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Statement of Object

The object of this thesis is to describe the usefulness of Walsh
functions for spectral analysis and synthesis. Waveform synthesis
will be accomplished using a Walsh function generator. The Fast Walsh
Transform will be used to analyze a simple sequency-lowpass filter.

A Discrete Walsh-Fourier Transform computer program package will also

be described.
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Chapter 1
INTRODUCTION OF MATHEMATICAL CONCEPTS

1.0 Introduction

The method of Fourier series and Fourier transform analysis has
been used extensively for over a hundred years in solving engineering
and science-related problems. Fourier techniques have long beén
recognized as a powerful tool for the engineer in the study of every-
thing from antenna construction to optics.1 In recent years,
engineers have been interested in applying Fourier techniques.to other
sets of functions besides the sine-cosine set that is usually used in
Fourier analysis. The set of functions that seem to have received most
of the publicity recently is the compiete orthonormal set of square
waves known as Walsh functions.

The purpose of this chapter is to quickly review why Fourier
techniques work and briefly discuss some classical sets of orthogonal
functions. The description of Walsh functions will then be discussed
along with certain properties related to them.

1.1 Generalized Fourier Series

Given a set of real valued functions {g(i,x)} which are defined
as some finite half open interval, say (a,b], these functions are said
to be orthogonal on the above interval if:

Kif j = 1

b
,f gli,x)g(j,x)dx = i=1,2,3,.... (1-1)
a 0 if i X j

1 . . . . .
For more detailed discussion of Fourier techniques, see Reference 17.
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Furthermore, theSe functions are said to -be orthonormal if K =1. An
important property of a set of orthogonal funétions is whether it is
complete or not. Completeness is very difficult to explain in simple’
words and even harder to proVe mathematically, but suffice it to say a
general function cannot be expanded in a series of incomplete ortho-
gonal functions.? |

The set of orthogonal functions presented above is a denumerable
set, i.e. a set containing an infinite but countable number of
functions. The variable i appears to serve only as a method of
indexing the:functions as used in equation 1-1. However, this variable
usually is comnected iﬁ some way with how a particular function of the
set is described mathematically. In ;1é§sica1 Fourier analysis using
the sine-cosine set of functions the integer i is used to represent a
multiple of the fundamental frequency. This type of argument also
holds for other sets of orthogonal functioﬁs,vincluding Walsh fuhctions.
This-type of notation will also provide some continuity when discussing
the generalized Fourier Transfofm.

The French physicist, Joseph Fourier, showed in fhe early 19th
century that any "well behaved" function, f(x), defined on the same

interval as a to b can be represented by a series expansion of a linear

weighted sum of a complete set of orthogonal functions, i.e.,

«©

f) = = c@)glix) " 1-2)
i=20

23ee Reference 92, pp. 311-327 or Reference 53, pp. 134-137 for a more
detailed description of orthogonal functions and the generalized

expansion problem.




where the sum has a vanishing mean square erIOr. Fourier used this idea
mainly to solve heat transfer problems and later it was used to solve

other kinds of boundary value problems.
The value of the coefficients ¢ (i) may be obtained by multiplying

equation 1-2 by g(j,x) and integrating the products in the interval of

orthogonality using the orthbgoﬁélity prihcipie of equation 1-1.

The results are:

o]

£) = = c@g(,x) (1-3a)

i=0
b
c(i) = & f g(i, )£ (x)dx (1-3b)
a

c(i) is usually referred to as the ith generalized Fourier coefficient
and equation 1-3a is referred to as the generalized Fourier series
expansion of f(x).

Harmuth has discussed the generalized expansion problem stated
above and has derived various pr0perties'of Fourier series such as
Bessel's inequality and Parseval's Theorem in terms of generalized

orthogonal functions.?3

The set of orthogonal functions engineers are most familiar with

is the set {1,/5 cosZnix,/E sin2mix}. This set of functions'is ortho-

. normal in the interval (0,1]. These functions are sometimes combined
using Euler's identity and are written using the complex exponential

function exp(jix) where j =v-1 .

33ee Reference 43, pp. 14-16.
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A function £(x) defined on the above interval will have the

following sine-cosine expansion:

£(x) = a(0)+v2 p= [a(i)cosznix + b(i)sin2mix]
i=1

‘ 1
a(0) = f £(x)dx

0
(1-4)
1
a(i) = VE-_}’ f(x)cos2mix dx
0 .
1
b(i) = /é'f £(x)sin2mix dx
0

Other sets of orthogonal functions have found use in engineering
problems; among these are Bessel functions and Legendre polynomials.

Bessel functions arrive from the solution of Bessel's diffefential
equation and have many uses in solving problems with cylindrical
symmetry such as circular waveguides. Another use of Bessel functions
is to describe the spectral content of a frequency modulated carrier.
Legéndre polynomials are s&lutions to Legendre's differential equations
and have uses in solving problems with spherical symmetry such as the
Schrodinger wave equation in quantum mechanics.

Most "well behaved'" functions can be expanded in a séries of the
three sets of orthogonal systems discussed so far. Whether a certain
function f(x) can be expanded in a series of a particular orthogonal
system cannot be told from such simple features of f(x) as 1its
continuity or boundedness. For instance, the Fourier series of a
continuous function does not have to converge at every point. A

theorem due to Banach states that there are arbitrarily many orthogonal
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systems with the feature, that the orthogonal series of a continuous

differentiable function diverges almost everywhere‘,l+

1.2 Generalized Fourier Transform

The development of a generalized Fourier Transform is beyond the
scope of this thesis. However, the results presented by Harmuth® will
be quickly summarized below:

Fourier Transforms, sometimes referred to as orthogonal trans-
forms, are closely related to the Fourier series developed above, one
of the differences being that the Fourier series uses a set of denumer-
able functions whereas the Fourier transform uses a system of non-
denumerable functions. In a heuristic sense, one can think of the
Fourier transform coming about by increaging the interval of
orthogonality to (=2,®) .-

The generalized Fourier Transform does not use a set of orthogonal
functions but rather a particular funétion, g(y,x), called a Fourier
kernel. The kernel function g(y,x) is closely related to the set
{g(i,x)} used for Fourier series, one of the differences being that
the variable y can take on any real value where i was limited to
integer values only.®

Therefore, let f(x) be any "well behaved" function; the generalized

Fourier transform of f(x) is defined as:

ay) = J £ gr0dx (1-5a)

*See Reference 30.
SSee Reference 43, pp. 44-61

6 . .
For a discussion of Fourier kernels see Reference 17, pp. 250-251.
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where a(y) is called the generalized Fourier spectra of £(x). The

generalized inverse transform is defined as:
£0 = f a) gr.xdy (1-5b)
0
Equation 1-5 is known as the generalized Fourier transform pair and
should be compared to equation 1-3.
Sometimes the kernel function g(y,x) is divided into odd and even

functions denoted gs(y,x) and gc(y,x) respectively. The Fourier

transform pair becomes:

@

2. = J £ gy, x)dx
LI ‘ (1-6a)
ag(y) = f f(x) ggly,x)dx
£00 = S [acg (. + as(gg(y,x) 1dy (1-6b)
0

ac(y) and as(y) are called the generalized odd and even Fourier spectra
of f(x) respectively.
If the sine-cosine kernel functions are used the Fourier transform

of f(x) becomes:

a (y) = V2 }r f(x) cos2myxdx
© (1-7a)
ag(y) = V2 ,f’ f(x) sin2mwyxdx
f(x) = V2 /{. [ac(y)cos2myx + ag(y)sin2myx]dy (1-7b)
0 L

which are the standard equations presented for the Fourier transform,

a.(y) being the cosine transform and ag (y) being the sine transform.
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Harmuth has considered examples of the generalized Fourier
transform using Legendre polynomials, the sine-cosine set, and Walsh
functions.

1.3 Normalized Time and Frequency

In most signal processing work one is usually interested in
finding Fourier series and Fourier transforms of time functions. The

following definitions are to be used in Fourier work using time functions:

6 =1
Tn
(1-8)
\)=an
where t = time, seconds

Tp = normalizing time base, seconds-
8 = normalized time, dimensionless
f = frequency, hertz
v = normalized frequency, cycles per unit interval

Using the definitions of equation 1-8 the following sine-cosine set of
functions are orthonormal on the interval 0<égl, {1,/2 cas2wip, V/2sin2mi6}.
The following is the Fourier series expansion of any well behaved

function h(8) on the above interval.

h(8) = a(0) + V2 > [a(i)cos2mif + b(i)sin2wi6]
i=1

1 (1-9)
a(0) = f, h(6)de
0

i}

}’1
a(i) V2 h(8)cos2miodd
0

b(i)

1
/z ,/’ h(8)sin27i6de
0
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In most engineering work, when one is talking about Fourier series
expansion of time functions one usually assumes the function is periodic
with some known period. The theory of the generalized Fourier series
does not mention the concept of periodicity and in fact nothing is
implied or stated about what happens to the function h(8) or even the
orthogonal functions themselves outside the interval of orthogonality.
Applied mathematicians using the concept of periodic sine-cosine
elements have '"extended" Fourier series techniques'to be used with
"'periodic" functions. Harmuth has commented on this when extending
Walsh functions, but one should realize the concept of periodic contin-
uation ié really an artificial extension of Fourier series techniques
used very successfully in engineering work..

The Fourier series described in equation 1-9 may look odd. to those
who are used to the periodic expansion concept as usually described in
an initial presentation of Fourier analysis. However, if the period of
the particular time function is chosen to be the normalizing time base
T,» equation 1-9 reduces to the standard Fourier series for periodic
time functions. The normalized frequency therefore becomes the integer
i or:

i= T
(1-10)

L
Th

which are standard resuits.

This concept of normalized frequency and normalized time can be
extended to the Fourier transform; however, as was discussed in

section 1.2 the parameter i is allowed to take on any real value, hence
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the normalized frequency is denoted by v and takes non-integer values
as does the unnormalized frequency f.

The most important resulﬁ to come out of this discussion is that
the sine-cosine set of orthogonal functions are independent of the
normalizing time base T, i.e.:

'c052n(an) t = cos2nft

Th

1]

cos2mi®

or | (1-11)

]

cos2nvd cosZn(an) %_ = cos2mft

n

This'is not so for other systems of orthogonal functions whose primary
describing parameter, f and t in this case, are not connected by
multiplication.

1.4 Walsh Functions

Most engineers are familiar with square waves and their various
uses. Mathematically, square waves, known as Rademacher functions, are .
an incomplete set of orthonormal functions which were developed in 1922.7

The Rademacher functions of index m, denoted by rad (m,8), are a train

of rectangular pulses with om-1 cycles in the half-open interval 10,1),
with the exception of the rad(0,6) which is the unit step -(see Figure
1-1). If the Rademacher functions are periodically extended, then they
satisfy the relation:

rad(m,6 + n2l-M™ = rad(m,8) (1-12)

m=1,2,3,....

n=*1,£2,....
6 = normalized time

’See Reference 75.
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Rademacher functions can be generated using the recurrence relation

rad(m,8) = rad(l,2m-1p)
with
1,0¢[0,1/2)
rad(1,0) = (1-13)
-1,60e{1/2,1)

Hence, Rademacher functions are just ordinary square waves whose
frequencies differ by two, but most importantly, they are orthonormal
and satisfy equation 1-1. Rademacher functions are an incomplete set
of functions, hence they cannot bé used for Feourier series expansions.
This can be seen intuitively by noting that the Rademacher functions
are odd functions; hence it would be impossible to expand an even
function as a series of odd functions.

In 1923, J. L. Walsh® completed the set of Rademacher functions
and described the properties of these new functions. He also discussed
Fourier series expansions.using these functions. The functions have
become known as Walsh functions and are denoted as wal(n,6). The first
eight Walsh functions are shown in Figure 1-2.

Various people have commented on how a set of Walsh functions can
be generated. Harmuth® uses a difference equation to generate a set of
Walsh functions while Lackey and Maltzer:? use the Gray code represen-

tation of n and a set of Rademacher functions.

8 .
Walsh Functions are a complete orthonormal set of square waves, while
Ra@emacher Functions are an incomplete orthonormal set of square waves.
See Reference 90,
g

See Reference 43, p. 23.

1
OSee Reference 55.
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1
a
-1
1
b
-1
1
c
-1
1
d
-1 —
1
e
-1
1
f
-1
1 —_—
g
-1
1
h
-1
! | ! | 1
0.00 0.25 0.50 0.75 1.00
.
Normalized Time
a wal(0,6) [cal(0,8)]
b wal(1,9) [sal(1,8)]
c wal(2,0) [cal(2,0)]
d wal(3,0) [sal(3,8)]
e wal(4,8) [cal(4,0)]
£ wal(5,0) [sal(5,0)]
g wal(6,0) [cal(6,0)]
h wal(7,9) [sal(7,8)]
Figure 1-2 The First Eight Walsh Functions
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The product of two Walsh functions yields another Wdalsh function:
wal(h,0) wal(k,8) = wal(r,0)

This relation may readily be proved using the previous - difference
equation; however, determination of the value of r from the difference
equation is somewhat cumbersome. The result is that r equals the
modulo 2 sum of h and k: _
wal(h,0) wal(k,8) = wal(hek,o) | (1-14)
where ® indicates modulo 2 addition. k and h are written as binary
numbers and added bitwise according to thé rules 081 = 1, 180 = 1,
080 = 0 (no carry). Equation 1-14 is sometimes referred to as the
multiplication law or the modulation relation and can be easily
verified using Figure 1-2. The concgpt.of modulo 2 addition, sometimes
referred to as dyadic addition, is used extensively with Walsh
functions. Other properties of Walsh functions using dyadic addition
will be developed later.!!

One notes from Figure 1-2 that Rademacher functions are a subset
of Walsh functions:

rad(m,8) = wal(2™-1,8) m = 1,2,3,.... (1-15)

This fact, along with the multiplication law will be used in Chapter 2

to develop a Walsh function generator.

11The modulo 2 addition arises because, mathematically speaking, the
group of Walsh functions is isomorphic to the discrete dyadic grOup..
The dyadic group is the topologic group derived from the set of
7 binary representations of the real numbers. See Reference 43,

PP. 24-28.
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Using equation 1-2 the following Walsh-Fourier series can be

written for a function £(8) defined on the unit interval:

= c(n) wal(n,8)

n=20

£(9)

(1-16)

1
c(n) ,}’ £(6) wal(n,8)ds
0

where c(n) is referred to as the nth Walsh coefficient.

It is appropriate at this point to discuss the general notation
used with Walsh functions and how it is related to sine-cosine functions.
Harmuth has grouped the Walsh functions by odd or evenness and by the
number of sign change§ ber intérvél. Harmuth calls the even Walsh
functions cal functions and the odd Walsh functions sal functions. This
notation is analogous to the even sine-cosine functions being called
cosine functions and the ﬁdd ones called sine functions. The functions
are further ordered by the number of sign changes in the half open
interval (0,1].!2 The number of sign changes per unit interval divided
by two is called the normalized sequency of the Walsh function,.sequency

being analogous to frequency. Sequency will be discussed later. Therefore,

1)

sal (i,9) wal(2i-1,6)

i}

cal (4i,9) wal(2i,9)

(1-17)
i=1,2,3,0.00
sal (0,8} is undefined

cal (0,6) = wal(0,8) =1

i

where i = normalized sequency

6

normalized time

120y , .
The integer n is equal to the number of sign changes in the open unit

interval (0,1) of the function wal(n,0).
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The normalized sequency i takes on only integer values and 1is similar
to the normalized frequency discussed in section 1.3. The unnormalized
sequency is:

¢ = i_ (1-18)

and is measured in zero crossings peT second or ZPS.

As defined above, the normalized sequency is one half the number
of sign changes in the half-open interval (0,1]. Harmuth has used the
concept of seduency as a generalization of frequency; in fact, one caﬁ
talk about the sequency of a sine or cosine function. Frequency for
sine or cosine functions is measured in cycles per second or hertz;
thus a 100 Hz sine wave has 100 cycles per second or 200 sign changes
per second, hence a 100 Hz sine wave has a sequency of 100 zps. One
can see that for sine waves, the concept of sequency and frequency is
jdentical; however, for Walsh functions the idea of frequency has no
meaning and one can only talk about its sequency. In fact, the
concept of a generalized frequency OT sequency is extremely important
and has many applications. Harmuth has extended the concept of sequency
to other sets of orthogonal functions, particularly Bessel functions
and Legendre polynomials.

Using the notation introduced by-equation 1-17 one can rewrite
equation 1-16 as follows:

o0

£(6) = a(0) + = [a(i)cal(i,8) + b(i)sal(i,0)]
i=1

1
a(0) = ./ £(0)dg (1-19)
0
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1]

1
Jf f(6)cal(i,6)de
0

a(i)

(1-19)

b(i)

1
/f. f(8)sal(i,0)deé
0

This should be compared to equation 1-9.

The Fourier kernel required for the Walsh-Fourier transform is due

to Finel3, who also pointed out the:existence of such a transform. The

3

correct mathematical theory of the Walsh-Fourier transform using sal

and cal functions, which are somewhat different from the system used by

Fine, is due to Pichler.!®

The Walsh-Fourier transform of a function f(8) and its inverse

have the following form:
ac(u) = Jr £(8)cal (u,0)de
(1-20a)
ag(w) = f f(8)sal(n,6)ds
| R f(8) = f [a_(w)cal(u,8) + ag(u)sal(u,0)]d (1-20b)
s 0
where a.(u) and as(u) are the even and odd Walsh-Fourier transforms of
f(8) respectively. u is the normalized sequency and it is a non-

Negative real number.
It may seem at first that a new symbol, u, has been introduced for

normalized sequency, however the reader is reminded that this '"new'"

normalized sequency is a generalization of the sequency, i, defined

1
?See Reference 34.

1
“See Reference 68.
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above in equation 1-17, This generalization was necessary to allow the -

normalized sequency to take on non-integer values as required by the

Fourier transform. This '"new'" sequency can be unnormalized as before:

¢ = H_
T
n

where ¢ = sequency, Zps.

This is "consistent with the normalized frequency, v, as discussed in sectionl.3.

One may ask what does a Walsh function look like when the
normalized'sequency is not an integer? In other words, what does, say,
cal(l.386,6) look like? The function cos(1;386,6) is easily defined;
can any parallels be drawn from this? The answer is no. It is beyond
the scope of this thesis to discuss non-integer normalized sequency.
When p takes on non-integer values, the problem is very difficult and
one has to determine if u is dyadic rational or not.l® 1In fact,
cal(u,8) and sal(y,8) are not periodic if u is not dyadic rational,
but the interpretation of u holds true.16

The Walsh-Fourier transform of equation 1-20. can be used in the

following generalization of the convolution integral. Let £(8) and

g(8) be defined on:(-=,») then the dyadic convolution product f8g is

defined as:

oo
f8g(6) = ‘}/r f(o®t)g(t)dT (1-21)

-0

15 . . . - . .
A number, p, is called dyadic rational if u, when written as a binary

number, has a finite number of terms to the right of the binary decimal

. point,

16g,., -
See Reference 43, pp. 26-28.
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There is really no need to distinguish between dyadic correlation and

dyadic convolution since addition and subtraction modulo 2 are an iden-

17

tical operation. In the literature, equation 1-21 is sometimes

referred to as the logical convolution integral. The similarity with

standard or arithmetic convolution or correlation is obvious.

Using the above definition, the following theorem is stated without
proof.18 Let £(8), g(8) be defined on (-=,=) and h(8) = £(8) @ g(8),
let F¢, Fg» GC} Gs, He, HS, denote the even and odd Walsh-Fourier
transforms of £, g, and h respectively, therefore:

He = FG, and Hg = FgG (1-22)

s
This theorem is analogous to the theorem used in conjunction with arithmetic
convolution and sine-cosine Fourier transforms. As was previously
mentioned, the concept of dyadic addition is extremely important when
using Walsh functions. The discrete version of equations 1-21 and 1-22
will be investigated as part of this thesis.

For the reasons stated above, concerning non-integer values of u,
calculations involving the Walsh-Fourier transform of equation 1-20a are
usually avoided; even calculation of the Walsh-Fourier series is somewhat
cumbersome to evaluate as compared to the sine-cosine Fourier series.!?

However, the beauty and ease of Walsh-Fourier analysis will be seen when

using discrete data.

!7See Reference 43, pp. 26-28.
~ '8See Reference 70.
19
Another reason why the Walsh-Fourier transform and Walsh-Fourier series

are difficult to evaluate is that the integration theorems are not
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1.5 Comparison of Describing Parameters between Walsh and Sine Functions

In this section a review of the describing paraméters of Walsh and

sine functions will be presented and discussed briefly.

The following are usual describing parameters for sine functions:

Vmsin(vae-+ a)

ii where V, = maximum amplitude
| v = normalized frequency, cycles
; ¢ = normalized time, dimensionless
4

o = phase shift, radians
E f = v _, frequency in hertz

Th
t = 6T, time in seconds
T, = normalizing time base in seconds

Let the normalized

variables v and ® in sin2mvé be replaced by the

non-normalized variables £ and t:

Vmsin(2nve + Q) = Vmsin(wat + 0)
The result is independent of the time base T,» as was previously pointed out.
The following are the usual describing parameters for Walsh
fﬁnctions sal (u,0) and cal(u,8):

Vmsal(u,e)

where Vj = maximum amplitude

normalized sequency

i

U

] normalized time

available to evaluate the integrals of equations 1-20a and 1-19. Fine
did develop some of the requiréd integration theorems which were later

used by Johnson to develop a very limited set of Walsh-Fouricr trans-

form pairs. See References 34 and 50.
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If the parameters are unnormalized and a time delay is inserted
for the purpose of generality, the function sal(y,8) becomes:

V_sal(¢T., t-t,
m L

where V, = maximum amplitude

il

¢ sequency, ZpS.
t = time, seconds

to = time delay, seconds

T, = normalizing time base, seconds
p = ¢T, normalized sequency, Ze€roes
t . .
8 = T normalized time
in
8, = to, normalized time delay
—
n

The result for the unnormalized case is ggi independent of the time
base, T,, because the sequency and time are not connected by multipli-
cation as with sine waves. This property of Walsh functions is used
extensively with electromagnetic Walsh waves relative to the Doppler
shift. Harmuth has suggested that the concepts of period of oscillation
and wavelength be generalized for nonsinusoidal functions as Walsh
functions but these concepts have no use in this thesis.

In summary, a sine function is described by its amplitude, frequency
and phase angle,zo.while a Walsh function is described by its amplitude,

sequency, time delay and time base.

20 .
The phase angle could be considered as a time delay.




Chapter 2
WALSH FUNCTION GENERATOR

2.0 Introduction

One of the objectives of this thesis is the design of a device that
will generate Walsh functions. Many designs have been discussed in the
literature and are based on the various properties of Walsh functions.
Some of these generators are programmable and are of true laboratory
quality costing hundreds of dollars.

The design configuration chosen is oﬁe that is usually described in
most of the literature concerning Walsh function generators. It
generates sets of synchronized Walsh functions simultaneously.

This generator is used in some waveform synthesis experiments

described in Chapter 4.

2.1 Description of Walsh Function Generator Configuration

The generator configuration used is based on the multiplication

law as described in Chapter 1:

wal (h®k,8) = wal(h,8)wal(k,0) (2-1)
By applying this law to two previously generated Walsh functions, a new
Walsh function can be generated. Hence, it would be possible to

generate a limited set of Walsh functions.! A generator configuration

1
See Reference 43, pp. 90-91.
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rad(1,9) : wal(1,9)

|  wal(2,0)
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rad(2,9) f
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- wal(6,86)
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indicates multiplication

Figure 2-1 Analog Walsh Function Generator
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based on this law for the first 15 Walsh functions is shown in

Figure 2-1.253

From Figure 2-1 one sees that by using the functions wal(l,8),
wal(3,0), wal(7,8) and wal(15,0), the rest of the Walsh functions can
be generated directly or indirectly from pre&iously generated
functions. From Figure 2-2 through Figure 2-4, the generating set
[wal(1,8), wal(3,8), wal(7,6) and wal (15,6)] are really the first
four (non dc) Rademacher functions. As discussed in Chapter 1,
Rademacher functions, a—subset of Walsh functions, are just ordinary
variable frequency square waves.

Hence, to generate a set of synchronized Walsh functions simultan-
eously, one must first generate a set of gynchronized Rademacher
functions simultaneously. Then by applying equation 2-1 as shown in
Figure 2-1 the set of Walsh functions can be realized. To build a
truly analog Walsh function generator capable of generating functions
with levels between,.say, 1 volt, 11 analog multipliers would have to
be obtained, not to mention the hardware needed to generate and phase-
lock the analog Rademacher functions. Although this task is not
impossible, there is a more efficient way to approach this problem, by
binary coding the Walsh functions.

The first requirement of the generator of Figure 2-1 is that of
obtaining the Rademacher functions. By examining Figure 2-4 one mnotes

that each Rademacher function .has a frequency that is twice the

2
The dc or wal(0,0) function is not generated.

3 .
The functions generated are periodically continued Walsh functions.

See Section 1.3.
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Figure 2-4

Normalized Time
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' The First Six Rademacher Functions
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previous one. The functions themselves are two-valued, either 1 or -1%;
hence they could be coded as binary functions. The +1 could be coded as
logical 1 and the -1 coded as logical 0. This coding scheme results in
what is known in the literature as logical Walsh functions, denoted
WAL(n,6), and logical Rademacher functions, denoted RAD(m,8).

By using this coding scheme and the previously discussed frequency
division property of Rademacher functions, it is possible to generate the
needed Rademacher functions using a clock source and four toggle (T-type)
flip-flops. The flip-flops havevthe property of dividing the frequency of
theAsignal at its toggle inpup by two. Hence the output of a four-bit binary
counter could be thought of as a generator for the first four logical
Rademacher functions.

The next problem is what kind of logic element can be used to replace
the multipliers of Figure 2-1?. Since the Walsh functions of Figures 2-2 and
2-3 are assumed to be two valued functions, either 1 or -1, the multipliers
of Figure 2-1 would have the ''truth" table shown in Table 2-1. If the func-
tions are coded according to the above scheme, the truth table for the
"logical™ multipliers are shown in Table 2-2. This is the truth table of the
logic element known as an exclusive-NOR gate. Therefore the mﬁltiplication

law of equation 2-1 reduces to:

WAL (h®k,8) = WAL (h,6)®WAL (k,6) (2-2)
for logical Walsh functions. Using equation 2-2, the analog Walsh

function generator of Figure 2-1 reduces the logical Walsh function

I . .
In a strictly mathematical sense this is not true. Walsh defined the
- functions to be identically zero at the zero crossings; however, by

éssumlng two-valued functions there is no loss in generality.
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wrruth" Table of Analog Multiplier

TABLE 2-1
a b y.
-1 -1 1
-1 1 -1
1 -1 -1
1 1 1

TABLE 2-2
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

Truth Table of Exclusive-NOR Gate.
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generator of Figure 2-5. A clock signal is counted down to generate

the logical Rademacher functions and the exclusive-NOR gates are used

to operate on pairs of these functions to generate the Walsh functions.
Thié type of design could be used to generate larger sets of logical

fE‘ o Walsh functions by using a larger counter (i.e., more flip-flops) and

more exclusive-NOR gates.

9.2 Redlization of Logical Walsh Function Generator

The logical Walsh generator of Figure 2-5 was built using standard
transistor-transistor logic (TTL) integrated circuits. The first step
;r JﬁC -~ of the design was to build a four-bit binary counter to generate the
four logical Rademacher functioms. This counter could have been built
}E#ifli;  using four T-type flip-flops. This type af counter is known as an

asynchronous or ripple counter. Ripple counters are susceptable to

counting errors (commonly known as counting spikes or hazards) due to
the fact that all flip-flops are not clocked simultaneously. Therefore,
a synchronous counter was chosen over a ripple counter for the generator.
The 74191 Synchronous Up/Down four-bit counter was chosen for the
generator. The 74191 is a standard medium speed TTL integrated circuit.
Since there is no standard TTL exclusive-NOR integrated circuit, the
7486, a quad two input exclusive OR gate was used. Two gates of each
of the 7486's were hardwired as inverters. Therefore, the exclusive-NOR
operation was obtained for the generator.

The generator was built using the TTL integrated circuits discussed
above and is shown in Figure 2-6. A Hewlett-Packard function generator
was used for the clock source. The outputs of the generator were

connected to standard 9-pin plugs so that the generator could be
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Figure 2-5 Logical Walsh Function Generator
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Photograph of Walsh Function Generator

i
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connected to the analog trunk lines of the AD-~4 analog computer. The
outputs of the generator were then displayed on the Brush-8 strip chart
recorder, as shown in Figures 2-7 through 7-9 and are identical to Walsh
waveshapes shown in Figures 2-2 and 2-3.

By using a synchronous counter the only source of errors werc the
propogation delays of the exclusive NOR gates. This presented no reai
problem as long as the clock frequency was below 1 MHZ. The cloék
frequency for outputs shown in Figure 2-7 through Figure 2-9 was 1 HZ.
The outputs were of course standard TTL waveforms; logical 1 is about
4.5 volts and logical 0 is at ground potential, assuming positive
logic. No real differences were observed among the voltage levels
between any two functions. These wavefofms could be thought of as
analog Walsh fungtions that are dc shifted and slightly amplified.

The beauty of this type of generator is that it is possible to
generate 15 synchronized Walsh functions simultaneously. Think of the
problems involved with generating 15 synchronized sine or cosine
functions simultaneously! This type of design could be used to generate
larger sets of Walsh functions and in fact Harmuth has suggested a
variation on this design using a 20-bit binary counter and 19 exclusive-
NOR gates capable of generating 1,048,576 different Walsh functioﬁs.5

One final comment should be made concerning the sequencies of the
generator outputs. The normalized sequencies realized are the first

eight integer sequency Walsh functions. The unnormalized sequency can

S .
Harmuth's design only generates one Walsh function at a time. See

Reference 43, p. 91.
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be related easily to the frequency of the clock, f.. This can easily

be seen by noting from Figure 2-2 and the discussion of Chapter 1 that
the normalizing time base, T,, 1s chosen so that the period of WAL(1,8)
is equal to T, . Hence, using this fact and the fact that each successive
stage frequency of the counter'is the previous stage frequency divided

by two. The time base is related to the clock frequency by:

T, = 2" (2-3)
where m = number of bits of the binary counter
1
T, = &—
c
£
f. = clock frequency, Hz

the unnormalized sequencies remain:

(2-4)

¢ = B
T

n

Therefore by changing the clock frequency the unnormalized sequencies

change accordingly but the normalized sequencies remain the same.

—

.
For the generator of Figure 2-5m =




DISCRETE WALSH TRANSFORM

3.0 Introduction

The purpose of this éhapter is to describe the Finite Discrete
Walsh~Fourier Transforml(DWT). The DWT will be compared to the Finite
Discrete Fourier Transform? (DFT) and a computer program will be
described that computes the DWT. The discrete dyadic convolution
property of the DWT will be demonstrated and briefly discussed. The
three types of ordering of Walsh functions will be described as an
introduction to the DWT.

3.1 Walsh Function Ordering

The ordering of the Walsh functions, as introduced in Chapter 1,

is not the only possible ordering that has appeared in the literature.

Two other types of ordering known as dyadic ordering and Hadamard

ordering are discussed in the literature.

The ordering discussed in Chapter 1 is known as Walsh or sequency
ordering. By ordering the functions such that each Walsh function,
denoted wal(i,®), has one more zero crossing in the interval (0,1)

than the previous function, the concept of sequency can be introduced

3

1 . . . . ..
In the literature, this is sometimes referred to as the Finite Walsh

Transform, or the Discrete Walsh Transform.
In the literature this is sometimes referred to as the Finite Fourier
Transform, or the Discrete Fourier Transform.

Ssee Reference 8.
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as a generalization of frequency. The concept of sequency can then be
used by the engineer in ways similar to using frequency when working
with sine-cosine functions. The sequency-ordered Walsh functions are
shown in Figure 3-1.

The dyadic type of ordering is due to Paley" who first pointed out
the existence of such an ordering. Walsh functions ordered this way
are sometimes referred to as Paley-ordered Walsh functioms. Thé Paley-
ordered Walsh functions, as shown in Figure 3-2, are denoted by

,ijﬁ; walp(i,8) where p denotes Paley ordering.

Paley and Fine® used this type of ordering in their work concerning

Walsh functions. As shall be discussed later, this type of ordering
appears automatically when using the Discrete Walsh Transform. Yuen®
has presented a strong case that dyadic ordering is sﬁperior to sequency
ordering when using the DWT.

This set of functions is related to the sequency-ordered functions
by the relation:

walp(i,8) = wal(b(i),9) (3-1)

where b(i) is the Gray code-to-binary conversion of 1i.

The third type of ordering is known as Hadamard or natural

ordering. The Hadamard ordered Walsh functions are shown in Figure 3-3

and are denoted as waly(i,0). This type of ordering arises because of

“See Reference 66.
SSee Reference 34.

6See Refefénce 93 and 94.

e
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the similarities between a sampled set of these functions and the

Hadamard matrix of linear algebra.’

This set of functions * is related to the sequency-ordered functions

by the relation:
waly(i,8) = wal(b(j),0) (3-2)

where j is obtained by the bit-reversal of i and b(j) is the Gray
code-to-binary conversion of j.

Of all three types of ordering, only the sequenby ordering allows
the introduction of sal and cal functions. All three types of ordering
will be used when discussing the DWT.

3.2 Discrete Fourier Transform

For many years engineers have Been interested in computing Fourier
geries or Fourier transforms using the digital computer. This hés»‘.
presented some problems in that the digital computer cén handle only
a finite number of discrete points. Since only a finite number of
points can be handled, computing a true Fourier transform is out of the
question. Also, since only discrete points can be evaluated, a true
Fourier series cannot be computed either. In 1965, Cooley and Tukey8
nrediscovered" a method that can be used in certain cases to approximate
very accurately Fourier series and Fourier transforms. Céoley and
Tukey's initial work lead to the vigorous definition of what has become

known as the Discrete Fourier Transform (DFT)?.

’See References 40 and 41.
¥See Reference 28.
%The Discrete Fourier Transform is very closely related to a truncated

Fourier series. For an excellent treatment of the DFT see References

26, 27 and 11.
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Let X(i), 1 = 0,1,...+; N-1 be a sequence of N finite valued com-

plex numbers. The DFT of X(i) is defined as:
N-1 .
Agp(n) =§ == x(i)e-2mini/N (3-3a)
‘i =0

where j = Y-1 and Ag(n) is known as the discrete Fourier coefficients
of X(i). The inverse DFT is defined as:
N-1 '
X(i) = = Ag () o2minj /N (3-3b)
n=20
Brigham!® has shown that equation 3-3 is a transform pair possessing
many of the properties related to standard Fourier transforms and
Fourier series. The most important ﬁroperty of the DFT is the discrete
convolution theorem to be discussed later.
The sequence X (i) used in equation 3-3 can be thought of as an

jdeally (impulse) sampled time signal. The sequence AF(n) can be
- thought of as frequency coefficients of the time signal X(i).!! The
real part of AF(n) corresponds to the discrete cosine transform of X(i1)
and the imaginary part of Ap (n) corresponds fo the discrete sine
transform. If the above interpretation of X(i) is used, one may ask
why the time variable and frequency variable does not show up explicitly
in equation 3-3. The reason is that for convenience the time and
frequency variables are assumed to be ﬁormalized such that the N
samples of the time function are. described on the unit interval.

Therefore, the frequency coefficients are defined for normalized

105¢e Reference 16, pp. 91-130.
_10ther interpretations are possible since X(i) contains, 1in general,

complex numbers. One possible ihterpretation is that of X(i) being
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frequencies of 0 to N-1. These values can be easily unnormalized as

discussed in Chapter 1 when the sampling period is known.'?

Theilheimer!3 has shown that equation 3-3 can be written in matrix

formulation:

— 1T
ag = ﬁ.[F] X (3-4a)
X = [F17'ag (3-4b)

where X and ap are N dimensional column vectors corresponding to the
time function X(i) and the Fogrier coefficients AF(n) respectively.
[F]is an NaN matrix known as the DFT matrix.i¥:15 The [F] matrix is a
compiex—valued matrix and can be thought of as containing essentially
sampled sine and cosine functions.!®

To evaluate the DFT.of a given time function X one notes, from

equation 3-4a, that N2 complex additions and complex multiplications

a complex-valued time function. This type of interpretation will not
be possible for the Discrete Walsh Transform.

1250¢ Reference 16, pp. 91-99.

135¢e Reference 89.

141 the literature, the DFT matrix is usually represented as [W]. This
notation will not be used to avoid confusion with the DWT matrix to
be developed later.

lsEquation 3-4 is recognized as a true matrix orthogonal transformation.
This was not obvious from équation 3-3.

les
®See Reference 16, pp. 148-149.
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17 pave shown that the number of oper-

are required. Cooley and Tukey

ations (complex additions and multiplications) needed to complete the

DFT are greatly reduced if the nunber of points TO be transformed (N)

15 are some poweT of two, i.e., N=2M where m is an integer.

This algorithm

for computing the DFT has become known as the Fast Fourier Transform
(FFT) . Cooley and Tukey showed that the number of operations needed to

For relatively

compute the DWT, using the FFT is N log, N where N=2".

large numbers of points, the number of computations is greatly reduced.

r of points does

Glassmanl® has generalized the FFT such that the numbe

ther values- A FORTRAN

not need to be of radix two but can take on O

subrdutine, FEFT1, that computes 2 forward and inverse FFT appears in
the Appendix. As mentioned at the beginning of this section, the DFT

in some Cases gives only an approximation to the true Fouriler coefficients

9 therefore one should not blindly use

of a particular time functioni?,

the FFET.

3.3 Discrete Walsh Transform
Based upon the work presented in section 3.2, the Discrete Walsh

Transform2? will now be discussed.

nce of N finite valued real

Let X(i), 1 = 0,1,...- N-1, be a seque

numbers. The DWT of X(i) 1s defined as:

175¢e Reference 28.

185¢e Reference 38.

19 - . . .
For a more detailed discussion of how the FFT 15 used, sce References

26, 27, 29 and 16.

y to a truncated .

20 . : '
The Discrete Walsh Transform 1S related very closel

Walsh-Fourier series. For an excellent presentation of the DWT and
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, -1
Aw(n) = %_'fzzb X(i)wal(n,i) ) (3-5a)
i =

where Aw(n) is known as the discrete Walsh-Fourier coefficients of
X(i). The inverse DWT is defined as:
N-1
X(@) = fE; Aw(n)wal(n,i) (3-5b)

n=20

Equation 3-5 also form a transform pair possessing many of the properties
related to Walsh-Fourier transforms and §eries.21 Since the Walsh
function used above are sequency-ordered, equation 3-5 is known as the
sequency-ordered DWT.

The,seqﬁence’X(i)Aused in equation 3-5 can also be thought of as

an ideally sampled time function; however, the sequence Ay(n) cannot be

thought of as exactly the sequency CQefficients_of X(i) because the
functions used in the transform pair are not sal and cal functions but
the wal function. Equation 3-5 could be rewritten to force the sal and

cal notation to appear. However, by doing this, the transform equations

would not lend themselves to a fast algorithm similar to the Cooley-
Tukey FFT. Therefore, one must remember when using the sequency-ordered

DWT that the transform coefficients, Aw(n), correspond to wal coefficients

and not sal and cal coefficients, e.g. Ay (2) corresponds to the coefficient
of wal(2,i) or cal(l,i). The time and sequency~variab1e are also assumed

to be normalized.?2?

how it is related to the DFT, see References 52, 56 and 84.

211bid.

22The 6 notation was not used for normalized time for either the DFT or
the DWT because time (or normalized time) does not appear explicitly in

either set of equations. This is the standard approach used in ‘the literature.
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The DWT can be also defined using the other orderings of Walsh

functions.23 The Paley ordered DWT is defined as:

N-1
Ay. () = % .'2'0 X(i)walp(n,1) (3-6a)
1 =
N-1 A
X(1) = = Ay, (n)walp(n,i) (3-6b)
n=20 P

where equation 3-6b is the inverse transform. The Hadamard-ordered

DWT2% is defined as:

-

: oo N-1
Ay () = %P’:_O X(i)waly(n,i) (3-7a)
' N-1
X({) = = Ay (m)waly (n, i) (3-7Db)
n=o0 H )

where equation 3-7b is the inverse trénsform. The coefficient Aw(n) and
AWH(n) can be related by the bit-reversal and Gray code conversion
discussed in section 3.1. One shoﬁld note that by transforming the

same time function, X(i), using all three types of DWT's the values of
the resultant transform coefficient will be identical but they will be
shuffled in different order relative to each other.

A matrix formulation for equation 3-5 through 3-7 is:

ay = % [W]x : (3-8a)

23ther types of discrete transforms have been discussed in the litera-
ture. The generalized discrete-Fourier transform is due to Ahmed, et.
al.and it is similar to the generalized Fourier series and transforms
discussed in Chapter 1. See References 4 and 6.

24The Hadamard-ordered DWT is sometimes referred to as the Hadamard

transform or BIFORE transform. See Reference 7.




x = [W]-la, (3-8b)
aWp = N‘[wp]x (3-9a)
x = Mp]tay, (3-9b)
= LW, l% (3-10a)
WH N H

X = LWH]-IE‘WH (3-10b)

where X and EW are N-dimensional column vectors corresponding to the
sampled time function X(i) and the correctly ordered Walsh cbefficients
respe;tively. [W] is an NxW matrix known as the DWT matrix or the Walsh
matrix. The matrix [W] is a real-valued matrix and can be thought of
as containing sampled Walsh functions. The three types of Walsh
matrices are shown in Figures 3-4 through 3-6 respectively. One should
note the similarity to the Walsh functions of Figures 3-1 through 3-3.

From equation 3-8 through 3-10 it is obvious that it requires N2
additions and multiplications to evaluate the DWT of a given function.
Upon closer inspection of the Walsh matrix, the number of operations
required to evaluate the transform is really N? additions (or subtractions)
since the matrix contain only 1's and -1's. The DWT requires fewer
operations than the DFT, which requires N2 complex operations (complex
addi;ion and complex multiplication). The DWT is therefore simpler to
compute (i.e., faster) than the DFT.

Shanks?> has shown that it is possible to evaluate the DWT using a

COdley~Tukey type of algorithm such that the number of operations

2556e Reference 83.
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1 1 1 1 1 1 1)
1 1 1 -1 -1 -1 -1
1 -1 -1 -1 -1 1 1
1 -1 -1 1 1 -1 -1
-1 -1 1 1 -1 -1 1
-1 -1 1 -1 1 1 -1
-1 1 -1 -1 1 -1 1
-1 | 1 -1 1 _EJ

The Sequency Ordered Walsh Matrix [W]
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_;. 1 1 1 1 1 1 1_

1 1 1 1T -1 -1 -1 -1

1 1 -1 -1 1 1 -1 -1

1 1 -1 -1 -1 -1 1 1

1 -1 1 -1 1 -1 1 -1

1 -1 1 -1 -1 1 -1 1

F 1 -1 -1 1 1 -1 -1 1
1 -1 -1 1 -1 1 1 -1

Figure 3-5 The Paley Ordered Walsh Matrix [Wp]
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1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
T -1 -1 1 -1 1 1 -1

Figure 3-6 The Hadamard Ordered Walsh Matrix [W,]
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(additions) required is Nlog,N where N = 2™, This algorithm for
computing the DWT has become known as the Fast Walsh Transform (FWT) .

The FWT is "faster" than the EFT since only addition 1is required for
computing the FWT.

The actual derivation of the FWT algorithm will not be presented.
However, methods that can be used to modify an existing FFT computer
program will be discussed in the next section. The derivation of FWT
algorithm is very "gimilar" to the classical derivation initially

presented by Cooley and Tukey. The reader is referred to Shanks for

more details.?2®

3.4 Programming the Fast Walsh Transform

One of the objectives of this thesis is to describe a package of
computer programs that can be used to-evaluate the Discrete Walsh
Transform. The computer programs are 1isted in the Appendix along
with full documentation on how to use them. The procedures used in

9

obtaining these programs are discussed below.

Of the three types of FWT's discussed in section 3.3, the Hadamard
ordered FWT was programmed using a slightly different algorithm than the
standard Cooley-Tukey algorithm.27 This FWT program is due to Shum and
Elliott?8 who initially used this type of ordering for speech processing

work. Their algorithm 1is based on the factoring of the WH matrix

261bid.
274adamard-ordered FWT 1is sometimes referred to in the literature as
the Fast Hadamard Transform (FHT) .

283ee References 84 and 85.
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using the Kronecker product?? operation of linear algebra. This algorithm
requires the same number of operations (Nlog,N) as the Cooley-Tukey
algorithm; however the approach is somewhat different. 30 The |
disadvantages of this algorithm are that it does not arrive. easily from

a modification of an existing FFT program, and that the inverse transform-

ation is not as easily accomplished.
Two FORTRAN subroutines, FWT1 and. FWT2, were obtained that compute
the Hadamard ordered FWT based on Shum and Elliott's algorithm. One

should remember that the coefficients obtained using these subroutines

are the Hadamard-ordered coefficients and do lend themselves easily to

the concept of sequency.

Computer programs for the other two types of ordering were written
by modifying an existing FFT subroutine. The modifications are due to

Shanks and Manz.3 The FORTRAN subroutine, FFT1, was modified to

compute the Paley ordered and sequency ordered FWT.
The Paley-ordered modification involves just setting all the _ |

trigonometric values to be 1.0 + jO,0 in the FFT program. Since the

FWT is defined for only real-valued time signals, all calculations

involving the imaginary part of the FFT program can be removed. The

subroutine FFT1 was modified accordingly and renamed FWT3. Again, one

29The Kronecker product is sometimes referred to as the tensor préduct. é
¥G1assman has shown that the Cooley-Tukey algorithm is really based
on the Kronecker product operation. In fact, the Cooley-Tukey
algorithm is one of the many fast algorithms that can be used to
~evaluate discrete transforms. See References 38 and 6.

Agee References 83 and 61.
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should remember the transform coefficients obtained from FWT3 are
paley-ordered and not sequency ordered.

The sequency-ordered modification was suggested by Manz and it
involves modifications to a Paley-ordered FWT. The modifications involve
jnverting the sign of every other dual node pair32 in the transform
program. The subroutine FWTS was modified using this scheme and renamed
FwT4. This subroﬁtine performs a sequency—ordered transform and will
be discussed later.

All five of the transform programs discussed above perform their

operations "in place", i.e. extra array space is not needed to store

intermediate calculations. The Hadamard-ordered and Paley-ordered

transform programs were written to demonstrate the feasibility of

performing these transformations on a digital computer. These two

types of transforms will not be used for the experimental work to be
discussed in Chapter 4 since they do not compute sequency-ordered
coefficients. It would be necessary to reshuffle the output coefficients
to sequency order them which would require more computation time.

These subroutines could be used by others for different applications of

Walsh functions.33

®For a discussion of the dual node concept, see Reference 16, pp- 154-156.
33pjitassi has used the Paley-ordered FWT to develop a fast algorithm
for discrete arithmetic convolution where the number of convolved

points is less than 1024. See Reference 72.
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3.5 Miscellaneous Walsh Function Program53+ : e

Hutchins 35 has suggested an algorithm for obtaining the sequency-

ordered Walsh matrik [W] (see equation 3-8 and Figure 3-4). This

algorithm is based on the recursive relationship for Rademacher

functions (see equation .1-13). A FORTRAN subroutine, called WALSH, was
. written based on this algorithm and is listed in the Appendix. WALSH

will construct a Walsh matrix of any order that is a powér of two, i.e.

N = 2™, This subroutine was used initially to check out the FWT

subroutines by actually performing the matrix calculations of equations P
3-8 through 3-10. ol

An algorithm due to Bhagavan and Polge36 was used to write a

program that would shuffle the Hadamard-ordered transform coefficients

so that they would be in sequency order. This shuffling operation o

performs the bit-reversals and Gray code conversions discussed in
z ) section 3.1. The subroutine SORT1 is based on this alborithm; the

shuffling is performed "in place'. One notes from examining SORT1 that

the shuffling operation takes extra time to obtain the sequency-ordered

coefficients.

3.6 Comparison of the Interpretation of the Fast Fourier Transform With i“

The Fast Walsh Transform

From section 3.3, one observes that the FWT is 'faster' than the FFT

3 . . . .
These programs were written very early in the research for this thesis
and are discussed here for general information purposes only.

35396 Reference 48.

3G_See‘Referer‘lce 14.
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e fact that the FWT requires no multiplications to compute the

due to th
differences in interpreting the

¢ransform. ¥ However, there are moTe

output coefficients of the FWT that one should be aware of. The

ain to the subroutine FWT4 specifically

differences discussed below pert

and to the other subroutines in general.

The output coefficients of the Fast Fourier Transform, denote E%,
"are in general complex numbers representing the normalized frequency
coefficients of the time function < ®. The real part of Z% corresponds

e speed of the EFWT, the times required to compute

37To illustrate the relativ
FFT1 were observed

a 1024 point transform using the subroutines FWT4 and

on the IBM 1130 computing system. The Fast Walsh Transform took 14

seconds to compute; the Fast Fourier Transform took 80 seconds to compute
the same 1024 point transform. This claim is made with the knowledge

that the FFT subroutine used (FFT1) is not the "fastest" FFT subroutine

available. The subroutine FFT1 does not use "Twiddle Factors'' to

r is the subroutine "pruned' or "pblocked'".

increase its computing speed no

The speed claim is made on the basis that the subroutine FWT4 is a

and hence it too could be made faster using

modified version of FET1

some of the techniques discussed above. For a discussion on how to
make the FFT faster, sec Reference 16, pp. 184-197 and Reference 20-.

The matrix version of the DIl and DWT will be used 1n this discussion;

see equations 3-4a and 3-8a. One should not lose sight of the fuact

that the FFT and FWT are just "fast" procedures used to calculate

the DFT and DWT respectively.
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to the discrete cosine transform and the imaginary part corresponds to

the discrete sine transform respectively. By computing an N point trans-

N
form one only resolves PR frequency coefficients; i.e., the dc coefficient

The output coefficients are

N

and the first %rl frequency coefficients.
corresponds to the first o

E, ordered such that the first %-terms of E%

Fourier coefficient and the last g-term of Ef corresponds to the ""folded"

frequency spectrum. Essentially the Nyquist folding phenomena is

observed in the output coefficients ¥, The important point to be

remembered from this discussion is that by computing an N point transform

only the first %. Fourier cosine and sine coefficients are obtained"?.

The output coefficients of the Fast Walsh Transform, denoted EW’

are Teal numbers that represent the normalized sequency coefficients of

X. The ordering of the output coefficients for an eight point transform
is shown in Figure 3-7. As discussed in section 3.8 the sequencies of

the output coefficients are not in sequential order. The reason for this

is that the DWT uses the functions wal and not sal or cal functions.

Hence, the output coefficients are slightly shuffled in that even index

coefficients correspond to cal coefficients and the odd index coefficients

correspond to sal coefficients. Therefore, by computing an N point trans-

. N .. .
form one only resolves the first i-sequency and coefficients, i.e., the

®Another interpretation is that the last %_term corresponds to the

"negative" frequency terms of the Fourier transform. However, this

interpretation is not rigorous and one may lose sight of the fact that

the FFT computes discrete Fourier spectra.

40 . . . .
For a detailed discussion of how to interpret the DFT sce Reference 16.
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Figure 3-7

— — . —
wal(0,9) dc term
wal(i,0) sal(1,9)
wal(2,8) cal(1l,e)
wal(3,9) sal(2,0)

or
wal(4,0) cal(2,8)
wal (5,6) sal(3,8)
wal (6,0) ‘cal(3,6)
wal(7,9) sal(4,8)

L R - ]

The ordering of the output
data corresponds to the co-
efficients of these Walsh

functions.

The Ordering of the Transform Vector @y for an Eight

Point Sequency Ordered Discrete Walsh Transform
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dc coefficient and the first %—1 sequency coefficients. This result

is similar to the FFT; however, there is a difference in that an "extra"
coefficient is resolved using the FWT. For the eight point transform

of Figure 3-7, the "ektra" coefficient corresponds to the term

sal(4,08). For larger transforms, i.e. larger values of N, the extra
coefficient is always a sal coefficient corresponding to sal (%,6).

This extra coefficient presents no problem in interpreting the results
of DWT. However, the user should be aware of this fact. Since the
output coefficients are real numbers and only consist of the first g
sequencies (plus the extra term) the Nyquist folding phenomena is not
observed in the output coefficients™!.

Despite the differences discussed above, the Fast Fourier Trans-
form and Fast Walsh Transform subroutines are used in a similar manner.
The user does not need to prepare the input data to be transformed in
any special way ahd the calling procedures for the FWT subroutines are
almost identical to that of the FFT subroutine. The FWT subroutines in
general do not need any FORTRAN library marco programs such as the library
subprograms SIN and COS needed for the FFT. Through very sligﬁt
modifications to the EWT subroutines it is possible to perform all the
transform calculations using integer arithmetic. This is in general not

possible with the FFT.. The advantages of using integer arithmetic 1is

that it is faster and usually when computing the FWT on a digital

- l‘h
{The pwT spectrum does ''fold'" and exhibit periodicity properties
similar to the DFT. The output of the FWT does not show this,

however. See References 50 pp. 72-89, 2, 16, 26 and 52.
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computer the input data to be transformed is in reality the output of an
A/D converter. Most "fast' A/D converters operate using the integer
mode such that the output of the converter is an integer word.

Finally, one should always remember when usiﬁg either the FFT
or the FWT that these subroutines compute discrete transforms that are
analogous to it, but not identically equal to the Fourier series and
Fourier Transforms discussed in Chapter 1.

3.7 Discrete Dyadic Convolution

Let ﬁ(i) and h(i),vi =AO,l,2,......N-1, be sequences of N finite valued
real numbers, the discrete arithmetic convolution of x(i) and h(3i)

is defined as:

N-1
y() = = x(i)h(k-i) (3-11)
i=0
as denoted as*?
y(k) = x(k) * h(k) (3-12)

The following theorem is stated without proof.”3 Let y(k), x(k), h(k),

k = 1,2,....N-1, be sequences of N finite valued real numbers and AFh,AF and
X

A%,demnethe Discrete Fourier Transform of y, x, and h respectively. Then,

A = A A 3-13
FY Fx Fh _ . ( )

The results are similar to the standard integral convolution theorem.

4 . . .
ZWhen denoting the discrete convolution product by the symbol * one
should not confuse it with the standard integral convolution. For a

detailed discussion of discrete convolution, see Refercnce 16, pp. 110-122.

4 3big,
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Similarly for the DWT, let x(i) and h(1), 1 = 0,1,2,....N-1, be sequences

the discrete dyadic convolution of

of N finite valued real numbers,

x(i) and h(i) is defined as:

N-1
y(k) = = x(i)h(kei) (3-14)
i=0
and is denoted as
y(k) = x(k) @ h(k) ©(3-15)

The similarity to equation 1-21 is obvious.

The following discrete dyadic convolution theorem is stated without

proof.”“ Let y(k), x(k), and h(k), k = 1,2,....N-1, be sequences of

N finite valued real numbers. Let y(k) = x(k) ® h(k) and Awy, wa

and AFh denote the Discrete Walsh Transform of y, X, and h respectively.

Then,
(3-16)

The results are similar to the integral dyadic convolution theorem of

equation 1-22.
The DWT therefore possesses a convolution property that 1is

different than standard convolution. The discrete dyadic convolution

of equation 3-14 does not lend itself to physical interpretations similar

to the arithmetic convolution, i.e., the "£51ding" of one function and

"sliding'" of the folded function with respect to the other function.

The importance of the discrete dyadic convolution will be discussed in

Chapter 4 rclative to the definition of dyadic invariant linear systems.

L . . . . .
“For a proof of this theorem and a discussion of discrete dyadic

convolution, see Reference 52.
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A relatively simple example of discrete dyadic convolution is -
shown in Figures 3-8 through 3-10. The rectangular pulse shown in
Figure 348“5 isvconvolved with itself using the FFT and the discrete
arithmetic convqlution theorem of equation 3-13, the results are shown

in Figure 3-9. The discrete dyadic convolution of the rectangular pulse

1 f was computed using the FWT and the convolution theorem of equation
'3-16. The results are shown in Figure 3-10. It is obvious that the
two convolution products yield totally different results leading to

different interpretations.

l'sFigures 3-8 through 3-10 are presented as bar graphs to emphasize that

they are discrete time functions.
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Chapter 4
EXPERIMENTAL WORK

4.0 Introduction

The purpose of this chapter is to demonstrate a technique for wave-

form synthesis using the Walsh function generator discussed in Chapter 2.

The input-output relationships of a relatively simple sequency filter will

also be analyzed using the Discrete Walsh Transform. A brief introduction

will be presented to discrete dyadic-invariant linear systems.

4.1 Waveform Synthesis Using Walsh Functions

The Walsh function generator discussed in Chapter 2 was used to

construct some relatively simple waveforms. This was accomplished by

connecting the 15 outputs of the generator to the AD-4 analog computer
via the analog trunk lines of the University Hybrid Computer Sysfem.

This then allowed access to the outputs of the generator directly on

the AD-4 analog patchboardl. The first 15 (non-dc) Walsh coefficients

were calculated using the subroutine FWT4 (see Chapter 3) for various

waveforms. The procedure used was one of writing a FORTRAN mainline

routine that evaluated the desired time function; then a 1024 point
Fast Walsh Transform was obtained using FWT4 resulting in a sequency

resolution of the first 512 sequencies. The time function was assumed

to have a period of one (normalized time was used) 2.

1 .
The TTL outputs of generator were treated as true analog signals.

2 . . .

The Discrete Fourier Transform and Discrete Walsh Transform assume the
riod being the unit

function to be transformed is periodic, with the pe

interval. See Chapter 3 and References 16, 52 and 83.
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A valid question at this point is, why use so many points if only
the 15 coefficients are desired? Why not use a 16 point transform?

The answer is simply more accuracy was obtained by taking a larger
transform. It was-desired to resolve the first 15 coefficients as
accurately as possible; therefore a larger transform was taken to reduce
truncation errors (see Chapter 5) 3, A 1024 point transform was chosen

for its relatively fast computing time (14 seconds) on the IBM system.

Even with such a large transform some eTrors 'were noted in the coefficients
due to the larger truncation errors for the FWT as compared to the

FFT (see Chapter 5).

Once the first 15 coefficients were obtained, the nonzero coefficients
were used to set coefficient potentiometers (pots) connected to the
respective Walsh function generator oﬁtputs (see Figure 4-1). The
outputs of the pots were connected to a unity gain summing amplifier to
sum the weighted Walsh functions. The output of the amplifier was
displayed on the Brush-8 strip chart recorder. In other words, a
particular waveform was constructed by weighting the outputs of the
Walsh function generator with its respective coefficient and then the
weighted Walsh functions were added together. Since the original time
function and the Walsh function genmerator outputs are periodic one can
think of this as a truncated "inverse'" Walsh-Fourier series..

Thé above method was used to synthesize five waveforms; the results
are shown in Figure 4-2. Tables 4-1 through 4-5 show the first 15 Walsh

coefficients (and the dc terms) used in the synthesis procedure as

3ror a discussion of truncation errors, see References 13 and 16.
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Table 4-1

First 16 Walsh Coefficients for Sine Wave of Figure 4-3

Walsh Function

Coefficient Value

wal(0,0) [cal(0,9)] 0.00000
wal(1,9) [sal(1,9)] 0.63661
wal(2,6) [cal(1,9)] -0.00195%
wal(3,8) [sal(2,8)] 0.00000
wal(4,0) [cal(2,0)] 0.00000
wal(5,8) [sal(3,9)] -0.26369
wal(6,0) [cal(3,0)] -0.00080*
wal(7,0) isal(4,9)] 0.00000
wal(8,6) [cal(4,0)] 0.00000
wal(9,0) [sal(5,8)] -0.05245
wal(10,9) [cal(5,0)] 0.00016*
wal(1l,6) [sal(6,8)] 0.00000
wal(12,0) [cal(6,8)] 0.00000
wal(13,0) [sal(7,8)] -0.12663
wal(14,0) [cal(7,8)] -0.00038*
wal(15,6) [sal(8,8)] 0.00000

*Assumed to be zero.
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Table 4-2

First 16 Walsh Coefficients for Ramp Function of Figure 4-5

Waish

Function

wal(0,6)
wal(1,6)
wal(2,8)
wal(3,6)
wal(4,9)
wal(5,0)
wal(6,8)
wal(7,6)
wal(8,9)

wal(9,6)

[cal(0,8)]
[sal(1,6)]
[cal(1,8)]
[sal(2,0)]
[cal(2,8)]
[sal(3,8)]
[cal(3,0)]
[sal(4,8)]
[cal(4,8)]

[sal(5,9)]

wal(10,0) [cal(5,9)]

wal(11,0) [sal(6,8)]

wal(12,0) [cal(6,6)]

wal(13,0)[sal(7,0)]

wal(14,8) [cal(7,8)]

wal(15,6) [sal(8,8)]

Coefficient Value

0.49951
-0.25000
0.00000
-0.12500
0.00000
0.00000
0.00000
-0.06250
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

-0.03125




-72-

Table 4-3

First 16 Walsh Coefficients for Half-Wave Rectified Sine-Wave
Shown in Figure 4-7

Walsh Function Coefficient Value
wal(0,6) [caltO,e)] 0.31830
wal(1l,6) [sal(1,8)] 0.31830
wal(2,8) [cal(l,6)] -0.00097*
wal(3,0) [sal(2,6)] -0.00097*
wal(4,8) [cal(2,0)] -0.131é4
wal(5,8) [sal(3,0)] -0.13184
wal(6,0) [cal(3,6)] -0.00040*
wal(7,0) [sal(4,0)] | -0.00040%*
wal(8,6) [cal(4,6)] -0.02622
wal(9,8) [sal(5,8)] . -0.02622
wal (10,0)[cal(5,6)] 0.00008*
wal(11,6)[sal(6,8)] 0.00008*
wal(12,6) [cal(6,6)] -0.06331
wal(13,8)[sal(7,6)] -0.06331
wal(14,0)[cal(7,8)] ~0.00019*
wal(15,6)[sal(8,8)] -0.00019

*Assumed to be zero.
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Table 4-4

First 16 Walsh Coefficients for Full-Wave Rectified Sine-

4 Wave Shown in Figure 4-10
Walsh Function Coefficient:Value
- , wal(0,8) [cal(0,6)] : 0.63661
wal(1,98) [sal(1,6)] 0.00000
wal(2,8) [cal(l1,6)] 0.00000
wal(3,8) [sal(2,8)] -0.00195*
wal(4,8) [cal(2,0)] | -0.26369
wal (5,6) [sal(3,8)] : 0.00000
wal(6,6) [cal(3,0)] ‘ 0.00000
wal(7,08) [sal(4,90)] -0.00080*
wal(8,9) [cal(4,8)] -0.05245
wal(9,8) [sal(5,8)] 0.00000
wal (10,9) [cal(5,8)] "~ 0.00000
wal(11,8)[sal(6,90)] 0.00016%
wal(12,6)[cal(6,8)] -0.12663
wal(13,0)[sal(7,90)] 0.00000
wal (14,6) [cal(7,0)] 0.00000
wal(15,6) [sal(8,8)] -0.00038*

*Assumed to be zero.
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Table 4-5

First 16 Walsh Coefficients for Triangular Function
Shown in Figure 4-12

Walsh Function Coefficient Value

wal(0,8) [cal(0,6)] 0.50000
wal(1,8) [sal(l,6)] -0.00097*
wal(2,68) [cal(1,6)] ~u.25000
wal(3,8) [sal(2,9)] 0.00000
wal(4,0) [cal(2,6)] 0.00000
Wal(5,6) [sal(3,6)] 0.00000
wal(6,8) [cal(3,6)] -0.12500
wal(7,8) [sal(4,6)] 0.00000
wal(8,6) [cal(4,8)] 0.00000
wal (9,08) [sal(5,6)] 0.00000
wal(10,0) [cal(5,0)] ’0.00000
wal(11,6) [sal(6,6)] 0.00000
wal(12,6) [cal(6,0)] 0.00000
wal(13,6){sal(7,6)] : 0.00000
wal(14,90) [cal(7,6)] -0.06250
wal(15,6) [sal(8,0)] 0.00000

*Assumed to be zero.
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calculated using FWT4. Figures 4-3 through 4-13 show plots of the

original time functions used to calculate the Walsh coefficients and
relevant nonzero sal an&/or cal spectrum plots. The dc or wal(0,6)
coefficient was ignored since only waveshapes and not absolute signal
levels were desired.

All of the waveférms synthesized possessed some sort of symmetric
properties such as evenness or oddness or quarter wave symmetry, etc.
The symmetry rules for the Walsh-Fourier series are identical with the
Sine-Cosine Fourier series; i.e. an odd function has only odd Walsh
function coefficients, etc. In this context, one notes from Table 4-1,
that a sine wave, which is an odd function, appears to have a nonzero
coefficient for wal(2,6), or cal(l,9), which is an even function. This
is due to truncation errors mentioned above since a finite numbef of
points (1024) were used for computing that coefficient. This is a
problem that has been discussed in the literature and is due to the
nature of the discrete transform®. 1In any event these types of coef-
ficients were assumed to be zerb for the waveform synthesis experiment
and are so labeled in Tables 4-1 through 4-5.

The synthesized waveforms of Figure 4-2 have a staircase-like
appearance similar to the output of a hold device used in'sampled—data
Systems. These waveforms afe sequency-limited functions, i.e., their
Walsh spectra is limited to the first 15 Walsh coefficients. If the
generator was capable of generating a large set of Walsh functions the
"jumps" or steps would be less pronounced and the waveform would approach

(in the 1imit) a smooth function.

“Ibid.

&
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By using the abéve procedures a method has been demonstrated for
synthesizing waveforms that is relatively simple. Hutchins and Insam®
have employed these techniques for realizing an electronic music
synthesizer device and have suggested an electronic organ based on this
method. This synthesis method was possible because a generator was

available that produced a set of synchrenized Walsh functions simultaneously.

4.2 Dyadic Invariant Linear Systems

A linear system is said to be time invariant when a time translation
of the input function results in the identical time translation of the
output function (see Figure 4-14). A linear system is said to be dyadic
invariant when a dyadic time translation of the input function results
in the identical dyadic time translation of output function (see
Figure 4-15).

Johnson and Pichler have shown that the input-output relationship
for dyadic invariant linear systems is described by the dyadic convolution
integral discussed in Chapter 16. Therefore, if h(t) is the impulse
response of such a system, the input-=output relationship is given by:

y(t) = J( x(t) h(t87)dr ' (4-1)

where x(t) is the input to the system and y(t) is the output. The
response of a dyadic invariant system would be of limited interest if
the dyadic convolution had to be performed for every input function.

This is similar to classical linear system theory where the convolution

SSee References 48 and 48.

6See References 20, 21, 23, 24, 50, 69, 70 and 71.
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£(t) Linear System g(t)

h(t)

£(t+1) ‘Linear System g(t+1)

h(t)

Figure 4-14 A Time-Invariant Linear System




f(t)

-89~

£(t®7)

. Linear System

h(t)

g(t)

Figure 4-15

Linear System

h(t)

g(ter)

A Dyadic-Invariant Linear System
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integral (purely time-domain analysis) is preferably avoided in many
cases. Indeed, just as transforming to the frequency domain allows a
simplification of classical linear system theory, so also does transforming
to the sequency domain afford a simpler analysis of dyadic invariant
lihéar systems. Applying the dyadic convolution theorem of equation 1-22
to equation 4-1 and letting Y(¢), H{c) and X{(o) denote the Walsh-Fourier
transforms of y(t), h(t) and x(t) respective1y7.

Y(o) = H(o) X(9) (4-2)

where H(c) is known as the Walsh or sequency transfer function of the

dyadic invariant system.

It is not obvious that any classical linear systems possess this
dyadic-invariant property. The dyadic-invariant concept as applied to
linear systems has been used to develbp sequency filters (lowpass,
highpass, bandpass). Johnson has presented a rigorous discussion of

dyadic-invariant linear systems and has developed the Walsh transfer

’The notation X(c) will be used to denote the even and odd Walsh-Fourier

transforms of x(t), i.e.

X (1)
X(0) =9
Xg (1)

the product of two Walsh-Fourier transforms using this notation will
be interpreted to mean
H () X, (n)

Hg (M) Xg(u)

H(9) X(9) =

the ¢ notation will be used for convenience.
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function concept®’?. Johnson also presented a fascinating study of
Walsh function analysis of sampled-data systems. A simple sample-data
system will be analyzed in the next section based on Johnson's work.

4.3 The Zero-Order Hold as an Ideal Sequency Lowpass Filter

The simplest and most often used data reconstruction filter of
sampled-data sysfems is the zero-order hold (ZOH)!?. The ZOH is a
lowpass filter having a frequency characteristic defined by a Ei%_ﬁ j
relationship. The impulse response of a ZOH is shown in Figure 4-16. %
The impulse response is usually described by a unit pulse; however, a
pulse of amplitude'sixteen is used for convenience in the analysis
procedure to be presenfed later.

Johnson has shown that the ZOH is an ideal sequency low pass
filter, i.e. a sequency filter whose sequency transfer function is

described by Figure 4-1711:12, Uysing this fact, the input-output

8Johnson used the Paley-ordered Walsh functions for his work, however
Pichler has used sequency ordering to develop the same concept. See

References 50 and 69.

3At the 1973 NATO conference on signal processing, Pichler stated that

he knew of "no naturally occuring system that possessed the &yadic—
invariant property.'" See Reference 70, p. 41.
10For a discussion of the zero-order hold aﬁd other data reconstruction
devices, see Chapter 2 of Reference 54.
~{1Johnson also showed that the ZOH is an example of a dyadic-invariant

linear system. See Referencc 50, pp. 87-89.

12 . s . ,
For a more detailed discussion on sequency filters see References 43,

44, 45, 46, 58, 64, 74 and 80.
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relationship for the linear system.shown in Figure 4-18 will be analyzed
using the Discrete Fourier Transform and the Discrete Walsh Transforﬁ.
The sampler shown in Figure 4-18 is an ideal (impulse)} sampler and the
impulse response of the ZOH is assumed to be described by Figure 4-16.13
The sampling period will be assumed to be 1/16 of a normalized
second. This leaés to a cutoff sequency of 8 for the ZOH (see
Figure 4-17). The sampling theorem for sequency analysis is almost
jdentical to that of the sampling theorem for frequency analysis, 1i.e.
if a signal is sequency-limited to a sequency of B zps that signal must
be sampled at a rate of at least 2B samples per second.t*

The analysis of the system of Figure 4-18 was performed using the
Discrete Walsh Transform and the Discrete Fourier Transform discussed
in Chapter 3. The subroutines FFT1 and FWT4 were used to perform the
necessary calculations. From the material presented in Chapter 3, one
notes that the DWT and DFT can be used for handling only discrete data.
However, the input and output functions of the system [f£(t) and h(t)]
are in general continuous. Besides this problem, the sampler is
assumed to be an ideal sampler whose output f*(t) is a series of Dirac
delta functions. One Dirac delta function occurs every 1/16 of a
normalized second. This presents the dilemma of simulating continuous

time functions and an ideal sampler using a digital computer.

1 3011 the describing variables (time, frequency and sequency) will bc
assumed to be normalized.

1“At preseﬁt there is a debate in the literaturc whether or not the
sampling theorem has a dyadic nature to it, therefore not allowing a

general sampling principle to be stated. See References 43, 50, 51 and 62.
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The method used to simulate the continuous time function was
that of dividing the unit interval up to 512 points. It was assumed
that by describing the input and output function by 512 points along
the unit interval that a reasonably good approximation to a continuous
function could be made. The number of points chosen was such that it
was much greater that the desired sampling time of the system, i.e.
the input-output functions are described every 1/512 of a normalized
second whereas the sampler is running every 1/16 of a normalized second.

The final problem is that of simulating the ideal sampler. From
the discussion presented in Chapter 3, the discrete points used in the
DWT or DFT can be assumed to be Dirac delta functions!3 “therefore
using this concept, the sampler can be simulated directly by allowing
the output of the sampler be equal to a modified version of the 512
point discrete input functions discussed above. Since the input
functions and output functions are described for 512 points along the
unit interval, the output of the sampler must also be described for
512 points, i.e. the output of the sampler must be defined to be some
value at every 1/512 of a normalized second. But the sampler is running
every 1/16 second, hence the question arrises what is the output of an
ideal sampler between sampling instants?  The answer is that odtput
of the sampler is defined to be identically zero between sampling
instants! ®.  ence, the sampler was simulated by allowing its output

to be f(t) every 1/16 of a normalized second and being zero elsewherec.

15The actual Dirac delta functions appear in the derivation of the DWT
or DFT from the continuous Fourier transform.

185ee Chapters 1 and 2 of Reference 54.
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Using this scheme the array of numbers used to describe the output of

the sampler for the needed 512 points was one of having one data point
equal to the value of f(t) at the sampling instance, followed by 32
zeroes, then another data point followed by 32 zeroes, etc. This allowed
16 samples of the input function every unit interval. The 32 zeroes

come about because of the necessity of defining the output of the sampler
every 1/512 of a normalized second.

Once the sampled signal f*(t) was constructed using the above
scheme, the analysis proceeded by first obtaining the DWT or DFT of f*(tj,
then the transformed signal was multiplied by its respective frequency
‘or sequency transfer function of the ZOH. Finally, the inverse
transform was obtained and g(t) was plotted. A flow chart for the
FORTRAN mainline program used to implement this analysis procedure is
shown in Figures 4-19 and 4-20. The sequency and frequency transfer
functions of the ZOH were obtained by computing the DWT and DFT of the
impulse response shown in Figure 4-16. The sequency and frequency
transfer functions are shown in Figures 4-17 and‘4—21 respectivelyl”.
From Figure 4-17 the sequency transfer function is unity for the
first eight sequencies and zero thereafter. This fact was used in that
it was not necessary to multiply the transformed sampled time function
by the sequency transfer function in tﬁe analysis procedure. The only
thing required was to set all the sequency coefficients above eight

to zero and then immediately do the inverse transformation. This saved

17Fjigure 4-21 is the magnitude of the transfer function. Figure 4-21

shows the folding properties of the output of DFT. Using the 512-

point transform only 256 unique frequency coefficients were resolved.




~-98-

Initialize Parameters

Construct Sémpled

Time Function f£*(t)

?t EE Compute DWT of £*(t)
b to Obtain F*(g)
CALL FWT4

Y

Insert Zeroes in F*(0)
"~ Above -€Cutoff Sequéncy .
to Obtain .G(0)

Y

Compute Inverse DWT
to Obtain g(t)
CALL FWT4

Plot g(t)

Figure 4-19 Flow Chart for Analysis of ZOH Using Sequency Transfer Function
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Initialize Parameters

Construct Sampled
Time Function £*(t)

Compute DFT of f£*(t) to
Obtain F*(jy)
CALL FFT1

Multiply by Frequency Transfer :;
Function of ZOH[H(jw)] :
G(jw) = H(Gw) F*(jw)

Compute Inverse DFT .
to Obtain g(t)
CALL FFT1

e

Plot g(t)

Figure 4-20 Flow Chart for Analysis of ZOH Usiﬁg Frequency Transfer Function
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time in analyzing the system using the sequency transfer function and
that is the reason why the amplitude of the impulse response was chosen
to being 16 and notunity. This also demonstrates one of the advantages

of using the sequency transfer concept for analyzing this system. By
analyzing the system using discrete transformation techniques one is
assuming that the discrete convolution theorem (dyadic and arithmetic)
are good approximations in this case of the integral convolution theorem.
Another way to think of this system is that of a digital sequency

filter; hence using the discrete convolution theorem to-analyze it.

The system of Figure 4-18 was anaiyzed using the sequency and
frequency techniques discussed above for five different input functions.
The input waveforms were the five waveforms -synthesized using the Walsh
Function generator.(see Figures 4-3, 4-5, 4-7, 4-10 and 4-12). The
results are shown in Figures 4-22 through 4-31'8. The results obtained
using the sequency transfer function technique are identical to -that
obtained using standard frequency techniques. The outputs of the ZOH
were exactly what one would expect using such a device.

The impulse response for the system was chosen such that the
sequency filter would cut off at a sequency that was compatible with
the sequency-limited signals synthesized in section 4.1. .By comparing
Figures 4—22 through 4-31 to Figure 4-2 it is obvious that the waveshapes
are "similar" but not identical. This is due to thc fact that synthesized

waveforms did not come about from some sampling process, hence these

18The outputs are attenuated from what one would expect given this
particular system. This is caused by the way the sampler was simu-

lated and is due to something known as the "stretch' phenomena. See

References 2 and 26
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waveshapes should not be considered the output of a hold device.

In conclusion, a sequency transfer function has been used to
describe the input-output relationship of a simple dyadic-invariant
system. The system used was that of a familiar time-invariant linear
system. In general, to use the sequency transfer function concept one
must first show that the system is dyadic-invariant, i.e. that input-
output relationship is described by the dyadic ¢onvolution integral.
Demonstrating dyadic-invariance isArather complicated to do. This fact
has led to problems in trying to develop a linear system th?ory using
Walsh functions. An advantage of using Walsh functions to analyze
the system of Figure 4-18 is that it was not necessary to do any
complex multiplication operations to evaluate the convolution product.
In fact the operation required was just that of setting the sequency
coefficients above the cutoff value to be zero and immediately performing
the inverse transformation. Another advantage is the time saved due

to the relative speed of the FWT as opposed to the FFT19.

lg'I:he dyadic-invariant system concept seems to contribute more in the
area of discrete-data or sample-data systems. For more details on
Walsh function system analysis, see References 1, 18, 21, 23, 37, 50

. and 81.



Chapter 5
CONCLUDING REMARKS

5.0 Introduction

The purpose of this chapter is to discuss briefly some disadvantages
to using Walsh functions. . The disadvantages will mainly lie in the
area of truncation errors and cyclic shift problems.

The results of this thesis will be quickly reviewed and topics for
further investigation will be presented in the second half of this
chapter. |

5.1 Disadvantages of Using Walsh Functions!

Walsh functions do have disadvantages such that in some applications
sine-cosine Fourier analysis techniques are vastly superior. One.of the
disadvantages to using Walsh-Fourier techniques is that an arithmetic
time shift theorem does not exist for the Walsh-Fourier transform?’ 3.

If a given time function is shifted by a finite amount, the magnitude

of its sine-cosine Fourier Transform is not altered by the time shift.
The difference between the shifted and original signal is a phase con-
stant related to the time shift. This is not so for the Walsh-Fourier

transform. This difficulty may be attributed to the fact that after time.

1This entire section is based on an excellent paper by Blachman describing
some of the problems encountered when using Walsh functions. See Refer-
ence 13.

2For the Discrete Fourier Transform, the arithmetic time shift thcorem is
sometimes referred to as the ''modulo N shift property'.

¥or a discussion of the shift theorem see Reference 17, p. 104-107.
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shifting, a Walsh function ggnerally becomes the sum of an-infinite
number of Walsh functions while a sinusoid simply turns into the sum of
a sine and cosine of the same frequency. Thus 2 change in the time
scale or a shift of the time origin usually will grossly alter a Walsh
spectrum but has only a minor effect (a phase shift) on the standard
Fourier spectrum.

There is a dyadic time shift theorem® for the Walsh-Fourier trans-
form; however, it like all of the dyadic properties of Walsh functions
is somewhat alien to the average engineer. This shift property can be
related to the dyadic convolution property discussed in Chapter 1, 3 and
4. This lack of a shift property implies that to use the Walsh-Fourier
Transform, or the Discrete Walsh Transform, one must have very good
synchronization such that the time scaie or time origin is mnot changed
in any way. This synchronization in some applications can not be
_adequately maintained; hence Walsh techniques can not be used.

There are two sources of error encountered when using the discrete
transforms discussed in Chapter 3, truncation erxor and roundoff error.
Truncation error is due to the fact that only a finite number of terms
can actually be used for a particular time function. Roundoff crror
is due to using only a finite number of digits in representing the
coefficients of the transform. Blachman has shown, taking into account
poth truncation and roundoff errors, that a given sequency-limited time
function in the absence of exact synchronization requires 12/6 times as
many Walsh coeffiéients to standard Fourier coefficients for the same

rms €rxror.

4gee Reference 50, p. 24.
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A sequency-limited time function has a staircase-like appearance

(see Figure 4-2). The Walsh analysis above was not synchronized

2
with the '"jumps" of the time function and hence %—-more coefficients

were needed. Blachman has presented similar results when assuming that
the time function is continuous.

In general, it usually requires more Walsh coefficients to représent
a time function than standard Fourier coefficients given the same rms

error. This fact was noted in section 4.1 when discussing why the sine

wave appeared to have even Walsh coefficients (see Table 4-1). The larger

error property has the effect of nullifying part of the advantage gained
by the relative speed of the Discrete Walsh Transform, i.e. the Walsh
coefficents can be calculated faster but have a larger rms error associ-
ated to them. Hence, thefe is a trade-off between relative speed and
error when using the Discrete Walsh Transform as opposed to the Discrete
Fourier Transform.

Blachman has shown that these errors can be attributed to the fact
that the sine-cosine Fourier series tends to approximate, in some cases
very accurately, the optimum Fourier series known as the Karhunen-Loene
expansions. The Walsh-Fourier series does not approximate the Karhﬁnen—‘
Loene expansion as accurately and in faét the Walsh coefficients tend to
be asymptomatially correlated which accouﬁts for the greater truncation

errors.

5The Karhunen-Loene expansion is optimal in the sense that the Fourier
coefficients for this expansion are uncorrelated with cach other. Sce

Reference 13, p. 351.
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The above discussion is not meant to imply that Walsh functions
should be discarded as having no applications in engineering work. On
the contrary, Walsh functions have been used in many applications with
excellent success®. The above discussion was presented to indicate that
Walsh functions do have some disadvantages and in general they are some-
what sub-optimal to the standard sine-cosine set”.

5.2 Summary of Results

This thesis has demonstrated the usefulness of Walsh functions in’
the area of spectral analysis and synthesis. A Walsh function generator
design has been presented and waveform synthesis has been accomplished
using this generator.

A standard Fast Fourier Transform subroutine has been modified to
compute various versions of the Fast Walsh Transform. The input-éutput
relationship of a simple sample-data system has beén analyzed and
identical results obtained using either the frequency or seqdency
transfer function of the system.

5.3 Topics for Further Research

The topics for further research in the Walsh function area or
related areas will be listed below in two groups. The first group will
be Walsh function topics and the second group will be related topics in

the signal processing area.

8A sequency-division multiplex system has been in operation in the
West German telephone system for about four years. For other applications
see References 33, 42, 43, 44, 45, 46, 56, 58, 84, and 88.

’Essentially Chapters 2 through 4 present the advantages to Walsh functions.
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Walsh function area:

1.

Development of a two-dimensional Fast Walsh Transform subroutine
and investigation of topics related to picture processing using
this subroutine. The two dimensional dyadic convolution
property should be investigated.

Further investigation of dyadic-invariant linear systems to
ascertain if the sequency transfer function concept can be used
to describe more complek practical engineering systems.

The application of continuous and digital sequency filters to
the communications area.

Investigation of electromagnetic Walsh waves and their
applications to optics and communications.

Development of a set of Walsh;function experiments for under-
graduate students to demonstrate "alternate' methods of Fourier

analysis.

Signal processing area:

1.

Investigation of other sets of orthogonal functions and their
convolution properties, particularly the set of Haar functions
and the set of Slant functions. Discrete Fourier Transforms
can be computed using these functions by. suitable variations of
a Cooley-Tukey algorithm. Two-dimensional versions of these
Fourier transforms have been used for picture processing.
Further investigation of the Generalized Discrete Fourier

Transform and its properties.
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PAGE )

/7 408

LOG DRIVE CART SPEC CART AVAIL PHY ORIVE
Q0a0 oc1s 0018 Qo00

v2 M1l ACTUAL 16K CONFIG 16K

// FOR

#LIST ALL

®ONE WORD INTEGERS

N NOANOANNAANNANDNANDADNANNONDN

(TR N

VARIA

STATE
1

SUBROUTINE FWTL (MReN,M}

THIS SUBRONTINE COMPUTES A FAST HADAMARD TRANSFORMeTHE
1S BASED ON THE FACTORING OF THE HADAMARD MATRIX USING
INDEXING AND KRCNECKER PRODUCT OPERATICNe THIS PROGRAM
FROM ''COMPUTATION OF TRHE FAST HADAMARD TRANSFORM!!

SPRINGFIELDsVAe1PP 177180

FwWT1

ALGORITHM FWT1

BINARY
1S TAKEN

FWT1
FWwTl

YeYs SHUM FWTL
AND AeRSELLIOTTEPROCEEDINGS GCF SYMPOSIUM ON APPLICATIONS OF WALSH FWT1
FUNCTIONS 1972+NATIONAL TECHNICAL INFORMATION SERVICEsAD=T744=650y FWT1

MR=THIS VECTOR CONTAINS THE SAMPLE VALUES TO BE TRANSFORMED.

N=THIS IS5 THE DIMENSION OF THE VECTOR MR

Me THIS 1S THE POWER QOF 2 THAT N IS EQUALsleEe N=2%%M,

SUBROUNTINE FWT1 GCOMPUTES ONLY THE FORWARD HADAMARD TRANSFORM
OF THE INPUT DATAs TO CCMPUTE THE INVERSE TRANSFORM SEE SUBRQUTINEFWT1
FWT2e THE OUTPUT OF THIS SUBROUTINE 1S ALREADY NORMALIZED SO IT
1S NOT NECESSARY TO DIVIDE THE OUTPUT COEFFICIENTS BY N

NOTESTHE TRANSFORM COEFFICIENTS ARE RETURNED FROM FWT1 IN THE

VECTOR MR THE INPUT DATA 1S DESTROYED.

REAL MR{1}

LN

Kal

DO 3 NM=lM

=0

LsL/2

00 2 NL=1sL

D0 1 NK=1K

I=sl+1

Jul+K

MRIT)s (MR{TV+MR{J))/2
MR{JI=MR( [)=MR{J}

1=d

KuK#2

RETURN

END
BLE ALLOCATIONS
L{Il 1=0002 kil 1=0003 NMt 1
Jtf 1=0008

MENT ALLOCATIONS
sQ065 2 =0078 3 =0085

)=0004

It

FWT1
FWT1
FWwTl
FWTl
FWT1
FWT1
FWTL
FWT1

FWT1
FWT1
FWT1
FWT1
FWTl
FWT1
FWTl
FWTl
FWTl
FWT1
FWTl
FWT1
FWTL1
FWT1
FWT1
FWTl
FWwTi
FWT1
FWT1
FWT1
FwTl
FWT1
FWTl
FWwTl

)=0005
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-LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
Q000 0018 .ools8 0000

V2 M11 ' ACTUAL 16K CONFIG 16K _— . E

/7 FOR : : » _ : !
#LIST ALL '
~#ONE WORD INTEGERS A

SUBROUTINE FWT2 (MRsNeMsIFSETI FWT2 10

THIS SUBRONTINE COMPUTES A FAST HADAMARD TRANSFORMsTHE ALGORITHM FWT2 20

IS BASED ON THE FACTORING OF THE HADAMARD MATRIX USING BINARY FWT2 30
INDEXING AND KRONECKER PRODJCT GFERATIONe THIS PROGRAM IS5 TAKEN FwT2 - 40
FROM *$1COMPUTATION QF THE FAST HADAMARD TRANSFORM!' BY Y,Ye SHUM FWT2 50
AND AGRCELLIQOTTEPROCEEDINGS OF SYMPOSIUM ON APPLICATIONS OF WALSH FWT2 60
FUNCTIONS 1972+MATIONAL TECHNICAL INFORMATION SERVICEAD=744~6304 FWT2 70

nonNNOANOHNOANNNNNDNNANDNANDAONN

SPRINGFIELDsVAe+PPe177=180 FWT2 80
FWT2 90

FWT2 100

MR-THIS VECTOR CONTAINS THE SAMPLE VALUES TO BE TRANSFORMED. FwT2 110
N=-THIS 1S THE DIMENSION QF THE VECTOR MR. FWT2 120
M= THIS IS THE POWER OF 2 THAT N IS EQUALsTeEs Na2%¥M, FWT2 130
IFSET=THIS FLAG DETERMIMES WHETHER A FORWARD OR INVERSE TRANSFOR/M FWT2 14C
IS TO 8¢ COMPUTED. IFSET=-1 AN INVERSE TRANSFORM IS COM=  SwT2 150

PUTEDe IFSET=1 A FORWARD TRANSFORM 15 COMPUTED. FWTZ 160

FWT2 170

FWT2 180

THE OUTPUT OF THIS SUBROUTINE 1S ALREADY NORMALIZED SO IT IS NOT FwT2 190
NECESSARY TO NORMALIZE BEFORE OR AFTER THE SUBROUTINE IS CALLEDs FwWT2 200
FWT2 210

NOTESTHE TRANSFORM COEFFICIENTS ARE RETURNED FROM FWT2 IN THE FWT2 220
VECTOR MR,  THE INPUT DATA 1S DESTROYED. FWT2 230
FWT2 240

FWT2 250

FWT2 260

REAL MR(1) FWT2 270
L=N FWT2 280
K=l FWT2 290
DO 5 NM=lsM : FWT2 300
1=0 FWT2 310
LaL/2 : FWT2 320
DO & NL=lsL FWT2 330
DO 3 NK=lsK FWT2 340
I=l+1 FWr2 350
JeI+K , FWT2 360
IFUIFSET) 1292 FWT2 370

1 MR{I)sMR(I}+MR(J) FWT2 380
MR{J)=MR( [)=MR(J}=MR{J) _ FuT2 390
GO TO 3 . FWT2 400

2 MRIT)=(MR{I}+MR(J})/2 FUT2 410
MR J1=MRETI=MR () : FWT2 420

3 CONTINUE ‘ FWT2 430
4 faJ FWT2 440
5 Kek®2 FWT2 450
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RETURN
END
VARIABLE ALLOCATIONS
Ll =0002
Jil )=C008

STATEMENT ALLOCATIONS
1 20085 2  =0079

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
FADDX Fsusx FLOX

INTEGER CONSTANTS
1=000¢ 0=000D
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Kil )=0003 NM(I }=0004

3 ° €00A0 & =0Q0A9 5 =008s

FSTO FSTOX FDVR FLOAT sSUBSC

2=000E

CORE REQUIREMENTS FOR FwT2

COMMON Q VARIABLES

12 PROGRAM 188

RELATIVE ENTRY POINT ADDRESS IS GCOOF (HEX!

END OF COMPILATION

FWT2 460
FWT2 470

[(2 1=0005

SUBIN
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PAGE 1
77 Jos
LOG DRIVE - CART SPEC  CART AVAIL PHY ORIVE
0000 cola ools 0000
v2 M1l  ACTUAL 16K CONFIG 16K '
/7 FOR
#L1ST ALL
®ONE WORD INTEGERS :
SUBROUTINE FWT3 {XREALsNeNU} . FuT3

n nnnnnnnnnnnnnnnnnnnnnnnnnnn

104

103

nDnNn

102

THIS SUBRQUT INE COMPUTES A FAST WALSH TRANSFORMs THE OUTPUT CO= FWT3
EFFICIENTS ARE PALEY OR DYADIC ORDEREDeTHIS ALGORITHM IS BASED ON FWT3
A COOLEY=TUKEY TYPE ALGORITHMeFWT3 [S BASICALLY A STANDARD FAST FWT3
FOURIER TRANSFORM SUBROUTINE THAT HAS BEEN MODIFIED TO DO A WALSH FWT3
TRANSFORM 4 THE MAJOR MODIFICATIONS ARE THE SINE FUNCTIONS ARE SET FWT3
EQUAL TO ONE AND THE INPUT DATA 1S BIT REVERSED.THE FFT SUBROUTINEFWT3
WAS TAKEN FROM ''THE FAST FOURIER TRANSFORM!'®' 8Y E.ORAN ERIGHAMG FWT3
PRENTICE~HALLEENGLEWOOD CLIFF eNeJ9515749PPo16C=1644THE MODIFICAT= FWT3
IONS WERE SUGGESTED BY Jole SHANKS s ¢ * COMPUTATION OF THE FAST WALSH=FWT3
FOURIER TRANSFORM®'EI.EeEeEs TRANSe ON COMPUTERS *VOLLEC=189PPat5T=FWT3

459 9MAY 1969 FwWT3
' . FWT3

FwT3

XREAL=THIS VECTOR CONTAINS THE DATA TO 8S TRANSFORMEDs FWT3
N=THE NUMBER OF POINTS TO BE TRANFORMED FWT3
NU=THE POWER OF 2 THAT N 15 EQUAL TeEasNm2##NUe FWT3
FWT3

THIS SUBROUTINE REQUIRES THE INTEGER FUNCTION IBITR TO DO THE BIT FwWT3
REVERSE OPERATIONSs : : . FWT3
FWT3 COMPUTES THE FCRWARD AND INVERSE TRAMSFORMSsTHE CALL TO THE FwT3
SUSROUTINE 1S IDENTICAL. THE OUTPUT OR INPUT DATA FOR FWT3 MUST FwT3
BE SCALED RELATIVE TO THE VALUE OF N AS WITH MOST FFT SUBROUTINESFWT3

. FWT3

NOTELTHE TRANSFORM COEFFICIENTS ARE RETURNED FROM FWT3 IN THE FWT3
VECTOR XREALe THE INPUT DATA IS DESTROYED FWT3
FWT3

FWT3

DIMENSION XREALI(1) FWT3
BIT REVERSE INPUT FWT3
DO 103 K=1lsN FWT3
1n]BITR{K=1eNU}I+1 FWT3
IF(I=X) 1034104104 ’ FWT3
TREAL=XREAL (K} FWwT3
XREAL(K}=XREALII} FWT3
XREAL{1)=TREAL FWT3
CONTINUE . FWT3
NOW COMPUTE THE TRANSFORM FWT3
FWT3

INITIALIZE THE PARAMETERS FwT3
N2=N/2 FWT3
K=Q - FWT3
00 100 L=1sNU FWT3
DO 101 I=1sN2 . FWT3

COMPUTE THE ARRAY INDEX FOR THE DUAL NODE PAIR FWT3

10
20

40
S50
60
70
80
90
100

‘110

120
130
140
150
160
170
186
190
200
210
220
230
240
250
260
270
280
290
300
310
220
330
340
350
360
370
380
390
400
410
420
430
440
450
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KleK+l FWT3 460
KIN2=K1+N2 ' FWT3 470
< COMPUTE THE DUAL NODE PAIR - . ' FWT3 480
TREAL=XREAL{K1N2} : FWT3 490
XREAL (K1N2}=XREAL (K1) ~TRCAL ) . FWT3 500
XREAL (K1)=XREAL(K11+ TREAL ’ FWT3 510
101 K=K+l FWT3 520
. K=K+N2 FWT3 530
IFIK=N) 102¢99+99 FWT3 540
99 K=0 ' FWT3 550
100 N2=N2/2 - FWT3 560
RETURN FWT3 570
END FWT3 580

VARIABLE ALLOCATIONS

TREAL(R 120000 k{1l )=0004 1t1 120005 N2(l »=0006

KIN2(I 1=0009

STATEMENT ALLOCATIONS :
104 =0038 103 =0055 102 006D 101 =0098 99 -=00B6 100 =008BA

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
IBITR FADD Fsus FLD FLDX FSTO FSTOX sudscC SUBIN

INTEGER CONSTANTS
12000C 2=000D 0=000E

CORE REQUIREMENTS FOR FWT3 -
COMMON 0 VARIABLES 12 PROGRAM 192

RELATIVE ENTRY POINT ADDRESS 1S 0QO0F (HEX])

END OF COMPILATION
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1/ Jos
.LOG DRIVE CART SPEC  CART AVAIL
.0000 0018 . Qo1l8
V2 M11  ACTUAL 16K CONFIG 16K
/7 FOR
-#L1ST ALL

~ONE WORD INTEGERS

nnon

N AaNANNNANNNDNNNANANOANNNDNNNNRANONNNANN

104

103

SUBROUTINE FWTé4 (XREALeNsNU)

THIS SUBROUTINE COMPUTES A FAST WALSH TRANSFORMeTHE OUTPUT CO=
EFFICIENTS ARE SEQUENCY ORDEREDSTHIS ALGORITHM BASED ON A COOLEY-
TUKEY TYPE ALGORITHMeFWT& IS BASICALLY A STANDARD FAST FOURIER
SUBROUTINE THAT HAS BEEN MCDIFIED
MAJOR MODIFICATIONS ARE THE SINE FUNCTICNS ARE SET EQUAL TO ONE
-AND THE INPUT DATA 1S BIT REVERSEDs THERE 18 A SLIGHT MCDICATION
TO THE WAY THE '/BUTTERFLYS'!
TAKEN FROM **THE FAST FCURIER TRANSFCRM?!*
PRENTICE=HALL s INCe& 1974+PPs16Q=1644THE MCDIFICATIONS
SUGGESTED BY JeLeSHANKS» ' 'COMPUTATION OF THE FAST
TRANSFORM! 15 T14EaEeEe TRANSSON COMPUTERS#VOLOEC=189PR445T=459
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PHY DRIVE
0900

ARE COMPUTED.

TO DO A WALSH TRANSFORM

THE FFT SUSRCUTINE
QRAN BRIGHAME

WALSH=FQURIER

FwT4
FWT%
FWwia
FuTh

FuTs
FATG "

FwTa

WASFWT S

FuTa
FwTa
FWTs
FWTé

MAY196G6AND BY JeWeMANZ9''A SEQUENCY~ORDERED FAST WALSH TRANSFORMFuT4

Y96 1eEeEeZe TRANSe ON AUDIO AND ELECTROACOUSTICSsVOLsAU=20+NOe3 s

AUGe1972+PP+ 2042054

XREAL=THIS VECTOR CONTAINS THE DATA TO BE TRANSFORMEDo
N-THE NUMBER OF POINTS TO BE TRANFORMED.
NU=THE POWER OF 2 THAT N IS EQUAL IleEssN=24%NUe

"THIS SUBROUTINE REQUIRES THE

REVERSE OPERATIONS.

FWT4 COMPUTES THE FORWARD AND INVERSE TRANSFORMSsTHE CALL TO THE
THE CUTRUT OR INPUT DATA FOR FWT&4 MUST FwTé
VALUE OF N AS WITH MOST FFT SUSROUTINES.FWT4

SUBROUTINE IS IDENTICAL.
BE SCALED RELATIVE TO THE

NOTESTHE TRANSFORM COEFFICIENTS ARE RETURNED FROM FWT3 IN THE
VECTOR XREALs THE INPUT DATA 1S DESTROYED.

DIMENSION XREAL(1)

BIT REVERSE INPUT

DO 103 K=14N
I=IBITR(K=1sMUI+1

IF(I=K) 10341044104
TREAL=XREAL K}
XREAL(K)=XREAL(T) .
XREAL (1 )sTREAL

CONT INUE

NOW COMPUTE THE TRANSFORM

INITIALIZE THE PARAMETERS

N2=N/2
K=0Q

INTEGER FUNCTION IBITR TO 00 THE BIT

FuT4
FuTa
FWT4
FwTa
FWT4
FWT4
FWTa
2"
FwTa
FuTé
FWTé

FuT4&
FWT4
FWwTa
FWT4
FWTa
FWwT&
FWwTa
FWTa
FWwTa
FWT4
FWwT4
FWwT4
FWT&
FWTa
FWTa
FwT4
FWTa&
FwT4
FwTa

10

20

[3¢]
50
&0

-

80

100
110
120
130
142
130
16C
170
180
190
200
210
220
230
24Q
250
260
279
280
290
300
310
320
330
34Q
350
360
370
380
390
400
410
420
430
440

450 .
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PAGE 2
NPASS=0 FwTsa
DO 100 L=lsNU . FuTse
102 DO 101 1I=1sN2 FwTa
€ COMPUTE THE ARRAY INDEX FOR THE DUAL NODE PAIR - FuTa
KleK+l T FWTs
K1IN2=K 1+N2 ) . FuTéh
c COMPUTE THE DUAL NODE PAIR : . FuTs
TREAL=XREAL (K1N2} ) FWTa
IF(NPASS) 109s11Cs110 ) : FuTa
109 TREAL==TREAL ) ' FWTe
110 XREALIKIN2)=XRSAL(K1)~TREAL ’ FWTe
XREAL(K1)=XREAL{K1)}+ TREAL FWT4
101 K=K+l R SN FwTa
K=K+N2 ‘ . el FWTé
IF{NPASS) 12041204121 h . ’ FWTa
120 NPASS=1 ’ : FWT4
GO TO 130 - ’ FWT4
121 NPASS==1 - FWTa
130 IF(K=N) 102499499 - FwT4
99 K=0 . ) FWTa
NPASS=1 FwT4
100 N2=N2/2 FWTa
RETURN . . FuTa
END ST FWTé
VARIABLE ALLOCATIONS
TREAL(R 1=0000 K{I 1=0004 1t1 120005 N2{1 )=0006
K1(I )=0009 K1N2(I )=000A

STATEMENT ALLOCATIONS

104 =C03D0 103 =0057 102 =0Q073 .180% =0090 110 =0095 ‘101 =00AF 120

100 =QO0E1l

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
I181TR FADD FsuB FLD ~ FLDX FSTO FSTOX suBsc SNR sus

INTEGER CONSTANTS
1=000E 2=000F 0=0010

CORE REQUIREMENTS FOR FWT4
COMMON 0 VARIABLES 14 PROGRAM 230

RELATIVE ENTRY POINT ADDRESS 1S 0011 (HEX}

END OF COMPILATION

%60
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

IN
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PAGE )
// JOB

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 ao1is ogls 0009

‘v2 M11 ACTUAL 16K CONFIG 16K

// FOR
~8LIST ALL
~#ONE .WORD INTEGERS . :
FUNCTION IBITRIJoNUI - IBIT 10
< THIS INTEGER FUNCTION RETURNS THE BIT REVERSED VALUE FOR THE IN=- [IBIT 20
4 TEGER Je THE SUBPROGRAM wAS TAKEN FROM **THE FAST FOURIRE TRANS~ [BIT 30
C FORM' ¢ BY E,CRAN BRIGHAMEPRENT ICE~HALL 9 INCeELENGLEWOOD CLIFFSsNeJs iBIT 40
4 1974 4PP4160-1640 IBIT &
< : IBIT 60
4 J=THE VALUE OF THE INTEGER TO BE BIT REVERSED. IBIT 70 .
4 NU=THE NUMBER OF BITS TO SE CONSIDERED IeE«sTHE NUMBER OF BITS 1BIT 80 ;
< THAT DEFINE THE MAXIUM VALUE OF J. 11T 90 i
C . IBIT 100 |
4 . 1817 11cC
JisJ 1817 120
181TR=0 18It 130
00 200 IslsNU . 1BIT 140
J28J1/2 1817 15¢
IBITR=1BITR*2+(J1=2#42) . IBIT 160
200 Jl=J2 o o 1817 170
i RETURN ) 1817 180
B END ' I81T 190
2 VARIABLE ALLOCATIONS
IBITR(I )=0002 J1t1 1=0n03 111 1e0004 J2(1 )=0005

STATEMENT ALLOCATICNS
200 =0037

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
SUBIN

INTEGER CONSTANTS : o
020006 1=0007 2=0008

CORE REQUIREMENTS FOR IBITR
COMMON 0 VARIABLES 6 PROGRAM 66

RELATIVE ENTRY POINT ADDRESg IS 0009 (HEX)

END OF COMPILATION
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PAGE b
/7 JGB

-.LOG DRIVE CART SPEC CART AVAIL PHY DRIVE
0000 0018 - Q018 0000

V2 M11 ACTUAL 16K CONFIG 16K

// FOR
@LIST ALL
-4#0ONE WORD INTEGERS
SUBROUTINE FFT1 (XREAL+XIMAGsNeNUSIFSET) FFTL 10
c . ) FFT1 20
< THIS SUBROUTINE COMPUTES A FAST FOURIER TRANSFORM USING THE FFT1 30
C COOLEY=TUKEY ALGORITHM4THIS ALGORITM 1S BASED ON THE INPUT BEING FFT1 40
[ IN STANDARD FORM AND THE CUTPUT BEING IN BIT REVERSED ORDERED, FFT1 50
< THE ARGUMENT CF THE SINE FUNCTIOQNS ARE BIT REVERSED. THIS FFT1 60
< SUBROUTINE WAS TAKEN FROM '*THE FAST FCURIER TRANSFORM!'' B8Y E, FFTL 70
C ORAN BRIGHAMGPRENTICE~HALLEENGLEWCOD CLIFFSeNeJoE19T741PP4160~1644 FFTL 80
C . FFT1L 90
C FFTl 100
4 XREAL=~THIS VECTOR CONTAINS THE REAL PART OF THE DATA TO BE TRANS~ FFTl 110
if 4 FORMED. FFT1 120
) < XIMAG= THIS VECTOR CONTAINS THE IMAGINARY PART OF THE DATA TO 88 FFTI 120
[ TRANSFORM, FFT1 140
C N=THE NUMBER OF POINTS TO BE TRANSFORMED. FFT1 150
4 NU=THE POWER OF 2 THAT N IS EQUAL JeCesN=2#%#NUe FFT1 160
[ IFSET=IF IFSET=1 A FORWARD TRANSFORM WILL BE COMPUTEDe IF iFSETe FFTLl 170
< =1 A INVERSE TRANSFORM WILL BE COMPUTED. FFT1 180
C . FFT1 190
(< THIS SUBROUTINE REQUIRES THE INTEGER FUNCTION IBITR TO DO THE BIT FFT1 200
< REVERSE OPERATIONe . . FFT1 21o0
[ : FFT1 220
4 NOTESTHE TRANSFORM COEFFICIENTS ARE RETWRNED FROM FFT1 IN THE FFT1 230
C VECTORS XREAL AND XIMAGe THE INPUT DATA IS5 DESTROYED.
c !
<
DIMENSTON XREAL(1}eXIMAG(1)
< INITIALIZE THE PARAMETERS

N2=N/2
NUl=NU=1
K=0
¢ COMPUTE THE TRANSFORM
DO 100 L=lsiU

102 DO 101 [=1,N2
4 COMPUTE THE VALUE OF THE SINE AGRUMENT USING BIT REVERSE
P=IBITR(K/2%*NU1sNU)
ARG=64283185%P /FLOAT(N)
C=COS(ARG)
S=SIN(ARG*IFSET)

C COMPUTE THE ARRAY INDEX FOR THE DUAL NODE PAIR
Kl=Kel
KIN2=K 1+N2

€ COMPUTE THE DUAL NODE PAIR
TREAL=XREALIKIN2)*C+XIMAGIKIN2)#*S
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TIMAGaX IMAG(KIN2 ) #C=XREAL (K1N21*S . FFT1 460
; XREALIKINZ21=XREAL (K1)=TREAL ) FFT1 470
; XIMAG(K1INZ)=XIMAGIK1]=TIMAG . FFT1 480
; XREAL(K1)=XREAL{X1)+TREAL FFT1 490
] XIMAG(K1) =X IMAG(K1)+TIMAG FFT1 500
; < : : FFTL 510
; 101 K=K+l . . . : FFT1 520
: K=K+N2 . ) FFT1 530 ~
: IF{K=N} 102+99+99 . FFT1 540
: 99 K=0 ) : FFT1 550
i NUlsNU1=1 o FFT1 560
! 100 N2=N2/2 . FFTY 570
! ¢ B1T REVERSE THE CUTPUT ' FFT1 580
; . DG 103 K=loN o FFTL 590
t=IBITR(K=1sNUI+1 ) - FFT1 600
1F(1=K]) 103+104+104 . . ce FFT1 610
404 TREAL=XREAL(K} . . FFT1 620
TIMAG=XIMAGIK) ) : : FFT1 630
XREAL(K)=XREAL{1} FFT1 640
XIMAGIK)=XIMAGLT) . FFT1 650
XREAL!(11=TREAL - FFT1 660
XIMAG(11=T IMAG FFT1 670
103 CONTINUE FFT1l 680
RETURN FFT1 690
END FFTL 700
VARIABLE ALLOCATIONS .
P(R 1=0000 ARG(R 180002 C{R )1=000& SIR 1=0006

N2(1 )=000E NUL(T )=000F ki1 1=0010 ©oLtl =001l
KIN2(I 1=0014 . :

STATEMENT ALLOCATIONS

102 =0057 101 =00El $9 =Q0FC 100 .: 103 =015¢C
FEATURES SUPPORTED

ONE WORD INTEGERS
CALLED SUBPRGGRAMS

18ITR FCOs FSIN FADD FsuB FMPY FLD FLOX FST0 FSTOX
SUBIN .

REAL CONSTANTS
«628318E 01=0018

INTEGER CONSTANTS
220014 1=0018 0=001C

CORE RECUIREMENTS FOR FFT1
COMMON 0 VARIABLES 24 PROGRAM 336

RELATIVE ENTRY POINT ADDRESS 15 001D (HEX)

~ - END OF COMPILATION
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7/ JOB

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE

‘0000 oole Qole -0000

v2 Ml11 ACTUAL 16K CONFIG 16K

// FOR
-#LIST ALL
40ONE WORD INTEGERS

a2 Y aXaXa¥aXaXaYaXaXaXaXaXal

nnn

non

SUBROUTINE SORTL{XsNPCNTMT)

THIS SUBROUTINE SHUFFLES THE OUTPUT CCEFF!CI:NTS FROM A FAST
HADAMARD TRANSFOBM PROGRAM SO THAT THEY ARE IN SEQUENCY ORDER.
THIS ALGCRITM WAS SUGGESTED BY BeKeBHAGAVAN AND ReJePOLGE IN
t1SECUENCING THE HADAMARD TRANSFORM!'t&6leEeEeEs TRANSe OR AUDIO
AND ELECTROACOUSTICS10CT19734PP 4724730
X=THIS VECTOR CONTAINS THE HADAMARD COEFFICIENTS TO BE SEQUENCY
ORDERED.
NPONT=THE NUMBER OF POINTS TO BE ORDERED
MT=THE POWER OF 2 THAT NPONT 1S EQUALIoEocNPONT=2**WTe
DIMENSTION X(1}
INITIALIZE AND SET UP THE LOOP FOR STEP }
IT=MT=1
KPONT=z2##1T
KPASS=1
INSET=0
50 DO 100 I=1+IT
JTa2#%([~1)
JTT=]Ta]+1
KT=24%07T

00 100 J=1,JT
DO 100 K=24KT»2
INLaK+ (J=1)# (2% {JTT+1))+INSET
IN22 IN1=1+KT
Y=X(IN1)
X{INL)sX(IN2Z)
X{IN2)=Y
100 CONTINUE

STEP 2 OF THE ALGORITHM

DO 200 I=2+KPONTe2
K=KPONT+I+INSET
Y=X{X}
X(K)=X(K=1)

200 X{K=1:=Y

STEP 3 OF THE ALGORITHM

IF(KPASS) 30053504350
300 INSET=INSET+MPONT

SORT
SORT
SORT
S0RT
SORT
SORT
SORT

SORT’

SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT
SORT

SORT .

SORT
SORT
SORT
SORT
SCRT
SORT
SORT
SORT
SORTY
SORT
SORT
SORT
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PAGE 2

. IF(NPONT<INSET) 3504350450
350 INSET=0 ’
1Te(T=1
IF(IT) 40044004360
360 KPONT=24#[T
MPCONT=2#KPONT
KPASS==]1
GO TO 50
~400 RETURN
END
VARIABLE ALLOCATIONS
Y{R 1=QJ00 ITU1 1=0006 KPONT(1 }=0007
JT(1 ¥=00C8 JTIT(] 1=000C KT(1 )=0000
IN2(1 =001l MPONT(I 1=0012

STATEMENT ALLOCATIONS ’
50 =0030 100 =0C0%E 200 =00DA 300 =0CEE .350 =00FA

FEATURES SUPPORTED
ONE WORD INTEGERS

CALLED SUBPROGRAMS
FLOD FLDX FSTO FSTOX FIxl -SUBSC . SUBIN

INTEGER CONSTANTS
1=0016 220017 0=0018

CORE REQUIREMENTS FOR SORT1
COMMON 0 VARIABLES 22 PROGRAM 264

RELATIVE ENTRY POINT ADDRESS 1S 0019 (HEX)

END OF COMPILATION

SORY
SORT
SQRT
SORT
SORT
SORT
SORT
SORT
SORT
SORT

KPASS(I }=0008
J{I 1=000E

360 =0108 400

460
470
480
490
500
510
520
530
540
550

=0]



PAGE
/74 JO8

LOG OR
0000

v2 M1l
// FOR

®L1ST
®ONE W

nnnnnnnnnnnnnnnn

non

20

nnn

175

185
200
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1

[VE  CART SPEC  CART AVAIL PHY DRIVE
oo1s 0018 0000

ACTUAL 16K CONFIG 16K

ALL

ORD INTEGERS

SUBROUTINE WALSH (INUM.NNAL.IERR-NPONT)

TH1S SUBROUTINE COMPUTES A fHNXN! WALSH MATRIXsWHERE N 1s A INTE
POWER OF 2. 290CT+1974
THIS ALGORITHM WAS SUSGESTED BY E-A.HUTCHINS."EXPERIMENTAL
ELECTRONIC MUSIC DEVICES EMPLOYING WALSH FUNCTIONS ' '5JOURNAL OF
THE AUDIO ENGINEERING SOCIETYGVOL-210NO.890CT.1973'PP.6AD-645-

INUM=AN INTECER SUCH THAT NPONT=2*'INUM.NHERE NPONT 1S THE SIZE
OF THE CESIRED WALSH MATRIX.

NWAL=AN ARRAY CONTAINING THE WALSH MATRIX OF DIMENSION 'NPONT X
NPONT' e

$ERR=ERROR CODEsIF 1ERR=0=~NQ ERROR

WAL

GRAWAL

WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL

1Ff 1ERR=1=-=ERROR MADE IN SETTING UP THE RADEMACHERWAL

FUNCTIONSe

DIMENSION NWAL (NPONTsNPONT!
1ERR=0

GENERATE THE WALSH FUNCTION WAL(DsT)

DO 20 [=1sNPONT
NWAL{1s0)=1

GENERATE THE RADEMACHER FUNCTIONS

Do 200 k=19 INUM
INDEX=28%X

DO 200 L=1sNPONT
Pal((2cn¥Ki*L)=10]} JELOATINPONT)
HIGHEST INTEGER OF P
N1=P

N1sN1+1l
PaFLOATIN1)/2e

N1=P

Pap=FLOAT{N])

IFL P) 21091750185
NWAL { INDEX s} ==1

GO TO 200

NWAL { INDEX sl 221
CONTINUE

GO TO 215

WAL’

WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL
WAL

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
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210 1ERRs=] . WAL &40
GO TO 400 - WAL 450
€ WAL 460
H < GENERATE THE OTHER WALSH FUNCTIONS FROM THE ABOVE RADe FUNCTIONSe. WAL 470
H c : WAL 480
215 IN=INUM-l o o WAL 490
DO 300 KK=1»IN ' WAL 500
NS=2## (KK+1)=2%#KK=1 : WAL 510
INDEX®2## (KK+1) : WAL 520
DO 300 NAr1sNS WAL 530
INN=INDEX=NA WAL - 540
NAKK=NA+L : WAL 550 :
00 300 L=1sNPONT WAL 560
NCEX=NWAL { INGEX sL ) #*NWAL {NAKK oL} WAL 570 :
IF(NCEX) 24052504250 WAL 580 ;
240 NWAL(INNsL)==1 WAL 590 :
GO TO 300 WAL 600 ;
250 NWAL(INNsL)S1 WAL 610 £
300 CONTINUE WAL 620 Yo
400 RETURN . WAL 630 :
END . WAL 540 i
VARIABLE ALLOCATIONS . i
P{R )=0000 1i1 )=0006 k{1 3=0007 INDEX(I )=a0008 . i

IN(L )=0008 KK{l 1=000C NS(1 )=0000 NA(I 1=000E
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