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ABSTRACT

Delp III, Edward John. Ph. D., Purdue University, August 1979. Moment
Preserving Quantization and its Application in Block Truncation Coding.
Major Professor: Owen Robert Mitchell, Jr.

A new criterion for quantization design is presented whereby a
quantizer is obtained such that a finite set of moments of the output of
the quantizer is identical to that of the input to the gquantizer. The
general moment preserving quantizer (MP) is shown to be- related to the
Gauss-Jacobi mechanical quadrature problem used in numerical analysis.
The output Llevels of an N Llevel MP quantizer are shown to be the N
zeroes of an Nth degree orthogonal polynomial associated with the input
distribution. The N-1 thresholds of the MP guantizer are shown to be
related to the Christoffel numbers through the Separation Theorem of
Chebyshev-Markov-Stieltjes. The statistical convergence of the MP quan-
tizer is presented whereby convergence in distribution is guaranteed if
the input probability distribution 1is characterized by its moments
(i.e., a solution to the Hamburger, Stieltjes, Hausdorff moment prob=-
lem). Mean square convergence is also investigated. MP quantizer
tables are presented for the uniform, normal and Laplacian density func=-
tions. The MP quantizer is compared with the minimum mean square error

quantizer of Max.
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An image coding scheme is presented using a non-parametric formula-
tion of the MP quantizer. This coding technique is known as Block Trun-
cation Coding (BTC). Reconstructed images using BTC are shown to com=-
pare very favorably to transform coding at bit rates of 1.63 bits/pixel.
BTC is compared with both the non-parametric minimum mean square error
and minimum mean absolute error quantizers. The performance of BTC in
the presence of channel errors is discussed along with a hybrid formula-
tion. A differential form of BTC is presented at bit rates of 1.18
bits/pixel.

Image modeling is discussed 1in the context of quarter plane
Gaussian-Markov fields. Through appropriate use of initial conditions
these models are shown to be related to a seasonal autoregressive time
series. These models are fitted to test images; the images are then re-
generated using the model and a random number generator. These models
are shown to have promise in texture synthesis at low bit rates (0.33
bits/pixel). An application is presented where the model is wused to
generate crude background scenes with geometric features (edges)

displayed independently.
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CHAPTER 1

OVERVIEW OF IMAGE COMPRESSION AND STATEMENT OF PROBLEM

J.1. Introduction

Since the beginning of the use of digital techniques in the area of
image processing, there has been a desire to find ways of coding images
for efficient transmission and/or archival storage. We shall investi-
gate in this thesis a new method of image coding developed at Purdue
University over the past two years. This new technique has been given
the name Block Truncation Coding (BTC).

It shall be assumed throughout this work that the desired image has
already been sampled and quantized to obtain an acceptable discrete
representation of the image. It is assumed that this discretized image
is_ to be coded for bandwidth compression. The compression shall be ex-
pressed as a bit rate in bits per pixel (picture element). This is ob-
tained by dividing the total number of bits in the picture representa-
tion by the total number of pixels. The original discrete images will

have a nominal gray level resolution of either 6 or 8 bits.

J1.2. Overview of Image Compression

Image coding for bandwidth compression can usually be grouped into
two general methods, information and non-information preserving coding
0353, 0321, [691, [631, [301, [37]1. Information preserving coding takes

the form of entropy coding. This is accomplished by first obtaining a
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histogram of the image pixel gray levels (or perhaps differences of pix=
els) and using optimum code words for the distribution of the gray lev-
els [59]. One may implement an optimum (variable-length) code by using
a Huffman or Shannon-Fano code [1], [29]1. These codes are cumbersome to
implement and one usually uses a suboptimum code [36]. A good review of
information preserving coding is presented in [30]. Two distinct disad-
vantages of entropy coding are the poor performance of thése codes in
the presence of errors and the fact that reduction in bit rate is not
that Large (for image data bit rates of 3 bits/pixel are typical).

The area of non-information preserving coding is wusually further
subdivided 4into transform and non-transform techniques. In transform
coding one first transforms the image usually using a lLinear orthogonal
discrete transform such a Karhunen-Loeve, Fourier, Cosine, Slant, Walsh,
or Haar transform [801, C73, [41, C641, U651, £201, [53, [151. Once the
desired transform 1is obtained, some of the resulting coefficients are
discarded and the remaining coefficients are then guantized, coded, and
transmitted. The receiver reconstructs the image by inverse transforma-
tion. The method of discarding the coefficients is usually one of ei-
ther thresholding the coefficients or zonal filtering. In the thres-
holding method one discards coefficients whose amplitudes are below a
fixed threshold. The threshold is usually set using a percentage of the
total energy contained in the picture. Besides quantizing the magnitude
of the coefficients retained, it is also necessary to code the coeffi=
cient location. In the zonal filtering method only those coefficients
in a fixed zone in the transform domain are retained. This method is

somewhat easier and more noise immune since one can avoid the overhead



of coding the ccefficient lLocations.

The Cosine transform seems to be a rather robust orthogonal
transform for a large class of images and in some cases the performance
of this transform resembles that of the Karhunen-Loeve expansion [151].
In most cases for high resolution images, transform coding has a tenden-
cy to blur the image. One of the distinct advantages of transform cod-
ing 1is that it 1s quite easy to obtain data rates below 1 bit/pixel.
While the coding artifacts are quite noticeable at data rates below 1
bit/pixel the ease of obtaining these data rates should not be over-
looked. An obvious disadvantage of transform coding is the large compu~
tational load necessary to first obtain the transform and then operate
on the coefficients. Some transform coding techniques such as the Chen
and Smith method [161 require multiple passes through the transfofm
coefficients to collect statistics. Transform coding also wusually re-
quires sophisticated error protection for the coding of overhead infor-
mation (i.e., coefficient assignment tables and bit maps) when the image
is transmitted over a noisy channel.

The second method of non-information preserving image compression,
non-transform techniques, exploit some local properties of the image.
Predictive coding (DPCM) [58], [17] 4is a technique where the Llocal
correlation properties of the image are used to obtain bandwidth
compression. In DPCM the difference between the actual pixel gray level
and a predicted pixel value is quantized, coded and transmitted. At the
receiver (decoder) the image is reconstructed by using the quantized
difference signal‘and the predictor model. Using this predictive method

it is usually not possible to obtain results less than 1 bit/pixel un-
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Lless the difference signal is modified in some sense. It is possible to
formulate some predictive coding schemes as really being a variation of
transform coding [8], however these types of predictive coding do not
exploit all the properties of the image. These predictor models belong
to a very small class of predictors. An advantage of predictive coding
is the fact that a transform is not required. A disadvantage is that of
obtaining adequate predictor and quantizer models. Block Truncation
Coding belongs to this class of non-transform techniques.

Hybrid coding [33] tries to exploit the benefits of both the
transform and predictive methods. In this method transform coding is
performed along the rows (or columns) of the picture and predictive cod-
jng along the columns (or rows) of the image. This method can be used
to obtain data rates less than 1 bit/pixel.

It should be mentioned that the coding artifacts of all the non-
information preserving techniques are indeed different and in some cases

this prevents accurate comparisons between the methods.

1.3. Statement of Problem

Block Truncation Coding (BTC) will be formulated as a problem of
obtaining an adaptive two-level (one bit) quantizer such that a set of
sample moments of the image are preserved. If one could obtain a fidel-
ity criterion for an image that would somehow represent the desired pro-
perties of an image (i.e. edge preservation, no false contouring, tex-
ture preservation) then rate-distortion theory could be used to obtain a
one bit quantizer to match this fidelity criterion [111, [141, (751,
[541, [70], [531. This 1is indeed a Herculean effort and will not be

pursued in this thesis.
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In this thesis we will examine quantizers that preserve moments of
the 1input signal. We will find that these types of quantizers can be
related to the Gauss—Jacobi mechanical quadrature problem where the out-
put Levels are the zeroes of the orthogonal polynomials associated with
the input probability distribution. The quantizer threshold levels will
be obtained by the so~called Separation Theorem. The uniqueness of the
quantizer will be guaranteed by the above theorems. The statistical
convergence of these quantizers will be investigated and the quantizer
compared to the mean square error quantizer of Max [463].

BTC will be examined in this context except the quantizer will have
a non-parametric formulation where the one-bit quantizer can be written
in closed form. We will examine BTC in the presence of c¢hannel errors
and a hybrid method of BTC will be discussed. This will be accomplished
by the use of supplemental information such as a highly compressed
transform coded image as a means of supplying a better low-frequency
response to BTC. BTC will be compared to non-parametric mean square er-
ror and mean absolute error quantizers. A differential form of BTC will
be discussed and image modeling will be examined. This quantizer scheme

produces images that appear to be enhanced and the edge locations are

preserved. BTC appears to be superior to transform coding in the sense

that the compressed 1image is not blurred (i.e. edge preservation) and
BTC requires no great computational effort as does transform coding.
This technigue applies to most situations when images must be either

transmitted or stored.



CHAPTER 2

MOMENT PRESERVING QUANTIZATION

2.1 Introduction

Since the advent of the use of pulse code modulation (PCM) systems
there has been great interest in the design of quantizers. It became
obvious very early that non-uniform quantizers possessed properties that
could be used to achieve results such as lower mean square error or
enhanced subjective performance in areas such as speech and image pro-
cessing [611,[41]1,L[71]. These types of quantizers are designed for a
particular input probability density function.

Optimal quantizers are designed relative to a particular perfor-
mance index or fidelity criterion. The most popular fidelity criterion
used is that of the mean square error (MSE) between the input and output
with the quantizer found to minimize this mean square error [46]. Re-
cently, some interest has also been shown using the mean absolute error
criterion [43]1. Studies have shown that both of these fidelity criteria
cannot be used reliably in areas such as speech and image processing
C6631,0501.

In this chapter we will examine quantizers that preserve moments of
the dinput signal. We will compare this technique to standard quantiza-
tion design such as minimum mean square error quantizers. We will show

that quantizers which preserve moments are easy to derive in closed form



N

when the input density is symmetric and the number of Llevels 1is rela-
tively small. We will further show that the moment preserving quantiza-
tion problem can be formulated as the classical Gauss-Jacobi mechanical
quadrature problem where the output Llevels of the quantizer are the
zeroes of orthogonal polynomials associated with the input probability
distribution. The thresholds of the quantizer are then related to the

so-called Christoffel numbers.

2.2 The General Moment Preserving Quantizer

We will approach the problem of using the moment reserving (MP)
fidelity criterion by first examining the problem of a two level MP
quantizer and then generalize the result to N levels. The notation used
here is that of Max [461.

Let X denote the input to the gquantizer whose probability distribu-
tion function is F(x), x ¢ L[a,bl. The interval [a,b] can be finite, in-
finite, or semi-infinite. Let Y denote the output of the quantizer.
For a two level quantizer, the random variable Y is discrete and takes
on the values {y1,y2} with probabilities P1 = Prob(y=y1) and
P2 = Prob(y=y2). The output Y takes on the value Yq whenever the input
x 1s below some threshold Xq otherwise the output is Yoe This is shown
in Figure 2.1. Therefore in general to design any two-level quantizer
one must choose the two output levels Yq and Yo and the input threshold
X4 When using a design criterion of having the two-level quantizer
preserve moments of the 4dnput it 1is necessary that the quantizer
preserve the first three moments of the input, otherwise one of the
three parameters would have to be known <(or guessed) initially. To

specify the quantizer one must solve the following equations for Yis Y2,
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f(x)

Figure 2.1

In designing any one bit guantizer one must find a threshold

X, and two output levels y, and y,. T(x) is the probability
. . 1 2
density function of X.



and x1:

ECY] = EIX] = y1P1 + szz

ECYA] = EIXCT = yép, + y3P,
2.1
EEY33 = E[X3] = y;;’P1 + ngz

where the expectation operator 1is defined by the
. b .
Lebesgue-Stieltjes integral ECX'] =.I x VdF (x) and

a
Py = Prob(Y=y.), y4 < x4 < Y5

i
We shall assuﬁe throughout this presentation that the moments exist and
are finite. The total variation of F(x) is of course identically equal
to one. We will ignore the "defective" probability measure discussed by
Feller [261. For the case where F(x) is absolutely continuous a prob-
ably density function f(x) is admitted. The function f(x) is a non-

negative function measurable in the Lebesgue sense. Equation 2.1 can be

rewritten as:

my = y1F(x1) + y2(1-F(x1))

Mo = y2F(xs) + yo(1=F(x,)) (2.2)
2 -7 TR 1 y
my = y3F(x,) + Y3 (1=F (x42)

where m. = EEXiJ

P1 = P(X < x1) = F(x1)

P2 = P(X Z.x1) = 1-F(x1)

By solving Equation 2.2 for y,, y,, and xq the quantizer obtained is
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such that the first three moments of X and Y are identical. Equation

S

- 2.2 is a set of nonlinear algebraic equations in Y1,¥p and Flxq). To
find x; we shall assume F-1(x1) exists.

Without loss of generality we shall further assume that m, = 0 and

m, =1, this amounts to assuming X is zero mean and unit variance; Equa-

tion 2.2 becomes

o
i

= yqF(xq) + y5(1=-F(x4))
1= y2F( y3(1-F
= yqF(x) + y5(=F (x4 (2.3
3
mg = Y?F(x1) + y5(1=F(x,4))

By solving the first two equations for Y1 and y, in terms of F(xq) and
using these solutions 1in the last equation we arrive at the desired

results:

/1 F(x Py
Y1= 'P'1-

Y2 5V T7Fxy x

-

(2.4)

1

4+m3

21, M
F(X1) --i'l‘-r

This result is interesting in that the quantizer can be written in
closed form. When using other fidelity criterion such as mean square
error it is usually impossible to arrive at some sort of closed form ex-
pression for the quantizer with a general density function. The above

result in Equation 2.4 also indicates that the threshold, Xy, s nomi-

£
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nally the median of X and not the mean as one would expect. The third
moment, mz, is in general a signed number and can be thought of as a
measure of skewness in the density function. The above result indicates
that the threshold is biased above or below the median according to the
sign and magnitude of this skewness. It should be noted that at this
point we have no guarantee that Y9 £ x4 £¥5. Particularly we can not
yet state that Xq lies between Yq and Yoo The problem will be addressed
in Section 2.4 by the Separation Theorem of Chebyshev Markov-Stieltjes.

The MP quantizer can be generalized to the N-level quantizer. One
needs to recognize that for the N-level quantizer there are N output
levels and N=1 thresholds. So if we desire an N-level MP quantizer we
need to know the first 2N-1 moments, i.e., the N-level MP quantizer
preserves 2N-1 moments. This statement will be shown in Section 2.4 to
guarantee uniqueness of the quantizer by the Gauss-Jacobi mechanical
quadrature theorem. For large N this does lead to the problem of know-
ing a Llarge set of moments for a given distribution. However for most
distribution functions we are interested in, one can exploit recursion
relationships among the moments. This will be discussed later.

To arrive at the desired quantizer we need to know N output Llevels
1Y9sY2,0-,7\F and N-1 thresholds WX peeerXyq¥s With yq < x4 < Y5 aee
f_xN_1 f.yN. We again assume my = 0 and my = 1. We must solve:

b N
- n _ n
m. -.’; x dF(x) = Z=:1 Y; P1.
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~ n=0,1, 2, «e., 2N-1 2.5)
{
where Xg = @
xN =b
m, = EEX"]; my = o, my = 1
P. =

F(x;) = Fx;_y)

1’
F(Xi) = §] Pj

For a large class of practical problems where F(x) admits a density
f(x), one can assume that f(x) is even, i.e., f(x) = f(=x). For this
assumption the complexity of Equation 2.5 is cut in half since m = 0
for n odd and the quantizer itself is symmetric. The symmetry of the

quantizer manifests itself as:

Qm ' N even
Vi = =Yaaq_s i=1,2 L
i N+1-1i 2 Cr 200 7T
X, = 05 Flx) = o
N~ > N 2
z z
= - - N-2
Xk - XN_k k - 1’ 2' seey (—2_)
N odd
Yy = O
2z

,,-
N
/
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= s = N-1
Yi = et-i 1312 e, 0

N-1
xk = -xN_k k = 1’ 2’ sespy (_Z_)

Using the above results and the fact that the odd moments are zero it is
obvious that only the even moment equations must be solved in Equation

2.5. Hence Equation 2.5 becomes:

M
= n -

3
|

=2, 4, 6, auc., 2N=2 (2.6)

ECx™1 ;my = 1

where- M = H%l'if N odd

- N .
M= Vi it N even

The case where N = 2 is immediately specified:

X1=0
¥y = =y, = -1 2.7
and the N = 3 case is obvious:
Y1 =7y3 =~ Nm
vy = 0 2.8
= - 1
Y4 X where F(x1) = ZEZ

In Section 2.5 we will present the general solution. For a symmetrical



14

‘density function a closed form solution has been obtained for N = 2,3,4.

These results are summarized in Table 2.1. The general solution for
N = 2 is presented above by Equation 2.4.
In the next two section we digress for awhile to introduce orthogo-

nal polynomials.

2.3 Some Preliminaries

In the next two sections a brief discussion of orthogonal polynomi-
als will be presented. This discussion is by no means meant to be com=
plete. The literature on orthogonal polynomials 1is almost unbounded.
We will present only material needed to examine the moment preserving
quantizer. Only pertinent theorems will be proved. For a complete dis-
cussion of orthogonal polynomials the reader is referred to the litera-
ture particularly‘the classical work by Szego [761, the somewhat dated
but still relevant bibliography by Shohat [721, and the work by Askey
£931, Jackson [39]1, Davis [18] and Krylov [44]. The notation used in
this section is a slight modification of Szego's notation.

Let F(x) be a non—decreasing real-valued function on [a,bl which is
not constant. If as=s—= and/or b =+ We will reaquire that
F(==) = l._:‘m~=° F(x) =0 and/or F() = lim F(x) = 1. As previously
stated :e will assume the total variat?gn of F(x) is identically equal
to one. The class of functions g(x) which are measurable with respect

to F(x) and for which the Lebesgue-Stieltjes integral:

b 2
j lg(x)]€ dF(x) 2.9
a

2

F spaces the

is finite is called Lg(a,b). For a complete discussion of L
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Table 2.1 Summary of closed formed relationships of a moment preserving
quantizer when_.the input density is symmetric.
Where m, = erx'3.

N=2 Y1=‘)’2="1
Xy = 0

N =3 y1 :—y3 = - "m4
y2 =0

X1 = 7X2

where F(x1) = Z%Z

1-2F (x4) 1172 V172
V=4 oy =y = o T e (m=1)
[ 2F(xq) J172 \ 172
y2=7y3= -\ 1= [TrGgy WP
X] = 7x3
Xz =0
1R 4|1
where F(xq) =2 ~
1 =% " 7\r2
(m6-1) = 3(m4-1)
R =
3/2
(m,~1)
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reader is referred to Natanson [57].

/f“&x
S
i

-

We shall define the inner product (metric) of the functions g(x),

hix) e Lg(a,b) to be

b
(g,h) = § g(xIh(xIdF(x) .10
a :

The norm shall be defined as

lgll = ¢g,a1/2 2.1

Definition 2.1. Let the set of functions

go(x), 94X, ue, gn(x), cee (2.12)

be of the class Lg(a,b); - gi(x) € L?(a,b) for all i. The set of
Equation 2.12 is said to be closed 1in Lg(a,b) if for every
g(x) ¢ Lg(a,b) and for each € > 0 there exists an integer n such that a

function of the form

n
h(x) = 'ZO €595 (%)
i=

with

b
f gt = heo ]2 dFtx) <.
a
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Definition 2.2. A finite set of functions

99XV, aae, 9n(X)

is said to be linearly independent if the equation

n
o

n
lllgi,ligi(x)ﬂ

can be true only for
10=A1=12.-.=1 EO-

The system g.(x) cannot contain the zero function i.e. [lg;(xd]] # 0

for all 4. A countably infinite set of functions is linearly indepen-

dent if the above conditions hold for every finite subset.

This leads to the following theorem stated without proof.

Theorem 2.1. Let F(x) have the same meaning as in Definition 2.1 and a

and b be finite. The system of functions {xn}, n=0,1,2,... is linear-

ly independent and closed. For proof see [76].

This theorem will ensure closure of orthogonal sets of polynomials on a
finite interval. The system x™} is also linearly independent on an in-

finite or semi=-infinite interval.
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Definition 2.3. The set of functions

go(x), g1(x),..., gz(x)

% finite or infinite is said to be orthogonal with respect to F(x) if

(gn(x),gm(x)) = knénm n,m=0,1,0e.,%
where
1 if m=n,
6nm = 0 if m#n
and

kn = (g, (x),g,(x))

2
F

If kn = 1 for all n then the set of function is said to be orthonormal.

Here gi(x) e LECa,b) for all i and gi(x) is assumed to be real=-valued.

Orthogonal functions are necessarily linearly independent. Any set of a
linearly independent functions {hi(x); hi(x) £ Lg(a,b)} can be orthogo-
naljzed using the Gram=Schmidt procedure stated in the following

theorem.

Theorem 2.2. Let the real-valued functions
ho(x), hq(x), «ee, hy(x) ; 2 finite or infinite

where hi(x) £ L%(a,b) be linearly dependent. Then an orthonormal set
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°D(x)' °1(X), ssay Qg‘(x)
exists such that, for n = 0,1,2,...,%.

n
P00 = i b0 . (2.13)
i=

The set {¢i(x)} is uniquely determined. Proof see [76].

By using Definition 2.3 and Equation 2.13 we can show (Natanson

the orthonormal functions of the above theorem can be constructed

£571)
as:
- -1/2
°n(x) = (B 44 An(x) n>0
where
(ho,ho) (hD,h1) .. (ho,hn)
(h1,h0) (h1,h1) vee (h1,hn)
b x) = . (2.14)
(hn_1,h0) (hn-1'hn)
i ho(x) hn(x) |
(ho,ho) (ho,h1) cae (ho,hn)
and An = .
fhn'hO) (hn'hn{

An is known as the Gram determinant
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Ao(x) = ho(x)
A 4= 1

Equation 2.14 is really no more than a restatement of Cramers Rules.
While many more statements can be made relative to orthogonal func-

tions we have developed most of the basic concepts needed at this point

to introduce orthogonal polynomials. In the next section we will

develop some properties of orthogonal polynomials.

2.4 Orthogonal Polynomials

Let T denote the set of all polynomials {P(x)} ¢ L?(a,b) with de-

gree less than or equal to n. Hence T, is a subspace of Lg(a,b).

Definition 2.4. Let F(x) be a fixed non-decreasing function with infin-

itely many points of increase in the finite or infinite interval [a,bl,

and Let the moments

xdFx)  n=0,1,2,...

3
>

i
' o

exist and be finite. If we orthogonalize the set of functions {xn}, n=
0,1,2,... in the sense explained in Theorem 2.2 and Equation 2.14 we ob-

tain a set of polynomials
po(X), p1(X), e ey pn(X), LN

uniquely determined by the following:

al) pn(x) is a polynomial of degree n where the coefficient of X"

positive



21

b) the system {p_(x)} is orthogonal:

‘(-ﬂﬁu,‘!

(P (x) Py (X)) = k80

A similar definition holds if F(x) admits a density function f(x). The
set {pn(x)} of orthogonal polynomials is said to be associated with F(x)
(or f(x)). We shall use the notation {?n(x)} to denote the normalized
set of {pn(x)}. If F(x) has only a finite number of points of increase
then we obtain a finite system of polynomials. Using Equation 2.14 we

arrive at

mo m1 LN mn
m1 m2 ase mn+1
Pa(x) = | . (2.15)

-

M=l M == M2p
-1 x soew xn o
- -1/2
Wn(x) = @ 480 P, (x)

where An is the Gram determinant.
Every polynomial p(x) ¢ T, can of course be expressed as a linear
combination of ?o(x), w1(x), ceey vn(x). Each wn(x) is orthogonal to

every polynomial of lower degree. This is obvious from the orthogonal

property, i.e., if q(x) ¢ LI then
(qlx), Yn(x)) =0

in particular
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LY (0) =0 i =0,1,2,...,01. (2.16)

This condition determines Yn(x) except for a constant factor. Equation
2.16 can be thought of as a wider orthogonality condition.

If La,bl is symmetric with respect to the origin (i.e., b = -a) and
F(x) admits a density function that is itself an even function (f(x) =
f(-x)), then if q(x) is a polynomial, g{(=x) is a polynomial of the same
degree. Let q(x) e 7 __, then the integral

b b
}; 7 (=x)qlx) F(x)dx = 4; ¥ (x)q(=x)f(x)dx = 0

since Wn(t) is orthogonal to every polynomial of Lower degree by Equa-
tion 2.16. Since ¥ (-x) is normalized, and (-1)nwn(-x) has a positive

coefficient for x". Then by the Definition 2.4:
= (1yNy (o
Yn(x) = (-1) ?n( x) (2.17)

That says that ?n(x) is an odd or even function depending on n being odd
or even. Hence Wn(x) contains only even or odd powers depending on

whether n is odd or even.

Definition 2.5. Let {Yn(x)}, n=20,1,.. be a set of real orthonormal

polynomials. The symmetric function
n
Kn(x,y) = K Cy,x) = ééb ¥ (¥ (y)

is called the kernel polynomial of order n.
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Theorem 2.3. The following recurrence relationship holds for any three

consecutive orthogonal polynomials:

a b b a
n n+1 ¥ (x) + n-1

X¥ (x) = —D2—¥ . (x) +| -2~
n an+1 n+1 a, an+1 n n

¥, 0. (2.18)

where a, js the coefficient of x" in ?n(x) and bn is the coefficient of

xn-1 in Yn(x). The proof is omitted. See Jackson [39].
Equation 2.18 can be wused to generate sets of polynomials by
machine computation. A variation of Equation 2.18 due to Davis [18] is

particularly convenient for machine computation:

172

1o (0 (2.19)

pn+1(x) = an(x) - (an(x),wn(x))wn(x) - (pn,pn)

= 172
?n+1(x) = pn+1(x)/(pn+1(x),pn+1(x))

Another useful recurrence relationship involving the kernel polynomial

is the Christoffel=-Darboux identity:

Theorem 2.4. The following recurrence relationship holds:

a (t)?n(x) - Yn(t)wn (x)

n ¥n+1 +1

n+1

(2.20)

Ko(x,t) = r—

The proof is omitted. See Jackson L[391].

We now turn our attention to some elementary properties of the

zeroes of orthogonal polynomials.
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Theorem 2.5. The zeroes of real orthogonal polynomials are real, simple
and if [a,b]l is a finite interval the zeroes are located in the interior
of [a,bl.

The proof if omitted. See Davis [18, p. 2361 or Szego [76, Section

3.33.

Theorem 2.6. Let 2, < 2, < aee < z, be the zeroes of yn(x); zg = a and

241 = b. Then each interval Ezi,zi+13, i=40,1,2,...,n, contains ex~-

actly one zero of Yn+1(x).

The proof is omitted. See Szego [76, Section 3.31.

Theorem 2.7. Between two zeroes of Wn(x) there is at least one zero of

?m(x), m > n.

The proof is omitted. See Szego [76, Section 3.31.

These three theorems will be used when we discuss the convergence of the

MP quantizer.

We now state the three theorems that totally specify the MP quan-

tizer problem.

Theorem 2.8. (Gauss-Jacobi Mechanical Quadrature)
If 24 < 25 € eae K z, denote the zeroes of wn(x), there exist real num-

bers Agr Aoy eees Ag such that

b n
f PR = 3 A.p(z) 2.21
a =1 v 7
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whenever p(x) € Ton=1" The distribution F(x) and the integer n uniquely

determine the numbers li. The *i are known as the Christoffel numbers.

Proof: (after Szego [76, p. 471)

We construct the Lagrange interpolation polynomial [76, ch. 141].

n p(zk)?n(x)

Q{x) = Yy, -
k=1 Wn(zk)(x-zk)
or
n
Q(x) = é;% p(zk)zk(x) (2.22)
¥ (x)
where zk(x) = — n
Tn(zk)(x-zk)

T
Since p(zk) and wn(zk) are constants, Q(x) is of degree n-1. Also by
using L'Hospital's rule it is obvious that Q(xk) = p(zk). (zk(zk) = 1.

Hence the polynomial o (x)-Q(x) has zeroes at 2y <25 < w0 < z,- There-

fore p(x)=-Q(x) is divisible by ¥n(x) or altefnatively
p(x)=-Q(x) = ?n(x)r(x)

where r(x) ¢ T .1+ Hence

p(x) = QL) + ¥ COrGx)

b b b
f p (X)dF(x) =J‘ Q(x)dF(x) +f ‘i’n(x)r(x)dF(x)
a a a
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But ?n(x) is orthogonal to any polynomial of degree less than n. There-

fore

b
f ?n(x)r(x)dF(x) =0
a

So

b b
_f p (x)dF(x) =f Q(x)dF (x)
a a

n b
> p(z) [ 2 (x)dF(x)
& 50 L

Therefore Equation 2.21 is immediately given with

e

b
ERURCLIES

b ?n(x)
=f - dF {x)
a Tn(zk)(x-zk)

k =1,2,...,n. (2.23)

QED
Note that the X 's are independent of p(x).
The result above is often used in numerical integration where p{x)

%(a,b). The error can be

is replaced by a general function gi(x) e L
predicted and n can be chosen to find the degree of accuracy needed [18,
Ch. 14]1. In the next two theorems we state some important properties of

7 the Christoffel numbers.
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Theorem 2.9. The Christoffel numbers, Ak are positive, and

n b
kZ1 )‘k =J‘ dF(x) = F(b)-F(a) = 1 (2.24)
= a

That 1s the sum of the Christoffel numbers is equal to the total varia-
tijon of F(x).
Proof:

Using the conventions of Theorem 2.8 we have

Yn(x)

2k(X) ==
?n(zk)(x-zk)
with zk(zk) =1; zk(zm) =0; m#k

also g, (x) e 1pq S0 @ D% e T, o

So letting p(x) = 2E(x) and applying Theorem 2.8 we have

2 2200dF () = 3 A 42z )
-g k é;% m*m " m

therefore

b vn(x) ]2
A, = dF(x) (2.25)

k=L | o
a ?n(zk)(x-zk{J

This guarantees that the A, 's are positive. We also have obtained
another method of calculating the lk's. Also by letting o (x> = 1 and
using Theorem 2.8 we have the desired result.

QED
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An additional way of finding the Christoffel numbers is:

23

m=0 m (Zk

k= 1,200 (2.26)

This can be shown gquite easily by using Equation 2.22 and Theorem 2.4.
From the above result of the positiveness of the lk's, and noting

the properties of F(x) previously stated, there exists numbers

a4 < a5 < aee qQq-1s 2 < 94, 909 < b such that

A = F(qk) - F(qk_1)
k =1,2,e0a,n

a = 2 2.27)

q, = b

We should of course worry about points of discontinuity of F(x) but this
does not effect the results of Theorem 2.8. Also the qk's are not in
general uniquely determined. However for most cases of practical in-
terest F-1(x) will exist; this of course guarantees the unigueness of
the g's. We shall now present the Separation Theorem of Chebyshev-
Markov-Stieltjes which along with Theorems 2.8 and 2.9 will specify the

MP quantizing.

Theorem 2.10. (Separation Theorm)

The zeroes 24 < z2 € eee < z, alternate with the numbers

a4 < Gy «e» G, that is
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U <2 < Ut

Hence Theorem 2.8 could be written as:

b n
.g p(x)dF(x) = ég% p(zn)(F(xk) - F(xk_1)) (2.28)

The proof is omitted. Szego L[76, p. 50] presents three proofs of this

remarkable theorem.

Before leaving this section we present in Table 2.2 a brief list of
classical orthogonal polynomials along with their distributions. Note

that some distributions are of the "discrete" type.

2.5 The MP Quantizer Reconsidered

In Section 2.2 we stated that the MP quantizer was obtained by

solving Equation 2.5

n
= <" - n
m o =f xdF(x) = 3 y;P.

i=1

b= o

P, = F(xi) - F(xi_1) (2.29)

n=20,1,2,...,2N-1.

By inspection Equation 2.29 is just a special case of Theorems 2.8-2.10

. _ N - - =
with p(x) = x ', Yi T 25, A. = P.r and q; = X

1 1

Hence we can state:

The output levels, y., of a N Level MP quantizer are
the zeroes of the Nth degree orthogonal poloynomial asso-
ciated with F(x). The P. are the Christoffel numbers and
the x. and y. alternate by the Separation Theorem. The
formulation of quantizer 1is unique as guaranteed by
Theorems 2.8-2.10.
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Table 2.2 A partial list of orthogonal polynomials and their associated

probability distributions L761.

Distribution

Uniform

Normal

Gamma

Beta

Poisson

Binomial

Negative Binomial
Discrete Uniform

Polynomials

Legerdre

Hermite

Generalized Laguerre
Jacobi

Charlier

Krawtchouk

Meixner

(Discrete) Chebyshev
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This result dis 1indeed dinteresting. The closed form results
presented in Table 2.1 can be shown to conform to this statement as spe-
cial cases where the zeroes are written in closed form. In general to
find the quantizer for any N requires the computation of the zeroes of
an Nth order polynomial, which for large N can present problems. In the
next section we will compare the MP quantizer with other quantizers.
The polynomials will be generated by using Equation 2.19. The =zeroes
will be obtained by numerical methods and Pi's will be obtained by Equa-
tion 2.26 the x.'s will then be obtained relative to Theorem 2.10. In
Section 2.7 we shall discuss the statistical convergence of the MP quan-

tizer and the quantization noise relationship.

2.6 Examples of MP Quantizers

In this section we will present some tables of the MP quantizer
thresholds and output levels for the uniform, normal and Laplacian pro-
bability distribution functions. We continue to make the =zero mean,
unit variance assumption. We will compare these quantizers to the
minimum mean square error quantizer of Max. For these examples we used
Equation 2.19 to generate a set of orthogonal polynomials then the
zeroes were obtained by using numerical techniques. The Christoffel
numbers were obtained by Equation 2.26. The thresholds were obtained by

using the fact that

i
F(x.) = 2 P,
i i3

and
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= =1
xi - F (Xi)

As mentioned previously there can be problems if F(x)

has points of

discontinuity; however for these examples the F-1(x) exist. We also

calculated the mean square error of the quantizer and the entropy of the

output:

but

2 2

ELCY=X)%] = ELYS - 2XY + X°7

ECY23 = ELX2] = 1

ECCY=X)2] = 2¢1 - ELXYD)
5 b
ECCY=X)S1 = 2¢1 = § xy dF(x))
a
5 N . %
ECCY=X)°1 =201 - 2 y' f  x dFGxD)
i=1 X.
i-1
N
entropy = =~ 3, P_.‘ logz P

The probability density functions are:

a) uniform:

f(x) = %a-, X ¢ [=q,q]

2.30
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= 0 , 1 odd

SQZL i even
1+1 ’

form2=1==>q=\/3'

b) normal:

2
- X
fF) =1 _e 2 , xe (=,

var

0 , 1 odd

Mi = 12305 (=10 , i even

¢) Laplacian:

foo = V2 Xl Lo (e
Ve
0 , i odd
m. = .
1 21
2 2-1! , i even

The results for the MP quantizer (N = 2-16) are shown 1in Tables
2.3, 2.5, and 2.7 respectively. For the uniform density the polynomials
are the Legendre polynomials; for the normal density the polynomials are
the Hermite polynomials. The polynomials for the Laplacian density are
not members of the classical polynomials (we have strongly resisted the

temptation to call them the Delp-Mitchell polynomials).
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The minimum mean square error quantizer (denoted MSE) of Max is

found by:
min EE(Y*X)ZJ for a fixed N.
xi's,yi's

Tables of the MSE quantizer (N = 2,4,8,16) are shown in Table 2.4, 2.6,
and 2.8. Plots of the mean square error are shown in Figures 2.2-2.4.
The uniform density MSE quantizer is one of the few density functions
for which closed form relationships are available for the yi's and xi's'

The results are that the MSE quantizer for a uniform density is a uni-

form quantizer. It can be shown quite easily that:

y; = 22 a5 22,8
_ 1
Pi=wN
x; = Szl_g_ﬂl& 5 =1,2,000 81
=4
F(xj) N
qZ
mse = '—7
3N

entropy = logZN

The results for MP quantizer for a uniform density are interesting
in that as N increases the output levels tend to group closely to #q.

In fact it can be shown that on a finite 1interval the zeroes of any
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Table 2.3 Positive thresholds and positive output levels for a MP quan-
tizer (N = 2-16) for zero mean, unit variance uniform proba-
bility density function. (mse = mean square error).

output levels thresholds
N=2 1.00 0.00
entropy 1.00
mse 0.2679
N=3 0.00 0.7698
1.3416
entropy 1.547
mse 0.1352
N=4 0.5889 0.0
1.4915 1.1295
entropy 1.9321
mse 0.0815
N=5 0.00 0.4927
0.9327 1.3217
1.5695
entropy 2.2325
mse 0.0545
N=6 0.4133 0.0
1.1452 0.8105
1.6151 1.4353
entropy 2.4794
mse 0.039
N=7 0.00 0.3620
0.7029 1.0233
1.2894 1.5078
1.6439

entropy 2.6893
mse 0.02927
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Table 2.3, cont.

N=

entropy
mse

N=9

entropy
mse

N=10

entropy
mse

N=11

entropy
mse

N=12

entropy
mse

2.8722
0.0228

3.0342
0.0182

3.1796
0.0149

3.3116
0.0124

3.4325
0.0105

36

output levels

0.3177
0.9102
1.3799
1.6633

0.00

0.5616
1.0624
1.4430
1.6769

0.2579
0.7507
1.1768
1.4983
1.6869

0.00

0.4669
0.8991
1.2647
1.5364
1.6943

0.2169
0.6371
1.0172
1.3335
1.5660
1.7001

thresholds

0.00

0.6282
1.1715
1.5567

0.2860
0.8270
1.2784
1.5913

0.00

0.5119
0.9782
1.3577
1.6166

0.2364
0.6915
1.0955
1.4181
1.6356

0.00

0.4315
0.8359
1.1878
1.4651
1.6503



Table 2.3, cont.

N=13

entropy 3.5439
mse 0.0090

N=14

entropy 3.6474
mse 0.0078

N=15

entropy 3.7439
mse 0.0068

N=16

entropy 3.8343
mse 0.0061

37

output levels

0.00

0.3991
0.7768
1.1126
1.3883
1.5893
1.7046

0.1872
0.5527
0.8924
1.1904
1.4327
1.6081
1.7083

0.00

0.3485
0.6827
0.9889
1.2547
1.4691
1.6234
1.7113

0.1646
0.4878
0.7933
1.0702
1.3084
1.4993
1.6361
1.7137

thresholds

0.2014
0.5933
0.9533
1.2618
1.5023
1.6619

0.00
0.3728
0.7283
1.0496
1.3219
1.5324
1.67122

0.1754
0.5191
0.8416
1.1296
1.3713
1.5569
1.6788

0.0

0.3281
0.6444
0.9374
1.1965
1.4124
1.5772
1.6850
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Table 2.4 Positive thresholds and positive output Levels for an MSE
quantizer (N=2,4,8,16) for a zero mean, unit variance uniform
probability density function (mse = mean square error)

output Levels thresholds
N=2 0.8660 0.00
entropy 1.00
mse 0.25
N=4 - 0.4330 0.00
1.2990 0.8660
entropy 2.00
( mse 0.0625
he N=8 0.2165 0.00
0.6495 0.433
1.0825 0.8660
1.5155 1.2990
entropy 3.00
mse 0.0156
N=16 0.1083 0.00
0.3248 D.2165
0.5413 0.4330
0.7578 0.6495
0.9743 0.8660
1.1908 1.0825
1.4073 1.2990
1.6238 1.5155

entropy 4.00
mse 0.0039
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Table 2.5 Positive thresholds and positive output levels for a MP quan-
tizer (N=2-16) for a zero mean, unit variance normal proba-
bility density function (mse = mean square error)

output Levels thresholds
N=2 1.00 0.00
entropy 1.00
mse’ 0.4042
N=3 0.00 0.9673
1.7321 '
entropy 1.2516
mse 0.2689
N=4 0.7419 0.00
2.3344 1.6866
entropy 1.4423
mse 0.2032
N=5 0.00 0.7277
1.3557 2.2820
2.8570
entropy 1.5936
mse 0.1626
N=6 6.6167 0.00
1.8892 1.3338
3.3242 2.8003
entropy 1.7188
mse 0.1362
N=7 0.00 0.6081
1.1544 1.8624
2.3667 3.2648
3.7504

entropy 1.8255
mse 0.1166
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Table 2.5, cont.

N=

entropy
mse

N=9

entropy
mse

N=10

entropy
mse

N=11

entropy
mse

N=12

entropy
mse

1.9185
0.1024

2.0008
0.0909

2.0748
0.0820

2.1419
0.0745

2.2032
0.06841

40

output Llevels

0.5391
1.6365
2.8025
4.1445

0.00

1.0233
2.0768
3.2054
4.5127

0.4849
1.465

2.4843
3.5818
4.8595

0.00

0.9283
1.8760
2.8651
3.9361
5.1830

0.4444
1.3404
2.2595
3.2237
4.2718
5.5009

thresholds

0.00

1.1408
2.3364
3.6890

0.5332
1.6193
2.7694
4.0818

0.00

1.0137
2.0568
3.1702
4.4491

0.4805
1.4537
2.4620
3.5449
4,.7951

0.00

0.9216
1.8615
2.8409
3.8979
5.1232



(5_\ Table 2.5, cont.

N=13

entropy 2.2598
mse 0.0631

N=14

entropy 2.3123
mse 0.0587

SN
i B

N=15

entropy 2.3611
mse 0.0547

N=16

entropy 2.4069
mse 0.0519

41

output levels

0.00

0.8567
1.7254
2.6207
3.5634
4.,5914
5.8002

0.4126
1.2427
2.0833
2.9630
3.8869
4.,8969
6.0874

0.00

0.7991
1.6067
2.4324
3.2891
4.,1962
5.1901
6.3639

0.3868
1.1638
1.9519
2.7602
3.6009
4,4929
5.4722
6.6308

thresholds

0.4409
1.3309
2.2429
3.1978
4.2324
5.4358

0.00

0.8509
1.7142
2.6026
3.5363
4.,5512
5.7349

0.4096
1.2352
2.0755
2.4435
3.8586
4.8560
6.0221

0.00

0.7943
1.5977
2.4182
3.2683
4.1670
5.1485
6.2986
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Table 2.6 Positive thresholds and positive output Levels for an MSE
quantizer (N=2,4,8,16) for a zero mean, unit variance normal
probability density function. After Max [46] (mse = mean
square error)

output levels thresholds
N=2 0.7980 0.00
entropy 1.00
mse 0.3634
N=4 0.4528 0.00
1.510 0.9816
entropy 1.911
( mse 0.1175
) N=8 0.2451 0.00
0.7560 0.5006
1.344 1.050
2.152 1.748
entropy 2.825
mse 0.0345
N=16 ) 0.1284 0.00
0.3881 0.2582
0.6568 0.5224
0.9424 0.7996
1.256 1.099
1.618 1.437
2.069 1.844
2.733 2.401

entropy 3.765
mse 0.0095
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{;‘: Table 2.7 Positive thresholds and positive output levels for a MP quan-
- tizer (N=2-16) for a zero mean, unit variance Laplacian pro-
bability density function (mse = mean square error)

output Llevels thresholds
N=2 1.00 0.00
entropy 1.00
mse 0.5858
N=3 0.00 1.2669
2.4495
entropy 0.8166
mse 0.3882
N=4 0.8183 0.00
4.0163 2.7193
‘entropy 1.1491
mse 0.3744
L N=5 0.00 1.0213
- 1.9942 4.3414
5.7175
entropy 1.0417
mse 0.2928
N=6 0.7371 0.00
3.2972 2.2191
7.4655 6.0272
entropy 1.2593
mse 0.2969
N=7 0.00 0.9078
1.7802 3.5842
4.7376 7.7924
9.2806

entropy 1.1716
mse 0.2466



N=

entropy
mse

N=9

entropy
mse

N=10

entropy
mse

N=11

entropy
mse

N=12

entropy
mse

Table 2.7, cont.

1.3387
0.2549

1.2614
0.2185

1.3997
0.2279

1.3292
0.1993

1.4488
0.2089

44

output Llevels

0.6882
2.9425
6.2421
11.1214

0.00
1.6493
4.2342
7.8246
13.0037

0.6545
2.7208
5.5928
9.4470
14.9024

0.00
1.5585
3.9134
7.0302
11.1210
16.8298

0.6293
2.5652
5.1716
8.5122
12.8225
18.7686

thresholds

0.00

1.9745
5.0278
9.5909

0.83906

3.1963

6.5607
11.4370

0.00
1.8226
4.4970
8.1405
13.3038

0.7916
2.9499
5.8867
9.7773
15.2028

0.00
1.7164
4.,1535
7.3272
11.4467
17.1161



{ Table 2.7, cont.

S

N=13

entropy 1.3832
mse 0.1851

N=14

entropy 1.4897
mse 0.1945

=
R H

N=15

entropy 1.4279
mse 0.1741

N=16

entropy 1.5246
mse 0.1832

P o

&
\"-(.‘v
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output Llevels

0.00
1.4905
3.6856
6.5668
10.0490
14.5613
20.7287

0.6094
2.4481
4.8695
7.8878
11.6177
16.3204
22.6971

0.00
1.4370
3.5130
6.1276
9.3240
13.2273
18.1078
24.6821

0.5932
2.3557
4.6388
7.4314
10.7942
14.8614
19.9108
26.6735

thresholds

0.7562
2.7756
5.4432
3.8279
13.1566
19.0530

0.00
1.6368
3.9076
6.7842
10.3646
14.8893
21.0000

0.7284
2.6438
5.1223
3.1854
11.9454
16.6528
22.9651

0.00
1.5740
3.7202
6.3876
9.6242
13.5532
18.4339
24,9387
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Table 2.8 Positive thresholds and positive output Levels for a MSE
quantizer (N=2,4,8,16) for a zero mean, unit variance Lapla-
cian probability density function. After Adams and Griesler
[12] (mse = mean square error)

output levels thresholds
N=2 0.1071 0.00
entropy 1.00
mse 0.500
N=4 0.4196 0.00
1.8340 1.1269
entropy 1.7283
mse 0.1762
N=8 0.2334 0.00
0.8330 0.5332
1.6725 1.2527
3.0867 2.3796
entropy 2.5654
mse 0.0545
N=16 0.1240 0.00
0.4048 0.2644
0.7287 0.5667
1.1110 0.9198
1.5778 1.3444
2.1773 1.8776
3.0169 2.5971
4.4311 3.7240

entropy 3.4749
mse 0.0154
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orthogonal polynomials for a fixed N are denser near the end points L[76,
P. 3111. The mse error for the uniform MP guantizer decreases with N as
shown in Figure 2.2.

The results for the other two density functions on an infinite in-
terval exhibit one of the disadvantages of the MP quantizer; the outputs
at Yo and YN have a tendency to spread much further then the MSE quan-
tizer. What this says is that the quantizer is assigning output levels
that have a very small probability of occurrence. For example the La-
placian MP quantizer for N = 16 assigns levels all the way out beyond 20
standard deviation units as compared to the MSE quantizer which only as-
signs levels out to & standard deviation units. These assignments of
Low probability output levels are reflected by the low values of the en-
tropy for all three of the MP quantizers. This also points out the fact
that it would be very hard to evaluate the MP quantizer for large values
of N (say Llarger than 30) because the output levels would be assigned
such low probability of occurrence that one could have problems with
machine accuracy. It should also be mentioned that it is no easy task
to compute the zeroes of a polynomial of large degree. These types of
problems do not manifest themselves in the MSE quantizer due to the type
of algorithm used. 1In fact for the normal distribution case results are
available for N as large as 2048. The applicability of using a quantiz-
er with very large number of levels i.e. N > 16 is not significant, in
fact usually above N = 8 a uniform quantizer is used.

The mean square error of the MP quantizers all decrease with N ex-
cept the Laplacian. For this case i1t is possible that the mse at N lev~

els is smaller that the mse with N+1 levels (see N =7 and N = 8); how=-
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ever this has only been observed empirically for pair wise groupings of
the mse, that 1is Figure 2.4 has a definite trend of decreasing. As a
final statement we should mention that for probability distributions on
an infinite or semi-infinite interval the moment sequence diverges.
This will tend to limit the maximum value one can use for N because of
machine accuracy of representing large numbers. Here again in a practi-
cal application one would usually use a uniform quantizer for Llarge N.
In the next section we discuss the convergence of the MP quantizer and

the quantization noise.

2.7 Convergence of the MP Quantizer

In this section we will examine the convergence of the MP guantizer
for large N. The notation we shall use is that YN denotes the random
variable at the output of the quantizer with N levels and X is the input
random variable. We desire to 1investigate under what circumstances

does:

i.e. does YN approach X in some sense when N is Llarge. In particular
does YN converge to X in mean square (i.e. in L?(a,b)) or in distribu-

tion? These can be stated as:

D YN converges to X 1in mean square, denoted as YN Jps

2

X, if

EE(YN-X) J>0as N+~=

2) Yy converges to X in distribution, denoted as Yy d X, if
Fy(x) » F(x) as N + = where Fy(x) is the distribution of Y-

Convergence in mean square guarantees convergence in distribution.
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Convergence in distribution seems somewhat attractive for the MP
quantizer since, as N > =, YN and X have the same moments. We know that

for each moment sequence

— k
mk(N) = EEYN]

k =0,1,2,3,...

there exists some integers, say Rk' depending on k, such that if N > Ry
then ECxKJ = m (N. In other words all the moment sequences are con—
verging hence if the moments of Fy(x) are converging will that imply
convergence in distribution? This can be restated by saying under what
circumstances will the moments completely characterize the input distri-
bution, i.e., given the moments can the distribution be found? This
leads to the classical moment problems of Stieltjes, Hausdorff, and Ham-
burger. The work of Aheizer [3,6], Krein [3], Shohat and Tamarkin L733
address the moment problem very elegantly. The Stieltjes moment problem
is defined on the semi=-infinite interval. The Hamburger moment problem
js defined on the infinite interval. We will only mention the results
for the Hamburger problem; the results are analogous for the Stieltjes
problem. On a finite interval (Hausdorff) every probability distribu-
tion 1is characterized by its moments [73,26,76]1. This says that on a
finite interval we have convergence in distribution. A very remarkable
theorem due to Riesz [73, p. 611 states that the orthogonal polynomials
associated with F(x) are closed in Lz(a,b) if and only if F(x) s

F
characterized by its moments. Since we have already mentioned that the

'orthogonal polynomials are closed on any finite interval (Theorem 2.1)

this implies that any distribution on a finite interval is characterized
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by its moments. Let us state the Hamburger Moment Problem:
Theorem 2.11 (Hamburger)
For the distribution F(x), x € (==,®), to be characterized

moments it is necessary that the Gram determinant:

mO m1 see mn
M M2 *"" Mo
A = )
n .
mn LA N ) m2n

be positive semi-definite for all n, i.e.,

A >0

n for all n.

The proof is omitted. See [73, p. 51.
verify
2.11. It is sometimes easier to use the results of Carleman:

Theorem 2.12 (Carleman)

by

its

In many cases it is difficult to

if a distribution is characterized by moments by using Theorem

A sufficient condition that the Hamburger moment problem be deter-

mined is that:

1
@ -?i-_a,
Z ) 7=

or more generally

(2.3
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1

21)_1 -

- o,

i? (jnf (mZi)

n=1 i>n
The proof is omitted. See [73, p. 19]1. What Theorem 2.12 does is put
conditions on the rate of increase of the even moments of F(x). A much
more restrictive sufficient condition, but perhaps more intuitive, is
that a distribution is characterized by its moments if its characteris-
tic function is analytic in a neighborhood of the real axis 0261, The
above conditions can be extended to the Stieltjes problem. We summarize
the above by the following theorem. Thus a sufficient condition for

convergence in distribution is:

Theorem 2.13

If the input distribution F(x) is characterized by its moments then
the MP quantizer converges in distribution.
Proof:

We have stated above that the moment sequences converge, that is:

mk(N) > m  as N> o .

so if the input probability distribution F(x) is characterized by its

moments we have

QED
The three distributions discussed in Section 2.7 are characterized by

their moments, hence they converge in distribution.
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Mean square convergence is much more difficult. We will only show
mean square convergence on a finite interval. We will then state some
necessary conditions for mean square convergence on an infinite or

semi=infinite interval. For mean square convergence we must show
ECCY=X)21+ 0 as N+ = .
From Equation 2.30 we have

X.
2. _ N N
ELCY=X)°1 = 201 - 2; YiN S x dF(x))
i= X
i=-1,N
where the output levels and thresholds are also indexed by N. Essen-

tially what we need to show is:

N *iN b
tim 2 yon S x dFGO = £ x%dF(x) = 1 (2.32)
N = =1 X:21 N a
’

note Yin € [xi-1,N'xiN]

We shall assume F(x) is continuous to avoid any problems mentioned by
the Separation Theorem. Before proceeding we will state a theorem con-

cerning the distance between consecutive zeroes.

Theorem g,lﬁ_(Szer, 76, p. 1121

Assume F(x) admits a density f(x) on the finite interval [a,b] with

flx) 2v > 0. Let y,, < Yonr < e« < Yy be the zeroes of the associat-

ed polynomial YN(x). Let
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21 1 (e
YN = 2—(a+b) + 2-(b a) cosekN

with 0 < e < Tes k = 1,2,-..,N

kN

then

Logh ' (2.33)

Ok T O <K}

with k determined only by v, a and b. Proof is omitted. Therefore

bm Opaq,n T O = 0

Note that the value of K does not depend on f(x). We now can state:

Theorem 2.15

The MP quantizer convergences in mean square on a finite interval.

Proof:

We will require the assumptions of Theorem 2.14 (i.e.
f(x) > =v > 0.) Since the quantizer really represents a formal partition
of [a,b] we use Theorems 2.6 and 2.7 and the Separation Theorem (Theorem

2.10). These theorems give us (along with Theorem 2.16):

L - =0
Hn 1y, ™ Vil
bm Ixq,n = Xl =0
for all k

Therefore Equation 2.32 is immediately specified.

‘QED

For mean square convergence on an infinite interval we need a theorem
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similiar to Theorem 2.14 plus the additional end point conditions:

X
|

Lim S x dFtx) =0

o 1

and
lim y x dF(x) =0
wmon S
N-1
%4
Hence we need to shown that ¥4 > = slower than j' x dF(x) + 0 and simi-

larly for the other end point. For the semi-infinite interval we have
similar conditions at the one end point.

We have not been successful at showing a general results 1in this
case. It is very difficult to make statements concerning the zeroes of
general orthogonal polynomials. This difficulty should be compared to
the minimum mean square error quantizer (MSE) where convergence in mean
square is guaranteed if the input density f(x) 1is Riemann integrable
£811.

As to how well the MSE quantizer preserves moments it can be shown
[131 that MSE quantizer always preserves My but 1in general

2 2

ELY™] < ELX"™J. It can also be shown that

2 2

ECCY-X)%1 = ECX%] - ECYZD

hence convergence in mean square guarantees that the second moment
series converges.
Finally before leaving this chapter let us briefly discuss the

guantization noise of the MP quantizer. Let
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eq = Y-=X

be the error in quantizing X with an N level MP quantizer. eq is also

known as the gquantization noise. So we have

hence EEeq] =0

and ELY®1 = ELX?1 + 2ELXe 3+ Etegj
or
ECe2] = —2ELxe ]
q q
Thus EEXeq] 5.0
since Efegl Z.D

This says that the quantization noise is negatively correlated with the
jnput. Negative correlation of the guantization noise can be also shown
for the MSE quantizer [81]. Before we Lleave this chapter we should
state that the uniqueness properties mentioned in Section 2.5 hold if
one insists that a N level MP quantizer preserve 2N-1 moments. It s
possible to design a N level MP quantizer that preserves less than 2N-1
moments. In this case it is possible fo arrive at more than one formu-
lation of the quantizer.

In the next chapter we will present an application of the MP quan-

tizer in the context of image coding for bandwidth compression.
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CHAPTER 3
BLOCK TRUNCATION CODING: AN

APPLICATION OF THE MP QUANTIZER

3.1. Introduction

In this chapter we present the non-transform coding technique
developed at Purdue University over the past two years called Block
Truncation Coding (BTC) [231, [48], [49]1. This technigue involves the
use of a one bit adaptive non-parametric MP quantizer. In this chapter
the basic BTC algorithm is presented and compared with some of the other
techniques of image compression. Modifications to BTC are presented in-
cluding some hybrid techniques. The performance of BTC in the presence
of channel errors is also included. This technique applies to many si-

tuations when images must be either transmitted or stored.

3.2. Basic BTC Algorithm

BTC ié a method of using adaptive non-parametric re—=quantization
over local regions of an image. For the study presented here it will be
assumed that the local region of the image will be a 4 x 4 pixel block.
It will further be assumed that it is desired to find a two-level (one
bit quantizer) rendition of the image in this 4 x 4 block. If one uses
classical quantization design such as that by Max [46] which minimizes
the mean square error between the input and output of the quantizer, or

the MP quantizer developed in Chapter 2 then one must know a priori the
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probability density function of the pixels in each block. This same a
priori knowledge of the input density is also required if the mean abso-
lute error fidelity criteria of Kassam [43] is used. Since it is in
general not possible to find adequate density function models for typi-
cal imagery, we have chosen the approach of using non-parametric quan-
tizers for our coding schemes. Non-parametric quantizer design using
the minimum mean square error fidelity criteria (denoted MSE) and the
minimum mean absolute error criteria (denoted MAE) will be presented in
Section 3.3. In this section we will develop the basic non-parametric
MP quantizer based on preserving the sample moments. The resulting
quantizer will be compared to the quantizer developed in Chapter 2.

One proceeds by first dividing the original picture into nxn blocks
(we have used n=4 for our examples). Blocks are then coded individual-
ly, each into a two level signal. The levels for each block are chosen
such that the first two sample moments are preserved. Let k=n2 and let
X1,X2,...Xk be the values of the pixels in a block of the original pic-
ture.

Let

k
Ty = > X. be the first sample moment
17 % =1 i

k
2% X% be the second sample moment G.1D
'|=

= 1
27X
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e

- 2=

¢° =, -'ﬁ? be the sample variance

As with the design of any one bit quantizer, we find a threshold

and two output levels for the quantizer such that:

if Xi > Xeh output = y, (GB.2D

if Xi < Xth output = y,
for i = 1’....’k.
where
o Xth is the threshold

Y4 and y, are the "low" and "high" output levels, respectively.

For our basic non—-parametric MP quantizer, we shall set Xth = Fﬁ. This
reasonable assumption will be modified in Section 3.4 to achieve a more
consistent result with Chapter 2. The output levels Yq and Y2 for a
two-level non-parametric moment preserving quantizer are found by solv-

ing the following equations:
let g = number of X;'s greater than X, (X in this case)

We then have

Eﬁ} = (k=qdyq + ayp 3.3)
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P — 2 2
1 kmz = (k-qdyq ¥ a3

Equation 3.3 is readily solved for Yq and yj:

The result of Equation 3.4 should be compared to Equation 2.4 for the

parametric quantizer. The result is identical if we assume
- k-
P1__E9.

- e
¢ Pa=x
Here the probabilities are replaced by using a relative frequency argu-
ment.
Each block is then described by'ﬁ}, s and an nxn bit plane con-
sisting of 1's and 0's depending on whether a given pixel is above or

below X Assigning 8 bits each to EH and 7 results in a bit rate 2

th*®
bits/pixel. The receiver (decoder) reconstructs the image block by cal-
culating Yq and Y2 from Equation 3.4 and placing those values in accor-
dance with the bits in the bit plane.

Let us quickly review the basic BTC encoding algorithm:
a) The image is divided in small non-overlapping blocks such as 4xé4.

b) The first and second sample moments are computed.

¢) A bit plane is constructed such that each pixel location is coded as
a "one" or a "zero" depending on whether that pixel is greater than
m.

1-

SN
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-,

{ d) The bit plane, ﬁa, and T are sent to the receiver.

e) The picture block is reconstructed such that ﬁ} and ¢ (alternatively
ﬁé) are preserved. That is, pixels in the bit plane that are "0" are
set to "Y1" and the "1"'s are set to "y»" in Equation 3.4. For exam-
ple, suppose a 4x4 picture block is given by the following:

121 114 56 47
37 200 247 255
Xij = | 16 0 12 169
43 5 7 251
so
iﬁ = 98.75
g = 92.95
=7
and
yq = 16.7 = 17
( yp = 204.2 = 204
the bit plane is:
K 1 0 G
0 1 1 1
0 0 0 1
0 0 0 1
The reconstructed block becomes:
204 204 17 17,
17 204 204 204
17 17 17 204
17 17 17 204
and the sample mean and variance are preserved.
We have found that block boundaries are not visible in the recon-

structed picture using this technique but two major artifacts are: (1)

— edge raggedness, (2) misrepresentation of some midrange values due to
(

their assignment to either a high or low value. 1In the next section we
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will show methods for reducing these effects and improving the represen-
tation even further.

A few comments should be made about the appeal of this method.
First is the obvious simplicity of the calculations involved. Only k
pixels at a time need be considered, eliminating the need for picture
storage and allowing real time coding with a small hardware device.
This method does not require the amount of computational overhead neces-
sary in other coding schemes such as transform coding. A recent in-
dependent study has been compléted indicating that BTC can be realized
on an integrated circuit chip [25]. Second is the suitability of this
method to the human observer. The largest grey level changes within a
block are the ones coded. This is obvious by the way the levels are
weighed by the variance. If no large changes are present, the most sig-
nificant small variations are coded. The human is insensitive to small
variations in the presence of large variations this phenomena is known
as "masking”, so this technigue is neglecting the very thing to which
the human visual system is insensitive L[40]. The third point is that
the bit plane preserves the original accuracy of an edge or object loca=-
tion with no blurring of the edge upbn reconstruction of the image. If
anything, the effect 1is to enhance boundaries which is again suitable
for human observation. An example of two dimages coded using BTC is

shown in Figure 3.1.

3.3. Other Non-Parametric Quantizer Schemes

As mentioned in Section 3.2, other techniques could be used to
design (or fit) a one bit non-parametric quantizer. The use of rate-

distortion theory seems theoretically attractive but somewhat impracti-
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Figure 3.1 Results using the basic BTC aLgorithm; The original dm-

ages (top) are 256x256 pixels with nominal 8 bits gray
level resolution. The coded images (bottom) have a data
rate of 2 bits/pixel.
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cal for real imagery [11], [54]. 1In this section we will discuss the
use of the minimum mean square error (MSE) and minimum mean absolute er-
ror (MAE) fidelity criteria for non—-parametric quantizers;

To use the MSE fidelity criterion, one proceeds by first construct-
ing a histogram of the X,'s (i.e., sorting the X;'s). Let Iy, Z, ...
Zk be the sorted Xi's; Teee, Z4 £ Z3... < Zp. Again let g be the number

of Xi's greater than Xihe Then y4 and y, are found by minimizing:

k=-g-1 > k >
e = X G-yttt L Zy-yp (3.5
=1 i=k=q
where

1 k-g-1

" % G
L &

Yoy = =— Z.

2 g itkeq |

In general it is impossible to solve this equation in closed form for

X Y1 and Yo One obvious way to solve this problem is to try every

th”
possible threshold (there are at most k-1 thresholds) and pick the one
with smallest JMSE' Assuming 2 and Y2 have 8-bit resolution, this
gives a data rate of 2 bits/pixel. The -encoding operation would be
similar to that of Section 3.2.

The problem of using the MAE fidelity criterion is very similar to

the MSE. The values y; and y, are found by minimizing:
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-q-1
Imae = ké% |zi - Y1| * ié_q lzi - y2| (3.6)

where

yi median of (Z4, Z5, ..., Zk-q-1)

Yo = median of (Zk_q, cens Zy)

Here again the non-parametric quantizer is arrived at by an exhaustive
search. Results using these adaptive non-parametric quantizers and BTC
are shown in Figures 3.2 and 3.3. Table 3.1 has the computed mean
square error and mean absolute error measures for each image. As anti-
cipated the MSE quantizer has the smallest computed mean square error
measure and the MAE quantizer has the smallest computed mean absolute
error measure. The performance of BTC is quite good when compared to
these standard fidelity criteria. The advantage of using a MP non-
parametric quantizer is that the quantizer formulation is available in

closed form. Once one knows M, m5 and q the quantizer is immediately

Y

specified. This greatly reduces the computational lLoad.

As discussed in Chapter 2 it is possible to use a parametric quan-
tizer once the probability density function of the pixels is known (or
guessed). In Figures 3.2 and 3.3 results are presented for a parametric
MSE quantizer where the pixels are assumed to be uniformly distributed

over each block. The computed error measures are shown in Table 3.1.
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Figure 3.2

Results using various fidelity criterion. ALl representa-
tjons are 2.0 bits/pixel. Upper Lleft: minimum mean
square error; Upper right: minimum mean absolute error;
Lower left: moment preserving; Lower right: minimum mean
square error and also assuming image data uniformly dis-
tributed each block.
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These four pictures were produced as described
3.2 using the other original.

in

Figure
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Table 3.1 Computed Mean Square Error and Mean Absolute Error measures
for various quantization schemes.

Mean Square Error Mean Absolute Error

Data from Figure 3.2:

Using MSE guantizer 32.94 3.54
Using MAE quantizer 37.13 3.28
Using BTC 40.89 3.91
Using parametric MSE quantizer 44 _64 4,23

and assumed uniform density

Data from Figure 3.3:

Using MSE quantizer 47.14 4.39
Using MAE quantizer 53.22 4.10
Using BT¢C 58.34 4,85
Using parametric MSE quantizer 64.02 5.42

and assumed uniform density
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§_.i. BTC Modifications

One of the disadvantages of BTC is that the compression achieved
corresponds to a data rate of only 2 bits/pixel. In many image coding
schemes it is desired to obtain data rates lower than this.

As mentioned in Section 3.2, it is necessary to transmit some over-
head information for the quantizer in each block. This overhead infor-
mation tell the quantizer how to adapt the levels Y4,¥2 for each block.
The iﬁformation usually transmitted 1is E} and o« One obvious way of de-
creasing the image representation is to assign less than 8 bits to
iﬁ and g- Experimental evidence has indicated that it is possible to
code EH with 6 bits and o With 4 bits. This allows for some savings and
few perceivable errors upon reconstruction and a bit rate of 1.63
bits/pixel. While allowing only 6 bits for Fﬁ is not acceptable in some
cases it is possible to jointly quantize EH and 5. This is done by al-
lowing 10 bits for m, and o where W, is assigned more bits in blocks
where o is small and fewer bits where T is Llarge.

To allow for more savings in coding, there are various ways of cod-
ing the bit plane. A typical bit plane image for the girl's face is
shown in Figure 3.4. This image was obtained by setting all the 1's in
the various bit planes to white and O's to black. This image is of
course a binary image. The literative is very well developed in the
area of codjng binary (or two-tone) pictures [381, [55]. The entropy of
the bit plane image has been approximated by using three different run=-
length coding models. The models were that of 1) a one dimensional
runlength code differentiating between 0's and 1's, 2) a two dimension—

al Markov runlength code having 16 states and 3) a two dimensional Mar-
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"kov runlength code having 16 states and where the maximum Likelihood

state prediction error is coded; this is a modification of Preuss's TUH
code [55]. The TUH code is one of the most sophisticated coding tech=-
niques used for binary images. The results are summarized in Table 3.2.
Typical values indicate that it is necessary to allow about 0.90
bits/pixel in the bit plane instead of the nominal 1 bit/pixel. The
fact that a large coding gain was not obtained can be understood by ob~
serving that in Figure 3.4 there are not large black and white regions
indicating long white and black run lengths. Due to the poor perfor—
mance of these codes in the presence of noise and the fact that the gain‘
in compression would not be that great, (not to mention the'overhead in
calculation), the bit plane was not entropy coded to lower the compres=—
sion.

By choosing the threshold of the quantizer at Eﬁ, it has been ob-
served that partitioning of the pixels leads to some "unnatural' appear-
ance of the data. For high resolution imagery, this manifested itself
by some unacceptable coding artifacts. It would be desirable if the
fidelity criterion allowed for a threshold choiée. To be consistent.
with Chapter 2 we shall force the gquantizer to preserve the third sample
moment. To use this technique it is necessary to first construct a his-

togram of the pixel values in each block. Let
k k
- _1 3_-1 3
R PR Tl PV 3.7

be defined as the third sample moment. The problem then is finding Y1,

Y5, and q to preserve mq, mp, and m3. Since q specifies the number of
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Table 3.2 Run length coding results (in bits/pixel) using the bit
planes of Figure 3.4

Coding Type Original BTC Algorithm Third Moment Preserving
BTC Algorithm
one dimensional
run length coding 0.916 0.937

two dimensional

run length coding

(assuming 16 state

Markov model) 0.877 0.903

TUH code (error pre-
dictor assuming a 16
state Markov model) 0.90 0.927
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Bit plane images for the girl's face image. The original
BTC algorithm is on the lLeft. The third-moment preserving
bit plane is on the right.
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Xi's greater than X¢hr by finding g, one has the threshold. It is
necessary to sort the data because of the way q is defined. Equation

3.3 now becomes:

km, = (k-adyq + ayo

K, = (k-q)y3 + ay3 | (3.8
Ky = Ck-qdy; *+ av3

These equation should be compared to Equation 2.3. After some algebra,

the solution to Equation 3.8 is obtained:

Y1=Tn-1-0’ E(E—Q]

Yo =Wy + T E‘—;‘l] (3.9

where
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A problem with this solution is that in general the q arrived at
using Equation 3.9 will be a non-integer, however, in practice.q is
rounded to the nearest integer. Equation 3.9 indicates that the thres-
hold is nominally the sample median and biased one way or the other by
the value of A. This is consistant with the interpretation of Equation
2.4, This method of threshold selection requires no extra computation
by the receiver (decoder); however the transmitter (encoder) must now
construct a histogram of each nxn block. In practice, it is very easy
to sort 16 numbers (n=4) efficiently. This then does not 1increase the
computational lead for BTC significantly. It should be mentioned that
this method of threshold selection is far easier than the non-parametric
quantizers discussed in Section 3.3 since an exhaustive search is not
necessary to find Yir Y20 and q.

Figure 3.5 shows results using this new threshold selection. This
new threshold technique improved the subtle features (such as near
edges) of the image that are usually important in analysis of aerial
photography imagery. This improvement will be discussed further in the
following section.

The non-parametric MP quantizer described by Equation 3.9 1is con-
sistent with the results oﬁtained in Chapter 2. This result can be gen-
eralized to a discrete orthogonal polynomial problem similar to Chapter
2 by a relative frequency 1interpretation of the output Llevels yi's.
This analysis will not be presented here because the application, BTC,
is that of bandwidth compression where the number of output levels need
to be relatively small. Also to maintain the small computational Load

of the algorithm it would not help if it were necessary as in the case
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Figure 3.5 Results of BTC using third moment preserving threshold
selection. Original images are at the top. Coded images
are at the bottom. Data Rate is 2.0 bits/pixel.
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of N=4 to compute the zeroes of a fourth order polynomial for every
block. Although the zeroes of a fourth order polynomial can be written
in closed form it would degrade the computational advantage of the algo-
rithm. At data rates greater than 2 bits/pixel it would be easier to

use DPCM with a parametric quantizer.

3.5. Performance Evaluation of BTC

Recently Purdue University has been engaged in studying the coding
of aerial reconnaissance 1images for transmission over noisy channels
€503, 0511, 0521. 1In this study, various image coding techniques, in-
cluding BTC, were evaluated by professional photo analysts. The coding
techniques included transform, Hybrid [33]1 and two spatial techniques.

Although BTC did not do as well as transform coding in the photo
interpreters evaluation, it proved superior to the other spatial tech-
niques. In the presence of many channel errors, BTC was rated superior
by the photovanaLysts to all of the other techniques. Some images used
in the study are shown in Figures 3.6-3.9. In these figures BTC is com-
pared with the Chen and Smith [161 method of transform coding and Hybrid
coding. The computed mean square errors and mean absolute errors are
shown in Table 3.3. Our study has verified the known phenomena that the
mean square error and mean absolute error measure cannot be easily
correlated with photo analysts' evaluations [66]. 1In some cases, images
with greatly lLarger mean square errors were evaluated higher by the pho-
to interpreters than images with smaller mean square errors. It should
be noted that BTC requires a significantly smaller computational Lload
and much less memory than transfofm or Hybrid coding. For instance, the

Chen and Smith method besides requiring the two-dimensional Cosine
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Original image used in comparison study. Image is 512
512 pixels with nominal 8 bits gray lLevel resolution.
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Figure 3.7

30

Results of coding original (Figure 3.6)

using BTC with

third moment preserving threshold selection. Data rate is

1.63 bits/pixel.
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Results of coding original (Figure 3.6)

using Chen and

Smith [161 method of Cosine Transform coding. Data rate

is 1.63 bits/pixel.
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Figure 3.9
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Results of coding original (Figure 3.6) using Hybrid
ing [33]. Data rate is 1.63 bits/pixel.

cod-
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Table 3.3 Computed Mean Square Error and Mean Absolute Error measures
for comparison dimages shown in Figures 3.7-3.9 and Figures

3.13-3.16.
Mean Square Error Mean Absolute Error
Figure 3.7 84.22 5.94
Figure 3.8 67.13 6.32
Figure 3.9 125.84 6.12
Figure 3.13 115.09 6.29
Figure 3.14 115.31 7.06
Figure 3.15 140.33 6.67
Figure 3.16 74.67 5.72
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transform over every 16x16 image block also requires multiple passes
through the transform data to collect various statistics about the
transform coefficients. It should also be mentioned that BTC requires
no sophisticated error protection as do the other coding methods
evaluated. Figures 3.10-3.12 show the difference pictures obtained by
subtracting the coded images of Figures 3.7-3.9 from the original of
Figure 3.6. These pictures give an indication of the relative coding
artifacts manifested by each coding scheme. A medium gray indicates no
coding error. Figures 3.13-3.15 show the results of each coding method
in the presence of channel errors. The channel was assumed to be binary
symmetric with the probability of a bit error of 10-3.

As with all non-information preserving image coding, c¢oding arti-
facts are produced in the image. It became apparent very early in this
study that BTC produces artifacts that are very different than transform
and hybrid coding. These artifacts are usually produced in regions
around edges and in low contrast areas containing a sloping gray Level.
As mentioned above, BTC does produce sharp edges; however, these edges
do have a tendency to be ragged. Transform coding usuélly produces
edges that are blurred and smooth. The second prdblem in low contrast
regions is due to inherent quantization noise in the one bit quantizer.
Here sloping gray levels can turn into false edges. Preliminary experi-
ments -have indicated that pre and post processing of the image can
reduce the effects of both these artifacts while simultaneously reducing
the mean square error and mean absolute error. For example the computed
mean square error dropped by one half for Figure 3.7 when a simple cir-

cularly symmetric moving average low pass filter was used in a post-
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The difference picture for BTC (Figure
corresponds to no coding artifacts.
by factor of 5.

3.7). Medium gray
Gray scale expanded
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The difference picture for Chen and Smith

Medium gray corresponds to
scale expanded by factor of 5.
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(Figure 3.8).

Gray
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Figure 3.12
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The difference picture for Hybrid coding (Figure 3.9).

Medium gray corresponds no coding artifacts.
expanded by factor of 5.

Gray scale



¢y

Figure 3.13
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BTC coding with channel (bit) error probability of 10-3.
Data rate is 1.63 bits/pixel.
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Figure 3.14

Chen a

89

d Smith coding with channel (bit) error probability

of 10‘3. Data rate is 1.63 bits/pixel.



Figure 3.15 Hyggid
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coding with channel (bit)
Data rate is 1.63 bits/pixel.

error

probability

of
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coding scheme. This type of filtering reduces the quantization noise at
the cost of slightly blurring the image. It should be emphasized that
the above coding artifacts are problems in high resolution aerial recon-.
naissance 1images where man—-made objects are important (i.e., edges).
These coding artifacts usually are not any problem in typical "head and
shoulders" imagery.

One of the advantages of BTC is that of edge preservation. Figure
3.16 shows an enlarged section of an image coded using the Chen and
Smith method and BTC. The edges using the transform coding method are

not as sharp as the BTC image.

3.6. Hybrid Formulation of BTC

One of the problems that BTC has 1is that it 1is really a one-
dimensional quantization technique. In no way does BTC exploit the
two-dimensional nature of the image within each block as do most other
forms of image coding. For example in two-dimensional transform coding
the transform coefficients contain information about variations in the
picture in both directions. BTC only uses the moment information which
gives no insight into the two dimensional variations within the picture.
Also BTC generally has a poor response near the spatial frequency of 1/2
cycle per block.

One method to improve both of the problems above is a hybrid formu-
lation. First a highly compressed Cosine transform coded image is sub-
tracted from the original image. For the results presented here the
transform picture was obtained by taking the two-dimensional Cosine
transform over 16 x 16 pixel blocks. Only the eight non d.c. coeffi-

cients 1in the low frequency section of each block were retained. This
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Enlarged section of image from Figure 3.7 (left) and Fig-
ure 3.8 (right). :
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Figure 3.17

93

Results of Hybrid Formulation of BTC.
bits/pixel.

pata rate

is 1.88
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corresponds to a zonal filtering method with a representation of 0.25
bits/pixel for the highly compressed image. BTC was then used on this
difference picture and the recombination formed at the receiver. While
this did 1increase the computational load, the improvement seemed to be
significant enough to give this method further attention. Figure 13.17
presents results of this hybrid method. Table 3.3 has the mean square
error and mean absolute error measures for Figure 3.17. This technique
exploits the edge preservation of BTC and helps in the low contrast re-

gions of the image by improving the frequency response.

-
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CHAPTER 4

IMAGE MODELING

4.1. Introduction

In recent years much work has gone into obtaining reasonable spa-
tial models for images [27]1, [681, [79]1, £10]1. This has led to some
very good results in areas such as image enhancement and coding E31j,
741, [60], £82]1, [56]. For example the Cosine transform which is wide=
ly used in image transférm coding (as compared to BTC in Chapter 3) can
be shown to be nearly optimal if the image is a sample picture of a Mar-
kov field [4]. Various studies using rate distortion theory for examin-
ing coding performance usually assume a Gauss-Markov modei for images
[191, [34], [62]. 1In this context studies of the nature of the human
observer 1in image systems have been undertaken to improve the image
model.

In this chapter we will examine Gauss-Markov image modeling from
the point of view of classical time series analysis using the method of
least squares [123, [42]1. A seasonal one-dimensional model is obtained
and used to regenerate test images. This approach has shown to have
some promise in the area of texture modeling [47]1, [78]. We will wuse
these models to generate background scenes and for texture synthesis for
use in an image coding application. The suitability of Gauss-Markov im-
age models will be demonstrated from these synthesized scenes. The

model is also used to dintroduce differential pulse code modulation
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scheme (DPCM) to be presented in Chapter 5.

4.2. The Image Model

Suppose each NxN discrete image is described as a matrix y(i,j).
If the 4image 1s assumed to be a sample picture from a two-dimensional
discrete homogeneous Gauss-Markov field, one can show that the pixel at

y(i,j) has representation [83]:

a b
y(i,j) = ZO 20 8 o YU-m3-n) + uli,j) %1
m=0 n=
m=n#0
where

a) ELud,i) yG-m,j=n)]1 =0 ; m,n >0, m+n > 0

b) ECuCi,jdutk,8)] = °25ik5jz
¢) ELuti,»3 =0

d) EL*] is the expectation operator

e) &5 =1; if i=k,

0; if i#k

f) u(i,j) is the noise driving process
a) ®.n weights to be estimated
The initial conditions for this model consists of the first a rows and b
columns. Equation 4.1 indicates that the pixel gray level at (i,j) is
related to the pixels in the recursion region weighted by the respective
8's plust some Gaussian white noise u(i,j). Condition of Equation 4.1
indicates the noise term u(i,j) is uncorrelated with the pixel values in

the recursion region. Conditions b and ¢ indicate that u(i,j) is zero

and white (uncorrelated). Therefore u(i,j) is a zero mean independent
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Gaussian random field. The 6's are sometimes called the regression
coefficients. Models of this type'are referred to as "quarter-plane"
models. There are more general recursion regions that include more
neighbors but the problem of obtaining accurate parameter estimates is
more complicated. This model says that a sample picture can be generated
by driving a two-dimensional recursive digital filter with Gaussian
uhite‘noise. What we shall do is show how a real image can be modeled
by the two dimensional random field described by Equation 4.1.

The special case of a Gauss-Markov field with a and b equal to one

is sometimes assumed for the picture:
yGi,j) = 91y(i-1,j) + ezy(i-1,j-1) + o3y (i, j-1) + uGi,j) (4.2

By row=-concatenation one can obtain a one-dimensional formulation of

Equation 4.2:
tet  (i,3) » k = (i=1IN+j
then
y(k) = 8,y (k=N) + eyy(k-N-1) + 8zy (k=1) + ulk) (4.3

Thié formulation of v(*) and the Labeling of the pixels is suggestive of
horizontal Lline scanning. A similar transformation could also be used
to obtain a vertical scan type of formulation. The formulation of Equa-
tion 4.3 is shown in Section 4.3 to work quite well for parameter esti-
mation of the 6's and o°.

Except for the handling of the initial conditions, Equation 4.3 can

easily be recognized as a seasonal autoregressive time series [42] where
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the seasonal period is N. One can obtain a more compact version of

Equation 4.3:

y(k) = T Zk=1) + udk) | 4.4)

where

_G_T = [91, 92, 93]

2T (k=1) = Ly(k-N),y (k=N=1),y (k=1)]

The vector z(k-=1) is called the "past histbry" of the process.

" Throughout the rest of this chapter, the image will be assumed to
be described by the Gauss-Markov field of Equation 4.1 and through the
change of variables discussed above a seasonal autoregressive time

series will be obtained.

4.3. Parameter Estimation

To fit the model given in Equation 4.4 to a particular picture one

has to obtain estimates of the regression parameters 8 and white noise

variance 02. The method of least squares was chosen to obtain the

parameter estimates for the model. Given Equation 4.4 one wishes to

find 8 and 02

such that the squared error between the actual pixel value
and the pixel value generated by the model is minimum. The squared er-

ror is given by
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P 2

2. N
- e = ¥ [rw -g_Tyk-n]Z
- k=1
k#I.C.
where I.C. = {index of initial condition set} (4.5)
It is easily shown that the values of 8 and a2 which minimize JN(e) are
N2 -1 NZ
sy = | T ZCk-127 k=1) T yZk=1 (4.6)
k=1 k=1
k#I.C. k#I.C.
NZ
P= T - @nnT z-13°
1 k=1
k#1.C.

where Ny = NZ - (number of points in initial condition set)

<w-~ Since it is assumed the process u(*) is Gaussian, the results obtained
in Equétion 4,6 are the same as the conditional maximum likelihood esti-
mates of & and 02 [421].

The term
ek = y(k) = Ny TZK=D 4.7

js called the residual of the model. If the image is actually described
by Equation 4.4 and if 8 = §(N,), then w(k) would of course be the white
noise driving process. In practice a complex 1image cannot fully be
described by a simple model as in equation 4.4 and therefore the residu-
als can be used as an indication of how good the model actually fits the
particular picture. In general then, it would be desirable that the
residuals represent a zero=-mean white Gaussian sequence. Various sta-

- tistical tests can be performed on the residual sequence to verify the
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above properties [121, [42]. One very simple test that can illustrate
the validity of the model is to let § = ng1) and 02 = 52, Then regen-
erate the image according to Equation 4.4 with the initial conditions
and an independent Gaussian random number generator. The quality of the

regenerated image of course would be the final test.

4.4. Image Regeneration and Applications

The model given in Equation 4.2 was used for this study. Due to
the gfoss non-homogeneous nature of large images we separated the image
into NxN subpictures and fitted the same model type to each subpicture
of a large picture. In other words, all the models for each large image
had the same form but a different paraméter set Q}N1) and &2 for each
subpicture.

Results were obtained for four large pictures each of which were
256x256 pixels. The subpicture size was chosen to be 16x16 pixels, so
that each 256x256 scene had 256 parameter sets associated with it.
After the parameter set was obtained each image was regenerated as
described in Section 4.3 with a Gaussian random number generator (provi-
sion was made for the cases where the residual was not zero-mean).
Results are shown in Figures 4.1 and 4.2 for the model of Equation 4.2.
The texture images are that of cork and wood. The results obtained are
interesting in that the picture was generated from the initial condi-
tions and the parameter set along with the model description and a ran-
dom number generator. One should remember that in each subpicture the
initial conditions used were the actual pixel values for those rows and

columns respectively.
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Figure 4.1 Original images are on the left. The regenerated images
are on the right. The textures are wood (top) and cork

(bottom).
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Original images are
are on the right.

on the

left.

The

regenerated

images
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There is no guarantee using the method of Least squares that the
model obtained will be stable. 1In fact, in the girl's face seen in Fig=-
ure 4.2 one can see subpicture blocks which have an unstable model for-
mulation. One can observe this by noticing the white and black streak-
jng in the regenerated scene toward the bottom of the picture. The
model of Equation 4.2 is of course low-pass in nature and any complex
image properties, such as edges, are not accounted for by the model.

An obviﬁus application of the model is synthetic texture genera-
tion. wWhile the textures shown in Figure 4.1 are generated using the
model of Equation 4.2 the data rate achieved is really not that small.
This 4is due to the fact that for each 16x16 subpicture the initial con-
ditions used are the first row and firét column of the original image.
This amounts to 31 initial conditions. If the original image gray Llevel
resolution is 8 bits/pixel and if we assumz that 61, 62, 63, and 32 can
be represented adequately at 8 bits. This results in a data rate of
1.09 bits/pixel. This is not a very good rate since other coding
schemes such as transform coding would give a better representation of
the texture. If the initial condition set could be reduced then the
compression would be greater. In fact if the initial condition set
could be eliminated the data rate would be 0.125 bits/pixel.

We have regenerated the textures of Figure 4.1 using a smaller ini-
tial condition set consisting of only using the original initial condi-
tions in every fourth block. In the other blocks a synthesized initial
condition set 1is obtained by using the regenerated pixel values in the
blocks to left and above the block being regenerated. In other words we

update the regeneration procedure by using the true initial conditions
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Figure 4.3. Results of image regeneration using modified initial con-
dition set. The original images are on the left. The re-
generated images are on the right.
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Figure 4.4. A regenerated background scene with edges displayed on
top. Original image is on the Lleft.
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in every fourth 16x16 subpicture and using synthesized initial condi-
tijons for the other blocks. These results are shown in Figure 4.3 for
two of the four scenes. The data rate becomes 0.37 bits/pixel. These
results suggest that Gauss-Markov models are adequate for textures. In
an image coding scheme the texture model would only have to be transmit-
ted to the receiver along with perijodically updated initial conditions
and the receiver could regenerate the texture locally.

An application would be that of generating highly compressed and
relatively crude background scenes for use in real time displays such as
remotely piloted vehicle guidance. The background would be generated
very crudely by the Gauss-Markov model and then geometric features such
as edges would be displayed on top of the regenerated background. The
edge features could be used for target identification or classification.
The background being supplied to the human observer would help with
visual cues as to how the target fits in the scene. A demonstration of
this application is shown in Figure 4.4. The edges were obtained using
modified Frei and Chen edge detection [28] and edge thinning using an
algorithm due to Reeves [671.

These results indicate that Gauss-Markov models do not describe
complex scenes fully but these models can possibly be used for many ap-
plications. Results using other types of models for image synthesis are

presented in [21].
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CHAPTER 5

DIFFERENTIAL BLOCK TRUNCATION CODING

5.1 Introduction

Differential Pulse Code Modulation (DPCM) has been widely used in
image bandwidth compression schemes [171, [58]. 1In DPCM the difference
between the actual pixel gray level and a predicted gray level is quan-
tized and transmitted (encoded). At the receiver (decoder) the quan-
tized difference signal and predictor model are then used to reconstruct
the image. The performance of DPCM is based on the predictor model and
the difference quantizer. In this chapter we will examine the use of a
non-parametric MP quantizer for the difference. We call this method
Differential Block Truncation coding (DBTC). We shall assume that the
predictor 1is fixed and that the quantizer is block adaptive i.e., the
quantizer will be allowed to change only between non-overlapping blocks
in the picture. The design of DPCM quantizers has been discussed widely
in the literature [451, [771, [41]. The study by Sharma and Netravali
{711 presents quantizer design based on the squared error fidelity cri-
terion and weighting function relative to a visual threshold function.
The quantizers were found using a geometric search (an exhaustive
search). 1In particular we examine the case of coded pictures having
representations of 1-1.5 bits/pixel where the guantizers have only two

levels (one bit). The quantizers will have both a non-parametric and
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parametric formulation based only on the sample statistics of the
difference signal 1in each block. It has previously been shown in
Chapter 3 that the one bit non-parametric moment preserving quantizer

can be written in closed form.

5.2 Moment Preserving Quantizers in DPCM

In this section the use of moment preserving (MP) quantizers will
be discussed in DPCM. The classical DPCM block diagram is shown in Fig-
ure 5.1. The MP quantizer used for the difference signal preserves the
moments of only the difference signal. In particular for a one bit MP
quantizer, where the threshold of the quantizer is assumed to be the
mean of the error, only the first two moments of the error are
preserved. The question then is if the first two moments of the error
are preserved are the first two moments of the input signal preserved 1in

the reconstructed signal, i.e., does

Eled = EEén] ECY ] = EE;n]
— - 5.1
L1 = erE2 ECY2] = Ev2]
where
e, = nth difference signal
En = nth quantized difference signal
Yn = nth input signal
;n = nth reconstructed signal

The predictor as depicted in Figure 5.1 can be either one or two dimen-
sional. For the analysis presented in this section we will index the

predictor by only a single variable without loss of generality. It is



109

L

\\I//* Quantizer

Predictor Y

N

<

Predictor

Figure 5.1 The Differential Pulse Code Modulation Block Diagram.
Transmitter (encoder) is on the top. Receiver (decoder) is
on the bottom.
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easy to show:
eh-en=Y, - Y, =E (5.2

where En = quantization error in nth sample. This enables us to state a

lemma.

Lemma 5.1. The first moment of reconstructed signal is preserved if the

first moment of the error is preserved.

Proof: Using Equations 5.1 and 5.2 we have

EEenJ - EEen] = EEYnJ - EEYn]

but ele 1

EEenJ

hence EEYn]

EEYn]

QED

This result will be used in the following theorem.

Theorem 5.1. Given that EEéEJ = EEeﬁ] and Lemma 5.1. The second moment

of the reconstructed picture is preserved (EEY%] = EE?gJ) if and only if

EEYnEnJ = 0.
Proof:
a) (it

rewriting Equation 5.2 as
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& = (?n =Yy t e,

21 = Y - 2 v - 2
EEén] = EE(Yn Yn) ]+ ZEEen(Yn Yn)J + EEen]

- erv2e _ oerd 2 i
0 = ELYZ] - 2ECY, Y 1 + ELYZ] + 26Ce (Y = Y )1

. 2. _ 2
since EEén] = EEenJ
v21 = —rrv2 v - Y -~
EEYn] = EEYn] + ZEEYnYn en(Yn Yn)J
but e, = yn - Yn
where ?n = nth predicted quantized signal.
hence
E[Yn] = EEYnJ + ZEEYnEnJ (5.3
Therefore
v - 2
EEYnJ = EEYnJ

~

if EEYnEn] =0 (?.4)
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b) (Yonly if'")
Since Equation 5.3 is in general true if (EEE%] = E[eij) this part
of the proof proceeds backwards from Equation 5.4.
QED

Equation 5.4 can be alternatively written as (using Equation 5.2):

ECY (zq-en)1 = 0 (5.5)
One could argue heuristically that if the quantization error was un-
correlated with dnput that the condition of Equation 5.4 could be met.

Alternatively another heuristic argument could be put forth the assuming

Yn is the optimal predictor and &, = e, hence using the orthogonality

principle we have the desired condition. Unfortunately neither of the
arguments can be successfully applied. Since the quantization error is
negatively correlated with the input signal and since our application
involves a one bit quantizer the quantization error is relatively large.
This result could obviously be extended to any number of moments, howev=-
er, Theorem 5.1 is sufficient to indicate that preserving the moments of
the difference signal usually will not preserve the moments 1in the

reconstruction.

5.3 Some Preliminaries Relative to DBTC
Throughout this chapter we shall assume a two-dimensional predictor

identical to the Gaussian-Markov model developed in Equation 4.3 of

Chapter 4:
yGi,3) = 04yCi-1,3) + aoy(i-1,j-1) + a3y (i, j-1) (5.6)

It is possible to first fit this prediction model to the 1image as in
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Chapter 4 and [21]. However, because we are interested in bandwidth
compression with a relatively lLow data rate we shall fix the predictor
coefficients at o, = .8, 8p = =.6, and ¢z = .8. This will eliminate the
overhead information that would be necessary if the predictor model
adapted at every block. While we make no claim of optimality by assum=
ing a fixed predictor we are only interested in investigating the per-

formance of the guantizer. This given fixed predictor has no "leak”" as-

sociated with it, i.e. the predictor model is marginally stable. This

statement will be modified later.

The prediction error in the absence of quantization then is identi-
cal to the Gaussian-Markov residual of Equation 4.7 (i.e. e, = win)).
The prediction error is quantized using the feedback arrangement of Fig-
ure 5.1 to keep the quantization error (noise) En from propagating.
This is evident from Equation 5.2. It should be pointed oﬁt that this
method of one bit DPCM should not be confused with Delta Modulation. In
Delta Modulation the sampling rate of the input signal is increased much
greater than the Nyquist rate in order to achieve high correlation
between the samples. In our formulation of DPCM the sampling rate is
identical to that used for the other coding schemes discussed in Section
3.6. The basic philosophy of DPCM is that the difference, e, will have
an inherently lower variance and hence it will require fewer bits for a
given degree of accuracy.

From the results of Chapter 4 it is obvious that the difference
signal contains the relatively high frequency content of the input sig-
nal. For the application of image coding this would indicate that the

edge information is contained in the difference signal. From Chapter 3
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we know that BTC works quite well on these types of data. In the next
section we will compare this differential scheme using the non-
parametric MP quantizer to results previous published for the model of

the probability density function of the error signal.

5.4 Comparison Study of DBTC

The study presented is not meant to be a comprehensive review of
DPCM;  we will only investigate the feasibility of using the MP quantiz-
er. O'Neal [581 has shown that the difference signal can be modeled as
having a Laplacian density function. In this section we will compare
the use of the parametric MSE one bit quantizer for a Laplacian density
(Table 2.5) with that of a non-parametric MP quantizer. The later sys-
tem is of course DBTC. We will use the basic non-parametric MP algo-
rithm; i.e., that of preserving only the first two sample moments. We
will base our comparison on computed mean square error and subjective
evaluation.

The coding scheme used is that of Figure 5.1 where the quantizer
adapts at every block of pixels. For this study nxn block size will be
8x8. All of the quantizer schemes require that sample moments be calcu~
lated in order that quantizer parameters be obtained. For the
parametric quantizer we shall assume that the sample moments of error
signal represent a '"reasonable” estimator of the moments. These sample
moments are obtained by first doing an open-loop prediction of the error
signal; the quantizer parameters are obtained and then the loop is
closed for closed-loop prediction and quantization. A better method
would be to estimate the quantizer parameters at each step (i.e. a truly

adaptive scheme).
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For each quantizer scheme, a bit plane and open-loop sample mean

and variance are obtained (k = nxn):

- 1%
m, = e
e ki K
K (5.7
?g-—-%i;l (ek'ae).2

As previously mentioned in Chapter 4 it is necessary to send some ini=-
tial conditions to get the predictor started. For this study initial
conditions were used only in the image blocks along the left and upper
edges of the total image. Empirical evidence indicates it is necessary
to assign ﬁ; only 4 bits and E; only 3 bits; this leads to a data rate
of 1.18 bits/pixel. This should be contrasted to the data rate obtained
by straight BTC of 1.63 bits/pixel. The predictor model tends to add a
little smoothing to the reconstructed 1image which makes the image
cosmetically more pleasing. Results using these two quantizers are
shown in Figures 5.2-5.3 along with their difference pictures in Figures
5.4-5.5. The computed mean square errors and mean absoluteness are
shown in Table 5.1. While the error measures are not significantly dif-
ferent the DBTC coded image of Figure 5.2 looks sharper where the other
coded image looks slightly blurred. The blurring in Figure 5.3 can be
seen by observing the edge information that is "lost" as evident in Fig-
ure 5.5. The mean square errors are large because in general the open
loop prediction causes the apparent average gray level in each block to
shift. Only a small shift in average gray level will cause a relatively
large change in the computed mean square error. Figures 5.6-5.7 show
results din the presence of channel errors. These reconstructed channel

error images are interesting in that the 45° bias in the predictor is
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Results using DBTC

with

bit rate

of 1.18 bits/pixel.
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Figure 5.3 Results using parametric mean square error quantizer with
bit rate of 1.18 bits/pixel.

e
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Figure 5.5 The difference picture for parametric mean square error
quantizer (Figure 5.3). Medium gray corresponds to no cod-
ing artifacts. Gray scale expanded by factor of 5.
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Figure 5.7 Results using parametric mean square ecrror
channel (bit) error probability of 10 -,
bits/pixel.
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Table 5.1 Computed Mean Square Error and Mean Absolute Error measures
for the two DPCM coding schemes.
<" Mean Square Error Mean Absolute Error
- Figure 5.2 113.01 6.59
Figure 5.3 122.86 6.17
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quite apparent. Errors propagate along the 45° axis because the predic-
tor has no "leak" din that direction. In that horizontal or vertical
direction the predictor has "leak" therefore error propagation is not as
evident.

These results indicate that MP quantizer can be used quite satis-
factorily in DPCM and 1in fact DBTC compliments BTC; i.e., when data
rates less than 1.5 bits/pixel are desired it is better to use the dif-
ferential scheme (DBTC) than to use a straight PCM scheme (BTC). The
main reason why it 1s not possible to use BTC at data rates much (if at
all) below 1.6 bits/pixel is the relatively large amounts of overhead
information needed by m} and @ (i.e. 10 bits), If the overhead informa-
tion was not needed then the minimum data rate is 1 bit/pixel. This is
not attainable since the adaptive quantizer needs to know how to change.
In DBTC we can take advantage of two changes from BTC. Here it is only
necessary to assign 7 bits to m, and 0, but the real improvement is the
ability to go to a Llarger block size (8x8). This larger block size
minimizes the effect of quantizer overhead and allows for a Llower data
rate. Unfortunately these results were not evaluated by the profession-=
al photo analysts. It is believed that these results would compete very
favorably with transform coding. DBTC still retains the relative sim-
plicity of BTC although the prediction process adds some complications
to the encoding and decoding. Taking into account these extra opera-
tions DBTC would still be far easier than the Chen and Smith Cosine
transform method. The effects of the prediction algorithm need to be
investigated along with a comparison between DBTC and "true" adaptive

DPCM.
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CHAPTER 6

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

6.1

Summary of Results

We have presented a new criteria for designing quantizers -- that
of preserving moments of the input probability distribution. We have
shown that output levels and input thresholds of the quantizer can be
found by obtaining the zeroes of the Nth degree orthogonal polynomial
associated with the input distribution. One of the advantages of the MP
quantizer 1is that the quantizer can be written in cLoséd form when the
input density is symmetric and the number of levels is relatively small.
A distinct disadvantage of the MP quantizer is that the output Levels
tend to be spread further apart whereby certain levels have a relatively
low probability of occurring. In many cases obtaining the zeroes of a
polynomial represent a much greater computational load that the ijtera=-
tive method of Max [46] for obtaining a minimum mean square error quan-
tizer.

We have demonstrated an interesting application of the’MP quantizer
for image coding called Block Truncation Coding. This technique com-
petes quite well with transform coding at data rates of 1.63 bits/pixel.
At Llower rates (1.18 bits/pixel) a differential form of BTC has been
described. BTC has relatively robust performance in the presence of
noise and the coded images appear to be slightly enhanced. A distinct

advantage of BTC is the relatively small computational Load of the cod-
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ing algorithm. A disadvantage is that data rates for BTC or DBTC cannot
be obtained below 1.0 bits/pixel. Image modeling has been discussed us-
ing a seasonal autoregressive time series for generating synthetic tex-
tures and demonstrating that such simple models, that are usually as-

sumed for pictures, in fact do not represent typical images.

6.2 Suggestions for Further Work

The following is a brief listing of possible further research in

the MP quantizer - BTC area:

1. The mean square convergence of MP quantizer needs to be furth-
er investigated and generalized to the infinite and semi-

infinite interval.

2. Source error correction of BTC and DBTC needs to be investi-
1

gated. A possible approach is that of block and/or boundary

matching.

3. Pre and post filtering, either Llinear or nonlinear, should be
explored to minimize the quantization noise effects in the

reconstructed images.

4. A benchmark test should be performed comparing the moment
preserving, minimum mean square error and mean absolute error
quantizers with quantizer levels greater than two. Subjective

evaluations of real data should be used.

5. The applicability of BTC and DBTC to coding multi-level graph-

ics, such as bank checks, seems very attractive and should be
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explored.

The image modeling techniques should be 1investigated further
for better synthetic texture representation with the possibil-

ity of going to a higher level stable model.

Alternate DPCM predictors should be explored that include more

prediction points to help reduce the prediction bais problem.

A comparison between DBTC and true adaptive DPCM should be

performed.

The applicability of coding another types of data, such as

speech, should be investigated using MP/BTC methods.

The applicability of true two dimensional MP quantization

should be examined for image coding.
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