symbols are printed.

‘Fancy’ output is produced; that is, the symbol table information is post-
processed to reflect the block structure of the source code.

Only undefined symbols are printed.

Version of dsp3nm command executing.

Flags may be used in any order, either singly or in combination, and may appear
anywhere in the command line. Therefore, both dsp3nm name —e —v and dsp3nm —ve
name print the static and external symbols in name, with external symbols sorted by

value.
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FILES

SEE ALSO
dsp3as(1), dsp3ld(1).

DIAGNOSTICS
‘dsp3nm: name: cannot open’
if name cannot be read.

‘dsp3nm: name: bad magic’
if name is not a DSP3 object file.

‘dsp3nm: name: no symbols’
if the symbols have been stripped from name.




75

NAME
dsp3sim — DSP3 simulator

SYNOPSIS
dsp3sim [—Vel] [—-mn] filename

DESCRIPTION
dsp3sim, the DSP3 simulator/debugger, is a program development tool which runs on
the UNIX system. It accepts a standard DSP3 load file in the Common Object File
Format (COFF), along with simulator execution commands. The COFF is created by
the DSP3AS (assembler) or the DSP3LD (loader).

~V  Prints the version number of the simulator when invoked. The optional —m
argument, if supplied, must appear before the file name in the command string.

—e  Says to read the file filename.ex as a list of commands. This can serve to set
up commonly used functions and breakpoint settings.

| Says to enable keep a record of user commands in a file log.cmds, or, if input is
from a file, to echo the commands from the file as they are executed.

-m  Specifies the memory mode. The value of n can be zero or one. In memory
mode 0, the on-chip ROM is located from address O through 0x7ff. In memory
mode 1, the on-chip ROM is located from address 0xe000 through Oxe7ff. If
no mode is specified, then rom({x] coincides with mem(x] and all memory is
writable.

dsp3sim execution commands allow manipulation of simulated memory and registers.
In addition, breakpoints may be set to detect conditions which may occur during
simulation of the program.

dsp3sim closely simulates the DSP3 architecture and functionality. The simulator
provides for instruction latency effects, serial data transfer delays and program
preformance information; approximate execution time and number of wait states.

After the simulated DSP3 memory has been loaded from the object file, the simulator
execution commands are read from the standard input. All nonerror output produced
by the simulator is directed to the standard output. All error messages are directed to
the standard error output.

Multiple commands may appear on a line but must be separated by a semicolon.
Commands may be continued over multiple lines by breaking the line at any white
space and inserting a backslash (continuation character) before the newline.
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NAME
dsp3size — print section sizes of DSP3 object files

SYNOPSIS
dsp3size [~o] [~d] [~V] files

DESCRIPTION
The dsp3size command produces section size information for each section in the DSP3

object files. For each section in the object file, the name of the section is printed
followed by its size in bytes, its physical address, and its virtual address.

Numbers will be printed in hexadecimal unless either the —o or the —d option is used.
in which case they will be printed in octal or in decimal, respectively.

The =V fiag will supply the version information on the dsp3size command.

SEE ALSO
dsp3as(1), dsp31d(1).

DIAGNOSTICS
‘dsp3size: name: cannot open’
if name cannot be read.

‘dsp3size: name: bad magic’
if name is not a DSP3 object file.
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NAME
dsp3strip — strip symbol and line number information from DSP3 object file

SYNOPSIS
dsp3strip [—1] [=x] [—~r] [=V] filenames

DESCRIPTION
The dsp3strip command strips the symbol table and line number information from
DSP3 object files, including archives. Once this has been done, no symbolic
debugging access will be available for that file; therefore, this command is normally
run only on production modules that have been debugged and tested.

The amount of information stripped from the symbol table can be controlled by using
the following options:

-1 Strip line number information only; do not strip any symbol table information.
—x Do not strip static or external symbol information.

-r Reset the relocation indices into the symbol table.

-V Version of dsp3strip command executing.

If there are any relocation entries in the object file and any symbol table information

is to be stripped, dsp3strip will complain and terminate without stripping filename
unless the —r flag is used.

The purpose of this command is to reduce the file storage overhead taken by the
object file.

FILES

EE ALSO
dsp3as(1), dsp3id(1).

MAGNOSTICS
‘dsp3strip: name: cannot open’
if name cannot be read.

‘dsp3strip: name: bad magic’
if name is not a DSP3 object file.

‘dsp3strip: name: relocation entries present; cannot strip’
if name contains relocation entries, the -r
flag not used, and any symbol table information was

to be stripped.
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APPENDIX C: DSP32 SIMULATOR COMMAND SUMMARY

Keywords and Predefined Variables Accessed by the HELP command.

FALSE
SOS
bp
cmpit
_emr
fltmu
mip
nout
pdr
pold
rl—r2l
save
var

OUTFMT PDRIS PDROS
TRUE a a0-a3
bpset break cfp
cont dauc , decode
enb es esr

fp ibuf ioc
muflt next nin
npir await obuf
pick pild pin
pout psw psync
rih—r21h rll=r21l reset
stat step t

waits wh when

PIROS
aflt
clock
dis
exec

1d
nopdr
pe

pir
quit
run
trace
whenever

Type *help "all™ to see all the help entries for the above or for descriptions of bit-mapped
variables, type ‘help var’ or 'help var value’ where var is one of pcr, esr, psw, ioc, mm, or
dauc and value is a possible value of that variable.

Results of the HELP "ALL" Command

FALSE
OUTFMT

PDRIS
PDROS
PIROS
SIS
SOS
TRUE
a
a0—al
aflt

alp

bp

constant equaling O

Output format (for expression display)
OUTFMT = {"octThex{"dec”}

Parallel Data Register Input STACK
Parallel Data Register Output STACK
Parallel Interrupt Register Output STACK
Serial Input STACK

Serial Output STACK

constant equaling 1

a0 through a3 (display all at once)

32-bit DAU accumulators

Convert a-law to (host) floating point format
E.g., aflt 0 = —688.0

Print a-law in step-chord format
E.g.. alp 0 = 0a-5:5

‘clr bp’ - clear all "bpset’ breakpoints;
‘clr bp argl,arg2,..." — clear specified ones;

"Ist bp' or 'Ist bp argl,arg2,...’ list all or list specified etc.




bpset

break
cfp

clock

clr

cmplt
cont
dauc
decode

dis
do

emr
enb

es

esr

exec

flta

fltmu

ibuf

10¢

Ist

mip
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Set breakpoints.
Format — 'bpset label’ or "bpset label{function}’

Halt DSP3 run; get back to command level.

Convert host floating point to DSP32 floating point.
E.g., cfp 1.0 = 0x80

Display rate of passive 1/0 clocks.

See 'bp’; also clr wh’ clears all when/whenever conditions;
‘clr es’ clears all 'event stepping’ commands

Complete the execution of instructions in progress.
Resume DSP3 execution where left off after a halt
2-bit DAU control register

Disassemble machine code. E.g., 'decode(*pc)’ prints source that could
generate the current instruction

e.g., 'dis nins’ — stop incrementing nins when inputs occur.

*do{cmd-list} while cond’ — repeat cmd-list at least once and as long as cond
tm 0 (see while)

16-bit error mask register
Undoes the affect of 'dis’

‘es expr {cmd-list}’ — During DSP3 run, perform cmd-list after each
instruction cycle that value of expr changes

8-bit error source register
Execute command file: ‘exec "file™ OR ‘dsp3sim —¢'.

Floating point format to a-law conversion.
E.g., flta 1.0 = Oxab

Floating point format to mu-law conversion.
E.g., fltmu 1.0 = Ox7f

Convert DSP3 floating point format to host format.
fp 0x60000080 = 1.75
Also format for output stack SOS; E.g., ‘SOS = "fp™

serial input buffer
serial IO control register

'Ild’ - reload memory with last program loaded
'Ild mem “programfile® — load memory with program
'Id SIS “file® — start using “file” for serial input stack

See 'bp’; also 'Ist wh’ list 'when/whenever® conditions; ‘Ist es’ list es
conditions; 'Ist SOS’ show contents of SOS

Display mu-law number in step/chord format.
E.g.. mlp 0 = Om-7:15



pout

psw

psync

quit

r

rl—r2l
rlh=r2lh
ril—=r21l

reset

run

runmode

save
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mu-law to floating point conversion.
E.g., mufit 0 = —4014.4

*pd- = next’ gets next item from PDRIS, puts it into pdr.
numt - of serial data inputs

numtbe: of parallel data outputs

number ~f instructions fetched

number of serial data outputs

number of interrupt data outputs

number of wait states

serial output buffer

16-bit program counter

8-bit parallel 10 control register

16-bit paralliel 1O data register

passive input (bit) clock

passive input load clock

alias for r20; input pointer for serial DMA
16-bit parallel 10 interrupt vector register
passive output (bit) clock

passive output load clock

alias for 21; output pointer for serial DMA
processor status bits (Read Only)

passive sync signal clock

return to UNIX System

rl through r21 (display all at once)

16 bit general purpose registers

high byte of register

low byte of register

'reset SISISOS]..." Roll back to beginning of a stack.
‘reset’ — simulate a chip reset

Simulate a reset and execute from loc 0.

‘runmode cont’ — breakpoints don't halt a 'run’ uniess the command list has
"break’ in it. ‘runmode break’ (default) — any breakpoint cause automatic
halt of ‘run’

‘save SOS "file.sos™ — causes "file.sos" to be used for serial output stack
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stat "stat’ — displays ‘status’ information.

step Execute 1 instruction;
step N Execute N instructions.
step N{cmd-list}: N instructions & do cmd-list after each one.

t time counter in states

trace Display the last 256 branches. trace N: display last N

until ‘do {commands] until cond’ — see 'do’

var Create a user variable. e.g., var x; OR var y=7,z=1.1;

waits Display last 256 wait states. waits N: display last N

wh ‘Ist wh® OR ’clr wh’;

when ‘when cond {cmd-list})’ - during a 'run’, perform cmd-list each time cond

goes from O to nonzero

whenever  ‘whenever cond {cmd-list}’ — during a ‘run’, perform cmd-list after each
instruction cycle in which ‘cond’ is nonzero.

- while ‘while cond {cmd-list}’ — repeat cmd-list while cond != 0 In contratt to
‘do{..}while', 'while x {..}* will do nothing if x is 0.(see do)




APPENDIX D:

ROUTINES

SCIENTIFIC/MATH GROUP --

Program

Zdiv. s

Zconl. s
Zcan2. s
Isin. s

Zcos. s

Ztan. s

Zasin. s
Zacos. s
Zatan. s
Zlag?2. s
Zlage. s
Zlaog10. s
Zalog2. s
Zetox. s
Ixtoy. s

Zsqrt. s

MATRIX GROUP ~-

Imatmul. s

Imat2x2. s

Description

SUMMARY OF

Calculates Q =
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AT&T-SUPPLIED

N/7D

Canverts an array of numbers in the IEEE floating
paint format to the internal DSP32 format

Converts an array of numbers in the DSP32 floating
point format fto the IEEE floating point format

Calculates the sin function of x for -pi/2 <= x <= pis2

Calculates
Calculates
Calculates
Calculates
Calculates
Calculates
Calculates
Calculates
Calculates
Calcvulates
Calculates

Calculates

the

the

the

the

the

cosine function of x for -pi/2 <= x <= pi/s2
tangent function of x for -pi/4 <= x <= pi/4a
arcsine of x for ixi < 0.%66

arccosine of x for ixi < 0.966

arctangent of x for ix! > 0O

log(x) [base 23 for x > O

log{x) [base el for x > O

log(x) Cbase 101 for x > O

the

antilog(x) [hase2] for 0.0 <= x <= 1.0

e##x for x D= 0

x#ty for x > O

x##0, 53 for x > O

Multiplies two general matrices A and B and stores the

result in C. A is m x n,

Bisnxp, Cismzxp

Multiplies two 2 x 2 square matrices A and B and stores the

result in C

DSP32



‘iﬁathS.s
Imat4x4. s
ImatS5x5. s
Imat4xl. s

Imat4xiF. s

FILTER GROUP —

Zfir. s
ZfirS. s

Ziir. s

Ziir2. s

Ziir3. s

Ziir4. s

Ziivrd. s

Ziirt. s

Ziirtl. s

Ziirt2 s

Ziirt3. s
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Multiplies two 3 x 3 square matrices A and B and stores the
result in C

Multiplies two 4 x 4 square matrices A and B and stores the
result in C

Multiplies two 5 x 5 square matrices A and B and stores the
result in C

Multiplies a 4 x 4 square matrix A and a 4 x 1 matrix B and
stores the rtesult in C

Multiplies a 4 x 4 square matrix A and a 4 x 1 matrix B and
stores the result in C

Implements the finite impulse response (FIR) filter,
y(n) = SUM € h(k) # x{(n — k) I for k=0 to N-1

Implements the finite impulse response (FIR) filter,
y{n) = € h(k) # x(n — k) J for k=0 to N-1

Implements the infinite impulse response (IIR) filter
represented by cascade second—order sections with 4
multiplications per section

Implements a 2-section and 4-multiplier per section infinite
impulse response (IIR) filter represented by cascade second—
order sections with 4 multiplications per section

Implements a 3—section and 4-multiplier per section infinite
impulse response filter represented by cascade second-order
sections with 4 multiplications per section

Implements a 4—section and 4-multiplier per section infinite
impulse response (IIR) filter represented by cascade second—
order sections with 4 multiplications per section

Implements the infinite impulse response (IIR) filter
represented by cascade second—order sections with 5
multiplications per section

Implements the infinite impulse response (IIR) filter
represented by cascade second—order sections with 5
multiplications per section

Implements a single S5-multiplier section infinite impulse
response (IIR) filter represented by a single second—order
section with S multiplications

Implements a 2-section and S5-multiplier per section
infinite impulse response (IIR) filter represented by
cascade second—order sections with S multiplications per
section

Implements a 3-section and S5-multiplier per section infinite
impulse response (IIR) filter represented by cascade second—
order sections with 5 multiplications per section



Ziirt4. s

Zlms. s

Ifft. s
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Implements a 4-—section and S5-multiplier per section infinite
impulse response (IIR) filter represented by cascade second-
order sections with 5 multiplications per section

Implements a least-mean-square (LMS) algorithm as an adaptive
IIR filter. W(k + 1) = W(k) + 2 ® u # E(k) # X(k) is the
algorithm to update the wieghts if the FIR

Implements the Fast Fourier Transform (FFT) algorithm. The

complex FFT sixe is N = 2##M with the maximum size of N = 1024
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APPENDIX E: SOURCE CODE: RANK-ORDER FILTER

P Iy e e 2 s a L
# This program computes a vector rank order filter on given

# data. The data comes from a UNIX file, "input_data," and the output

# is saved at label "out_data" on the Development System.

#

# The input data has the following format:

Where:

* %k % % %k & % %k % %k %k k % %

1st element: window size

2nd element: relative median location
3rd element: rank of filter

4th element: size of data (N)

Sth element: data point 1

(N + 4)th element: data point N

The window size must be an odd number 2= 3
Rank is from lowest to highest (1 is lowest)

6 I I I 36 I3 3 36 3436 36 36 I 6 34 3 30 3630 363636 I I 636 I I3 I 363696 I 36 96 3636 63636 3 2036 363 30 6 A0 H I AWK/

#define IN_DATA 0x1400
#define TMP_DATA 0x1800

#define count

r9

.global window, compar, swap, noswap, pause, loopl, loop2, loop3, in_data
.global out_data, repl, winil, loop3i, compil, temp

int 4
.align 4

pause: ri
r2
r3
r4

r5
réh
r7
r8

TS

count
r10

IN_DATA /# location of input data #/
TMP_DATA /¥ location of output data #/

temp /% temporary array for sorting #/
4 /# offset #/

#ri++rd /# window size #/

#rl++r4g /# window median location #/
#ri++r4 /# rank of filter (1 is min) #/
#ri++r4d /# size of data #/

rS + (-2) /# adjust for compare to zero #/
= rS5 /# window size for countdown #*/
ré /# relative median location for countdown */

r6 = rH + (-1) /# adjust to use as offset #/

ril

T8 /# size of data for countdown */

r7 = v7 + (-1) /% adjust for use as offset #/
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v7 =v7 % 2 /% calculate offset #/
v7 =17 # 2 /% calculate offset */
8 = v8 + (-2) /# adyust size of data for filter #/

NI I 0333134 3 303 T I I S 3 3403 30 3 3 6 36 300 63030 E I 2 S0 I 46 30636 31 3 3030 363 3090 3 30363 330 B SR 43
# Set up the data space ... this includes padding the input with zeroes

# so that the window can convolve across the entire data space
A3 I I I I35 I T3 3 3330 336 03 33 3 I I I I3 S I I R R R/

10 = v10 + (-2)
nap
v1i0 = vi10 # 2

loopl: r2 =712 + 4 /#% add the pad %/
if (r10-- >= 0) goto loopl
nap

/W33 236 I 5 2 263 233 S0 B30 S I 33 I 3 3 2SI I 3336 3636 90 JE RS I 36 303 3038 36 30 95 HE 0040 3030 K H 03I I S R
# the following code transfers the input data to the temporary data space

# for sorting and eventual replacement back into the input data space
336 30 9062048 30 35 30 36636 320 35 35 2638 33636 26 2045 36 3030 36 35 36 30 036 30 303 969696 26 300 96 30 690 2090 36 336 30 I 30 330 3F S0 FE IS S AN H K/

Ti1 = ril + (-2) /% adjust for countdown #*/
nap
loap2: #v2++ = a3 = #ri++ /# transfer the data to TMP_DATA space #/
if (ri1— >= 0) goto loop2
nap

/3030336 4030 3090 33 3 3690 303090 3036 2 3030 3030 9036 3030 30 3038 26 I FE 330 HE 0 S0 030 20 440 100 30 3EE 3036 30 20 30 3 30 J0 0 2S00 H0 03030 32 4 0030
# the following code loads a window into the temporary data space for

# sorting and rank replacement
63 I 20 3636303362020 30 3 36 3030330 B3I I FE I S TE B I I3 R I I IR R R IR RN

r13 = TMP_DATA /# initialize for window scrolling #/
Tl = IN_DATA /% re—initialize r1 for end replacement #/
ri2 = r13
goto loop3 /% call the loop ... skip loop3i the #/
nap /# first time through #/
loop3i: v13 = ri3 + 4 /# increment pointer for window #/
ri2 = r13 /% pointer for window #/
count = r§ /% reset the count #/
r3 = temp /% reset the pointer to the window space #/
loop3: #r3++ = a3 = #ri2++ /% load the sort space with the window #/
if(count— 2= O) goto loop3
nap

/W B 3636 96 3636 3 3 34 34 30 3 3 9 3 36 3 36363 36 36 I 30363 303030 JEIE 30 36 3036 3036 3 36 330 96 39636 30 30 36 3636 30 3636 3 36 96 F0 363 36 3 B 6 I IR

# Code for the bubblesort routine follows
A 22 2 A I 2326 260326 3 3638 30 3 36 3630 6 36 203336 30 0 4 36 2646 30 06 2016 6326 36 30 36 30 30 36 38 3 404 JEAE I I M N/

window: count = r§& /# Testore the count value #/
winl: v17 = caunt + (—1)
if (count—— 2= Q) goto compar /% not finished yet, do the compare */
nap
goto repl /# the sort is completed #*/
nop

£ I I F I I I I NI DI I I I I I I I I I I I I I I I3 I I 6P I I HE I W N B BN
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# this section of code compares two adJacent'elements to determine if they

# should be swapped
S I A 00063 6 36 35 36 36 26 6 36 35 30 36 3636 3E 090 33830 FH96 30 2030300 I0 S0 06 06 30AE 20 B 00 S SHIE B I S SR R 3/

compar: vi0 = temp /% 1710 set equal to the first element in the #/
ri4 = temp + 4 /# window, v14 assigned to r10‘s neighbor %/
compl: a0 = #vri4 - #r10 /% do the comparison ... if they need to be */
3#nap
if (alt) goto swap /% swapped, swap ‘em ... otherwise, don’t #/
nop
goto noswap
nop

7369 33333536 3 363 36 36 2636 3 34 36 36 30 3300 3 B0 230 3 230 3 303636 630 40 330309600 340 30 3036 3303 330 3 3030 IS SRS
# if the elements have been determined to be out of order, the exchange

#*# is performed
60630 34 060006 35 40 30300 630 006 30 3090 00 36 36 00 3036 3630 30003 B30 3 TS FE UK 000 I B3I 330 3 3 IR R/

swap: a3 = #ri4 /% swap routine ... performs flip—flop */
4#naop
#rl4 = a0 = #rl10 /% of data passed in upper and lower #*/
4%nap
#1100 = al = a3
4¥nap
710 = r10 + 4 /% increment the pointers */
ri4 = ri4 + 4
if (r17-- >= 0) goto compl /# if not end of window #/
nop
goto winl /# reached the end of window 3/
nap

/W33 3 363 6 36 36 3036 230 396 30 3 24 3696 3 3363 H 20040 08 26303 3033040 I 636 3036 20 3E 3004 3 3030 0 303 I ISR H IR R S R
# even if the elements are in the proper order, pointers still must be

% incremented and checks made to determine if sort should return ..
2630396 36 3695 336 26 2036 96 36 35 20 203036 30 30 3 95 36 28 3030 303 I I 20 36 36 5 30 36 000 0 00 0 6 303 3 4 3H 40 3000 0 HHH 000 SR I AR 3L/

noswap: rv14 = vi4 + 4 /% the elements were in the correct %/
vi0 = r10 + 4 /# order ... increment the pointers #/
if (¢17-— 2= 0) goto compi /#% and check the done condition */
nop
goto winl /% they were the last two elements #*/
nap /% in the window ... go back *®/

/W3 526 2359626 3526 34 26 369036 35 3 3 30 33036 35 36 36 T4 343630 30 30 30 203030 3300 03030 3 3 3300 T 0030 203 I SE IS0 B B B
* the following code performs element replacement taking the sorted data from
# the temporary sorting space and placing it back in the data space pointed

* to by IN_DATA
**********************************************H********************%******/

repl: r10 = temp /% reuse 110 as pointer to sorted window space #/
110 = v10 + v7 /% v10 now points to the correct element in the #/
/# sorted window #/
#ri++ = a0 = #ri10 /% Replace the original data space with the #*/
if(r8-— >»= 0) goto loop3i /% filtered data #/
nap

gato pause
nap
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7333369 3636 3 3633 33033 I I 6 36 6 I3 3630 636 3 635 306 62 3 I3 33030 403006 363 33 303 3303 300 04
# data space declaration ... this assures that the memory holding the data

% is initialized to zero
I 2636 9 U6 3662 2326363 30 36 26 T 0 6 36 20 36 3636 305 90 3 30 20303 J0 I 3 JE 6 20 0 S0 JE 0 30 30 35 30 30 31 303030 SRR T H I RIS

. =0x1400
in_data: b4xfloat 0.0
. =0x1800
out_data: 9;*float 0.0
. =0x1980

temp: i6#float 0.0
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APPENDIX F: SOURCE CODE: «a TRIMMED-MEAN FILTER

/3333 A R I3 336 I3 336 33 I 33 346 3 33 36 633 363 0B SE U6 36 03 463 3000 S0 3 S S ISR SR
# This program computes an alpha-trimed-mean filter on given

* data. The data comes from a UNIX file, "input_data," and the

* output is saved at label "out_data" on the Development System.

#*

# The input data has the following format:

*
* 1st element: window size

* 2nd element: relative median location
#* 3rd element: data size (N)

* 4th element: data point 1

* Sth element: data point 2

*

*

* . ;

* (N + 3)th element: data point N

*

#* Where:

* The window size must be an odd number >= 3

* Rank is from lowest to highest (1 is lowest)

***********************************************************************l

#define IN_DATA 0x1400
#define TMP_DATA Ox 1800
#define count 9
#define zero o}

.global check, window, compar, swap, noswap, pause, loopl, loop2
-global out_data, repl, winl, loop3i. compl, temp, denom, numer
.gqlobal loop3, in_data, quot., total

int 4
.align 4
pause: T1 = IN_DATA /% location of input data #/
r2 = TMP_DATA /# lacation of output data #/
r3 = temp /% temporary array for sorting #/
T4 = 4 /% offset »/
TS = #ri++r4 /% window size #/
v4& = #ri++r4 /# window median location (relative) #/
T8 = #ri++r4 /% size of data %/
TS = r5 + (-2) /# adjust for compare to zero #*/
count = rS /# window size for countdown #/
r10 = ré /% relative median location for countdown #/

Té =16 + (-1) /% adjust to use as offset */
rlli = r8 /% size of data for countdown #/
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T8 = v8 + (~2) /% adjust size of data for filter */

VAL L2 2T T TR TTZLINTT T L LT R LT R TTR L F R R R L S R )
* Set up the data space ... this includes padding the input with zeroes

* so0 that the window can convolve across the entire data space
I3 436 66 I 36 I 363633030 3 3033 J 20303 3036 00 I 630 3 6303 033 6303 96 B U3 3 F 638 3 S0 0 I S BN S/

rvr7 = in_data
r10 = ri0 + (-2)
nap

Tv10 = r10 # 2

loapi: »2 =r2 + 4 /# add the pad #/
if (r10— >= 0) goto looptl
nap

P e L T2 17 T T T R s
* the following code transfers the input data to the temporary data space

* for sorting and eventual replacement back into the input data space
W3R I IE I I IO I I I T3 336 330 S 3 6 30 6 0303 I IR I 40 30 SE S I3 FE I3 036 S SR M SR TN S

rvil = ri1 + (-2) /% adjust for countdown #/

nop -
loaop2: #r2++ = a3 = #rl++ /% transfer the data to TMP_DATA space #/

if (vrii— 2= 0O) goto loop2

nop

R IS 63 3383833 38 303 3 428 3303 3030 20 53 30 90 2040 26 262 30203034046 35 36 36 36 303 3030 36 5 30 90 02203006 2 3090 30 36 48 4 36
# the following code loads a window into the temporary data space for

# gsorting and rank replacement
Ry L L Xy T X ey

i3 = TMP_DATA /# initialize for window scrolling #/
Tl = IN_DATA /% re—~initialize r1 for end replacement #/
ri2 = r13
goto loop3 /% call the loop ... skip loop3i the »/
nop /# first time through #/
loop3i: vi13 = r13 + 4 /% increment pointer for window #/
ri2 = ri3 /# pointer for window #/
count = vH /% reset the count #/
™3 = temp /% reset the pointer to the window space #/
loop3: #pr3++ = a3 = #ri2++ /# load the sort space with the window #/
if(count— = 0O) goto loop3
nop

FA AR R g T R T L ey,

# Code for the bubblesort routine follows
32433036363 0 63630 36 I3 36 30 33634036 363 303 I IR I 63 AN I RN RN H RN RRS

window: count = r5 /% restore the count value #/
wini: T17 = count + (-1)
if (count—— = 0O) gotao compar /% not finished yet, do the compare #/
nap
goto repl /% the sort is completed #/
nap

P L L L 2 1 T I TR R e vy
*# this section of code compares two ad jacent elements to determine if they
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#* should be swapped :
L Xt 2 e R AR S R R A e T B T S R R R I T I TR R

compar: v10 = temp /% 710 set equal to the first element in the #/
rvri4 = temp + 4 /% window, 114 assigned to v10’s neighbor #/
compl: a0 = #ri4 - #vi0 /% do the comparison ... if they need to be #/
3#nap
if (alt) goto swap /% swapped, swap ‘em ... otherwise, don‘t #/
nop
goto noswap
nap

/A A A S 3030300 30363 333 303 33 0 T3 06 3 309 3H 6 306 6 3036 240 306 3096096 36 330 3036 36 30403 2036 06 36 3000 S0 0030 36 36 36 38 26 3 346
# if the elements have been determined to be out of order, the exchange

# is performed
LR R X s e L 2y L e ey s s L T T TR g

swap: a3 = #r14 /% swap routine ... performs £lip-flop »/
3#nop
#r14 = aQ = #ri0 /% of data passed in upper and lower #*/
3#nop
#r10 = al = a3
3#nop
10 = r10 + 4 /% increment the pointers #/
Ti4 = ri14 + 4
if (ri7-— >= 0) goto compl /# if not end of window #/
nop
goto winl /# rveached the end of window %/
nop

£ F AT I 3 33 3033320 330 30 3030303 4 38 3030343030 303030 6 4630 5036 3 3000 3 3304 36 3036 36 3096 30 96 3 36303 JE 400090 63950006 36 3030 363636
# even if the elements are in the proper order, pointers still must be

# incremented and checks made to determine if sort should return ...

3636 338 336 3036 304036 36 36 3 36 3 30 303038 3 36 309630 30 W0 I 1636 203030 3636 36 H 6 H 0 H 30 300 96 3 3303030 3046 6 30 3 B0 MM 303/

noswap: rv14 = ri4 + 4 /% the elements were in the correct */
ri0 = ri0 + 4 /# order ... increment the pointers #/
if (r17-— >= 0} goto compl /% and check the done condition */
nop
goto winl /# they were the last two elements #/
nop /# in the window ... go back */

£33 A 3 3630 33303 36 3 3 330 3 3036 30 B IE FE I 2 263 348 3 3336 30 3036 600 36 30363690 3030 3640 30446 HEE 06 03 30 200 06 160006
# At this point, the data has been sorted and is ready to be processed.
# To accomplish this, the hihest and lowest elements of the window are
# tossed and the average value of those points remaining is calculated.
S 335 35 96360 38 38 396 36 3036 3038 3 3 34 96 30336 036 F0IE 0 I6 I 6 640 W 630 0 FHF0 6616 6 96 36 3 363 303 FH 0 H 00 M0 N NI H I KK/

repl: r2 = numer
r4 =0
v10 = temp + 4
#r2 = r4
T1? = r§ + (-2}
#r2 = a2 = float(#r2)

total: a3 = #r10++
3#nop
*#r2 = a2 = *r2 + a3
3%nop
if (r19—— 2= O0) goto total
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nop
r1l4 = numer
*r14 = a2 = #v2

nop
v14 = denom

v10 = quat

nop

*#r1i0 = r§

nop

#ri14 = a2 = float(#r10)
nop

call Zdiv(ri14)

nop
int quot, denom. numer
int
#r7++ = a0 = #ril /% save the output #/
check: if (r8-- >= 0) goto loop3i /% is the main loop done? %/
nop
goto pause /% yes it is ... #/
nop

£ TSI I T I3 33 I ISR B A6 4035930 36 06 20 A A4 36 06 38 26 5 4606 36 40 1630 9 A 2 B B A A i 2
*# Divide routine ... enables division of two real numbers. Used by atmean

# to calculate the average value of the data points in the window.
B R g T L L T T g g

Zdiv: ril = #rid++ /% v11 points to location for output %/
Tl = #rild4++ /% vl points te operand, D #/
r2 = ¥ri4d++ /% v2 points to operand, N #/
#rll = a0 = #rl /% move D to temp location #/
4 = ZdivB
T™é = 0xBO;
T191 = #ri /% exponent(D) moved to v15h #/
*#rll = r6l; /# set exponent to O #/
a2 = - #r2 /% a2=N#sgn(D) and aO=abs(mantissa(D)) #/
a0 = - #rit
a0 = ifalt(sril)
a2 = ifalt(#r2)
™15 = ~1-v1S /% —exponent(D) ~ 1 #/
#ril = al = #r4++ /% zero temp location #/
a0 = a0 # #r4++ /7% D(O) = abs(mantissa(D}) % (2/3) %/
al = —a0 + #r4++ /% £(1) = (—abs(mantissa(D}) # (2/3)) + 2 %/
a2 = a2 # #r4— /7% N(Q) = N # sgn(D) # (4/3) %/
rhd = 2 /# loop counter #/

ZdivA: a0 = al # a0; /¥ DCi) = £(i) * D(i-1) #/
al = ~-a0 + #r4 /# £(i+l) = ~D(i) + 2 #/

if(r6—- 3= Q) goto ZdivA

a2 = al # a2; /% DCi) = £(i) # N(i-1) #/

nop /#% required for latent a2 (2 instrs. below) #/
*ril = r151

#rll = a2 = #rll # a2

vi4 = ri4 + 2
return(ri4g)




93

nop
ZdivB: float 0.0. O. 6666667, 2.0, 1.3333333

g e T T T T T R S AR
# data space declaration ... this assures that the memory holding the data

% is initialized to zero ...
LR 22222 LTI BT TR R R R Y Iy T Y Y T Y e Ny

. =0x1400

in_data: b4xfloat 0.0
. =0x1800

ovt_data: Q&#float 0.0
. =0x1980

temp: 16#float 0.0
quot: float 0.0
denom: float 0.0
numer: float 0.0

outptr: float 0.0
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APPENDIX G: SOURCE CODE: 2-D MORPHOLOGICAL

OPERATIONS

s 2 L T R T T T T RN AT R AR s
# This program performs an EROSION on a 64 x 44 image using a 5 x 5
# structuring element.

2nd data point

Input data is stored at label "in_data"

After the program run, output is stored at label "in_data"

*
# Input data has the following form:

*

* 1st element —— data size (44 for a 64 x &4 image)

* 2nd element —— x~size of window (5 for most cases)

#* 3rd element —— y~size of window (5 for most cases)

# 4th element —— total number of window elements (25 for 5 x 5)
#* Sth element —— total size of data (4096 for 64 x 64)

* 6th element —— 1st data point

#* 7th element ——

*

)

*

+#

*

*

**************************************************************************/

.global temp, pause, xfer, xferl, colchk, offset, xsize, ysize, oper
.global in_data, out_data, win_x, win_y, m_loop, nxtrow. end, cnvert
.global winsize, mask, erode, erodel, cntnu, cntnul, wzero, endi
.global chk, tmp, tmpl, chksum
.align 4
pause: rv1 = in_data /# location of input data */

T2 = out_data /# location of output data #/

v3 = temp /# location of temporary sort space #/

T4 = 4 /# constant value for offset #/

TS = #ri++r4 /# data size (square) %/

r6 = #ri++r4 /# x—size of window #*/

T7 = #ri++vq /% y—size of window #/

T19 = #ri++rd /# total # of window elements #/

T8 = #ri++rg /% total size of data »/

r7 = —-v7 /% calculate the y-offset for the window routine %/

r4 = r5 /# subtract the data sirze #/

T4 =14 + v7

T4 = r4 + (-1) /# adjust for countdown #*/

ré = -ré /% do the same for the x—offset #/

r13 = rS

Ti3 = ri3 + ré

T3 = ri3 + (-1)

r7 = —-rv7 /% reset r7 %/

rS = r5 + r& /% offset is equal to datasize -~ x-size #/




TS = rS » 2 /#
rS =5 # 2 /¥
r1l = offset /#
#rll = r5 /#
ré = —-réb /#
v7 = v7 + (=2) /%
Th = vh + (-2) /%
T19 = rl9 + (-2)/%
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offset must be reset for floating—point space #/
which is 4 bytes per data point #/

set the pointer to the offset #/

put the data there #/

restore ré6 to original value #/

adjust for countdown #/

ad yust for countdown #/

adjust for countdown #/

/****************************************************************************

# put parameters which will be referred to often away in memory ...
iR R S A n S LS SRS S R R S R T Y Y T LTy

r? = xsize /#
r10 = ysize /%
*#r9 = rh /%
*rl1Q = 17 /#
T9 = win_x /%
T1i0 = win_y /T
#r9 = vi13 /#
#riQ = r4 /%
T? = winsize /%
#rQ = r19 /%

#/
#/

point to x—-size
point to y-size
put x—size away in memory #/
put y-size away in memory */
point to win_x #/

point ot win_y #/

put x window offset
put y window offset
point to the window
put the window size

in memory #/
in memory #/
#/
in

away
away
size

away memory #/

/*****************************************;&**********************************

#* Move the input data to the output space

the actual output data will

# be located at label in_data after the program runs ...
B IEHHHIEHIE 3 363 3 3 IO SIS 30 33 I SO I B I 6 3 R I R R R R R/

/% convert the mask to integer#/

/% do the transfer #/
/% are we done 7 */

/% set up the pointers #/

rS = mask
cnvert: a0 = #r5
3%nop
#rS = a0 = int(al)
nop
TS =15 + 4
if (r19-— >= 0) goto cnvert
nop
xferl: ¥r2++ = a3 = #ril++
if (r8-- >= 0O) goto xferl
nop
rl = in_data
12 = out_data
ri2 = ri2 + (—-4)

/***************************************************************************

# Mainloop routine
# window pointer

this routine handles all manipulations of the main

***************************************************************************/

m_loop: vi2 = ri12 + 4
r2 = ri12 /%
T? = ysize /%
T7 = #r9
v3 = temp /%
goto xfer /#
nop /*

increment window counter #/
re—initialize the y size for countdown %/

reset pointer to temporary window #/
call the window routine to move the window %/
to the temporary sort space #/
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/RIS IR0 R0 100000600 36 000030 36 306 36 0000 3606 0 0600 26030 3090 90 3030 S0 SIS BB 338
# Transfer routine ... moves data. one window at a time, into temp data

# space to be operated on
****************************************************************************/

xfer:

calchk:

9 = xsize /#
T6 = #rQ /#*
#r3++ = ad = #r2++ /#
if (ré6— >= 0) goto colchk

nop

T9? = offset /¥
ri0 = #rQ

nop

r2 = r2 + r10 /% add the
if (r7-- = 0) goto xfer /#
nap

goto erode

nop

reset the counter each time #/
after finishing a row ... #/

transfer the data #/

put the offset into 110 #/

offset to the window pointer #/
check for end #/

£ RS IS SIS 300 03036 34903006 36 0000 3006 30 364500300 3960006 86 2 S 0028
* the loading of the temporary data space is campleted ... now go and

# work on the data (i.e. sort, weigh,

.

***************************************************************************%/

oper:

nxtrow:

if (r4-— >= 0) goto m_loop /# has the window gone all the way #/
nap /# across the data space yet?? #/
if (r13-- >= 0) goto nxtrow /% has the window reached the bottom #/
nop /# of the data space yet?? */
goto end

nop

r? = win_x /% reset the x window counter for the next #/
Tv4 = #rQ /# iteration across the data space #/

r8 = xsize

T? = #r8

nop

T =19 % 2 /% fix the byte alignment #/

T? =719 % 2 /% fix the byte alignment #/

ri2 = v12 + r9 /% move the window pointer down to the #/

Tri2 = ri2 + 4 /# beginning of the next row #/

goto m_looap /# do the window operation again #/

nap

/************************************************************************

# The following code performs the erosion on the data ...
************************************************************************/

erode:

erodel:

r? = winsize /% point to the window size #/
rhé = #r9Q /# restore the window size in r6 #/
r3 = temp /% v3 points to the window #/
™S = mask /% v5 points to the mask */
r7 =0

r8 = #r3

T? = #r5

nop

8 = r8 & r9 /% ‘and’ the mask and the window #/
#r3 = r8

r? = tmp /# point to 1 */
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*#r3 = a2 = float(#r3) /# convert the result to float */
3#nap

a0 = #r3 - #r? /% subtract to check equality */
3#nap

if (ane) goto cntnu /% if the result was not ‘0 try #*/
nop /% again #*/
vr7 =v7 + 1 /% add one to the accumulated ‘ands’ #/
goto cntnu /% atter adding., keep going ... #*/
nop

cntnu:  if (vé&—— D= 0 ) goto cntnul

nop
gote chksum
nop

cntnuli: 5 = rS5 + 4 /% increment the mask pointer #/
r3 =r3 + 4 /# increment the window pointer #/
goto erodel /# have checked the window count and found it > O %/
nop /# so return for the next compare #*/

wzero: e =0

#rl = r9 /% write a zero to the memory location #/
rl =r1 + 4
goto oper /# rvreturn to the main loop */
nop
end1: T? =1
#rl = r9 /% write a one to the output memory location #/
vl =r1 + 4
goto oper /#%# return to the main loop */
nop
chksum: v9 = chk /# point to checksum data location %/
a0 = #r9 /# place it in a0 #/ '
r? = tmpl /# point to the temporary data location #/
*rQ = v7 /# place the accumulated total there #/
nop
al = float(#r9) /# put the floating equivalent into al #/
3#nap N
a2 = a0 - al /% subtract for check equal to zero #/
3#nap
if (ane) goto wzero /% if they weren’t equal, write #/
nop /# a zero and return to oper #/
goto endl /# otherwise, write a one and */
nop /# return to oper */
end: nop

/3336322 366363 36 3 36 343 630303 36 0 3003 30T 36 36 35 3063 30 30 36 3030 36 30 30 3636 0 30 I35 38 36 303 S04 30 0 I 030 H 030 4 B 3

# memory declaration ... makes space for temporary starage
a2 2 ST et Ry S R T Ry R Y L T Y

. =0x0800

xsize: float 0.0
ysize: float 0.0
offset: float 0.0
temp: 8l#float 0.0
. =0x1000

in_data:

.=0x5010
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win_x: float 0.0

win_y: float 0.0

winsize: float 0.0

chk: float 11.0

tmp: float 1.0

tmp1: float 0.0

mask: float 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0
float 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0
fleoat 0.0, 1.0, 1.0, 0.0, 0.0

out_data:

Z AR 3 3316 36 3 3 33 36 330036 303 I 66T T 36 ST TE I SE I I T I B R
# This program performs a DILATION on a 64 x &4 image using a 5 x S
# structuring element

Input data has the following form:
1st element —~ data size (64 for a 64 x 64 image)
2nd element —— x—size of window (5 for most cases)
3rd element —— y—-size of window (5 for most cases)
4th element ——- total number of window elements (25 for 5 x 5)
S5th element -— total size of data (4096 for 64 x 64)
6th element —— 1st data point

7th element — 2nd data point

Input data is stored at label "in_data"
After the program run, output is stored at label "in_data"

dode o s ok ok ok % ok ok K ok ok ok %

FE36 036 3 B0 I3 3 036 43 3 3 I IEIF I 36 I I W I I S I I I I RN

.global temp, pause, xfer, xferl, colchk, offset, xsize, ysize, oper
-global in_data, out_data, win_x, win_y, m_loop, nxtrow, end, two
.qlobal winsize, maski, dilate, dill, cntnu, cntnul, wzero, endi, test
.align 4

pause: vl = in_data /% location of input data =/
r2 = out_data /% location of output data =/
3 = temp /# location of temporary sort space #/
v4 = 4 /% constant value for offset #/
TS = #ri++r4 /# data size (square) x/
Té6 = #ri++réd /% x—size of window #/
T7 = #ri++r4 /¥ y-size of window */
19 = #ri++v4 /# total # of window elements #/
T8 = #ri++r4 /# total size of data #/
vr7 = -v7 /# calculate the y—offset for the window routine %/
T4 = r5 /% subtract the data size #/
T4 = r4 + v7
T4 = r4 + (-1) /# adjust for countdown #/
ré = -rb /# do the same for the x—offset #/

ri3 = r5
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13 = ri13 + vé

i3 = ri3 + (-1)

v7 = —v7 /% veset v7 %/

TS = r95 + rébé /# offset is equal to datasize - x-size ¥/

TS = 5 # 2 /% offset must be reset for floating—point space =/
S = 5 # 2 /% which is 4 bytes per data point #/

vri1ll = offset /# set the pointer to the offset #/

#rll = ¢v& /# put the data there %/

Té -ré /% rvestore ré6 to original value #/

7 = 1v7 + (-2) /% adjust for countdown #/
T4 = r6& + (-2) /% adjust for countdown #/
T19 = 719 + (-2)/%# adjust for countdown */

/33 335 36 36 36 4 3536 40 35 263 46 353 31 363 31 H 30 03030 30 30 30 T30 30 36 36 30 303 30 309038 263030 0 363 30 3046 35 30 3 31 3 30 36 3030 6 3040 30300300

# put parameters which will be referred to often away in memory
T3 44036 40003 926 3 263 3 0 36 36 30 36 36 30 2036 303 30 SEE I B0 33040 30206 3 2630 36 0303 J6 90 6 3 6 96 39 36 3030 3040 3H S0 RS SRS R 30/

r? = xsize /% point to x-size #/

r10 = ysize /% point to y-size #/

#r9 = ré& /% put x—size away in memory ¥/

#r10Q = v7 /# put y-size away in memory #/

T? = win_x /# point to win_x #/

ril0 = win_y /# point ot win_y #/

#r9? = v13 /# put x window offset away in memory #*/
#v10 = r4 /# put y window offset away in memory */
T? = winsize /% point to the window size #/

*#r9 = riQ /% put the window size away in memory #/

/****************************************************************************
# Move the input data to the output space ... the actual output data will

# be located at label in_data after the program runs
FESE IR0 3196 30 38 303 26 30 2030 30 30 30 33000 9E 40 3 20 30 3 30 I3 303030 3006 3 203000 2 000 6 303695 3 36 30 36 300 B4 SHE I BRI S IR B S R e 3/

xferl: #r2++ = a3 = #ri++ /% do the transfer #/
i# (r8-—- >= 0O) goto xferl /% are we done 7 #/
nap
Tl = in_data
ri2 = out_data /% set up the pointers #/
Tvi2 = ri2 + (-4)

/A A 3 B3 6 3 33 36 06 36 30 203030 200 3 3030 3035 3 4030 30 35 36 S 301 3096 3 313036 20300 300 S0 36 30 30303 IEHE I 3303030 303030 S 303300
# Mainloop routine ... this routine handles all manipulations of the main

# window pointer
B3 3303000000 9 3 ST 6 I 30 3630 36 36 30 30 36 3 36 338 30 30 30 338 38 2046 3 24020 206 30 636 30 30 3 3036 J 303 30 303090 20 30 R 4R SE IR SR IE B S R R 030/

m_loop: 712 = ri2 + 4

r2 = ri2 /% increment window counter #/

r? = ysize /% re—initialize the y size for countdown %/

r7 = #7v9

v3 = temp /% reset pointer to temporary window #/

goto xfer /% call the window Toutine to move the window */
nap /% to the temporary sort space #/

7 HH 9 3030 36 20 30 6 30 31 30 3 3 3030 30 28 38 36 38 3203090 36 90 T A0 A6 30 313030 30 30 36 3 36 30 330 20 6 36 338 3 30 3630 36 30 3030 30303 S0 B S IR HSH 30 40 3 30 30
# Transfer toutine ... moves data, one window at a time, into temp data

# space to be operated on
363 390 36 2 36 20 20638 3 9630 30 35 38 20 30 240 0 36 36 30 3030 30 6 3696 3036 30 20 3620 526 36 36 36 3030 336 36 346 36 36 36 335 3 36303 603 36 303 03 S0 43/

xfer: T? = xsize /# reset the counter each time #/




rh = #79

caolchk: #r3++ = a3 = #r2++
if (r&—— >= 0O) goto colchk
nap
T9 = offset
T10 = #r?
nop
r2 = v2 + ri0 /#
if (r7—— >= 0O) goto xfer
nop
goto dilate
nop
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/% after finishing a vow ... #*/

/# transfer the data »/
/# put the offset into 10 */

add the offset to the window pointer #/
/# check for end ®/

/3333263 36 46 36 36 303 336 3 38 3530 3030 3 335 30 36 30 30000 35 3038 338 36 3038 3 3646 30 6303036 3030 3038 30433 3030 3004030 303 H 4003 4 30 6 300 0040
# the loading of the temporary data space is completed ... now go and

# work on the data (i.e. sort, weigh., ...)
B3E 26363 35 36 6 6 30 365 38 330 3 3 38 36 35 21 36 30036 38 35 30 301636 30 30 40630 B0 00 S 00090 103030 3 3 3 3046 30 330 2 0 S0 RIS S0 IR I B 30 80/

oper: it (r4—— >= 0) goto m_loop
nap

test: if (ri3-— >= 0) goto nxtrow
nap
goto end
nop

nxtrow: % = win_x /3
T4 = #r9 /#
v8 = xsize
r9 = #r8
nop
TG =r9? #* 2 /#
9 =19 * 2 /%
r12 = ri2 + r? /¥
Ti2 = ri2 + 4 /%
goto m_loop /%
nop

/# has the window gone all the way #/

/% across the data space yet?? */
/% has the window reached the bottom #/
/% of the data space yet?? it/

reset the x window counter for the next #/
iteration across the data space #/

fix the byte alignment #/

fix the byte alignment #/

move- the window pointer down to the #/
beginning of the next row #/

do the window operation again #/

/39536 36 36 336 3 6 3 30 36 36 30 36 30 30 336 30 31 35 330 30 3 3 36 3 3630 35 3030 35 303020 630 3362000 36 3696 3036 3633000 3 030300 30 3 30 SIS 3

# The following code performs the

erosion on the data

33040636 IE 36 336 30 2030 36 3 20 302030 30 30 3020 31 36 30 30 3 310 30 6 3 30 3 2030 303 63030 63096 90 3630 36 30 30 30 303 023 S0 IS0 S 3 /

dilate: v%9 = winsize /#
T = #r9 /®
T3 = temp /¥
TS = maski /#
dili: T? = two
al = float(#r3) /%
a2 = #r9 /¥
2#nop
a0 = al + »*rS /#
3%nap
al = a0 - a2 /%
3#naop
if (ane) goto cntnu /#
nap
goto endt /¥

nop

point to the window size */
restore the window size in v19 #/
T3 points to the window ®/
r5 points to the inverted mask #/

change to float for standarvrd #/
load a "2" into a2 for future compare #/

do addition generate the "and" ®/
compare to 2 ... if true both were 1s #/
if the result is not zero., keep going %/

if the result is zero, write a “1" *®/




entnu:

cntnul:

wiero:

endl:

end:
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if (r&—- >= 0 ) goto cntnul

naop
goto wzero
nop

TS =15 + 4 /#
T3 = r3 + 4 /#
goto dill /#
nop /%

T =0

#rl = r9 /%
vl =rvl + 4

goto oper /%
nop

e = 1

#rl = r9 /%
vl =711 + 4

goto oper /%
nap

nop

increment the mask pointer */
increment the window pointer #/
have checked the window count and found it 2> O #/
so return for the next compare #/

write a zero to the memory location #/

return to the main loop */

write a one to the output memory location #/

return to the main loop */

/****************************************************************************

# memory declaration ...
B S 20 B 2002 3 330 3 36 06 36 36 36 36 3 20 3E 30 30 6 6 302030 36 26 3046 30 1090 26 363 SE 10 6 H3H 36 3636 36 3300 3 30 30 S0 330030 B0 R S 3 R/

. =0x0800

xsize: float 0.0

ysize: float 0.0

affset: float 0.0

temp: 8ixfloat O.

. =0x1000

in_data:

. =0x5010

win_x: float 0.0

win_y: fleat 0.0

winsize: float G. O

maski: float 0.0,
float 0.0
float 0.0,

two: float 2.0

out_data:

makes space for temporary storage

(0]

0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0
1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0
0.0, 1.0, 1.0, 0.0
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APPENDIX H: SOURCE CODE: 2-D MEDIAN FILTER

£ W I N I I JIEIETETE L3660 163 33636 363632069636 3631636 3636 96 963636 363636 696 3 3636 44 36 36 4

This program implements a two-dimensional median filter on the
input image. Input data has the following format:
Input: i1st element —— data size (for 64 x 64 element = 64)
2nd element —— x—size (width) of windouw
3rd element —— y—size (depth) of window
4th element —— number of elements in window (3 by 3 = 9)
5th element ~— relative median location (5 for a 3 x 3)

&th element —— total number of input data elements
7th element —— 1st data point
8th element —-— 2nd data point

Input is placed at label "in_data”
After the pragram run, the output is written to label "in_data"

% 3k k Kk Kk k k %k k k ok %k ¥* k % % %k % *k

FEW 363336 36 36 36 30 36 363 36 33 I35 3 FEIE 303630 363 S0 I I 36 I I 6 I I 36 6 9636 3E 6 4636 HE 90 3 I3 303036 63 0 A0 I I I RN/

.global temp, pause, xfer, xferl, colchk, offset, xsize, ysize, oper
.global in_data, out_data, win_x, win_y, m_loop, nxtrow, end
.global window, compar, swap, noswap, vepl, winl, compl

.align 4

pauvse: vl = in_data /# location of input data %/
r2 = out_data /# location of temporary data space #/
T3 = temp /% location of temporary sort space #/
T4 = 4 /# constant value for offset #/
TS = #ri++r4 /% data size (square) =/
rb6 = #7i++r4 /# x-size of window #/
r7 = #ri++r4 /# y—size of window #/

r18 = #ri++vr4g /# total number of elements in window */

ri9 #ri++r4 /# relative median location #/

r8 = #vri++r4g /# total size of data %/

riB = riB + (-2)/%# adjust for countdown in bubblesort routine #/
rl®? = r19 + (-1)/# adjust v19 to use as an offset for the sort #/
T1i9 = vi9 # 2

ri? = vri9 # 2

r7 = —-v7 /% calculate the y—offset for the window routine #/
T8 = r5 /% subtract the data size #/

T4 = r4 + r7

r4 = r4 + (-1} /# adjust for countdown */

rhé = —rh /# do the same for the x~offset #/
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r13 = rS
i3 = r13 + 16
v13 = v13 + (-1}

v7 = ~-¢7 /% reset v7 #/

TS = r5 + ré /% offset is equal to datasize - x—-size #/

rS =15 % 2 /% offset must be reset for floating—point space %/
rS = r5 # 2 /% which is 4 bytes per data point #/

711l = offset /# set the pointer to the offset #/

#rll = r5 . /# put the data there »/

rbh = -tb /# rvestore v46 to original value #/

v7 = v7 + (=2) /% adjust for countdown #/

6 = vhé + (-2) /% adjust for countdown #/

/W36 3430 3 T3 30 I I3 3 3 03 34 343 336 36 30 36 34 FH 3136 396 30 35 3436 J6 636 I 36 36 3430 3036 36 S 63 3 36 96 T30 38 623 I6 0 36 H 63003030 40 34040 3

% put parameters which will be referred to often away in memory
636 340 0T E I 36030 536 35 3635 36 30 35 35 38 3036 36 38 95 IE 31 38 36 3 06630 6 I I 3H 4636 26 33026 36 36 36 33030 3 30 30303 FE 0 303 ISR H R I/

r? = xsize /% point to x—-size #/

ri0 = ysize /% point to y—-size #/

*#r9 = ré /# put x-size away in memory #*/

#r10 = r7 /% put y-size away in memory #/

v? = win_x /% point to win_x #/

710 = win_y /% point ot win_y #/

#r? = ri3 /% put x window offset away in memory ¥/
#r10 = r4 /# put y window offset away in memory #/

/353 3T A I 3 546 3033 23 3 3030 3H 0 0 3 30 30 3 33636 36 3 38 S92 S0 30 S0 30303 HAE S04 35 30 035 3038 3E 340 634 S0 30 9008 303 3 S 0 2303
# Move the input data to the output space ... the actual output data will

# be located at label in_data after the program runs
L T L T X T E e R Ry I X Y2y

xferl: #v2++ = a3 = #ri++ /# do the transfer #/
it (r8—— >= 0) goto xferl /# are we done ? #/
nop
rl = in_data
T12 = out_data /% set up the pointers #/
Ti2 = r12 + (-4}

I TR T L T T R X I A L I T
# Mainloop routine ... this routine handles all manipulations of the main

# window pointer
I 363630 3036 I3 33 39 3 3 2 33T I I I I I I I IR S S IR I RN R R AR

m_loop: ri2 = r12 + 4

r2 = ri2 /% increment window caunter #/

r? = ysize /% re—initialize the y size for countdown #/

r7 = #r9

r3 = temp /# reset pointer to temporary window #*/

goto xfer /# call the window routine to move the window #/
nap /# to the temporary sort space #/

P Ty L T L ey e L
* Transfer routine ... moves data, one window at a time, into temp data

# space to be operated on
La s 2222 2T TR TR S E R T Y e I Yy

xfer: r9 = xsize /% reset the counter each time #/
ré& = #r9 /# after finishing a vrow ... #/
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colchk: #r34+ = a3 = #r2++ /% transfer the data */
if (r6-—— >= 0) goto colchk '
nop
9 = offset /# put the offset into 110 %/
r10 = #r9
naop
r2 = r2 + ri0 /% add the offset to the window pointer #/
if (v7-- >= 0) goto xfer /% check for end #/
nap
goto window /% falls through and calls the sort */
nop /# toutine ... also will output a result #/

/W3 A IS IS BT 636 30 6 6 SRR 33 6 A0 6 I B 335 23 3 2 S P I 3 3 B 3 3 4
# the loading of the temporary data space is completed ... now go and

* work on the data (i.e. sort, weigh, ...)
LR L X Ly P S YRy

oper: if (r4-— >= 0) goto m_loop /# has the window gone all the way #/

. nop /% across the data space yet?? #*/
if (r13-— >= 0) goto nxtrow /% has the window reached the bottom %/
nop /# of the data space yet?? */
goto end
nop

nxtrow: v? = win_x /% reset the x window counter for the next #/
r4 = #r9 /# iteration across the data space %/
T8 = xsize
re = »r8
nap
T = v9 # 2 /% £ix the byte alignment i/
T? = % # 2 /# f£ix the byte alignment #/
ri2 = r12 + r9 /% move the window pointer down to the #/
ri2 = r12 + 4 /% beginning of the next row #/
goto m_loap /% do the window operation again #/
nop

£ B3I I I I3 203 I F I3 I 33 I BB I I I B HE 3 I 338 36 3036 3636 3 663 3 9 33 2 96 3 36 34 4698 36 3

# Code for the bubblesort routine follows
H 3 IS 33333 3 I 363030 303033 33 6 0 3006 3E 636 330 IE S0 06 3 264636 20402020062 303 3500 3 36 SEIE H I U W R H RS

window: v6 = rif /# restore the count value #/
winl: Ti7 =16 + (-1)
if (vr6-—— >= 0) goto compar /# not finished yet, do the compare */
nap
goto repl /% the sort is completed #/
nop .

T e L L T L LY Ty
# this section of code compares two adjacent elements to determine if they

# should be swapped
SIS I 2303 I I 3038 B 3030 30 334 A I R R I DA A 516 32030 3 06 3 0 6 36 8 S B R I S R 3 S

compar: v1i0 = temp /% 710 set equal to the first element in the %/
v14 = temp + 4 /% window, v14 assigned to v10‘s neighbor #/
compi: a0 = #ril4 - »v10 /# do the comparison ... if they need to be #/
3#nop
if (alt) goto swap /% swapped, swap ‘em ... otherwise, don‘t #/
nop

gaoto noswap
nap
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7 H U 33T IS0 303636 3 I 36 T I I I I FAE I I I SEIE I I AL FE I S0 2696 3 3 363 36 36 3 269625969930 36 03E 34 3048 46 96 38 95 3638 3
* if the elements have been determined to be out of order, the exchange

# is performed
33 I3 303 30 330 0 3038 30 3 3 I B ST IE I 30 3 I 03 6 I 03 4006 3006 3 30 0 30 330 6 I 3 BB R S

swap: ad = #ril4 /% swap routine ... performs flip—flop #/
4#nop
#ri4 = a0 = #ri10 /% of data passed in upper and lower #/
4%nap
#r10 = al = a3
4#nap
viC = v10 + 4 /% increment the pointers #/
ri4 = ri14 + 4
if (v17-- >= 0) goto compl /# if not end of window %/
nap
goto winl /# reached the end of window 3#/
nop

/RS SIS SIS 303036 I I B IE ST 0 SR 3 30 36 20 3000 3 6 I S I SR S SR
# even if the elements are in the proper order, pointers still must be

# incremented and checks made to determine if sort should return ...
FEIE 6339 636 3 3 30 30 30 6 30 30 30 3024 3H 35 330 30 2E SH 4R 0 S0 IE 0 03 30 030 30 S48 9 T I 3008 36 96 36 36 36 36 3 3045 38 6 36 FE I W26 H AW B H 463/

naswap: v14 = ri4 + 4 /% the elements were in the correct #/
T10 = v10 + 4 /% order ... increment the pointers #/
if (vr17-—— 2= 0) goto compl /# and check the done condition */
naop
goto winl /% they were the last two elements #/
nop /# in the window ... go back */

/3RO I I I 33 333 3 I S 3R 0T S I3 SE 6 630 3045 HHE 36 3 38 304 3040 040 0 0 S LI SIS S0 5
# the following code performs element replacement taking the sorted data from
* the temporary sorting space and placing it back in the data space pointed

# to by IN_DATA
L a SR R 22 S I S X R Yy R Y Y Y R T R L RTINS 4

repl: 10 = temp /% reuse 110 as pointer to sorted window space #/
710 = r10 + r19 /% 710 now points to the correct element in the =/
/# sorted window #/
#ri++ = a0 = #vi0 /% Replace the original data space with the #/
nop
goto oper
nop
end: nap

/WS4 6 S 436 3 3 3433 30 33038 3033 ETE I 6 IE I FEIE I 30 36 6 A6 I FEIEIE 366024636 36 3033036 30 30 0 9 6 304036300690 3 3628 35 40 36 9 3

# memory declaration ... makes space for temporary storage
AR SR 2l St s 22 R R R s s R Al R L L X2 N Y4

. =0x0800

xsize: float 0.0
ysize: float 0.0
offset: float 0.0
temp: Bix*float 0.0
. =0x1000

in_data:

. =0x5010

win_x: float 0.0
win_y: float 0.0

out_data:
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APPENDIX I: SOURCE CODE: 2-D LAPLACIAN OPERATOR

7 W T I I3 IETE N 335630 I 063830906 38 FE 696 I3 3636 33 390 00 303 SR I IR NS S S B
* This program implements a Laplacian filter on the input image data.

* standard input image size is 64 x &4

#* Input data has the following format:

1st element ~——- data size (464 for a 64 x &4 image)
2nd element —— x—size (width) of window

3rd element -— y~size (depth) of window

4th element —— total size of window

Sth element —- total numer of input data elements
6th element —— 1st data point

7th element —— 2nd data point

% % %k %k %k %k % %k k% % *k %

# Input data is placed at label "in_data”
# After the program has completed, output data is

# written to lahel “in_data"®
HHIEII I I I I I I NS A6 B 30363300000 3 3006 33 30 3036 326 36 31 3 SR B S RS R B a2 8 /

.global temp. pause, xfer, xferl, colchk, offset, xsize, ysize, oper, lapl
.global in_data, out_data, win_x, win_y, m_loop, nxtrow, end, mask, winsize
.global sum, test

.align 4
pause: T1 = in_data /# location of input data #/

r2 = out_data /# location of autput data #/

T3 = temp /# location of temporary sort space #/

r4 = 4 /# constant value for offset #/

TS5 = #ri++rg /# data size (square) #/

ré = #ri++r4 /% x-size of window #/

r7 = #ri++rg /# y~size of window #/

Ti8 = #vri++r4 /# total size of window #/

T8 = #ri1++r4 /% total size of data #/

Ti8 = ri18 + (-2)/#% adjust window size for countdown %/

vr7 = —-v7 /% calculate the y-offset for the window routine #/

r4 = rS /% subtract the data size #/

r4 = r4 + 7

T4 = r4 + (~-1) /# adjust for countdown %/

ré = -ré /#% do the same for the x-offset #/

ri3 = rS

i3 = r13 + ré

vi3 = r13 + (-1}

v7 = ~-r7 /# reset v7 #/

r9 = r3 + ré /# offset is equal to datasize - x—size #/
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rS = r5 % 2 /#% offset must be reset for floating—-point space #*/
vrS =15 » 2 /% which is 4 bytes per data point #/

Tll = offset /# set the pointer to the offset #/

#ril = r9 /% put the data there #/

ré6 = ~1rb /# restore t6 to original value #/

r7 = v7 + (-2) /# adjust for countdown #/

ré & + (-2) /% adjust for countdown */

/******************************************** Fe A 3036 46 3 35 38 3 30 3 3E 0 S0 IE 363090 30 30 00 3036 3 3L 4633

# put parameters which will be referred to often away in memory ...
IS AT 33 I IS S B IR0 B I BRI IR0 1606 0 38 40 3038 6 30 I T R R/

9 = xsize /% point to x~size #/

rl0 = ysize /% point to y—-size %/

*#¥1r9 = rb /7% put x-size away in memory #/

*r1Q = ¢v7 /% put y-size away in memory #/

9 = win_x /# point to win_x #/

ri0 = win_y /# point ot win_y %/

#r9 = i3 /% put x window offset away in memory #/
#rlQ = r4 /7% put y window offset away in memory #/
*? = winsize /# point to the window size #/

#r? = rig /% put window size away #/

£ R S RIS 0600 36 3030 3000 360606 3600 S 300 3030 306 36 30 30 96 0646 36 2 2446 46 9696 3606 36 9648
# Move the input data to the output space ... the actual output data will

# be located at label in_data after the program runs
FHEE R S I T I S I 363 336 JE 34 S S S IR0 300 S 6 3 300 B30 SR S R I R R S R/

xferl: #r2++ = 33 = #ri++ /# do the transfer %/
if (rB-- >= 0) goto xferl /% arve we done 7 #/
nop

Tl = in_data
T12 = out_data /# set up the pointers #/

Ti2 = v12 + (—-4)

A L L L R T VSV v
# Mainloop routine ... this routine handles all manipulations of the main

# window pointer
FH SIS R SIS IS I IS5 3 S0 26 06 3030 063 0 6 306 2036 263038 3006 0 S0 0696 B3 23/

m_loop: v12 = v12 + 4

r2 = rl2 /% increment window counter #/

r? = ysize /% vre-initialize the y size for countdown #/

r7 = #r9

r3 = temp /% reset pointer to temporary window #/

goto xfer /# call the window routine to move the window #/
nop /% to the temporary sort space #/

£33 IR I3 203 90303030006 T 6 320 3L AR S 3 360030 36230 9090 10630436 36 36 309696 3690 966 6 66 06 36 20 20 26 26 %
# Transfer routine ... moves data, one window at a time, into temp data

# space to be operated on
Bl R R e P S R SRV

xfer: T? = xsize /% reset the counter each time #/
T6 = #79 /% after finishing a vow ... #/
colchk: #r3++ = a3 = #r2++ /# transfer the data #/

if (ré—— = 0) goto colchk
nap
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9 = offset /# put the offset into r10 #/

710 = *rQ

nap

r2 = r2 + ri0 /# add the offset to the window pointer #/
if (r7-— >= 0) goto xfer /% check for end #/

nap

goto lapl /# do the Laplacian aperation #/
nop :

£ BB R AT I3 I B3I U ST I I 3T 3330 0 36 36 4008 02 3030 3 3 30 263 06 30 0646 36 22 S
* the loading of the temporary data space is completed ... now go and

#* work on the data (i.e. sort, weigh, ...)
R R e L R R R N v

oper: if (r4-— >= 0) goto m_loop /% has the window gone all the way #/
naop /% across the data space yet?? */
if (ri3-- >= 0) goto nxtrow /# has the window reached the baottom #/
nop /# of the data space yet?? */
goto end
nop

nxtrow: tv9? = win_x /% reset the x window counter for the next #/
T4 = #p9 /% iteration across the data space */
T8 = xsize
T? = #rg
nap
rT? = r9? # 2 /# fix the byte alignment */
T? = r9 * 2 /% fix the byte alignment */
vi2 = r12 + r9 /# move the window pointer down to the */
Ti2 = ri2 + 4 /# beginning of the next row */
goto m_loap /# do the window operation again *®/
nop

lapl: rS = mask /% v15 points to the first element of mask #/
v10 = winsize /% put the window size back in ri8 */
T3 = temp /% r3 points to the extracted window */
ré =0
Tig8 = #ri10
#rl = ré

suUm: a2 = #r5 /# place the mask values in a2 */
a0 = float(x#r3) /% place data values in a0 */
3#nap
a3d = a2 # a0 /# multiply the mask and the window */
TS =15 + 4 /# increment pointers #*/
r3 =r3 + 4
nop
#rl = a3 = a3 + #rl
3*nop

test: if (ri18-- >= 0) goto sum /# check to see if done */
nap
rl =rvi + 4 /% increment the output pointer */
goto oper
nop

end: nop

/****************************************************************************

# memory declaration ... makes space for temporary storage
B e e T T L T T LT mgpa e vy




. =0x0800
xsize:
ysize:
offset:
temp:

. =0x1000
in_data:
. =0x5010
win_x:
win_y:
mask:
winsize:

out_data:

float 0.0
float 0.0
float 0.0

Bixfloat 0.0

float 0.0
float 0.0
£loat 0.0,
float 0.0

1.0,

0. 0,

1.
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0,

-4. 0,

1.0,

0. 0,

1.0,

0.0
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