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. ABSTRACT

Chu, Chee-Hung Henry. Ph.D., Purdue University, August 1988. The analysis
of image sequence data with applications to two-dimensional echocardiography.
Major Professor: Edward John Delp III.

Digital two-dimensional echocardiography is an ultrasonic im#ging tech-
nique that is used as an increasingly important noninvasive technique in the
comprehensive characterization of the left ventricular structure and function.
Quantitative analysis often uses heart wall motion and other shape attributes
such as the heart wall thickness, heart chamber area, and the variation of these
attributes throughout the cardiac cycle. These analyses require the complete
determination of the heart wall boundaries. Poor image quality and large

amount of noise makes computer detection of the boundaries difficult.

An algorithm to detect both the inner and outer heart wall boundaries is
presented. The algorithm was applied to images acquired from animal studies
and from a tissue equivalent phantom to verify the performance. Different
approaches to exploiting the temporal redundancy of the image data without
making use of results from image seémentation and scene interpretation are
explored. A new approach to perform -image flow aﬁalysis is developed based
on the Total Least Squares method. The result of this processing is an esti-
mate of the velocities in the image plane. In an image understanding system,
information acquired from related domains by other sensors are often useful to
the analysis of images. Electrocardiogram signals measure the change of electr-

ical potential changes in the heart muscle and provide important information




xiii

such as the timing data for image sequence analysis. These signa_ls are fre-
quently plagued by impulsive muscle noise and background drift due to patient
movement. A new approach to solving these problems is presented using
mathematical morphology. ' Experiments addressing various aspects of the
problem, such as algorithm performance, choice of operator parameters, and

response to sinusoidal inputs, are reported.




CHAPTER 1
INTRODUCTION

1.1. Digital Two-Dimensional Echocardiography

Digital two-dimensional echocardiography is used as an increasingly
important noninvasive technique in the comprehensive characterization of the
left ventricular structure and function. Two-dimensional echocardiograms are
ultrasonic images depicting cross-sectional views of the heart. The cross-
sections are taken either longitudinally, commonly referred to as the long-azis
view, or latitudinally, commonly referred to as the short-azis view. The
short-axis view is frequently used to monitor the left ventricle, which is the
main pumping chamber of the heart [Bri83]. The wall of the left ventricle in
a short-axis view is defined by an inner endocardial boundary and an outer
epicardial boundary. Under normal conditions of the heart, the left
ventricular wall contracts and relaxes uniformly from diastole to systole back
to diastole. At end systole, or full contraction, up to 80% of the inner
chamber area as measured at end diastole is ejected. The motion is such that
the inner boundary contracts more than the outer boundary, resulting in a
thickening of the ventricular wall as it contracts. When a heart is diseased,
such as after myocardial infarction, the left ventricle demonstrates irregular
motion due to parts of the heart wall moving much less than other parts. The
significance of this irregular heart wall motion and decreased ejected volume
or area is that there is insufficient blood supplied to the circulation system.
To consider the effects of therapy or drug treatment, for example, monitoring
of the left ventricle throughout the cardiac cycle. is required.

Quantitative analysis of cardiac function makes use of the shapes of the

boundaries, the heart wall thickness, the area enclosed by the inner boundary,

and monitors their changes throughout the cardiac cycle [Eat79]. These and
other applications such as three-dimensional organ modeling of the left
ventricle [Gei82] require the detection of the inner and outer boundaries of
the left ventricular wall from two-dimensional echocardiograms.




Current studies in this area often require the tedious and time-
consuming process of having expert operators outline the boundaries.
Frequently, only the end-systolic and end-diastolic images are processed by
human operators for analysis. - This is unsatisfactory since different parts of
the ventricle have slightly different peak contraction points in the cardiac
cycle, and the differences are even more pronounced when regional ischemia
occurs [Col86]. The problem associated with the arbitrary selection of an
end-systole frame, together with the need for a description of the systolic and
diastolic wall motion pattern, require that every frame of the cardiac cycle be
analyzed Other applications of this labor intensive process to trace the heart
wall boundaries include surface reconstruction in organ modeling when a
number of images taken from different angles have to be processed to obtain
points in three-dimensional space. Automatic determination of the boundaries
by computers is thus needed. Furthermore, automating the process would
improve the reliability of the quantitative analysis by eliminating the
subjectivity of manual tracing [Bud83]. :

Finding boundaries in echocardiograms automatically by computers is
often difficult because of the poor quality of the images. None of the attempts
at automating the image segmentation process is reliable enough to replace the
human operator completely [Bri83]. Problems such as low image intensity
contrast, dropouts in the image, and boundary discontinuity in any given
image are due to the intrinsic limitations of echocardiographic imaging. An

echocardiogram is formed by first sending a pulse along a ray from a -

transducer towards the organ that is being imaged. Compared to other
imaging techniques, the pulse used in echocardiography is of relatively low
energy and low frequency. When the pulse hits a medium with an acoustic
impedance different from that of the medium in which it is traveling, a copy
of the pulse with reduced energy is reflected while the remaining portion
travels on. The amount of energy that is reflected back is a measure of the
difference of the acoustic impedance across the boundary. The transducer acts
as a receiver after transmitting the pulse and measures the time it takes the
pulse in transit to compute the distance of the boundary. The accuracy with
which an echocardiographic system can measure the distance traveled by a
pulse, or the resolution attainable by that particular pulse, increases with the
frequency of the pulse. In practice, since the energy of the pulse diminishes as
it travels, the postprocessing of the reflected signal includes time gain control
that compensates for the attenuation of the signal over time. The amount of
energy attenuation decreases with the frequency of the pulse. Hence, a




tradeoff is necessary between the amount of energy loss and the resolution of
the image acquisition system [Bri83]. .

Assuming the pulse travels at a single speed in the body, and by taking
different rays across a plane, a two-dimensional record of the received energy
in spatial coordinates represents a cross-sectional view of the organ. Dropouts
in the echocardiograms are caused by reverberations of the pulse bouncing
between the boundaries of the heart wall, and by speckle noise caused by the
backscattering of the incident wavefront after it hits the tissue
microstructures. Another limitation of this imaging technique is that the
reflection is not very pronounced when the angle between the boundary of the
organ and the ray that the pulse is traveling along is small. Hence the lateral
parts of the heart wall boundaries are usually not very well defined in the
images [Bud85). .

1.2. Overview of a Computer Vision Approach

A computer vision system extracts information of a  scene from
observations made in the form of images. The information loss in the imaging
process that produces the two-dimensional images has to be compensated for
by some other means. This problem is further complicated by the presence of
noise or by images that are of low quality. A widely used method is to use
domain specific knowledge to constrain the solution in interpreting the images.
This is possible in situations where the variety of contents in an image is
restricted, and more importantly, where the objects in a scene can be
described in a form suitable for computers. An example of such situations is
machine vision in industrial settings, where computer-aided design
information of machine parts is available and can be readily incorporated in a
computer vision system. The description of objects in natural scenes is less
well understood, making specifying a priori knowledge more difficult.

Other passive methods for disambiguating images are more desirable than
those using directly specified knowledge because the passive methods are

potentially applicable to a wider range of situations. An almost intuitive

approach to resolve ambiguities in the interpretation process is to increase the
amount of observed data in the hope of including more information albeit, at
the expense of more processing work. More data can be observed by viewing
the scene from different viewpoints, referred to as stereo vision, or by viewing
the scene for a period of time, referred to as dynamic scene analysis. The
challenge here is to ensure that more information- is in fact included in the
extra data, and that there is a known way to recover them. As we shall see,
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this is by no means trivial. In most situations, the interpretation process
cannot be solved by a single method. '

Computer vision has been applied to machine parts inspection, remote
sensing and photo interpretation. Each application has its own
characteristics; in medical image understanding, the “‘scene” or “‘world” is
restricted to known normal and abnormal anatomy [Bri83]. Foreign objects
are not expected to appear in these images very often. On the other hand, as
is true of other natural scene understanding problems, natural objects such as
buman organs and anatomical relations are difficult to describe precisely.
Very few human faces are identical, for example, despite having the same
components.

Current echocardiography studies often make use of very traditional
image processing methods [Gar85], and some highly problem-specific image
analysis algorithms that implicitly make use of heart anatomy knowledge.
Finding the heart wall boundaries in echocardiographic images, in terms of a
computer vision system, is an object detection problem, which is one of finding
the boundary of a region on an image plane that corresponds to the image of
an object. In this section, the detection of heart wall boundaries is cast in
terms of a high level computer vision system. A computer vision system for
detecting objects typically employs image processing algorithms for extracting
information from images, a priori knowledge about the problem domain, and
a control strategy for higher level analysis to determine the object location. A
typical configuration of such a system is shown in Figure 1.1.

Image processing algorithms are mostly numerical operations and their
main goal is to transform the image data so that a symbolic representation
can be produced for interpretation processes. Algorithms that detect spatial
features such as intensity edges, and those that detect temporal events such as
image motion, can provide information for the extraction of heart wall
boundaries. Attributes of detected features and events are also useful in
interpretation processes. The attributes of an edge segment include edge
strength, local orientation, length, and variation of local orientation along its
length. The detection of edges and image motion in echocardiograms will be
covered in the following chapters.

, A control strategy manipulates output from the image processing
algorithms to determine the boundary location. An example of the operations
taken by the control strategy is the classification of each detected image edge
segment as either part of the inner heart wall (endocardial boundary), part of
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the papillary muscle, part of the outer heart wall (epicardial boundary), or an
artifact due to noise. '

High level analysis is used in a computer vision system to integrate
multiple sources of information to form an estimate of the heart wall location
in the image plane. Sources of information include specific knowledge about
the heart anatomy and results obtained from the image data by image
processing algorithms. The two most important functions for high level
analysis in object detection are classification of detected image features and
interpolation to form a complete boundary estimate.

Classification is the process by which detected image features such as
edge segments are assigned semantic labels, such as parts of heart wall,
papillary muscle, or an noisy artifact. This mapping is useful for recognizing
the image contents, and for eliminating noisy artifacts from being included in
the interpolation of missing points based on detected data. An individual
edge segment is typically labeled based on its measured attributes, specific
knowledge about the scene, and, in the case of feedback systems, partial
results obtained from a previous classification [Ten77].

The form of knowledge representation plays an important role in
determining the choice of algorithms used in higher level analysis. If the
object boundary can be represented by exact mathematical forms, curve
fitting methods can be used to determine how well an image curve fits the
object boundary. While an exact representation of the heart wall boundary is
often unavailable, these methods can be used for approximation of the
boundary by curves such as circles or ellipses.

Hough transform methods [Bal81] are another class of algorithms that
make use of a set of parameters to describe a contour. A parameter space
histogram of the observed data is formed, and a peak in the histogram
corresponds to the set of parameters that is the best fit for the contour.
Disadvantages of these methods are that histogram forming and the
subsequent peak finding can get unwieldy when the number of parameters
grows, and that the spatial structure of the data is often ignored [Low84].
Again, while an exact representation of the boundary curve may not be
available, Hough methods can be used to approximate the boundary curve by
ellipses or circles, or by using a boundary found in a previous frame as a
template. Those data points that correspond to parameters that deviate
substantially from the peak can be treated as noise and rejected.




If the a priori knowledge can be represented as rules governing the
appearance of an image, a rule-based system can be used for high level
analysis. A rule is an eniecedent-consequence pair [Nil80]: the antecedent
describes a condition of the observed data, and the consequence describes
actions that will be taken if the antecedent was met. The actions taken can
be a decision making or some further processing by image processing
algorithms. Rule based analysis has been applied to angiograms [Sta86] and
aerial imagery [McK85| for object detection. More recently, there have been
attempts at using expert systems concepts for recognizing segmented regions
in echocardiographic images [Tuc85]. These attempts have limited success
due to the assumption that the images can be segmented successfully.

There are different ways to organize a computer vision system. An
obvious approach to search for the heart wall boundaries is to use image
processing methods such as edge detectors to detect image edge segments,
followed by a classification scheme that makes use of a priors knowledge to
locate the heart wall boundaries from the detected edge segments. This is
commonly referred to as a data-driven system. Depending on such factors as
the signal-to-noise ratio of the observed data, the degree of precision of the
knowledge representation of the object and its background, other choices such
as a goal-directed approach may be more suitable [Oht85]. For example, in
the presence of a large amount of noise, the control strategy in a data-driven
system will have to search for the correct boundary from a large number of
candidate segments, most of which are false responses to noise.

A goal-directed system uses the problem specific knowledge both for
detecting edges, and the subsequent classification of the detected edge
segments. A feedback system also uses the knowledge of the heart anatomy
both for detecting edges and in classifying the detected edge segments.
Furthermore, any information gathered after an initial classification is fed
back to the edge detection step to improve the detection. Since only edges
that are likely to be heart wall boundary segments are detected initially, the
control strategy in these systems can be made relatively simpler. The
disadvantage is that problem specific edge detectors are usually not stable
with respect to noise or imprecise knowledge representation.

A nonpurposive-segmentation feedback system uses edge detectors that do
not make use of a priori knowledge to perform the initial edge detection
[Oht85]. High level knowledge is used to further classify the detected edge
segments. Information derived from an initial classification is fed back to the
classification scheme itself or to the attribute measurement step to improve



the performance.

The problem of detecting heart wall boundaries in the echocardiograms is
discussed in Chapter 2. It can be seen that while some success can be
expected from processing a single frame by itself, much of the information in
the data lie in the temporal redundancy. The use of image sequence analysis
techniques is presented in Chapter 3. A new approach based on Total Least
Squares method for image flow analysis is presented in Chapter 4.
Electrocardiogram signals is often used to provide timing information for
echocardiogram data acquisition and for assisting the image sequence
analysis. A new approach to perform impulsive noise suppression and
background normalization of electrocardiogram signals is presented in Chapter
5. Future work and conclusions are covered in Chapter 6.




CHAPTER 2 :
DETECTING ENDOCARDIAL AND EPICARDIAL BOUNDARIES

2.1. Introduction

In this chapter, algorithms for detecting heart wall boundaries in
echocardiograms are surveyed. Algorithms reported in recent computer vision
and image processing literature are surveyed, and their suitability for
processing echo images is discussed. A new algorithm developed for detecting
heart wall boundaries in a single frame of an echocardiogram sequence is
presented.

A typical heart wall boundary detection procedure in echocardiography
studies has three steps [Sko85]: (1) preprocessing by smoothing, (2)
enhancing the image so that areas with high intensity variations would have
higher values whereas areas with more or less constant intensities would have
lower values, and (3) identifying the single contour that represents the
boundary of interest from the enhanced image. In terms of the model shown
in Figure 1.1, steps (1) and (2) are image processing algorithms, while step (3)
is the control strategy.

Image processing step is typically performed by using 3)X3 operators such
as the Sobel or the Laplacian operators. After the image processing step,
strategies that have been used for extracting the the heart wall boundary
contour include [Sko85]: radial search, binary image forming with subsequent
contour tracking, and ‘‘prior constraints” of an operator-assigned starting -
border.

In contour tracking methods, all potential edge points are ‘marked
initially; a procedure for tracking the border would then sequentially look for
the edge points making up the boundary in the marked pixels. In the “prior
constraints’ driven methods, the boundary in the initial frame is outlined by
an operator. Boundaries in subsequent frames are then found by using the
initial boundary and other a priori knowledge such as the shape of the
ventricle, or the maximum rate of wall motion.
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Radial search methods start from a point inside the heart chamber and
search radially for the endocardial border. These methods are: attractive
because the most prominent image feature in the echocardiographic images is
often the inner chamber. Due to the physical reason that there is no tissue to
reflect the ultrasonic pulse, the image intensity for the heart chamber has a
somewhat consistent, typically low, value. The problem of having to pick the
contour out from among the many detected edge segments is also avoided.

Other control strategy functions that have been used for postprocessing
are mainly used for filling in missing points by interpolating neighbors
[Zha84], linking and smoothing detected boundaries [Tam85, Chu86]. A cost
function could be used to evaluate every detected boundary point to remove
responses due to noise [Eze85).

2.2. Detecting Intensity Edges in Echocardiograms

An important class of image processing algorithms for detecting heart
wall boundaries are those that detect edges. Since the heart wall boundaries
are imaged as intensity edges, any attempt at detecting these boundaries
would necessarily incorporate an edge detection step. Heart wall boundaries
are imaged in echocardiograms as intensity edges, which are points where the
image intensity changes from one level to another. In the continuous domain,
finding edge points is done by locating the signal discontinuities or by
differentiating the signal and marking the points where the derivatives have
large values. When digital images are processed, these methods have to be
approximated by taking finite difference of neighbor values. Finite difference
methods usually produce a large number of false responses while missing
changes that vary less abruptly.

A typical enhanceinent/threshold type edge operator enhances the
original image at each pixel by using a finite difference method to estimate the
gradient magnitude. The finite difference operators are usuaily implemented
as 3X3 or 5X5 masks to produce edge strength values, which are then
thresholded to form edge points. An example of this type of edge operator is
the Sobel operator, which has been used to process echocardiographic images
[Sko81]. The Sobel operator estimates the directional derivative in two
orthogonal directions and measures the edge strength by the estimate of the
gradient magnitude.

Thresholding gradient magnitude maps results in thick edges, making the
location of boundaries ambiguous. Postprocessing such as edge thinning is
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needed to produce single pixel wide edges. Nonmaximum suppression of
gradient magnitude, or lateral inhibition [Bin81], essentially redefines the edge
as the local maximum of the gradient magnitude. Since the local maximum of
a function corresponds to a zero-crossing of the derivative of that function,
applying a Laplacian operator followed by detecting zero-crossings has been
used to detect edges [Eze85]. '

Since noise is accentuated by taking finite differences, images are often
preprocessed by a linear smoothing operation. Torre and Poggio [Tor8]
consider numerical differentiation as an ill-posed problem and show that it
should be preceded by a filtering step. The combination of smoothing and
differencing steps results in larger operator sizes. Shanmugam et al. [Sha79]
develop an optimum filter in the sense that it produced maximum energy
within a resolution interval of specified width in the vicinity of the edge. Marr
and Hildreth [Mar79] use a filter with the shape of a V2G function, where V2
is the Laplacian operator and G is a Gaussian function. Edges are found by
detecting the zero-crossings of the Laplacian of the image smoothed by a
Gaussian shaped filter. Canny’s operator [Can86] is designed to maximize the
detectability while minimizing the displacement of the detected edge segments.
This operator is shown to be well approximated by the derivative of Gaussian
operator. Edges are detected by smoothing an image by large Gaussian-
shaped masks before detecting zero-crossings of the second derivative along
the direction of the gradient of the smoothed image. All of these recently
developed operators are much larger than the 33 or 5)X5 operators commonly
employed in echocardiography studies. ‘

The facet-model based methods consider image intensities to be noisy
observations of a signal that can be expressed as a linear sum of a set of basis
functions. The values of the derivatives of the signal are estimated by fitting
the derivatives of the basis functions to the observed data [Har84]. A set of
cubic polynomials with two variables are chosen as the basis functions and the
fitting is done on local 11X11 neighborhoods. An edge point was detected by
finding the zero crossing of the second directional derivative along the
direction of the gradient. It should be noted that despite their philosophical
differences, the facet model based method and the window operator based
methods, such as the VG operator or Canny’s operator, are equivalent from
a data processing point of view.

An important issue when enhancing the images with window opera.tors is
to determine the size of the operator to use. Operator size can range from the
usual 3X3 to 11X11 [Har85, Har84] or even up to 35X35 [Gri85]. The question
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of what can be reliably detected from a noisy image is central to the problem
of locating or identifying objects in the image plane. This has a particularly
significant impact on the choice of the size of edge detectors. For the purpose
of using the edge points to achieve object location later on, only spatially
significant features should be detected initially, even if there are relatively few
such points. Features that are detected based on information from a large
area of image plane or over some significant time period are less likely to have
been caused by false responses of the detector to noise. Even though there
may be features that are of smaller scale that can be detected after an
estimate of the scene has been established, the initial recognition process
should certainly not be based on all small scale features that may be found.

Smoothing by small windows tends to result in a lot of false detections
due to insufficient noise suppression, while smoothing by large windows tends
to result in a lot of true edges being missed. It should be noted that human
observers may prefer the results obtained by using small window operators
since human vision systems are very proficient at rejecting false detections and
deducing structures. Computers have not matched human performance in
these two areas due to the sometimes overwhelming amount of data and the
difficulty in formulating rules for rejection and deduction.

The window size chosen for preprocessing the echocardiographic images
can be much larger than the 33 or 5X5 windows commonly reported [Sko85].
For example, the window size is 41X41 for the results reported in Section 2.3 .
There might be some concern about using such a large window when the edges
are visibly ‘“‘washed out.” A large window should be used precisely because
the signal is weak so that more information is available to make a decision.
The disadvantage of using a large window is that nearby edges may be
merged, thus resulting in displaced detected edges. '

The detectors discussed thus far are mainly concerned with devising
elaborate schemes to accurafely estimate the derivatives of an input image.
After the estimates are obtained, the decision of whether an edge is present or
not is made based on relatively simple decision strategies such as thresholding
the gradient magnitude at local maxima of gradients. The disadvantage of
using such a simple strategy is that only local information is used. More
sophisticated decision- strategies are usually based on employing global
information and are thus more desirable in low signal-to-noise situations.

The amount of information used to detect an edge is limited by the size
of the operator. As the size of the operator increases, more globally significant
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edge segments are detected, at the expense of missing finer details in the
image, and possibly at the expense of displacing an edge due to the merging of
two nearby edges. Thus, detecting edges at multiple resolutions is desirable
for detecting accurate and significant edges. Integrating the results from
different resolutions, however, remains difficult. The Marr-Hildreth scheme
[Mar79] detected edges at five different levels and combined the results by the
heuristic that edges found at two successive levels are marked as true edge
points.

An operator with a large spatial support makes no discrimination
between information that is relevant to the edge detection process and
information that is not. Sequential edge detection methods [Eic85] improves
on this by gathering more information in the decision strategy through
collecting information along an edge segment instead of around an arbitrary
large neighborhood. Since the additional data points taken into account by
the decision strategy have more relevant information, the performance of
sequential edge detection is improved. Unfortunately, sequential edge
detection has not enjoyed as much success in echocardiographic images as
compared to other cardiac imaging applications [Eic86] due largely to the
signal dropouts in echocardiographic images.

All of the operators discussed thus far detect intensity edges without
specific consideration as to whether they are on the heart wall boundary. As
noted in Section 1.2, a goal-directed system uses specific problem domain
information in the detection of edges. Schudy and Ballard detect boundary
points using the a priori knowledge of the heart chamber shape [Sch79]. The
heart chamber surface is modeled as a linear sum of spherical harmonics,
which are generalizations of the Fourier functions to the surface of a sphere.
The boundary points are found by fitting the basis function to the image data.

Another example of detecting edges in echocardiograms by using specific
problem domain knowledge are those procedures that use a one-dimensional
difference operator to detect edge points along each search ray starting from a
point inside the heart chamber [Del82, Tam85]. These one-dimensional
methods necessarily ignore the information provided by the two-dimensional
spatial structure of the images. In the presence of a large amount of noise, it
is particularly important that all the information be used for detecting edges
or other image features. '
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2.3. A New Algorithm

A new algorithm for detecting both endocardial and epicardial boundaries
in echocardiographic images is now presented. This algorithm serves two
purposes: besides extracting high level tokens for interframe matching, we
also include a linking and interpolation process to investigate how well single
frame processing can perform. The algorithm is based on the nonpurposive
segmentation approach. It consists of three steps: (1) edge detecting by a
general edge detector, (2) radial search for initial edge estimates, and (3)
nonlinearly processing the edge estimates to compensate for dropouts and poor
contrast. An overview of the algorithm is shown in Figure 2.1. Partial results
at various steps are used to guide further searches for missing points. |

Echo data are acquired from animal studies and from a tissue-equivalent
phantom with known measurements. Samples are collected in polar
coordinates along 98 different rays scanning a horizontal cross-section of the
left ventricle of the heart. Each ray consists of 288 samples with 6 bits of
gray-level information per sample. The intersample distance is 0.5 mm. Each
study consisting of a sequence of 36 images (3 cardiac cycles); an image is
interpolated into rectangular coordinates before the portion with size 256X256
that contains the region of interest is extracted for processing.

The enhancement step is performed by applying a window with Gaussian
weighting to the images. As noted in Section 2.2, the window size used is
41X41 for the results shown below. After the smoothing operation, the
discrete approximation of the Laplacian operator is applied to the entire
image. This step, together with the smoothing operation, can be combined as
a single VG operation, eliminating the need for a separate approximation of
the Laplacian operator [Mar79]. Figure 2.2 shows the sign of the Vi@
operator after it has been applied to an image. Those points where the
Laplacian value changes sign from positive to negative are considered to be
boundary points. Instead of detecting the edge point based solely on the
information along each ray as in [Del82, Tam85], the gzero-crossing points
found here are based on the information derived from a much larger two-
dimensional neighborhood.

After all the edge points are found by the nonpurposive segmentation
step, a radial search is used to find the endocardial boundary by locating the
gero-crossing points. Since there are not enough intensity variations in some
parts of the image, only part of the boundary will be detected initially. This,
of course, was in part due to the window size used in the enhancement step.
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Figure 2.1. Overview of the algorithm for detecting inner and outer heart
wall boundaries in echocardiograms.




Figure 2.2.
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Sign map of applying a V2G operator. Left: Original image.
v

Right: Sign of the V°G operator after applied to the original
image. Bright regions correspond to positive values and dark
regions correspond to negative values.
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The advantage of using a large window is that the detected segments are very
reliable, since they are due to significant gray level contrasts. The search
center is defined by a human operator. To avoid detecting the epicardial
boundary while looking for the endocardial boundary, a limit is set for the
search distance along each ray. A different set of limits is subsequently used
for detecting the epicardial boundary using a similar radial search. The
search limits are typically set at 20 pixels.

After the radial search, if there are no edge points found for a particular
ray, edge points are searched for in the original picture. The search area is
defined by the neighbor edge points that are found in the initial radial search.
Figures 2.3 to 2.5 show some typical results of the edge points detected using
this technique.

After the initial detection of the edge points, further processing had to be
done to remove the false edge points and to fill in missing edge regions. The
distance of each edge point from the search center is plotted ‘against its
angular displacement from a reference axis. This plot is shown in Figures 2.6
and 2.7 for both the inner and outer boundaries found in Figures 2.3 and 2.4,
respectively. A one-dimensional median filter is used to remove spurious
impulses contained in this distance-angle plot. For the examples shown, the
window size is set at 5. Median filtering is known to be effective at removing
impulse noise while retaining the original values of the signal when the noise is
relatively low in value [Gal81]. To avoid using an overly large window to fill
in drop-outs, or missing points, that occur for a large number of successive
rays, the missing points are linearly interpolated by the neighboring values
before the median filtering operation. This processed distance plot defines a
new reconstructed boundary. The processed distance plots are shown in
Figures 2.6 and 2.7. Figures 2.3 to 2.5 show the results of the reconstructed
boundaries.

- Although the radial search method significantly simplifies the detection
and classification steps, one major weakness in this method is that part of the
boundary can be missed when the search ray is almost parallel to the
boundary since it is difficult for the search to look for either gradient or local
maximum. Such a situation occurs, e.g., when the curvature of the boundary
goes from convex to concave, such as in the region when the papillary muscle
protrudes into the heart chamber. In extreme cases, part of the boundary
might be occluded by the protrusion (see Figure 2.8). '
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Figure 2.3.

Detected boundaries in phantom. Upper Left: Original image of
phantom. Upper Right: Detected raw edge points. Lower Left:
Edge boundaries after processing. Lower Right: Detected
boundaries superimposed on the original image.




Figure 2.4.
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Detected boundaries in ‘“baseline” dog study. Upper Left:
Original image. Upper Right: Detected raw edge points. Lower
Left: Edge boundaries after processing. Lower Right: Detected
boundaries superimposed on the original image.




Figure 2.5.
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Detected boundaries in ““post occlusion” dog study. Upper Left:
Original image. Upper Right: Detected raw edge points. Lower
Left: Edge boundaries after processing. Lower Right: Detected
boundaries superimposed on the original image.




Figure 2.6.
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Distance-angle plots for phantom study. Starting from the top:
Distance-angle plot of the inner boundary in Figure 2.3.
Distance-angle plot of the outer boundary in Figure 2.3.
Processed distance-angle plot of the inner boundary in Figure
2.3.




Figure 2.7.
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Distance-angle plots for dog study. Stariing from the top:
Distance-angle plot of the inner boundary in Figure 2.4.
Distance-angle plot of the outer boundary in Figure 2.4.
Processed distance-angle plot of the inner boundary in Figure
2.4. Processed distance-angle plot of the outer boundary in
Figure 2.4.
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To improve the estimate, a secondary search is conducted whenever the
distance between successive endocardial boundary points is above a threshold,
which is set at 5 in our experiments. This simple secondary search is not
intended to be a general purpose linking procedure and does not guarantee a
resulting connected boundary linking the two points. Instead, it is restricted
to our application by assuming that only a small portion of the endocardial
boundary is missing, and that the missing portion has a simple shape. As
discussed before, after processing the original image by an edge detector, such
as the V2@ operator, there is an initial edge map marking the edge segments.
In the discussion that follows, we assume the edge detector is the V2@
operator and will refer to the edge segments as the zero-crossings. The
secondary search algorithm works on the edge map and always extends the
endocardial boundary along zero-crossings. By doing this, the search is quite
conservative in that it either terminates or is not conducted in areas where the
intensity variation is too weak.

The algorithm seeks to link up two points, at least oneof which is
assumed to lie on a zero-crossing segment, although they may not necessarily
be linked by a single zero-crossing. We shall denote the two end points where
a gap exists on the endocardial boundary as A and B. If neither A nor B lies
on a zero-crossing, the search is not conducted. We can now assume A is
initially a zero-crossing point. The algorithm attempts to track from 4 to B
by moving A, point by point, along the zero-crossing segment. A move is
made if it will bring A closer to B. The algorithm stops if A is moved to B,
or if A cannot be moved any closer to B. The search terminates if B is not a
zero-crossing point; otherwise, the algorithm tries to move B closer to A. This
repeats alternately until neither A nor B can be moved any closer to each
other, or until they are linked to each other.

The limitation of moving the two end points closer to each other at all
times is justified since we do not want the searching path to wander too far
from the initial boundary. A direct result of this constraint is that the angle
between the line segments AB and AA' is never larger than 7/4, where A’
denotes the point to which A is to be moved. This is consistent with the goal
of linking A and B by the simplest and shortest possible path guided by the
gero-crossings. Figure 2.8 shows the result of conducting this secondary
search to extend the endocardial boundary.
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Figure 2.8.

Boundaries found after secondary search. Upper Left: Original
image. Upper Right: Detected raw edge points for endocardial
boundary. Lower Left: Endocardial boundary after secondary
search. Lower Right: Detected endocardial boundary
superimposed on the original image.
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2.4. Verification of Detected Boundaries

Validating the accuracy of the detected boundaries from the edge
detection algorithm is difficult to perform because it is impossible to directly
measure the left ventricular boundaries sn vivo. Different methods of
validating results obtained by computer processing of echocardiograms include
comparing the results with those hand-traced by trained experts, and with
direct measurements made from excised hearts [Col86).

An alternative method of verification is to process images of a tissue-
equivalent phantom with known dimensions. However, even in this case, the
accuracy of the results, as determined by comparing them with known
dimensions, is limited by the accuracy of the imaging system that acquires the
data. The algorithm was applied to 16 images of a phantom with increasing
inner and outer diameter to simulate an image sequence depicting a cardiac
cycle. The diameter of the automatically determined boundaries correlated
highly with the known phantom dimensions. For the inner boundary, the
correlation coefficient was 0.995 with a 0.88 mm. root-mean-squared error over
a range of 30 to 50 mm. true diameter. For the outer boundary, the
correlation coefficient was 0.997 with a 3.83 mm. root-mean-squared error over
a range of 60 to 72 mm. true diameter. Figure 2.9 shows a plot of the
diameters obtained experimentally compared to known dimensions.

2.5. Summary

To briefly summarize, a new algorithm based on the use of early
processing methods to detect features, subsequent processing such as
classification and interpolation to correct the expected errors in the early
detection, and a further _secondary search process to ensure an accurate
estimate was presented. We have also overviewed the computer vision area
and discussed the efficacy of applying some of the techniques to identify the
left ventricular wall.

For the results shown, a V2@ operator is used for early detection of
edges. Other operators such as the directional zero-crossing detector [Har84]
had also been used and equally satisfactory results were obtained. Using
window operators larger than the conventional small windows allows multiple
resolution methods to be incorporated in the edge detection procedure. The
algorithm can be developed into a multiple resolution processing scheme by
using a large window smoothed image for initial detection of major edge
segments, followed by smaller and smaller windows until a complete boundary
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is found.

The algorithm presented in Section 2.3 has its limitations, al'though it
could form the basis for further advances in methods of boundary detection in
echocardiograms. As it is basically extended from the radial search method,
the algorithm incorporated much of the limitations, such as the needs for
operator-assigned search centers and search limits. The improvements
primarily come from more advanced image processing procedures, in the form
of the larger VG operator which provides more reliable initially detected
edge points; an effective postprocessing procedure to reject noise points; and a
secondary search necessitated by the limitations of the radial search. .

The limitations can be overcome by using the results obtained in previous
frames to establish the search center and limits for the current frame. It
should also be noted that even the ideal image gray level edge does not
always correspond to the true left ventricular boundary. The solution to
achieve a completely automatic segmentation of the echocardiographic images
is through the use of high level symbolic reasoning. The work x:eported here
should be considered as the first step of the signal-to-symbol translation
process that is essential to the building of the overall system for identifying
the left ventricular wall from its background. To be successful, such a system
needs to exploit the temporal redundancy of the image data, which requires
that it establish the attributes of image features, such as their velocities in the
image plane. In the next chapters, we shall be considering the determination
of such information from an image sequence.
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CHAPTER 3
IMAGE SEQUENCE ANALYSIS

3.1. Introduction

Information such as the motion pattern of the ventricular walls in an
echocardiogram sequence is inherently dynamic, necessitating the processing of
a sequence of echocardiograms. Furthermore, extracting information from an
image sequence is particularly useful in situations where the signal-to-noise
ratio of each image frame is low; this is similar to the approach taken in
classical detection theory that seeks to improve the performance at low
signal-to-noise ratio by increasing the number of observations contributing to
the decision. In this chapter, we shall first examine past work in processing
echocardiogram sequence, followed by a broader view of image sequence
analysis in computer vision. Our concentration will be on the extraction of
motion information without using results from image segmentation or scene
interpretation.

A straightforward way to reduce noise in echocardiograms is to take the
average of several image frames. Due to the gross motion of the heart walls,
averaging several successive frames [Eze85] tends to smooth out edges that are
moving. An alternative is to average several image frames taken from the
same location of the cardiac cycle [Sko81,Bud83]; aligning the image frames
is difficult to implement accurately in practice, however. Moreover, the heart
is moving in a three-dimensional space, with lateral motion across the i image
plane and vertical motion. This would introduce errors when taking averages
of several image frames, offsetting the advantage gained by noise suppression.

In [Zha84], an image frame is thresholded to locate areas with image
motion for detecting edges. A local threshold is determined for an image
region from a temporal cooccurrence matrix, which is a matrix defined for a
pair of image frames. The (1,5)th entry of a temporal cooccurrence matrix is
the number of pixels that has, at the same location, intensity value ¢ in the

first frame and intensity value j in the second frame. The threshold 6 is
selected by maximizing
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where M; ; is the (¢,7)th entry of the temporal cooccurrence matrix, and K is
the maximum image intensity level. All pixels with values below this
threshold & represent stationary points, while points above the threshold
represent moving points. This method is sensitive to drop-outs and spurious
noise that often plague echo images largely because thresholding, as is true of
all other pointwise image processing operations, ignores the two-dimensional
spatial information of an image.

Most other efforts at using the temporal information in processing
echocardiographic images have been ad hoc in nature, such as treating a
binary ultrasonic image sequence as three-dimensional data and applying
nonlinear processing techniques for removing noise and filling in dropouts
[Ver79]; using edge points found in the neighboring frames to fill in dropout
edge points [Zha84]; and frame differences to aid edge searching [Bud83].
These techniques have often failed due to the gross motion of the ‘heart caused
by temporal undersampling.

Since edge detection is perceived as an important step of image
processing, a natural extension to edge detectors that operate in a single image
frame is an enhancement operator that finds time varying edges, which are
edges that have moved from one frame to another. In [Her78|, a three-
dimensional edge detector is used as a time varying edge detectors by treating
the temporal axis as the third axis. Since the edge model used by this
operator does not differentiate between the temporal dimension and spatial
dimensions, the operator tends to produce two responses when the intensity
jump across time frames is larger than the intensity jump in the spatial
coordinates. When the movement of the edge is larger the spatial edge
strength, the operator produces responses at two different locations: where the
edge was initially, and where the edge ended up after the motion [Hay83].
This makes it difficult to distinguish between the above scenario and the case
where there are actually two moving edges. '

In [Hay83], moving edges are found by combining the temporal difference
and the edge strength in a single frame by a logical AND operator. This
operator is implemented in practice by forming the product of a difference
picture for two frames and the spatial gradient magnitude map for one of the
frames. While this is an improvement to using a three-dimensional edge
detector, it can be problematic when the edge is not well formed in one frame.
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A pair of echocardiograms are shown in the top half of Figure 3.1. Moving
edges are detected by forming the product of a difference picture and a Sobel
edge magnitude map. The product map is shown in the lower left of Figure
3.1. The pair of images are also processed by smoothing using a 2121
Gaussian shaped filter prior to the moving edge detection. The result of this
processing is shown in the lower right of Figure 3.1. The temporal difference
alone may not be enough evidence to allow the detection of the moving edges,
as can be seen in Figure 3.1.

There have been increasing interest in image sequence analysis for general
computer vision. Analysis of an image sequence can be conducted at different
levels of a vision system [Nag83a). Motion information extracted from a

sequence of images provides important cues for processes at different levels in -

a vision system. At the signal level, motion information is useful to augment
processes such as image segmentation; at a higher level, processes such as
scene interpretation will benefit from information such as the three-
dimensional structure of objects as recovered by analyzing their motion. One
of the goals of image sequence analysis is to establish the motion parameters
of objects in a scene. Image sequence analysis, in general terms, shares a
surprisingly large number of issues encountered by other vision tasks such as
feature detection and object identification. For example, instead of matching
subimages to special features such as edges, or matching objects in a scene to
a machine part stored in a library, image sequence analysis matches items
found in an image to those found in another image. After such matches are
established, the motion parameters can be computed. Depending on the level
that the analysis is operating on, the matching item could be pixel values,
image features, or parts of a scene object. The search for matches in an image
plane prior to recognition of scene contents is commonly known as the
correspondence problem.

There are at least two ways of detecting motion: following landmarks in
an image sequence, and deducing motion in scenes without explicit landmarks.
Correspondingly, there are two mechanisms in human vision systems for
image sequence analysis: a long range and a short range mechanism [Ul179).
Landmark tracking is done by first detecting edges or gray level corners
[Nag83b] from each image and matching them from frame to frame [Roa79].
The immediate problem of applying these processing in echocardiogram
sequences is the lack of gray level corners in the images. More importantly,
unlike images containing man-made objects, gray. level corners in different
echocardiographic images do not necessarily correspond to the same point in
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Detecting moving edges. Upper Left: First frame of original
image pair. Upper Right: Second frame of original image
pair. Lower Left: Detected moving edge from image pair.
Lower Right: Detected moving edge from image pair after
smoothing by 21X21 window. Moving edges were detected by
forming the product of a difference picture and a Sobel edge
magnitude map.
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the scene. The matching rules for features are obviously dependent on the
level of the features. High level features are easier to match, but they cannot
be detected reliably in echocardiographic images. Examples of higher level
features are the tip of the papillary muscles (defined to be the point with
maximum curvature along the boundary, for instance) and points where the
papillary muscles meet the endocardial boundary. As we progress to higher
level feature matching, problems such as an appropriate data structure,
reliability of feature detection, formulating matching rules would have to be
addressed. The boundaries between motion analysis, image segmentation and
scene interpretation are less defined at this stage; it is reasonable to assume
that these processes would mutually benefit each other in a complete system.

The long range mechanism by tracking landmarks, or tokens, is used in
human vision system primarily for “maintaining the perceptual identity of
moving objects” [Ull79]. The problem of determining structure from motion
is aimed at recovering the three-dimensional relationship of object parts based
on analyzing the object motion in the image plane [Tsa84]. The
correspondence problem is considered to have been solved by some other
methods; the application of these long range methods to echocardiograms is
obviously limited.

The issues associated with the correspondence problem in image motion
analysis are encountered in another image analysis domain, ¢mage registration
and mapping, which is concerned with images of the earth surface taken from
high altitude by either satellites or aeroplanes. In remote sensing, matching is
performed on images taken at different times. In photogrammetry, the
matching is performed on images taken from different viewing angles. Other
applications include matching observed images to a reference map. In a
survey of image registration and mapping techniques [Kas83], it was
concluded that syntactic, or landmark based, methods are more suited for
high signal-to-noise ratio images while statistical methods are more suited for
low signal-to-noise ratio images. An equivalent view is that there is a lower

“bound of signal-to-noise ratio for the reliable detection of landmarks.
Furthermore, it was concluded that no one technique is universally applicable
and that a mixture of both methods are needed in most applications. Since
one of the motivations of analyzing an image sequence is to handle situations
where scene interpretation or image segmentation cannot be performed
reliably, image sequence analysis is most important at the early stages of a
vision system. In the remainder of this chapter, we shall analyze the problem
of determining motion information without using the result of image
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segmentation or scene interpretation.

The displacement vector of a point on an image plane is the position
change of the projection of an object point due to the change of viewing angle
between the sensor and the object point. A change in the viewing angle can
be caused by the displacement of the sensor, or the movement of the object
point, or both. The displacement vector is thus an approximation to the
velocity of the image point. At the signal level, the processing performed to
estimate the velocity is based on the assumption that the intensity values that
correspond to a region in a scene do not change drastically from one frame to
another. This assumes, among other things, that the lighting condition stays
the same in general computer vision. In echocardiography, this means that
the time gain compensation setting has to remain unchanged during the entire
data acquisition period.

Displacement vectors are determined by matching image points obtained
in different image frames. Since the intensity values are not reliable enough
for pointwise matching, the matching is based on a local neighborhood of the
point. Estimators of this nature cannot have arbitrarily high accuracy and
resolving power simultaneously. Performance of any estimation procedure can
be measured by the resolution capability and the accuracy of the result.
Accuracy is determined by how close the computed displacement vector values
are to the correct values. Resolution refers to how well two different
displacement vectors can be resolved. In practice, resolution amounts to how
valid a constant velocity can be assumed for a patch on the image plane.

The correspondence problem can be viewed by considering the following
model. Let

LF) =P (S (7)) (3.12)
and
L7) =P (5 (D)), (3.1b)

where P’ denotes a point on the image plane, Z denotes a point in the scene, I,
and I, are the intensity values observed at two different instances. S is the
object that generates the image intensity values. In a general vision problem,
it would be the reflectance of the object surface that is being illuminated. In
echocardiography, it is the amount of energy that is being reflected back to
the receiver at a particular point of the organ. P is the operator that
represents how S is mapped onto the image plane. D is the operator that
represents the deformation that S is undergoing. In general,  and P will
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have different dimensions. Since echocardiograms are cross-sectional views,
they are both of dimension two, however. Equation (3.1) can be simplified to

Ii(z,y) = S(z,y) + ny(z,y) (3.2a)

and

Iy(z,y) = S(D(z,y)) + na(z,y) (3.2b)

Here, we assumed the image projection operator P only adds noise,
represented by n, and n,. A further assumption is that we are considering
cross-sectional views or parallel projection, where the distance of the object
from the image plane does not affect its appearance, or its projection, on the
image plane. We have also used z and y to represent locations both on the
image plane and in the scene. The problem then becomes: recover D by
observing I; and I, in the presence of noise.

D is generally modeled as an affine transform, which can represent rigid
body rotation and translation. An affine transform D that maps points in R2
to points in R?, where R is the set of real numbers, can be written as

-

(= y,-)T, i1=1,2 represents two points on the R? plane. A is a 2X2 matrix and
it represents the linear transformation component of D, constrained by the

I tz

8 [

fact that its determinant is nonzero. Denoting the ¢,jth entry of A as a;, if

(1) ay3=a3y, (2) 619=—a,,, and (3) the determinant of A is equal to 1, A
represents a rotational matrix. If only conditions (1) and (2) are met, A
represents a rotational matrix with a scale factor equal to the determinant of
A. The translation component is represented by (%, ty)T. An affine
transform is known for mapping lines to lines, collinear points to collinear
points, and noncollinear points to noncollinear points. These properties make
it a suitable choice to represent rigid body motion in a plane that is parallel to
the image plane. Rigid body motion here refers to the case where different
parts of the body having the same image plane motion parameter.
Deformation of objects can be approximated as locally rigid [Web83].

In general, without a good model of the image formation process, i.e.,
without knowing how S maps 7 into intensity values, it is difficult to invert
the process. Hence, the solution is usually limited to searching for two i image
regions with similar variation characteristics.
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. Intuitively, matching based on local neighborhoods has to depend on the
information in the form of intensity variations in a particular neighborhood.
Moreover, in a two-dimensional setting, a match is only possible in the
direction where there is enough variation. In the vicinity of an ideal edge
where the only intensity variation is along the gradient direction, only one
component of the displacement can be estimated. This is referred to as the
aperture effect [Ull79]. In Figure 3.2, we see a square being translated. When
considering a local neighborhood, as represented by the ellipse, only one
component of the true velocity can be obtained. It can also be seen that the
only points with enough information to recover the true velocity are the four

corners, hence the prominence of gray-level corners in image sequence analysis
[Nag83b].

3.2. Region Based Approach

The region based approach selects a subimage containing the point for
which it is computing the displacement vector. It then searches in the second
image a subimage that best fits the first subimage according to certain
criterion. The most commonly used criterion is the mean squared error, which
leads to the correlation of a subimage with a larger search area for matches.
Correlation methods have been used in other computer vision applications
such as stereo matching [Yak78]. Common ecriticisms include [Arn83]:
computational expense, incorrect results when dealing with occlusion, poor
accuracy when compared to feature based methods, and lack of guidelines to
choose matching neighborhoods. Typically a constant size, such as 88,
window is used for correlation. The use of the autocorrelation function is
noted for being helpful in evaluating the suitability of a subimage for
matching [Yak78]. In [Mor77], an interest point detector, which evaluates the
directional sampled variance of a subimage, is used to find suitable points for
establishing matches between two different frames of an image sequence.

It is interesting to note that except for the dimension of the data, the
correspondence problem is similar to the original echocardiographic data
acquisition or the radar signal processing problem. As we have mentioned in
Chapter 1, in radar or echocardiographic systems, a signal is transmitted and
an echo is received after bouncing off a target. The receiver has to detect the
existence of a returned signal from the observed data and, in some
applications, to estimate relevant parameters of the returned signal. In terms
of the model represented by Equation 3.2, ‘n; is identically gzero, since the
reference signal is known. It is the aspect of detecting a known signal in noise
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The aperture effect.
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that is similar to the correspondence problem. Due mainly to the assumption
of white Gaussian noise, correlation is established in radar signal processing as
the optimal method for detection. Radar signals are designed based on their
ambiguity functions [Fra81], which, in the time-domain, are the
autocorrelation functions of the radar signal. The problem of choosing a
subimage for matching by correlation can then be viewed as choosing, from a
large collection of signals, the suitable ones based on the radar signal design
criteria.

We can look to other signal processing disciplines to find issues similar to
those facing correspondence problems. In sonar signal processing, the
correlation method is used to determine the time delay between signals
received at two spatially separated sensors in the presence of uncorrelated
noise [Kna76]. This problem, which conforms to the model represented in
Equation 3.2, appears to be even more similar to the correspondence problem
than does the radar detection problem; after all, the radar signal is itself
noiseless while both received signals in sonar are noisy. The main emphasis in
sonar thus far has been on tackling the noise problem by the design of
prefilters to accentuate the signal passed to the correlator at frequencies for
which the signal-to-noise ratio is highest and simultaneously to suppress the
noise power. On the other hand, the major obstacle in correlating subimages
is not noise, but rather that one of the subimages is frequently a rather
severely distorted version of the other.

Perhaps the major factor for restricting the use of correlation techniques
in image motion analysis is the problem of rotation of portions of an image.
In [Mos81], optimum windows are found for registering two images based on
two-dimensional correlation. Geometric distortions included in the analysis is
modeled by a linear transform of the coordinate axes, which include rotation
and scaling of the coordinate axes. Performance measures used to derive the
optimum windows include a peak-to-sidelobe measure and registration error.
Maximizing the peak-to-sidelobe measure improves the detection of peaks in
the correlation function; minimizing the registration error improves the
accuracy of the match ‘after the true peak is found. A small amount of
rotation (up to 5°) is considered to be tolerable in in choosing optimal
window. One possible solution to larger scale rotation might be to use a bank
of matching signals, each of which is a rotation of the original subimage, to
match in the second image. The number of such matching signals is
dependent on the tolerance of each to rotation distortion; or equivalently, the
number is dependent on the performance demanded.
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Correlation methods is claimed to produce incorrect results in areas
where occlusion occurs [Arn83]. To be specific, consider the situation when a
portion of an object which is occluded in one image is uncovered in another
image. Suppose the subimages that are to be matched were chosen such that
one of the subimages contained the uncovered portion. Since parts of the two
subimages are indeed different, the correlation method will fail. This has been
used as a convincing example of why a feature based method should be used.
It is usually claimed that since occlusion occurs in areas with edges, by
detecting edges and subsequently matching them, feature based methods are
immune to the occlusion problem. On closer examination, however, the
performance of the correlation method is degraded, but it does not actually
break down.

Suppose the first signal is made up of a nominal part and an occluded
part, and the second signal comprises the same nominal part and a different
occluded part. The correlation of the two signals is the sum of the correlation
of the nominal part, the cross correlation of the nominal signal ‘with the two
occluded parts, and the cross correlation of the two different occluded parts.
The degradation of the performance can be viewed in terms of the cross
correlation terms, and is also dependent on the ratio of the extent of the
nominal part to the occluded part in each signal. It is important to note that
the cross correlation terms are constrained by the fact that the typical case
involves the occluded parts and the nominal signal being on opposite sides of
an edge. Hence the correlation function will be flattened, since the nominal
part will not have much intensity variation; yet, there is a limit to the
degradation of the performance since the peak will still be in the vicinity that
corresponds to a correct match. This is further justified by the fact that
without such constraints, other methods such as feature based methods would
also fail due to insufficient information for feature detection.

3.3. Transformation Approach

The transformation approach computes the motion parameters that by
characterizing the difference between two image regions. Unlike the region
based approach, the transformation approach does not explicitly search for
matching subimages. One of the image regions is assumed to be a deformed
version of the other, and the nature of the deformation is either known or is
modeled by some known distortions. The deformation is commonly modeled
as translation, rotation, or scale change. Here, scale change refers to the
distortion of the coordinates, not the scaling of the image intensity values.
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Parameters of the deformation is related to the motion parameters, and they
are computed by transforming the two regions into an appropriate domain
where the parameters of the deformation are made explicit. For example, if
the deformation is translation, the translation component can be easily
determined by using the Fourier transform and its well known relationship of
spatial translation and frequency phase shift.

In [Jai87], a complex logarithm transformation is used to normalize the
rotation and scale factors to compute depth of objects from the sensor. Image
points in rectangular coordinates, denoted by z and y, are converted to the
complex logarithm space by first representing (z,y) as a complex number
z =z + jy. z is then mapped to the complex logarithm space by w =log z,
where w = u + jv. u and v are determined by:

u(r,0) =log r
and
v(r,0) =6,
where
z=rel,

The transformation approach to the correspondence problem is similar to
the pattern recognition problems, which frequently have to match observed
signals to a reference signal in a position, rotation, and scale invariant domain.
It is interesting to note that computationally, the complex logarithm mapping
differs from the Fourier Mellin transform [Cas77] only by a last step of taking
the Fourier transform along the logr coordinates. Indeed, this has been
conjectured in [Jai87] but was dismissed for lack of evidence that such a
transform takes place in biological visual systems.

The limitation of having to model the deformation as one of translation,
rotation, and scale change amounts to constraining the scene objects to be
undergoing rigid body motion. Moreover, a large number of pixels is needed
for the computation of the transformations. Typically the the entire image, or
at least a significant part of it, is used to compute the motion parameter (see,
e.g., [Jai87]). Hence it is further limited by the constraint that the motion
parameter which is to be computed is uniform over the entire image region
that is transformed. This approach only allows one to determine a coarse
estimate of the global motion parameter.
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3.3 Image Flow Approach

The image flow approach evolves from the optical flow research, which
originally at least, addresses the situation where the sensor is in motion and
the scene is stationary [Mar82]. The significance is that every point in the
image plane has a nonzero velocity, except for the focus of expansion, which is
the apparent origin of all velocity vectors in the image plane. The image flow
approach is based on determining a velocity component from the
spatiotemporal gradients. This approach is based on an ‘“‘implicit match,”
which assumes that the same intensity value is registered in the image plane
at different frames for the same point in the scene. Hence, we can write:

I(z,y5t) = I(z+dzsy+dy;t+dt)‘ (3.3)

By using Taylor expansion on the right hand side of Equation (3.3) and
ignoring the higher order terms, the velocity information can be determined
from an image sequence by measuring the spatiotemporal intensity change
[Fen79]: ;
oI 8: A1 3y _ _al
oz 8t B8y ot at’
where I represents the intensity as a function of spatial coordinates z and y
and time ¢. The left hand side of Equation (3.4) can be interpreted as the
inner product of the velocity vector

T,»_[Qz af

(3.4)

ot ot

with the spatial gradient vector

T

oI oI

VI=|— —]|.
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By computing VI and O8I /5t from the given images, the component of v

along the direction of VI can be determined.
 Equation (3.4) is derived based on the following assumptions [Fen79]:

(a) the same image intensity is registered for a fixed point of a physical
object from different viewing angles, hence a change in the intensity
values over time at a fixed pixel location must equal the change over
space at some fixed time;

(b) the image intensities can be modeled as a linear function locally;
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(¢) the image motion can be modeled as a linear function locally; i.e., the
object is undergoing rigid body translation on the image plane. :

Since only one component of the velocity vector can be determined from
Equation (3.4), the component of the velocity vector that is perpendicular (in
the image plane) to the gradient direction has to be found using some other
information. Horn and Schunck [Hor81] assume that the velocities vary
smoothly and average the velocity components over a neighborhood to
calculate the velocity vectors. Hildreth [Hil83] computes the initial velocity
components for points along a contour, and then estimates the true velocity
vectors by minimizing the variation of the velocity along the contour. All of
these methods are computationally expensive, highly dependent on whether
the smoothness of velocity variation assumption holds, and crucially
dependent on the accuracy of the initial estimates of the velocity components
based on Equation (3.4). |

Besides the difficulty of estimating the missing velocity component, there
are other disadvantages of this method. In practice, VI is usually
approximated by some numerical differentiation methods, while OI/9t is
usually estimated by simply subtracting one image from another. Numerical
differentiation of noisy data should be preceded by data smoothing to
compensate for the accentuating effect of the differentiation step on noise, as
discussed in [Tor86]. However, the temporal sampling rate is usually very low
in echocardiography images, making averaging a large number of consecutive
frames impractical. While the data can be spatially smoothed by a relatively
large window, smoothing the data over time, if performed at all, is still
limited to a very small number of frames, typically no more than three
frames. We shall take a closer look at an implementation of the image flow
approach in the next chapter.
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CHAPTER 4
TOTAL LEAST SQUARES BASED
IMAGE FLOW ANALYSIS

4.1. Estimating Displacement Vectors

Estimating displacement vectors in image sequence analysis is used to
derive velocity vectors on the image plane. One approach is to directly search
for matches from frame to frame; i.e., solve the correspondence problem. An
alternative is to use the image flow approach, which assumes implicitly a
match exists for every point on the image plane. This basic assumption means
that any change in the intensity values over time at a fixed pixel location must
equal the change over space at some fixed time (Equation (3.3)). From this
simple assumption an image flow equation (Equation 3.4) can be derived
[Fen79]. A one dimensional example is shown in Figure 4.1 to illustrate the
principle of the image flow equation. The graph of a line with slope m is
shown being displaced from left to right by an amount d, from time ¢, to ¢,.
Denoting the line at instances ¢y and ¢, as g, and g,, respectively, it can be
seen that at a fixed point zy:

m X d, = —( g;(2o) — go(2o) )- (4.1)

The linearity of g, and g; and the uniformity of translation is obviously
essential to the validity of Equation (4.1). The image flow equation relates the
spatial gradient of image intensity I to the temporal intensity gradient, and is
now restated as:

L v, +1, vy =—I (4.2)
| _or ., _or ., _ ol
where I, =5 I, = 3y’ I = ot’
o 0
v, = a—:, and vy, = -:9-%

It is not difficult to visualize Equation (4.2) as an extension of Equation (4.1)
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to two dimensions. Indeed, Equation (4.1) is a special case of Equation (4.2)
in the vicinity of an ideal edge, i.e., one which has no intensity change in any
direction other than that of the gradient direction. In general, Figure 4.1 still
depicts correctly the cross-section plane taken along the gradient direction.
' Using the same notation as in Chapter 3, we denote the spatial gradient
field of the image intensity I as
I
VIl = [Iz}
y

v=|"
vy

By determining the components I, I,, and I;, the component of the

and the velocity vector as

displacement vector in the direction of the local intensity gradient can be
determined. The magnitude of this component, Uy, is given by: .

wvin 4
v gl -
By computing only one component, the results computed using Equation (4.3)

have to be used in conjunction with other assumptions to recover the ‘‘lost’
component, i.e., the component that is perpendicular to the gradient direction.

gl = (4.3)

Computing g, |l for individual points using Equation (4.3) have been .
P

known to produce noisy results [Jai87] and this has limited the applicability
of the results to any subsequent processing. There are many factors that
could contribute to the unsatisfactory results, such as the absence of a true
match due to the invalidation of the basic assumption by input image noise,
unstable data acquisition conditions, or image areas being uncovered or
obscured by scene object occlusion. Incorrect matches may exist when either
the spatial or temporal sampling rate is too low. Regardless of whether a
correct match exists, a numerical value computed according to Equation (4.3)
is generated. Whereas in the region based approach, a search for a match can
result in an explicit failure, either due to lack of potential matches or due to
too many ambiguous matches, there is no such mechanism in the image flow
approach to handle these situations. Either post-processing will have to
distinguish between correct results and incorrect ones, or preprocessing have
to be performed to minimize the incorrect matches.
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slope =m

Figure 4.1. One dimensional view of the image flow equation.
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The effect of the temporal sampling rate on the accuracy of the
“implicit” match can be seen from the following simple example. Suppose the
signal consists of a single sinusoidal s(z,t) =sin(27f,(z+vt)) and that we
observe s first at ¢=0 and then at ¢t=T,. If we want a match to be correct,
the phase term f,vT, must be less than one; i.e., the maximum velocity v
that can be correctly computed must satisfy:

1

v < 1.7, .

It then follows that as the temporal sampling rate drops, the spatial resolution
has to decrease. Conversely, if a high spatial resolution is desired, the
maximum velocity range is limited, for a fixed temporal sampling rate.
Analyses that are more rigorous or those that do not appeal to sinusoidal
models of signals are hindered by the fact that alternative models of “real”
images are still lacking.

An alternative view of Equation (4.2) is
VI'T)’ = _It . (4.4)

The spatial gradient VI becomes an operator that maps the velocity v to form
the observed temporal gradient value. The goal of the estimation problem is
to determine ¥ by observing I; and VI. This formulation illustrates that the
problem is an inverse problem; and it is ill-posed in the Hadamard sense
because the solution is not unique. Determining a single component of ¥ only
constrains the true solution to lie on 2 line (see Figure 4.2) . Furthermore, in
the presence of noisy observations, the solution may not vary continuously
with varying observed data. Estimation results of problems of this nature is
known to require tradeoffs between accuracy and resolution capabilities
[Roo87]. More specifically, one can expect a proper approach is to
approximate the correct solution. When a coarse approximate is established,
it may not contain fine details, but it does not deviate severely from the
correct solution. As more details are resolved, individual estimates may start
to be severely corrupted. Factors limiting the level of resolution to contain
arbitrarily high detail include signal-to-noise ratio of the data and the error
amount tolerated.

In Chapter 3, we described the aperture effect when only local
information is available to estimate displacement vectors; from the above
discussion, it is obvious that the image flow approach, more than any other
introduced in Chapter 3, is especially sensitive to this effect. As we mentioned
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Figure 4.2. Constraining the true velocity.
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before, estimating a component of v constrains the true solution to lie in a
line. If the scene object is undergoing rigid body motion, i.e., all parts of the
object are moving with the same motion parameter, ¥, in the image plane, the
true U can be uniquely recovered by applying Equation (4.3) to two points of
the body that have different gradient directions. This solution obviously has
its limitations: natural scene objects are not always rigid. Moreover, even
bodies rigid in three dimensional space may have nonrigid (according to the
above definition) motion in the image plane. A simple example is a solid plate
undergoing rotation about an axis that is not perpendicular to the image
plane. The corner of this plate that is nearest to the sensor would have a
higher image plane velocity than any other corners. '

In [Hor81], the velocity field is assumed to vary smoothly, i.e., velocity
vectors for neighboring pixels do not differ significantly. By essentially
averaging the perpendicular component, a true velocity vector for every pixel
is sought. In [Hil83], smoothing of the vector components is performed not
on an image plane neighborhood basis. Instead, the integrated-value of the
velocity variation magnitude along V2G zero-crossings is minimized. One of
the motivations is that zero-crossings usually represent object boundaries. It
is shown that velocities of blocks world type rigid polyhedral objects will be
correctly recovered. It is also noted, however, that the solution is incorrect in
the case of smooth curves undergoing general three dimensional motion.

In both of the above solutions, the assumption is that neighboring pixels
have different gradient directions, hence allowing the true velocity for a
neighborhood to be solved. This is performed by first computing a single
component for individual pixels, followed by averaging these individual
components. The difference is in the choice of image points used in the
averaging. An alternative to the explicit averaging is to combine the
temporal and spatial gradient estimates of all the points in a neighborhood to
compute a least squares solution as the velocity [Mar86]. This approach will
be examined in more detail in Section 4.3.

The spatiotemporal frequency approach [Jac87] is one that is similar
conceptually to the image flow approach. Time varying image data are
represented by their spatiotemporal frequency components. Each component
represents a two dimensional sinusoidal grating spatially; this sinusoidal
grating moves with a velocity determined by its temporal frequency. The
spatial frequencies of the two dimensional grating specifies a direction of
motion as being perpendicular to its axis of constant intensity. Hence, by
examining a neighborhood at different spatial frequency ranges, ome can
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constrain the true velocity when spatial frequencies with different directions
exist, i.e., except for the case of an ideal edge. '

To briefly summarize, in the presence of ideal edge, no true solution can
be sought. Nevertheless, all the previous work implicitly or explicitly assumes
that in real images, gradient directions in any local neighborhood vary so that
a true velocity can be determined.

4.2. Estimating the Spatial and Temporal Gradients

The velocity estimates are computed using the spatial and temporal
gradients as input. Computing the spatial gradients in an image has been
widely studied for the purpose of detecting intensity edges. We have
described in some detail the difficulties of determining spatial gradients in
Section 2.3. For purposes of detecting the presence of absence of edges, it is
acceptable even if the operators produce a function of the gradient, as long as
the function is monotonic. When using the gradient estimates as data for
further computation, however, results that are more precise “are required.
Most of the reported results in optical flow estimation do not mention the
procedure for estimating spatial and temporal gradients, making comparisons
difficult. Our experience with finite difference operators are very discouraging,
particularly in estimating temporal gradient. Temporal gradients are typically
computed using the difference of two images. Our experience has been that
this is inadequate and leads to unsatisfactory results.

Instead of using a finite difference operator, or performing numerical
differentiation, we use a basis set of discrete orthogonal polynomials to fit a
local neighborhood of image data. Both the spatial and temporal gradients
are estimated using a procedure similar to the facet model approach | Har84|.
Denoting d(z), z=1,...,M, as data points observed in a noisy environment, a
set of polynomials, P;, for 1=1,...,N, is used to represent the data as:

" N
d(z) = '21% P;(z), (4.4)

=
for z=1,...,M. «;, i=1,...,N, are the fitting coefficients, and N is the order of
the fit. The fitting coefficients are chosen to minimize some criteria of
difference between d and d. If the criterion is the mean squared difference,
and if the set of polynomials are normalized and are orthogonal to each other,
a simple procedure to determine the fitting coefficient ¢; is by computing the
inner product of d and P; [Fra81]. Since the right hand side of Equation
(4.4) is a finite sum, to compute the derivative of d with respect to z, dd /9z,
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one needs only to form the sum of the derivatives of individual P;, weighted
by the corresponding coefficient. It is noteworthy that the value of 8d /Oz can
be computed for any value of z.

A set of third order polynomials in two variables, similar to the one in
[Har84], is used to compute the spatial gradients. Using a general three
dimensional gradient operator on time varying image data has not been
satisfactory because the temporal sampling rate is typically different from the
spatial sampling rate. Hence, we use second order polynomials to fit the image
data temporally. By fitting the data with second order polynomials
temporally, at least three image frames are needed. The time varying image
data is denoted as d(z,y;t), for z=—N/2,...N/2,y=—N/2,...,N/2, and
k=0,1,...,K—1. Here, z and y are the spatial variables and ¢ is the variable
corresponding to the frame number. The data is represented as:

. 3 3 2 -
dlz,y;t) =3 ¥ 3 o ;. Pi(2)Q;(y)Ri(t),
§=0 j=0 k=0 .
where P; , for all 1, @;, for all j, and Ry, for all k, are three sets of one
dimensional polynomials. @ The temporal gradient at the point
z=0, y=0, and {=K—1 is computed. For the results shown in Section 4.4,
five image frames are used, corresponding to K=5.

4.3. An Algorithm for Estimating Displacement Vectors

Estimation based on multiple observations is frequently used to improve
the accuracy. Since the estimation is of an inverse type, the discontinuities in
the estimated values are not necessarily introduced by the noisy input data.
Moreover, the gradient estimates used in Equation (4.2) are themselves
estimates based on numerical differentiation of the input images, a well-known
ill-posed procedure [Tor86] that is highly sensitive to noise. Hence spatially
smoothing the image data will not improve the results [Sch85]. Along this
line of reasoning, since the instability is largely introduced by the inverse
operation in the form of a direct division in Equation (4.3), smoothing the

~estimated gradients and then computing the pointwise magnitude of the
velocity component along the local gradient using Equation (4.3) will not be
satisfactory, either. Dir,ectly' smoothing the values computed from Equation
(4.3) only degrades the resolution of the estimates without improving the
accuracy. ’

Equation (4.2) can be viewed as a line in a two dimensional v,-v, space.
Neighboring pixels with different gradient values will have lines intersecting at
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the same point, yielding an estimate of velocity. Alternatively, Equation (4.2)
represents a plane, parameterized by v, and v, in the three dimensional
observation space formed by I, I,, and I;. The approach presented in this
section is that the estimation problem can be viewed as fitting a plane in this
three dimensional observation space.

By observing N points, a system of linear equations can be formed:

Ilv, + Iylvy = -I},
(4.5)

v, + 1My, = -1V,

Writing Equation (4.5) in matrix notation, the problem becomes estimating v"
from

=

|z 5]v-5 (49
T

where ¥ = (v, v,)".

The values of I, I, and —I; for the ith observed point correspond to the ith
elements of I_z' ) I;' , and I?, respectively. Obviously all N points will have to
have the same velocity. While this imposes a constraint on the resolution of
the estimated vector, the accuracy will be improved.

The motivation for this formulation is that, except in the vicinity of a
motion boundary, the velocity is assumed to vary smoothly in a local region.
Suppose the velocity of the s$th observed point, 5:, is in fact ¥ + ¢T: The
assumption is that there is a nomsinal velocity, ¥, that is prevalent in the
region and that the sth observed point has a deviation component 2:
Consider the vector d where the ith element is Iid: + I;d;; i.e., the
component of the deviation of the sth observed point along the local gradient
direction. Estimating the nominal velocity from Equation (4.6) based on
minimizing '

I [ Lr ] v - Ll
is equivalent to minimizing Id1], the length of d.

The solution in this formulation will yield the correct velocity if the scene
object is undergoing two dimensional rigid body motion, since the velocity
deviation is zero for every point. Furthermore, if more information about the
variation were available, such as knowing that the variation is along a certain
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direction, the problem can be formulated accordingly. In the absence of such
information, the general case is to minimize the mean squared norm of d.

The “true” velocity can be recovered from Equation (4.6) if there are
more than one gradient directions among the N observed points. To increase
the likelihood of including points with different gradient directions, and to
increase the number of observations to decrease the sensitivity to noise, N
should be large. However, when N is overly large, the assumption that all the
points have a prevalent nominal velocity will be less likely to hold.
Equivalently, lidll will be large. Hence, the tradeoff is again between resolution
and accuracy. When N is large, the resolution is poor, but the overall
accuracy is better while ambiguities will be less.

A solution for v, and v, from the set of equations in Equation (4.5)
requires N to be 2. When the data are observed in noisy environment, N has
to be much larger, resulting in a set of overdetermined linear equations. An
exact solution does not exist for overdetermined linear equations; a classical
solution is by the least squares method. Using the conventional least squares
method to solve the image flow problem, such as in [Mar86], only corrects
the errors in f: and does not account for errors in Ij and I_;, as will be
discussed in the next section. Noting that all three gradients are themselves
estimated noisy values, an improved estimation procedure for v is via the
Total Least Squares method [Gol83,Z0l87]. In the Section 4.3.1, key ideas of
the Total Least Squares method are summarized.

4.3.1. Total Least Squares Method

In this section, we shall be concerned with fitting a two dimensional
plane to N observed points in a three-dimensional space. Throughout this
section, we shall denote matrices G and M as:

¢=[r5}
“and '
M= [F5T]

G is a N by 2 matrix, while M is a N by 3 matrix. Equation (4.6) can be
rewritten as GU=J;. A solution to this set of equations exists if G is of full
rank. '

Conventional Least Squares (LS) method, in solving for 7" from Equation

=

(4.5), projects I_[ onto the space spanned by I': and I i.e., f: is forced to be a
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linear combination of I, and I:; This can be seen by noting that the
derivation leading to the LS solution can be viewed as applying to both sides
of Equation (4.6) a projection operator P g, where P is such that PG = G.
This has the effect of projecting the observed I_; onto the I;-I, plane before
the pseudo-inverse operator G* = (GTG)"IGT is applied to obtain the LS
solution.

Fitting a plane to the N observed points by the LS method only
minimizes the distance along axes that are parallel to the I, axis. This is
suboptimal when all three gradient components used in Equation (4.6) are
prone to errors and noise. A ‘“best” fit should be based on minimizing the
sum of the shortest distances from every point to the fitted plane. A
standard geometrical view of the fitting problem clarifies the motivation for
taking a Total Least Squares (TLS) approach. Figure 4.3 shows the view for
the case of fitting a line to points in two dimensional space. An LS solution in
this case minimizes the verticel distance—the distance measured along lines
parallel to the y-axis from a point to the fitted line. This is acceptable if the
x-coordinates of the observed points are noiseless; i.e., noise only perturbs the
observations by displacing the points along the vertical direction. When noise
can displace the observed points in both directions, the appropriate procedure
to fit the line is to find a line that minimizes the perpendicular distances from
observed points to the fitted line.

Conceptually, a TLS solution that fits M is sought by determining a
projection operator P that projects onto the “best” two dimensional subspace.
This criterion can be expressed as determining P such that the following is
maximized:

IPLF + IPL + IPTIE.
The solution of P is given by [Zol87]
p= i &)
where u; and u, are the two eigenvect;ors of MM7 associated with the two
largest eigenvalues. The TLS solution is then given by

virs = (GTPG)'GTPT,.
Upon simplification,
vrrs =(GTG—01,,) 'GTT,, (4.7)

where Ip, is a 2X2 identity matrix and o® is the smallest eigenvalue of the
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Figure 4.3. Two dimensional view of TLS method compared to LS

method.
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matrix MTM.

4.3.2. Application of the TLS Method to Estimating Displacement Vector

It is interesting to compare Equation (4.7) with the LS solution to
Equation (4.6). The LS solution is

vs =(GTG) QT (4.8)

Hence, the TLS solution improves on the LS solution by a “correcting” term,
o?, which can be shown to be the minimum average magnitude of the
spatiotemporal directional gradient as follows. Let @ be a directional unit
vector in the three dimensional (spatiotemporal) space. Consider a constrained
minimization problem:

find @ that minimizes @7 M7 Ma subject to Ilgll = 1. (4.9)
Using the Lagrange multiplier technique, Equétion (4.9) can be rewritten as
find @ that minimizes ?7TMTMa + \N1-aTa) . (4.10)
where ) is the Lagrange multiplier. The solution to Equation (4.10) is
MM 7 = Xa. (4.11)

Hence it can be seen from Equation (4.11) that the Lagrange multiplier ) is in
fact the smallest eigenvalue of the matrix MTM, or A = ¢°. Furthermore,
recall that the associated eigenvector @ is a directional vector. Consider the
matrix MTM:

The quantity that is to be minimized in Equation (4.9), 'b‘z’TMTMEv’, can be
expressed as
N T i e
@ -Vul) (4.12)
i=1
where V,‘, represents the three dimensional spatiotemporal gradient operator
at the sth observed point. Equation (4.12) then represents the average

magnitude of the spatiotemporal gradient along the direction of @ Hence ¢
is the minimum average magnitude among all directional spatiotemporal
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gradients.

4.3.3. Rank Deficient Cases

" Since G has only two columns, it has either rank 0 or rank 1 if it does
not have full rank. When it has rank 0, it corresponds to the case where the
spatial gradient is zero in the neighborhood. Thus it is not surprising that no
matching can be done.

When G has rank 1, the neighborhood being considered contains an ideal
edge. This can be seen by noting that since I: = cf: , I; = cI,‘ for some
constant ¢ and for all 1, ¢+ =1,2,...,N. Then

)
tanf; = I—‘; = ¢, for all i,
z
where 0, is the gradient direction of the sth observed point. Hence, the
gradient direction for every observed point is the same.

The minimum norm solution is given by:

vyrLs = (v1; v19)7, (4.8)

where o = —v,3/(1—v,3%), and

-—
vy = (vy; vyo vla)T

is the right singular vector associated with the largest singular value of M.
The minimum norm result is the ¥-VI component.

4.3.4. Measure of Fitting

As discussed in Section 4.3, using the image flow approach, a match is
implicitly assumed and a numerical value is computed regardless of whether a
match is correct. Hence it is reasonable to evaluate the computed values by
determining the closeness of the TLS fit. One measure of the fit is by
computing the sum of distances of each observed point (in the spatiotemporal
gradient space) to the plane determined by the computed v,-v, values. By
noting that the vector (v, v, 1)7 is a normal vector of the plane, the
distance of any point (I;,I;,It') to that plane is given by: I'v, + I;vy + I,
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4.4. Experimental Results
Test Images

Different types of test images have been used to test the image flow
algorithms; examples are images with ramp and jump edges [Mar86],
geometric figures [Hil83], and sinusoidal gratings [Jac87]. A test image
containing two sinusoidals is used here to demonstrate the efficacy of the
method described in the previous section to compute the true velocity. The
images are noiseless, hence any input error to the velocity estimation
procedure originates from the gradient estimators. The test image has size
64X64, and has intensity values I(m,n) defined by:

I(m,n) =k + A cos(27f,(m+6,) + 27f, (n+6,))

+ A cos(27f,(m+0,) — 27f, (n+6,)).

k and A are constants; f, and f y are functions of the spatial frequencies of
the sinusoidals and the spatial sampling rates; 6, and By are the velocity
components that are to be recovered, assuming unit temporal sampling period.
The top row of Figure 4.4 shows a test sequence of five images; the parameters
used are:
f.=4/50; f,=9/50;0,=3;0,=2;k=A =60.

A fitting neighborhood of 7X7 was used in the TLS algorithm, and the
velocity map is shown in the center row of Figure 4.4. The bottom row of
Figure 4.4 shows the velocity map superimposed on the original five images.

The same image sequence is used to demonstrate the advantage of using
the TLS fitting compared to LS fitting. Figures 4.5 and 4.6 show the
histograms of the estimated velocities using TLS and LS fitting, respectively.
The results estimated by both methods exhibit some spreading out effect, but
the TLS results are clustered around the correct values, whereas the LS results
are biased to lower values. '

The test sequence is also used to examine the effect of varying the fitting
neighborhood size. Since there is a unique motion parameter in the image,
increasing the neighborhood should always improve the performance. The
results for estimating v, corresponding to neighborhood sizes of 9X9, 13X13,
17X17, and 19X19 are shown in Figure 4.7. As expected, the estimated results
cluster sharpens as the neighborhood size is increased.
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Figure 4.4. Image velocity estimation using test image sequence.
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Estimated velocity

Histogram of the estimated velocities using TLS fitting.
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Estimated velocity

Histogram of the estimated velocities using LS fitting.
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Real Images

A sequence of real echocardiographic images with synthesized motion is
next used to test the algorithm. With a known motion parameter, the
abilities of both the gradient estimators and the TLS algorithm to handle real
images are tested. The synthesized motion is pure translation along the
diagonal from the lower right hand corner to the top left corner. The original
sequence is shown in the top row of Figure 4.8. The images are first smoothed
by a 21X21 Gaussian shaped filter, followed by the gradient estimators. The
resulting velocity map is shown in Figure 4.8. Some mistakes are made,
notably in the regions where the spatial gradients are low.

The algorithm is also applied to a real sequence of echocardiograms
depicting the left ventricular during diastole. The original sequence is shown
in the top row of Figure 4.9. The images are smoothed by a 35X35 Gaussian
shaped filter, followed by the gradient estimators. The resulting velocity map
is shown in Figure 4.9 and overlaid onto the original images at the bottom
row. Since the motion pattern in the image sequence is quite complicated, it is
difficult to judge the results. The diastole effect is not apparent, however, the
indicated velocities do seem to agree with the intensity variations.

4.5. Concluding Remarks

The problem of estimating displacement vectors from an image sequence
using the image flow approach was examined. Pointwise estimation results are
typically badly corrupted by noise, which limits their utility in subsequent
processing. The estimation resuit at each point will be more reliable if it were
based on more observed points. By assuming that the velocity field does not
change abruptly, an overdetermined set of linear equations is formed to relate
the intensity changes in a local neighborhood. Conventional Least Squares
method that has been used to solve for the local velocity does not account for
all of the errors in the estimated gradient values. A Total Least Squares
method is described that will provide a more accurate estimation. The
primary issue addressed in this chapter is that of snitial velocity estimation.
In certain areas of the image plane, especially in the absence of gradients in
one or more directions, the estimation is less reliable.
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Figure 4.8.

Estimated velocities of an echocardiographic
with synthesized motion.

image sequence
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Estimated velocities of a real
sequence.

echocardiographic image




64

: CHAPTER &
ELECTROCARDIOGRAM SIGNAL PROCESSING

b.1. Introduction

Except in a very well controlled environment, knowledge used in a
computer vision system cannot always be specified in the form of static a
priori knowledge. Information extracted by other sensors or from other
related domains are often useful to the extraction of information from images.
An important source of information in understanding an echocardiogram is
knowing the position of its acquisition time in the cardiac cycle. For example,
in echo image sequence analysis, knowing that the heart is going from diastole
to systole allows the direction of the heart wall motion to be predicted or
verified. Electrocardiogram (EKG) signals, which provide important timing
information for cardiac imaging, are measures of the changes in the electrical
potential of the heart muscle. They are frequently used to synchronize the
acquisition of digitized echocardiogram sequences. “Gating” the
echocardiograms, or knowing that certain images are obtained at the same
point in the cardiac cycle, allows those images to be compared, or to be
averaged for reducing the noise in the images [Col86]. Furthermore, knowing
the cardiac rhythm allows a computer vision system to determine the
approximate range of image velocity.

A pew approach to impulsive noise suppression and background
normalization of digitized EKG signals is presented in this chapter. EKG
signals are frequently plagued by impulsive noise, e.g., due to muscle activities
and power line interference [Moo84]. Moreover, background normalization is
needed to correct the baseline drift of the signal caused by the respiration and
motion of the subject [AhlI85]. An EKG signal consists of a number of lobes,
or waves, corresponding to the polarization actions of the heart muscle. The
most prominent waves are labeled as the Q, R, and S waves, and together they
form the QRS complez. Noise suppression is typically the first step performed
in the processing of EKG signals [Pah87]. It is important to limit the
distortion of the EKG signal by noise suppression algorithms before such tasks
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as QRS detection or temporal alignment. The main objective in our
processing is to produce an output that can facilitate detection of the QRS
waves; hence, of primary importance in the processing is to preserve the main
QRS complex. Other applications include real-time processing of EKG signals
acquired in ‘“hostile” environments such as in ambulances or on board
spacecraft. We note that issues such as artifact suppression and preserving
the subtle notches and slurs in individual waves are significant for clinical
diagnostics use.

The most common approach to noise suppression is by low-pass filtering
[War70,Pah84], which is ineffective for reducing impulsive noise. Since the
baseline drift is assumed to have relatively low frequency, baseline correction
is typically performed by high-pass filtering the EKG data [Als85). Effective
alternatives to conventional linear filtering, particularly when dealing with
impulsive noise, are nonlinear operators such as median filtering [Gal81] or
other ranked ordering methods [Wen86)].

This chapter presents new algorithms that make use of a class of
nonlinear signal processing operators, known as mathematical morphology, for
processing EKG data. Morphological operators have been used in the field of
image processing and are known for their robust performance in preserving
the shape of a signal while suppressing noise [Mar87a]. An introduction to the
morphological operators is given in Section 5.2. The new algorithm is
described in Section 5.3. Experimental results addressing various aspects of
the problem are presented in Sections 5.4 to 5.8.

8.2. Morphological Operators

Mathematical morphology, which is based on set operations, provides an
approach to the development of nonlinear signal processing operators that
incorporate the shape information of a signal [Ser82]. In mathematical
morphological operations, the result of a set transformed by another set
depends on the shapes of the two sets involved. The shape of a signal is
determined by the values that the signal takes on. The shape information of a
signal is extracted by using a structuring element to operate on a data
sequence. '

Morphological operators were developed in the image processing field for
machine vision and medical imaging applications [Har87). Operators that are
used to process the EKG data for noise suppression and background
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normalization as described in this chapter are known in the image processing
literature as gray-scale morphological operators [Har87]. Morphological
operators have been used in a limited way for background normalization of
biological signals [SkB85]. There are two basic morphological operators:
erosion and dilation. These operators are usually applied in tandem; opening
and closing are two derived operators that are defined in terms of erosion and
dilation. These operators are described in detail below.

5.2.1. Erosion and Dilation

Throughout this section, f and k denote two discrete functions defined
on F={01..,N-1} and K={ 0,1,.., M—1 }, respectively; i.e.,
f:F —1and k K — 1, where I denotes the set of integers. It is further
assumed that N > M.

The erosion’ of a function J by another .function k, which we shall call
the structuring element, denoted f @k, is defined as

(f Ok)(m) = o2y, f(m+n)—k(n),
for m =0,..., N—M.

Erosion is a “shrinking” operator in that values of f ©k are always less
than those of f. To determine the value of f ©k at a point m, the
procedure is to:

(1) translate the structuring element to m,

(2) subtract the structuring element from the input sequence, and

(3) find the minimum value of the differences.

An example of erosion is shown in Figure 5.1. The structuring element
has a length of 3 and a constant value of 1. The original data consists of a
sinusoidal signal corrupted by unwanted impulsive notches. The data is
shown marked with squares; the result after erosion is shown marked with
circles.

The dilation? of f by k, f Pk, is defined as
(f ('Bk)(m) = a-m—M+l .,m f (n)+k(m -n)’

j This definition of erosion is commonly called grayscale erosion in the literature.
$ This definition of dilation is commonly called grayscale dilation in the literature.
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form =M-1, M,..., N—1.

The dilation operation is an “expansion” operation in that the values of
f @k are always greater than those of f. The procedure to determine the
value of f Pk at m is to

(1) left-right reverse the structuring element k,

(2) translate the reversed structuring element to m,

(3) add the reversed structuring element to the input sequence, and

(4) ind the maximum value of the sums.

An example of dilation is shown in Figure 5.2. The structuring element
has a length of 3 and constant values of 1. The original signal is shown
marked with circles. The result after dilation is shown marked with triangles.

The complexity of an erosion or a dilation is comparable to that of
discrete convolution. The role of a structuring element is analogous to that of
the window kernel of a convolution. Within the window defined by the
structuring element, instead of performing a pointwise mulf,iplication,
pointwise subtraction or addition is performed. The resulting value for that
window is determined by a minimization or maximization instead of a
summation.

6.2.2. Opening and Closing

The two basic operations, erosion and dilation, are usually applied in
tandem. Opening and closing are two operations defined in terms of the basic
operations. Opening of a data sequence by a structuring element is defined as
erosion followed by a dilation. Closing of a data sequence by a structuring
element is defined as dilation followed by an erosion. The opening of a data
sequence can be interpreted as sliding the structuring element along the data
sequence from beneath and the result is the highest points reached by any
part of the structuring element. Similarly, the closing of a data sequence can
be interpreted as sliding a “flipped-over” version of the structuring element
along the data sequence from above and the result is the lowest points reached
by any part of the structuring element.

It can be seen then that the shape of the output of either opening or
closing is affected by the shape of the structuring element. Depending on the
shape characteristics of the signal that is to be preserved, a specific structuring
‘element has to be designed for processing the data. In most applications,
opening is used to suppress peaks while closing is used to suppress pits. For
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Figure 5.1. Example of erosion. The structuring element, k, has length 3
and constant values of 1. The original signal, f, is marked with
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Figures 5.2. Example of dilation. The structuring element, k, has length 3
and constant values of 1. The original signal, f', is marked with
circles; the dilated signal, f' @k, is marked with triangles.
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example, the result of opening any sequence with a structuring element that
is flat and has a length of M will not contain any peak within any interval of
length M—1; while the result of closing any sequence with such a structuring
element will not contain any pit within any interval of length M —1.

Noting that an opening operation is an erosion followed by a dilation, the
examples of erosion and dilation described above can be seen as the two steps
that make up an opening operation example. The original data sequence
formed by a sinusoidal signal corrupted by impulsive noise is shown in Figure
5.3 marked with squares. The data is shown in Figure 5.3 marked with
squares and is eroded and dilated by the same structuring element. The
partial result after erosion is shown in Figure 5.1. The result after opening,
with the spurious peaks suppressed, is shown in Figure 5.3 marked with
triangles. Figure 5.4 shows an example of applying the closing operator to a
signal. The original data is shown marked with squares while the result after
closing is shown marked with triangles. It can be seen that the negative
impulsive peaks are removed by the closing operation. '

6.3. A New Algorithm

The algorithm uses two steps to process the EKG signal: (1) impulsive
noise suppression, and (2) background normalization. The overview of the
algorithm is shown in Figure 5.5.

Impulsive noise suppression is performed by processing the data through
a sequence of opening and closing operators. The algorithm for noise
suppression is shown in Figure 5.6. The EKG signal, as well as any baseline
drift, is estimated by processing the data using an opening operator followed
by a closing operator. A second estimate of the signal is formed by processing
the data using a closing operator followed by an opening operator. The result
from this step is the average of the two estimates. If the amount of procéssing
is a concern, either one branch of the block diagram can be deleted with some
performance degradation. '

The design of the stfucturing element depends on the shape of the signal
“that is to be preserved. Since the opening and closing operations are intended
to remove impulses, the structuring element must be designed so that the
waves in the EKG signal are not removed by the process. A structuring
element is characterized by its “shape,” width, and height. Its width, or
length, is largely determined by the duration of the major waves and the
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Example of opening. The structuring element, k, has length 3
and constant values of 1. The original signal, f, is marked with

squares; the result after opening, (f ©k)Pk, is marked with
triangles. 981
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Example of closing. The structuring element, k, has length 3 and
constant values of 1. The original signal, g, is marked with
squares; the result after closing, (¢@k)Ok, is marked with
triangles.
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Figure 5.5. Overview of the algorithm for suppressing impulsive noise and
normalizing background drift.
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Figure 5.6. Block diagram of the impulsive noise suppression algorithm.
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sampling rate. Denoting the duration of one of the waves as T sec, and the
sampling rate as S Hz, the number of samples that correspond to a wave is
then TXS. Thus, the length of the structuring element must be less than
TXS.

The values of the structuring element determines the shape of the output
waveform. Since in practice the EKG signal is not an ideal deterministic
signal, we can only loosely classify the shape of its waves as triangular or
dome-like. Due to this imprecise classification, the structuring element in
practice has to be a lot shorter than T'XS samples. Many structuring element
implementations with the same width and height can be classified as dome-
like. In the next section, we shall use a dome-like structuring element model
parameterized by its width, height, and *shape” to see how each of the
parameters affects the performance of the algonthm

Background normalization is performed by estimating the drift in the
background and subtracting it from the incoming data. The algorithm for
background normalization is shown in Figure 5.7. The background drift is
estimated by removing the EKG signal from the data. The data is first
opened by a structuring element that removes peaks which results in a pit
where the EKG signal is located. This pit is removed by a closing operator
using a larger structuring element. The result is then an estimate of the
baseline drift.

In this step, two structuring elements are used: one for removing peaks
and the other for removing the pit left after the previous operation. The
design of the first structuring element is determined by the duration of the
waves in the EKG signal. As in the previous discussion, denote the duration
of one of the waves by T seconds, and the sampling rate by S Hz, the number
of samples of a wave is TXS. To remove the wave, a structuring element
must have its length L greater than TXS. The second structuring element is
used to remove the pit left by the first operation, thus its length must be
roughly 2L.

A second estimate can be made by first closing the data by a structuring
element which results in a hump where the EKG signal is located, followed by
an opening operator using a larger structuring element. The two estimates
are then averaged to form the baseline drift estimate. Correction of the
baseline roll and drift is then done by subtracting the baselme drift estimate
from the result obtained from the previous step.
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Figure 5.7. Block diagram of the background normalization algorithm.
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The block diagram for the overall algorithm is shown in Figure-5.8.

5.4. Experiments with a Known Signal

A number of experiments were performed using test data formed by
adding impulsive noise and baseline drift to a digitized signal from an analog
EKG simulator. Using a corrupted known signal as test data allows the
performance of the algorithm to be evaluated by comparing the recovered
signal with the known signal. Moreover, the degree of corruption of the input
data can be seen, in part, by considering the difference between the data
before and after the corruption.

A noisy sequence of EKG data is modeled as
r(n) =s(n) +i(n) + b(n),

where s(n) is the signal that includes the QRS waves, i{(n) is the noise
component, and b(n) is the baseline drift. :

Signal

A known EKG signal was obtained from a FOGG Model M310 ECG
Simulator that generates a signal with 5§ mV amplitude. The signal was
sampled at 1 kHz and quantized to 12 bits (i.e., the digitized sample values
range from -2048 to 2047). The maximum and minimum values of the EKG
signal are 1636 and -1722, respectively. Figure 5.9 shows a sequence of the
digitized EKG signal with the heart rate at 100 beats per minute. The unit of
the time-axis is 1/1000 seconds.

Notse

Impulsive noise is generated by an e-mixture of Gaussian noise that has a
probability distribution function of

Pily) = (1-92( 1) + ea(L)

where ®(y) is the probability distribution function of a Gaussian random
variable with zero mean and unit variance. o, is typically much larger than
0y. With probability (1—¢), the added noise for a sample, §(n), is a Gaussian
random variable with standard deviation 07, which simulates the background
noise; with probability €, (n) is Gaussian with standard deviation 0y, which
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Figure 5.8. Block diagram of the overall algorithm for suppressing
impulsive noise and normalizing background drift.
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Figure 5.9. A digitized EKG signal sequence from an analog EKG simulator.
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simulates the impulsive noise. As 0y or o, increases, the noise amplitude
increases. As ¢ increases, the frequency of impulse noise occurrence ‘increases.
A sample of such a noise sequence with e=0.2, 0;=65 and 0,=650 is shown in
Figure 5.10.

Baseline drift

The baseline drift is simulated by adding a slanted line to a sinusoid:
b(n)=B + mXn + AXcos(27r% + 9).

The period of the sinusoid, N, controls the severity of the baseline roll while
the slope of the line, m, controls the degree of upward or downward drift.
Using different values for ¢ allows different baseline drift sequences to be
generated with similar characteristics. The bias term B is set so that the
sequence values do not get out of range. Figures 5.11 and 5.12 shows test data
formed by adding an EKG signal to impulsive noise and a baseline drift
sequence. The unit of the time-axis is 1/1000 seconds.

Performance Measures

Three metrics were used to measure the difference between two signals, s
and ¢, assuming they each have L number of points:

L
dy(s,8) = 71!; % zll s(n) — é(n) ],

1

dyfs,) = = {—}; 51 5(n) = 4(n) 12}5,

n=1
. 1 .
d(5,8) = ) .I-Iiaxz,l s(n) — &(n) .

dy is a measure of the root-mean-squared difference between two signals
and is the most commonly used metric. d, is a measure of the mean absolute
difference while d, is a measure of the maximum deviation of one signal from
another. They are normalized by R, the peak-to-peak value of s.
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Figure 5.10. A sample noise sequence. Generated by the e-mixture Gaussian
noise model, with €=0.2, 0;=65 and 0,=650.
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b.4.1. Test Results

Data sequences corrupted by using different sets of noise parameters were
used to test the new algorithm. Throughout this section, s(n) denotes the
EKG signal, r(n) denotes the corrupted data, and §(n) denotes the processed
result.

The structuring element used for noise suppression has length 5 and
values of ( 0, 1, 5, 1, 0) as shown in Figure 5.13. The two structuring elements
used in background normalization both have triangular shape. In the first
stage, the structuring element has length 41 and values as shown in Figure
5.14; the structuring element used in the second stage has length 81 and
values as shown in Figure 5.15.

For the input data sequence depicted in Figures 5.11 and 5.12, the
parameters are: .

e-mixture noise: ¢ = 0.2, ;=65 and 0,=650,

baseline-drift: m =0.8, A =500, N=1000, and ¢=0.8 .

Based on 3000 data points, the differences between s and r as measured by
the three metrics are:

dy(s,r) = 0.2433 , dy(s,r) = 0.2993, d(s,r) = 0.9887.
Results of applying the new algorithm to this signal are shown in Figures 5.16
and 5.17. Figure 5.16 shows 512 points of the output, indicating the noise
suppression performance. Figure 5.17 shows 3072 points of the same output
sequence, illustrating the baseline correction capability of the new algorithm.
The performance measures on the processed signal, calculated based on 3000
data points, are: :

dy(s,8) = 0.02652, dy(s,§) = 0.04074, d(s,§) = 0.2239 .

As measured by d,, for example, the deviation of the input data from the
signal is 30% of the signal peak-to-peak value. This value is a measure of the
power of the noise and the baseline drift. The deviation was reduced to 4%
by the processing.

A different set of noise parameters that increased the noise level and
baseline drift was used to corrupt the signal, Figure 5.18 shows the input data
sequence to the algorithm. The parameters for this signal are:

e-mixture noise: € = 0.25, 03=75 and 0,=750 ,

baseline-drift: m=1.4, A =500, N=800, and ¢=0.3 .

Based on 3000 data points, the differences between s and r as measured by
the three metrics are:

dy(s,r) = 0.3358 , dy(s,r) = 0.3922, d.(s,r) = 1.10155.
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Figure 5.13. Structuring element used in the impulsive noise suppression
algorithm. '
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Figure 5.16. Result after processing the input data shown in Figure 5.11 (512
data points shown).
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Figure 5.17. Result after processing the input data shown in Figure 5.12
(3072 data points shown).
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The result of applying the algorithm to this signal is shown in Figure 5.19.
The performance measures were calculated based on 3000 data points to be:
dy(s,) = 0.03087 , dy(s,s) = 0.04506 , d(s,) = 0.2281 .

Even though the deviation of the input data from the ideal signal is increased
to 40% of the signal peak-to-peak value, the processed data still achieves a
low 4.5% deviation.

The effectiveness of the new algorithm in suppressing noise and correcting
baseline drift and roll can be seen through the empirical performance
measures and by plots of the results. In the next section, we shall examine the
performance of noise suppression under a wider range of situations.

5.5. Noise Suppression Performance

The structuring-element with length 5 and values (0, 1, 5, 1, 0) was used
to study the aeise suppression of the algorithm under a variety of noise
situations. Noise -as medeled in Section 5.4 was used; the EKG signal was
corrupted by noise with different € and 0,/0; values. The value of € ranged
from 0.1 to 0.5, corresponding to an increasing probability of impulsive noise
occurrence. At € = 0.5, a sample has equal probability of being corrupted by
background Gaussian mnoise or by higher amplitude impulsive noise. The
standard deviation of background Gaussian noise, 0;, was set at 65. The
standard deviation of impulsive Gaussian noise, 0,, ranged from 20, to 200y,
corresponding to the increasing impulse amplitudes. To consider the severity
of the impulsive noise, recall that the peak values of the EKG waves are 1636
and -1722. At o, = 650, the impulsive noise amplitude is above 1300 with
probability 4.5%. At o, = 1300, the impulsive noise amplitude is above 1300
with probability 31.7%. The resulting values of the performance measures are
tabulated in Tables 5.1 to 5.3. These values are shown in Figures 5.20 to 5.22.
As can be seen from the tables and the figures, the performance shows no
significant deterioration as the noise situation worsens. The expected increases
in all three measures as either € or 0, increases are gradual and exhibit no
abrupt jumps or sharp rises. For example, at the worst case of € = 0.5 and
0y [0, =20, dy is 0.11024. The input data and processed output for this case
are shown in Figures 523 and 5.24, respectively. While there are notches that
remain in the waves, the QRS complex is isolated from noise.
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Figure 5.18. An EKG signal corrupted by increased additive noise and
baseline drift (3072 data points shown).
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Figure 5.19. Result after processing the input data shown in Figure 5.18.
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Table 5.1.  Noise suppression performance as measured by- d. The variance
of background Gaussian noise, 0y, was set at 65.

Noise Suppression Performance as Measured by d,
0y €=0.1 €=0.2 €=0.3 €=0.4 €=0.5

130 || 0.009048 | 0.009720 | 0.010283 | 0.010960 | 0.011654
195 ([ 0.009506 | 0.010936 | 0.012177 | 0.013695 | 0.015234
260 || 0.009928 | 0.012123 | 0.014118 | 0.016532 | 0.019000
325 {{0.010328 | 0.013372 | 0.016100 | 0.019457 | 0.022841
390 || 0.010742 | 0.014663 | 0.018134 | 0.022463 | 0.026778
455 |1 0.011143 | 0.015952 | 0.020190 | 0.025450 | 0.030705
520 110.011531 | 0.017241 | 0.022255 | 0.028490 | 0.034674
585 || 0.011937 | 0.018549 | 0.024344 | 0.031592 | 0.038670
650 |]0.012319 | 0.019813 | 0.026391 | 0.034661 | 0.042647
715 110.012685 | 0.021061 | 0.028413 | 0.037708 | 0.046608
780 |1 0.013039 | 0.022291 | 0.030431 | 0.040751 | 0.050571
845 110.013396 | 0.023532 | 0.032476 | 0.043836 | 0.054566
910 | 0.013737 | 0.024760 | 0.034528 | 0.046920 | 0.058533
975 |1 0.014075 | 0.025987 | 0.036584 | 0.049998 | 0.062467
1040 |1 0.014416 | 0.027220 | 0.038642 | 0.053054 | 0.066364
1105 || 0.014754 | 0.028436 | 0.040679 | 0.056111 | 0.070229
1170 {1 0.015085 | 0.029649 | 0.042696 | 0.059144 | 0.074086
1235 |1 0.015399 | 0.030858 | 0.044687 | 0.062129 | 0.077891
1300 |] 0.015704 | 0.032055 | 0.046654 | 0.065093 | 0.081683
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Table 5.2.  Noise suppression performance as measured by d,. The variance
' of background Gaussian noise, 0, was set at 65.

Noise Suppression Performance as Measured by d,
Oy €=0.1 €=0.2 €=0.3 €=0.4 €=0.5

130 {10.012477 | 0.013341 | 0.014018 | 0.014836 | 0.015616
195 |1 0.013264 | 0.015143 | 0.016801 | 0.018661 | 0.020295
260 || 0.014130 | 0.017164 | 0.019808 | 0.022704 | 0.025296
325 |}0.015072 | 0.019458 | 0.023000 | 0.026968 | 0.030488
390 |} 0.016132 | 0.021947 | 0.026351 | 0.031380 | 0.035869
455 [10.017231 | 0.024509 | 0.029809 | 0.035787 | 0.041264
520 || 0.018368 | 0.027103 | 0.033328 | 0.040314 | 0.046694
585 |10.019598 | 0.029791 | 0.036921 | 0.044917 | 0.052127
650 ([0.020816 | 0.032418 | 0.040512 | 0.049532 | 0.057571
715 {1 0.022009 | 0.035019 | 0.044117 | 0.054157 | 0.063024
780 {1 0.023178 | 0.037609 | 0.047722 | 0.058809 | 0.068503
845 |10.024389 | 0.040240 | 0.051362 | 0.063503 | 0.074009
910 |[0.025558 | 0.042881 | 0.055031 | 0.068191 | 0.079439
975 |10.026759 | 0.045543 | 0.058728 | 0.072838 | 0.084777
1040 || 0.027979 | 0.048229 | 0.062353 | 0.077368 | 0.089989
1105 |} 0.029214 | 0.050925 | 0.065921 | 0.081878 | 0.095085
1170 |[0.030451 | 0.053630 | 0.069489 | 0.086375 | 0.100205
1235 |1 0.031673 | 0.056345 | 0.072982 | 0.090742 | 0.105220
1300 || 0.032883 | 0.059055 | 0.076457 | 0.095089 | 0.110236
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Table 5.3.  Noise suppression performance as measured by d . The variance
of background Gaussian noise, 0y, was set at 65.

Noise Suppression Performance as Measured by d.,
0y e=0.1 €=0.2 €=0.3 e=0.4 | =05

130 || 0.075640 | 0.075640 | 0.075640 | 0.077725 | 0.087850
195 |} 0.075640 | 0.083979 | 0.083979 | 0.098868 | 0.114652
260 || 0.079809 | 0.100357 | 0.100357 | 0.122394 | 0.141453
325 {|0.094401 | 0.116736 | 0.116736 | 0.146218 | 0.167362
390 |} 0.108398 | 0.132519 | 0.133413 | 0.166766 | 0.193270
455 {(0.122990 | 0.148898 | 0.148898 | 0.166766 | 0.220071
520 || 0.136986 | 0.164681 | 0.164681 | 0.179571 | 0.232281
585 |10.151876 | 0.181060 | 0.181060 | 0.196248 | 0.235855
650 ;(0.158130 | 0.191781 | 0.197141 | 0.206671 | 0.239428
715 (1 0.158130 | 0.191781 | 0.216796 | 0.225432 | 0.240917
780 || 0.158130 | 0.191781 | 0.236450 | 0.246575 | 0.250447
845 |10.171828 | 0.191781 | 0.256105 | 0.267421 | 0.270697
910 |1 0.185229 | 0.202204 | 0.275759 | 0.288565 | 0.288565
975 |(0.198928 | 0.215307 | 0.295712 | 0.298987 | 0.307624
1040 {[0.212329 | 0.228708 | 0.305241 | 0.305241 | 0.317153
1105 || 0.226027 | 0.241811 | 0.305241 | 0.305241 | 0.317153
1170 || 0.239428 | 0.254914 | 0.305241 | 0.305837 | 0.317153
1235 |10.253127 | 0.268017 | 0.305241 | 0.309410 | 0.317153
1300 }{0.266528 | 0.281120 | 0.305241 | 0.309410 | 0.317153
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Figure 5.23. EKG signal heavily corrupted by impulsive noise. The noise
parameters are: €=0.5, 06,=1300, and 0,=65.
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Figure 5.24. The result of processing the data shown in Figure 5.23.
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6.6. Experiments with a Parameterized Structuring Element

Unlike the design of linear filters, methods for structuring element design
in morphological signal processing is an open research problem [Coy88]. In
this section, we use a dome-like structuring element parameterized by its
width, height, and ‘“‘shape” to examine these effects on the noise suppression
performance of the algorithm. The parametric structuring element is denoted
by ¢(n), for n=0,1,...,2N. N is the parameter that determines the width of
g. For n=0,1,...,N, let

g(n) =hX(1 —e™*"),
and for n=N+1,...,.2N, let
g(n) =q(2N —n).

The structuring element ¢ is then symmetric with respect to the peak at
g(N). The height of ¢ is controlled by h; the actual height parameter we
used is the peak value ¢(N), which is related to h. The “shape” of ¢ is
controlled by o: which ranges from 0 to co. The parameter that we used
instead is vy, which ranges from 0 to 1. < is related to o by

y=1—¢¥N,

As 7 increases, ¢ changes from thick and round to thin and sharp. Figure
5.25 shows a plot of ¢ with « varying from 0.01 to 0.99. To illustrate the
shape change, the peak value ¢(NN) was set at 10 while the width parameter N
was set at 30.

The parametric structuring element with different sets of parameters was
used in the noise suppression stage of the algorithm to process the known
signal corrupted by impulsive noise as described in Section 4. The parameters
for the e-mixture noise are €=0.2, 0;=65, and 0,=650. The different
parameter values for the structuring element used were:

y : 0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1;
g(N) : 1,3,5,7,9,11,13, 15, 17, 19;
N : 1,3,5,7,9,11, 13, 15, 17, 19.

The performance is evaluated by comparing the input to the output relative
to the three metrics. From the results, the only parameter that has a
significant effect on the performance is the width. Figures 5.26, 5.27, and 5.28
show the results for v fixed at 0.5. It can be seen that the performance
deteriorates with increasing N but shows no change due to varying q(N).
Figures 5.29, 5.30, and 5.31 show the results for N fixed at 3. It can be seen
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that the performance shows no significant change with different values for
g(N) and 7. As there are not a lot of difference between structuring elements
with different -y values when the width is as low as 7, it is understandable that

< does not affect the performance. We show the results for N=3 because it *

achieves a performance of d,<0.03, compared to the 0.09 which is how much
the input data deviates from the signal. Figures 5.32, 5.33, and 5.34 show the
results for ¢(IN)=>5; again, it can be seen that the performance deteriorates
with increasing N but shows no change due to varying ~.
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Figure 5.28. Noise suppression performance as measured by d, of the
parametric structuring element with -~y set at 0.5.
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Figure 5.31. Noise suppression performance as measured by d, of the
parametric structuring element with N set at 3.
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109

1.00000 -

.666667 4

' .990000

. 767300

//“/.o 8

-100000

" Figure 5.34. Noise suppression performance as measured by d, of the
parametric structuring element with q(N) set at 5.
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5.7. Sinusoidal Response

Guidelines have been established by the American Heart Association for
EKG signal processing governing acceptable frequency response of linear filters
[Pip75]. It is difficult, however, to show that the method described in this
chapter conforms to these guidelines since nonlinear filtering cannot be
analyzed in terms of frequency responses. Linear filtering, via the
superposition principle, allows frequency response analysis by decomposing the
input and output into a sum of sinusoidals. The superposition principle does
not apply to nonlinear filters, hence “bandwidth” is a meaningless quantity.
There is ongoing work in the theoretical analysis of morphological operators
based on a weaker form of superposition principle, known as threshold
decomposition [Mar87 ..... » Wen86]. The general problem of investigating the
response of morphological operators to a sinusoidal input remains an open
research problem [Nee88]. In this section, we address this problem by
examining the sine wave response of the new algorithm to study the extent
that these signals are modified relative to the type of structuring element.

According to the American Heart Association committee report on
electrocardiography [Pip75], the recommended bounds to frequency response is
flat from 0.14 Hz to 50 Hz, reduced from unit gain by no more than 6%.
Since the morphological processing is discrete in nature, if a sinusoidal signal
with a certain frequency is unmodified, any signals with a lower frequency
would also be unmodified. Sinusoidal signals at frequencies ranging from 0 Hz
to 180 Hz, sampled at rates ranging from 360 Hz to 1800 Hz were processed by
the algorithm described in Figure 5.6. The structuring elements used were as
shown in Figure 5.15. The processed result is compared to the original
sinusoidals using the performance measures described in Section 5.4. The
resulting values are tabulated in Tables 5.4 to 5.6 and are plotted in Figures
5.35 to 5.37. As the results indicate, increasing the sampling rate produces
better results. All three performance measures show steady rises as the
sampling rate drops and as the input frequency increases, eventually flattening
out. :

- It should be emphasized that there is no direct relation between these
plots and the common amplitude frequency response plot used to describe
linear fillerss. For example, from Table 5.5, a sampling rate in the range of
1000 Hz is needed to obtain performance that achieves d;<0.1 for input with
a frequency of up to 50 Hz, which is the upper frequency limit for the flat
response required by the American Heart Association for “faithful
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reproduction of the electrocardiographic waveform " [Pip75]. It is difficult
to set a general performance standard, since it depends on other factors such
as the intended application of the processed data. The choice of 0.1 here is
based on the observation that for a fixed sampling rate, d, tends to rise
relatively quickly after it reaches 0.1.

Since the processing is discrete, the signal bandwidth, the sampling rate,
and the structuring element length are all related. The highest frequency of
the signal is usually dictated by the application: e.g., 50 Hz in EKG signal
processing. Given that the signal frequency is fixed, either the structuring
element can be shortened or a higher sampling rate can be used to minimize
the distortion of the waveform. The minimum length of the structuring
element is determined by the nature and characteristics of noise expected. For
example, for impulsive noise, a typical choice of the minimum length is from 3
to 5; for other artifact suppression, the minimum length might have to be
increased depending on the situation. '

The problem s examined below from the viewpoint of determining the
required sampling rate of the EKG data for a given required performance. A
structuring element with length 2N+1 modifies a wave of an EKG signal by
truncating its top. The worst case is for a structuring element to have
constant values of 0. Let the tolerated attenuation factor be 1—7; i.e., the tip
of the wave should not be truncated by a factor more than 7. Suppose we
model a wave by a raised cosine waveform with frequency f, Hz. A
reasonable estimate of f4 is 50, since it then follows that the duration of a
wave is 20 msec. Typically, a QRS complex with three waves lasts from 80 to
100 msec. It can easily be shown that the sampling rate f, can be found by:

27fo N
- cos}(1—1)°
For example, with N =‘2, fo =>50Hz, and 7 =0.06, we found f, to be 1.8
kHz. Alternatively, we can model a wave by a Gaussian pulse with ¢® as its
variance. Denoting the bandwidth of the signal as f, Hz, and noting that the

Fourier transform of a Gaussian pulse is again a Gaussian pulse with variance
(2716) 2, we see that the sampling rate f s can be determined by:

2nfo N
" (—2log(t — )"
Using 7=0.06, fo, =50Hz, N =2, we again obtain f, as 1.8 kHz. From
Equations (5.1) and (5.2), we see that the required sampling rate varies

(5.1)

/s (5-2)
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directly with N and f,. It varies inversely and nonlinearly with 7; i.e., with
increasing 7, f, drops off quite rapidly. Consequently, f, decreases rather
rapidly as 7 increases.
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Table 5.4. Amount of modification of sampled sinusoidal input as measured

by d,.
Sinusoidal Input Modification as Measured by d,
Input Sampling Rate (in Hz)
Frequency -
(in Hz) 360 680 1000 1320 1560 1800
0 0.00000 | 0.00000 { 0.00000 | 0.00000 | 0.00000 | 0.00000
5 0.00046 | 0.00004 | 0.00002 | 0.00000 | 0.00000 | 0.00000
10 0.00405 | 0.00055 | 0.00016 | 0.00005 | 0.00002 | 0.00003
15 0.01369 | 0.00296 | 0.00090 | 0.00024 | 0.00013 | 0.00008 |
20 0.03200 | 0.00483 | 0.00149 | 0.00063 | 0.00035 | 0.00022
25 0.08871 | 0.01390 | 0.00297 | 0.00190 | 0.00114 | 0.00046
30 0.10256 | 0.02334 | 0.00744 | 0.00218 | 0.00130 | 0.00083
35 0.22223 | 0.03791 | 0.01216 | 0.00532 | 0.00323 | 0.00207
40 0.31885 | 0.05638 | 0.01815 | 0.00783 | 0.00480 | 0.00308
45 0.30086 | 0.07800 | 0.02559 | 0.01092 | 0.00654 | 0.00297
50 0.31265 | 0.10383 | 0.02352 | 0.01527 | 0.00932 | 0.00405
60 0.33264 | 0.16702 | 0.05703 | 0.01779 | 0.01083 | 0.00703
70 0.31120 | 0.25688 | 0.09098 | 0.04127 | 0.02550 | 0.01663
80 0.33438 | 0.29642 | 0.13282 | 0.06082 | 0.03778 | 0.02480
90 0.24962 | 0.30601 | 0.18121 | 0.08222 | 0.05102 | 0.02352
100 0.30635 | 0.31826 | 0.16847 | 0.11314 | 0.07063 | 0.03200
110 0.32256 | 0.31344 | 0.30407 | 0.10256 | 0.09356 | 0.06202
120 0.49919 | 0.31371 | 0.29787 | 0.18912 | 0.12022 | 0.08043
130 0.32075 | 0.31108 | 0.30757 | 0.22976 | 0.10256 | 0.09974
140 0.30604 | 0.31048 | 0.31730 | 0.27700 | 0.17978 | 0.12236
150 0.31100 | 0.31850 | 0.30878 | 0.30073 | 0.21457 | 0.10256
160 0.32185 | 0.32174 | 0.31471 | 0.30049 | 0.25670 | 0.17627
170 0.30069 | 0.24962 | 0.31518 | 0.30891 | 0.29757 | 0.20657
180 0.49939 | 0.30574 | 0.31048 | 0.31275 | 0.29480 | 0.16847
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Figure 5.35. Amount of modification of sampled sinusoidal input as measured

by d, plotted against input frequencies and sampling rates.
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Amount of modification of sampled sinusoidal input as measured

Table 5.5.
by d,.
Sinusoidal Input Modification as Measured by d,
Input Sampling Rate (in Hz)
Frequency -
(in Hz) 360 680 1000 1320 1560 1800

0 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

5 0.00161 | 0.00021 | 0.00010 | 0.00004 | 0.00003 | .0.00003

10 0.01005 | 0.00188 | 0.00064 | 0.00022 | 0.00014 | 0.00014
15 0.02768 | 0.00759 | 0.00280 | 0.00093 | 0.00056 | 0.00036
20 0.05601 | 0.01157 | 0.00433 | 0.00209 | 0.00127 | 0.00086
25 0.12754 | 0.02751 | 0.00772 | 0.00520 | 0.00338 | 0.00161
30 0.14655 | 0.04240 | 0.01636 | 0.00598 | 0.00387 | 0.00265
35 0.27034 | 0.06312 | 0.02454 | 0.01232 | 0.00812 | 0.00559
40 0.37414 | 0.09077 | 0.03549 | 0.01767 | 0.01172 | 0.00810
45 0.35253 | 0.11456 | 0.04557 | 0.02254 | 0.01471 | 0.00772
50 0.34421 | 0.14527 | 0.04337 | 0.02969 | 0.01969 | 0.01005
60 0.35272 | 0.21495 | 0.08887 | 0.03438 | 0.02273 | 0.01590
70 0.35376 | 0.30421 | 0.13018 | 0.06775 | 0.04539 | 0.03182
80 0.36678 | 0.33788 | 0.17907 | 0.09417 | 0.06347 | 0.04472
90 0.35302 | 0.33522 | 0.22893 | 0.12015 | 0.08107 | 0.04337
100 0.34703 | 0.34708 | 0.22025 | 0.15577 | 0.10579 | 0.05601
110 0.35074 | 0.34488 | 0.34838 | 0.14655 | 0.13312 | 0.09490
120 0.49919 | 0.35257 | 0.33656 | 0.24531 | 0.16940 | 0.12178
130 0.35039 | 0.35287 | 0.33744 | 0.27775 | 0.14655 | 0.14025
140 0.35040 | 0.35113 | 0.34783 | 0.32334 | 0.22740 | 0.16595
150 0.35341 | 0.35286 | 0.34149 | 0.34284 | 0.26303 | 0.14655
160 0.37052 | 0.35274 | 0.34404 | 0.33809 | 0.30442 | 0.22418
170 0.33785 | 0.35302 | 0.35129 | 0.33957 | 0.34225 | 0.25469
180 0.49939 | 0.34293 | 0.34981 | 0.33805 | 0.33606 | 0.22025
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by d, plotted against input frequencies and sampling rates.

Figure 5.36. Amount of modification of sampled sinusoidal input as measured
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Table 5.6. Amount of modification of sampled sinusoidal input as measured

by d..
Sinusoidal Input Modification as Measured by d,
Input _ Sampling Rate (in Hz)
Frequency
(in Hz) 360 680 1000 1320 1560 1800

0 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000

5 0.00606 | 0.00121 | 0.00061 | 0.00030 | 0.00030 |.0.00030

10 0.02880 | 0.00697 | 0.00273 | 0.00121 | 0.00091 | 0.00091
15 0.06547 | 0.02395 | 0.01091 | 0.00364 | 0.00243 0.00182_
20 0.11549 | 0.03213 | 0.01425 | 0.00758 | 0.00485 | 0.00333
25 0.24098 | 0.07123 | 0.02304 | 0.01879 | 0.01334 | 0.00606
30 0.24856 | 0.09730 | 0.04516 | 0.01879 | 0.01303 | 0.00940
35 0.43801 | 0.14004 | 0.06608 | 0.03789 | 0.02728 | 0.02031
40 0.57237 | 0.19046 | 0.09038 | 0.05194 | 0.03704 | 0.02762
45 0.49864 | 0.22673 | 0.10943 | 0.05850 | 0.04153 | 0.02304
50 0.50924 | 0.26735 | 0.09397 | 0.07578 | 0.05426 | 0.02880
60 0.49864 | 0.35314 | 0.17581 | 0.07790 | 0.05577 | 0.04183
70 0.47408 | 0.47954 | 0.24886 | 0.14823 | 0.10761 | 0.08124
80 0.55892 | 0.51483 | 0.32958 | 0.19988 | 0.14602 | 0.11077
90 0.49924 | 0.48742 | 0.38921 | 0.22310 | 0.16338 | 0.09397
100 0.54198 | 0.50561 | 0.34404 | 0.28190 | 0.20824 | 0.11549
110 0.47348 | 0.47924 | 0.53653 | 0.24856 | 0.25614 | 0.19703
120 0.49919 | 0.46866 | 0.49574 | 0.41553 | 0.31129 | 0.24027
130 0.49106 | 0.49197 | 0.47924 | 0.45438 | 0.24856 | 0.26857
140 0.51228 | 0.47135 | 0.52137 | 0.50197 | 0.38406 | 0.30039
150 0.49894 | 0.53228 | 0.54380 | 0.51440 | 0.42377 | 0.24856
160 0.55236 | 0.51544 | 0.47322 | 0.48663 | 0.49332 | 0.39272
170 0.51016 | 0.49924 | 0.48681 | 0.47530 | 0.53289 | 0.42710
180 0.49955 | 0.51106 | 0.45953 | 0.47954 | 0.48469 | 0.34404
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Figure 5.37. Amount of modification of sampled sinusoidal input as measured
by d, plotted against input frequencies and sampling rates.
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5.8. Experiments with Acquired Data

EKG data from the MIT-BIH Arrhythmia Database [[ns82] were used to
evaluate the algorithm performance. Each set of data was digitized at 360 Hz
without interruption from a single patient using a modified EKG “lead 2” in
which electrodes were placed at the right shoulder and the left abdomen of the
patient [Ins82,Bass86).

The processing is done using structuring elements as shown in Figures
5.13, 5.14, and 5.15. The unit of the time-axis for the plots shown in Figures
5.38 to 5.45 is 1/360 seconds. Figure 5.38 and 5.39 show two sequences that
were considered to be of ‘“‘excellent quality” (Tapes 117 and 219 of the MIT-
BIH Database). Figures 5.40 and 5.41 show the result after noise suppression
processing, the original signal is not significantly modified. Figures 5.42 and
5.43 show the result after background normalization, the original signal is
modified to some degree, most notably in the areas of the ST segment. Due to
the nature of background normalization, the reference level of the signal is
also biased to zero.

Figure 5.44 shows a sequence that was labeled showing bursts of “baseline
wander” (Tape 111 of the MIT-BIH Database). Figure 5.45 shows the result
after processing. Again, we see very slight modification of the signal, but the
background drift is corrected. The reference level of the signal is also biased
to zero.
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Figure 5.38 A sequence of EKG signal classified as “‘of excellent quality,”
from Tape 117 of the MIT-BIH Database.
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Figure 5.39 A sequence of EKG signal classified as “of excellent quality,”
from Tape 219 of the MIT-BIH Database.
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Figure 5.40 Result of noise suppression on the data sequence shown in Figure
5.38.
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Figure 5.41 Result of noise suppression on the data sequence shown in Figure
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Figure 5.42 Result after baseline correction and noise suppression on the
data sequence shown in Figure 5.38.
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Figure 5.44 A sequence of EKG signal showing baseline wander, from Tape
111 of the MIT-BIH Database.
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Figure 5.45 Result after baseline correction and noise suppression on the
data sequence shown in Figure 5.44.
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5.9. Concluding Remarks

A new approach to EKG signal processing is presented in this chapter
using mathematical morphological operators. The effectiveness of the new
algorithm in impulsive noise suppression and background normalization was
first demonstrated by using a corrupted known signal and measuring the
difference between the known signal and the processed result. The
performance was further examined by processing clinically acquired EKG
data.

The performance of the algorithm is dependent on three related factors:
amount of noise, choice of structuring element, and sampling rate of the
signal. Results in Section 5.5 show that a 5-element structuring element can
handle a large amount of impulsive noise. In Section 5.6, a structuring
element parameterized by its width, height, and shape was used to study the
effect of each of them on noise suppression performance. The most important
factor was found to be the length of the structuring element. This result is
consistent withthe use of median filters relative to EKG data [Yu85].

The morphological operators are also attractive for their relatively simple
computational demands: the computation is made up of addition,
subtraction, and logical comparison. It has been shown that these types of
algorthms can be implemented in VLSI for real-time processing [Coy8s).
While morphological operators have not yet been as widely used in one-
dimensional signal processing as in image processing, they seem particularly
well suited for processing EKG data, since the signal components are well
characterized by their shapes.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

In the context of developing a system capable of monitoring the heart
wall motion and change in two-dimensional echocardiograms, ‘we have
presented work in two different areas: computer vision and morphological
signal processing. In this chapter, we shall take a critical look at our work in
these two fields and suggest future work.

Extensions to the algorithm reported in Chapter 2 would be based on
symbolic manipulation. A natural extension would be to automatically search
for the boundaries in the next frame based on the detected boundaries in the
current frame. Some issues that need to be addressed are: given that the
boundary in the current frame may not be correct, how to evaluate the
boundary and store the information; how to handle conflicts between
boundaries detected in different frames. Although the amount of data that
would be needed will be increased substantially, it would probably be easier
for an echocardiogram understanding system to be concerned with the entire
image, instead of concentrating on the heart wall boundaries.

The work reported in Chapters 3 and 4 has much potential to be further
explored. Theoretical bounds to the performance of the TLS based image
flow approach is one of many topics worth considering. Qur experience is that
although the TLS based algorithm is sensitive to the input image data, in part
through modeling the image data as polynomials in the gradient estimators,
the TLS fitting component of the algorithm is an appropriate tool for solving
the image flow equation. We note that none of the i image flow results reported
in the literature have successfully demonstrated applications to real image
data with general motion. In the early processing stage of computer vision,
the solutions to many problems are tremendously underconstrained. It seems
almost inevitable that image segmentation and image motion analysis must
complement each other. It would be interesting to examine how each can
make use of results from the other.
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Our work in processing the EKG data using morphological operators has
applications in a wide range of other domains. Some topics worth exploring
are: how to reconstruct a signal after it has been passed through different
morphological operators; how to use an adaptive structuring element, one
perhaps similar to the parametric structuring element introduced in Chapter
5, to eventually change its shape as it adapts to the noise or signal
characteristics.



LIST OF REFERENCES



[AhI85)

[Als85]

[Arn83]

[Bal81]

[Bas86]

[Bin81]

[Bri83]

131

LIST OF REFERENCES

M. L. Ahlstrom and W. J. Tompkins, ‘“Digital filters for real-
time ECG signal processing using microprocessors,” IEEE
Trans. on Biomedical Engineering, vol. BME-32, no. 9, pp.
708-713, September 1985. )

J. A. van Alste and T. S. Schilder, “Removal of base-line
wander and power-line interference from the ECG by an
efficient FIR filter with a reduced number of taps,” IEEE
Trans. on Biomedical Engineering, vol. BME-32, no. 12, PP-
1052-1060, December 1985.

R. D. Arnold, Automated Stereo Perception, Report No.
STAN-CS-83-961, Dept. of Computer Science, Stanford
University, March 1983.

D. H. Ballard, “Generalizing the Hough transform to detect
arbitrary shapes,” Pattern Recognition, vol. 13, no. 2, pp.
111-122, 1981.

S. C. Bass, Some Introductory Comments to the Users of the
MIT-BIH Arrythmia Database, School of Electrical
Engineering, Purdue University, West Lafayette, Indiana,
September 1986. Internal document.

T. O. Binford, “Inferring surfaces from images,” Artificial
Intelligence, vol. 17, pp. 205-244, 1981.

J. F. Brinkley, Ultrasonic Three-dimensional Organ Modelling,
Technical Report No. CS-1001, Dept. of Computer Science,
Stanford University, 1983.



[Buds83]

[Bud85]

[Cans86]

[Cas77]

[Chu86)

[Col86]

[Coy86]

[Coy8s]

[Del82]

[Eat79)

132

A. J. Buda, E. J. Delp, C. R. Meyer, J. M. Jenkins, D. N.
Smith, F. L. Bookstein, and B. Pitt, “Automatic .computer
processing of digital 2-dimensional echocardiograms,” The
American Journal of Cardiology, vol. 52, pp. 384-389, August
1983.

A. J. Buda and E. J. Delp, eds., Digital Cardiac Imaging,
Martinus-Nijhoff, the Hague, the Netherlands, 1985.

J. F. Canny, “A computational approach to edge detection,”
IEEE Transactions on Patlern Analysis and Machine
Intelligence, vol. PAMI-8, no. 6, pp. 679-698, November 1986.

D. Casasent and D. Psaltis, “New optical transforms for
pattern recognition,” Proceedings of the IEEE, vol. 65, no. i,
pp. 77-84, January 1977.

C. H. Chuy, E. J. Delp, and A. J. Buda, “Detecting left
ventricular endocardial and epicardial boundaries by digital
two-dimensional echocardiography,” in Proc. Computers in
Cardiology, pp. 393-396, Boston, Mass., October 1986.

8. M. Collins and D. J. Skorton, eds., in Cardiac Imaging and
Image Processing, p. 190, McGraw-Hill, New York, NY, 1986.

E. J. Coyle, “The theory and VLSI implementation of stack
filters,” in VLSI Signal Processing II, IEEE Press, New York,
N.Y., November 1986.

E. J. Coyle, “Rank order operators and the mean absolute
error criterion,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 1, pp. 63-76, January 1988.

E. J. Delp, A. J. Buda, M. R. Swastek, D. N. Smith, J. M.
Jenkins, C. R. Meyer, and B. Pitt, “The analysis of two-
dimensional echocardiograms using a time varying image
approach,” in Proc. Computers in Cardiology, pp. 391-394,
Seattle, Wash., 1982,

L. W. Eaton, W. L. Maughan, A. A. Shoukas, and J. L. Weiss,
“Accurate volume determination in the isolated ejecting
canine left ventricle by two-dimensional echocardiography,”
Circulation, vol. 60, no. 2, pp. 320-326, August 1979. ‘



[Eic85]

[Eicss]

[Eze85]

[Fen79]

[Fra81]

[Gal81]

[Gar88]

[Gar85]

[Gei82]

133

P. H. Eichel and E. J. Delp, “Sequential edge detection in
correlated random fields,” in Proc. IEEE Conference on
Computer Vision and Patiern Recognition, pp. 14-21, San
Francisco, Calif., 1985.

P. H. Eichel, E. J. Delp, K. Koral, and A. J. Buda, “A method
for fully automatic definition of coronary arterial edges from
cineangiograms,” in Proc. Computers in Cardiology, pp. 201-
204, Boston, Mass., October 1986.

A. Ezekiel, E. V. Garcia, J. S. Areeda, and S. R. Corday,
“Automatic and intelligent left ventricular contour detection
from two-dimensional echocardiograms,” in Proec. Compulers
in Cardiology, pp. 261-264, Linkoping, Sweden, September
1985.

C. L. Fennema and W. B. Thompson, ‘Velocity determination
in scenes containing several moving objects,” Computer
Graphics and Image Processing, vol. 9, pp. 301-315, 1979.

L. E. Franks, Signal Theory, Dowden and Culver,
Stroudsburg, Penn., 1981.

N. C. Gallagher and G. L. Wise, ““A theoretical analysis of the
properties of median filters,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-29, no. 6, pp. 1136-
1141, December 1981.

E. Garcia-Melendo and E. J. Delp, The Use of Image
Processing Techniques for the Analysis of Echocardiographsc
Images, Tech. Rep. TR-EE 88-29, School of Electrical
Engineering, Purdue University, West Lafayette, Ind., July
1988.

E. V. Garcia and A. Ezekiel, “Digital processing in cardiac
imaging,” International Journal of Cardiac Imaging, vol. 1, no.
1, pp. 3-27, 1985.

E. A. Geiser, M. Ariet, D. A. Conetta, S. M. Lupkiewicz, L. G.
Christie, and C. R. Conti, “Dynamic three-dimensional
echocardiographic reconstruction of the intact human left
ventricle: technique and initial observations in patients,”
American Heart Journal, vol. 103, no. 6, pp. 1056-1065, 1982,



[Gol83] |

[Grig5]

[Har84]

[Har85]

[Har87]

[Hay83]

[Her78]

[Hils3]
[Hor81]

[Ins82]

134

G. Golub and C. Van Loan, Matriz Computations, Johns
Hopkins University Press, Baltimore, Maryland, 1983.

W. E. L. Grimson and E. C. Hildreth, “Comments on ‘Digital
step edges from zero crossings of second directional
derivative’,” IEEE Transactions on Pattern Analysts and
Machine Intelligence, vol. PAMI-7, no. 1, pp. 121-127, January
1985.

R. M. Haralick, “Digital step edges from zero-crossings of
second directional derivative,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-6, no. 1, pp. 58-
68, January 1984.

R. M. Haralick, “Author’s reply,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. PAMI-7, no. 1,
pp- 121-127, January 1985.

R. M. Haralick, S. R. Sternberg, and X. Zhuang, ‘“‘Image
analysis using mathematical morphology: part I, IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol.
PAMI-9, no. 4, pp. 532-550, July 1987.

5. M. Haynes and R. C. Jain, “Detection of moving edges,”
Computer Vision, Graphics, and Image Processing, vol. 21, pp.
345-367, 1983.

G. T. Herman and H. K. Liu, “Dynamic boundary surface
detection,” Computer Graphics and Image Processing, vol. 7,
pp. 130-138, 1978.

E. C. Hildreth, The Measurement of Visual Motion, The MIT
Press, Cambridge, Mass., 1983.

B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, pp. 185-203, 1981.

Biomedical Engineering Center for Clinical Instrumentation,
MIT-BIH Arrhythmia Database Tape Dsrectory and Format
Specification, Harvard University-Massachusetts Institute of
Technology, Division of Health Sciences and Technology,
Cambridge, Mass., October 1982. :



[Jac87]

[Jai87]

[Kas83]

[Kna76]

[Low84]

[Mar87a]

[Mar87b]

[Mar79]

[Mar82]

[Mar86)

135

L. Jacobson and H. Wechsler, “Derivation of optical flow
using a spatiotemporal-frequency approach,” . Computer
Vision, Graphics, and Image Processing, vol. 38, pp. 29-65,
1987.

R. Jain, 8. L. Bartlett, and N. O'Brien, “Motion stereo using
ego-motion  complex logarithmic  mapping,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-9, no. 3, pp. 356-369, May 1987.

B. G. Kashef and A. A. Sawchuk, ‘A survey of new techniques
for image registration and mapping,” in Applications of
Digital Image Processing VI, ed. A. G. Tescher, Proc. SPIE
432, pp. 222-239, 1983.

C. H. Knapp and G. C. Clifford, “The generalized correlation
method for estimation of time delay,”” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. ASSP-24, no. 4,
Pp. 320-327, August 1976.

D. G. Lowe, Perceptual Organization and Visual Recognition,
Report No. STAN-CS-84-1020, Dept. of Computer Science,
Stanford University, September 1984.

P. Maragos and R. W. Schafer, ‘“Morphological filters—part I:
their set-theoretic analysis and relations to linear shift-
invariant filters,”” IEEE Trans. on Acoustics, Speech, and
Signal Processing, vol. ASSP-35, no. 8, pp. 1153-1169, August
1987.

P. Maragos and R. W. Schafer, *Morphological filters—part II:
their relations to median, order-statistic, and stack filters,”
IEEE Trans. on Acoustics, Speech, and Signal Processing, vol.
ASSP-35, no. 8, pp. 1170-1184, August 1987.

D. Marr and E. C. Hildreth, Theory of Edge Detection, A.L
Memo No. 518, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, April 1979.

D. Marr, Vision, p. 212, Freeman and Co., San Francisco,
Calif., 1982.

D. M. Martinez, Model-Based Motion Estimation and Iis
Application to Restoration and Interpolation of Motion



[McK85]

[Moo84]

[Mor77]

[Mos81]

[Nag83a]

[Nag83b]

[Nee8s|

[Nil8o0]

[Ohts5]

[Pahs4]

136

Pictures, Ph.D. Dissertation, Dept. of Elec. Eng. and Comp.
Sci., Mass. Inst. of Tech., Cambridge, Mass., 1986.

D. M. McKeown, Jr., W. A. Harvey, Jr., and J. McDermott,
“Rule-based interpretation of aerial imagery,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-7, no. 5, pp. 570-585, September 1985.

G. B. Moody, W. K. Muldrow, and R. G. Mark, “A noise
stress test for arrhythmia detectors,” in Computers in
Cardiology, pp. 381-384, Park City, Utah, September 1984.

H. P. Moravee, ‘“Toward automatic visual obstacle
avoidance,” in Proc. 5th International Joint Conference on
Artificial Intelligence, p. 584, Cambridge, Mass., August 1977.

H. Mostafavi, T. L. Steding, F. W. Smith, and R. S. Poulsen,
“Optimum windows for image registration,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-
17, no. 1, pp. 101-109, January 1981.

H.-H. Nagel, ‘““Overview on image sequence analysis,” in Image
Sequence Processing and Dynamic Scene Analysss, ed. T. S.
Huang, pp. 2-39, Springer-Verlag, Heidelberg Berlin, 1983.

H.-H. Nagel, “Displacement vectors derived from second-order
intensity variations in image sequences,” Computer Vision,
Graphics, and Image Processing, vol. 21, pp. 85-117, 1983.

J. Neejarvi, P. Heinonen, and Y. Neuvo, “Sine wave responses
of median type filters,” in Proceedsings of the 1988 IEEE
International Symposium on Circuits and Systems, pp. 1503-
1506, Helsinki, Finland, June 1988.

N. J. Nilsson, Principles of Artificial Intelligence, Morgan
Kaufmann Publishers, Los Altos, Calif., 1980.

Y. Ohta, Knowledge-based Interpretation of Outdoor Natural
Color Scenes, Pitman Publishing, Marshfield, Mass., 1985.

O. Pahlm and L. Sornmo, “Software QRS detection in
ambulatory  monitoring—a review,” Medical and Biological
Engineering and Computing, vol. 22, pp. 289-297, July 1984,



[Pah87]

[Pip75]

[Roa79]

[Roo87]

[Sch79)

[Sch8s5]

[Ser82]

[Sha79]

137

O. Pahlm and L. Sornmo, “Data processing of exercise
ECG’s,” IEEE Trans. on Biomedical Engineering, vol. BME-
34, no. 2, pp. 158-165, February 1987. '

H. V. Pipberger, R.C. Arzbaecher, A. S. Berson, S. A. Briller,
D. A. Brody, N. C. Flowers, D. B. Geselowitz, E. Lepeschkin,
G. C. Oliver, O. H. Schmitt, and M. Spach,
“Recommendations for standardization of leads and of
specifications for instruments in electrocardiography and
vectorcardiography: report of the Committee on
Electrocardiography, American Heart Association,”
Circulation, vol. 52, pp. 11-31, 1975.

J. W. Roach and J. K. Aggarwal, “Computer tracking of
objects moving in space,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-1, pp. 127-135,
1979.

W. L. Root, “Ill-posedness and precision in object-field
reconstruction problems,” Journal of the Optical Society of
America, vol. 4, no. 1, pp. 171-179, January 1987.

R. B. Schudy and D. H. Ballard, “A computer model for
extracting moving heart surfaces from four-dimensional
cardiac ultrasound data,” in Proc. 6th Conference on
Computer Applications in Radiology and Computer-atded
Analysis of Radiological Images, pp. 366-376, Newport Beach,
Calif., June 1979.

B. G. Schunck, “Image flow: fundamentals and future
research,” in Proc. of the Srd Workshop on Computer Vision
Representation and Control, pp. 560-571, Bellaire, Mich.,
October 1985.

J. Serra, Image Analysis and Mathematical Morphology,
Aca.demic Press, New York, 1982.

K. S. Shanmugam, F. M. Dickey, and J. A. Green, “An
optimal frequency domain filter for edge detection in digital
pictures,” IEEE Transactions on Pattern Analysts and
Machine Intelligence, vol. PAMI-1, no. 1, pp. 37-49, January
1979. A



[SkBS8S5]

[Sko81]

[Sko85]

[Stas86)

[Tam85]

[Ten77]

[Tor86]

[Tsa84]

[Tuc85)

138

M. M. Skolnick and D. Butt, “Cellular array algorithms for
the analysis of EKG mgnals,” in Proc. 1985 IEEE Workshop
on Computer Architectures in Pattern Analysis and Image
Database Management, pp. 438-443, Miami, Fla., November
1985.

D. J. Skorton, C. A. McNary, J. S. Child, F. C. Newton, and
P. M. Shah, “Digital image processing of two-dimensional
echocardiograms: identification of endocardium,” American
Journal of Cardiology, vol. 48, pp. 479-486, September 1981.

D. J. Skorton, S. M. Collins, E. Garcia, E. A. Geiser, W.
Hillard, W. Koppes, D. Linker, and G. Schwartz, ‘‘Digital
signal and image processing in echocardiography,” American
Heart Journal, vol. 1, no. 6, pp. 1266-1283, December 1985.

S. A. Stansfield, “ANGY: a rule-based expert system for
automatic segmentation of coronary vessels from digital
subtracted angiograms,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. PAMI-8, no. 2, pp.
188-199, March 1986.

S. Tamura, S. Nakano, M. Matsumoto, T. Shimazu, M.
Fujiwara, T. Matsuyama, and P. Hanrath, “Three-
dimensional reconstruction of echocardiograms based on
orthogonal sections,” Pattern Recognition, vol. 18, no. 2, pp.
115-124, 1985.

J. M. Tenenbaum and H. G. Barrow, “Experiments in
interpretation-guided segmentation,” Artificial Intelligence,
vol. 8, pp. 241-274, 1977.

V. Torre and T. Poggio, “On edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. PAMI-8, no. 2, pp. 147-163 March 1986.

R. Y. Tsai and T. S. Huang, “Uniqueness and estimation of
three-dimensional motion parameters of rigid objects and
curved surfaces,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-8, no. 1, pp. 13-26, Ja.nua.ry
1984.

D. M. Tucker, W Siler, V. G. Powell, and A. W, H. Stanley,
Jr., “FLOPS a fuzzy expert system used in unsupervised




[U1179]

[Ver79]

[War70]

[Web83]

[Wen86]

[Yak78]

[Yu85]

[Zha84)

[Zo187]

139

echocardiograms analysis,” in Proc. Computers in Cardiology,
pp. 341-344, Linkoping, Sweden, September 1985.

S. Ullman, The Interpretation of Visual Motion, The MIT
Press, Cambridge, Mass., 1979. '

P. W. Verbeek and S. Lobregt, “The application of 3-d logical
neighbour operators to sequences of 2-d ultrasound images,”
in Proc. 6th Conference on Computer Applications in
Radiology and Computer-aided Analysis of Radiological
Images, pp. 362-365, Newport Beach, Calif., June 1979.

J. Wartak, Computers in Electrocardiography, C. C. Thomas,
Springfield, Iil., 1970.

J. A. Webb and J. K. Aggarwal, “Shape and correspondence,”
Computer Vision, Graphics, and Image Processing, vol. 21, pp.
145-160, 1983. _

P. D. Wendt, E. J. Coyle, and N. C. Gallagher, “Stack
filters,” IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. ASSP-34, no. 4, pp. 898-911, August 1986.

Y. Yakimovsky and R. Cunningham, “A system for extracting
three-dimensional measurements from a stereo pair of TV
cameras,” Computer Graphics and Image Processing, vol. 7,
pp. 195-210, 1978.

B. C. Yy, C. S. Liu, M. Lee, C. Y. Chen, and B. N. Chiang,
“A  nponlinear digital filter for cardiac QRS complex
detection,” Journal of Clinical Engineering, vol. 10, no. 3, pp.
193-201, 1985.

L.-F. Zhang and E. A. Geiser, “An effective algorithm for
extracting serial endocardial borders from 2-dimensional
echocardiograms,” IEEE Transactions on Biomedical
Engineering, vol. BME-31, no. 6, pp. 441-447, June 1984.

M. D. Zoltowski, ‘‘Signal processing application of the method
of total least squares,” in Proc. 21st Annual Asilomar Conf.
on Signals, Systems and Computers, Pacific Grove, Calif.,
November 1987.



VITA



140

VITA

Chee-Hung Henry Chu was born on 31 August 1959 in Happy Valley,
Hong Kong. He received a B.S.E. degree in Computer Engineering in 1981
and his M.S.E. degree in Computer, Information and Control Engineering in
1982, both from the University of Michigan, Ann Arbor. He enrolled at
Purdue University in 1984 to pursue a doctoral degree in electrical engineering

and to find something that is worth doing into the next century.

Mr. Chu is a member of the Institute of Electrical and Electronics
Engineers, the Optical Society of America, the Association for Computing
Machinery, American Institute of Physics, Eta Kappa Nu, and Tau Beta Pi.




