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ABSTRACT

Foshee, Charles Scott. Ph.D., Purdue University, December 1990. Goal
Driven Three Dimensional Object Inspection From Limited View
Backprojection Reconstruction. Major Professors: Edward J. Delp and
Jan P. Allebach.

The automatic inspection of three dimensional objects is an
important part of manufacturing. This process will allow detection of
defects relating to the size and shape of parts during manufacturing and
assembly. Tomography techniques which are currently in use in medical
applications are too expensive and computationally intense for use in
manufacturing. These techniques also provide more information about
the object than is typically required for inspection applications. For
example, a machined part may only need to have certain exterior shape
characteristics for it to be properly manufactured.

The inspection problem will be approached using backprojection
reconstruction techniques. This basic technique will be modified into a
goal driven algorithm to inspect certain locations on the surface of the
object which we shall call landmarks. These landmarks could be derived
from the CAD phase of object design. The use of these landmarks will
allow the inspection system to use a limited number of views in its
analysis. The actual reconstruction process will make use of a modified
volume projection technique which will be employed to make maximal
use of the information incorporated into the views of the object.

A related problem to the inspection analysis is the interpretation of
the results of the inspection. All information derived during inspection
analysis is three dimensional in nature. A new technique for the
interpretation of the inspection results is proposed which is based on the



goal driven nature of our system. The limitations of inspection accuracy
as they relate to the system is also examined.

Before the inspection process can occur, it is necessary for the
inspection views of the object to be selected. This selection process is not
obvious because it is not apparent how different views interact with each
other in their supplying information to the inspection process. A goal
driven algorithm is presented which removes the redundancy within a set
of needed views of the object. This goal driven view selection is
consistent with the goal driven nature of the inspection process.

This entire process assumes that the object is capable of being
inspected. An object characterization, called Weak Convexity, is
presented for objects to be reconstructed using backprojection
reconstruction. This characterization is sufficient but not necessary for
inspection to be possible. Inspection is possible if the object has this
property locally, at each landmark of interest.



CHAPTER 1

INTRODUCTION

1.1 Three Dimensional Computer Vision Background

Computer vision is the process of extracting scene information
from sensory input. The form of the extracted scene information depends
upon the goal of the computer vision system. Three dimensional
computer vision is the process of extracting three dimensional scene or
object information from an integration of multiple sensory inputs. This
can range from a simple scalar result summarizing the scene to a
complex three dimensional scene description which preserves much of
the original sensor detail.

One analysis area which lends itself to three dimensional computer
vision is industrial manufacturing. A common problem would be the
manipulation of a machine part. A three dimensional computer vision
system could be used to identify the part, plan the manipulation of a part
by a robot, or inspect the part for proper shape. Each of these problems
requires the sensing of features which describe the object. These
features are then combined or examined, possibly with related scene
data, to determine information about the object.

Many other types of problems can be cast as three dimensional
vision problems. Some of these problems include object recognition;
object motion planning; object shape extraction from stereo, shading,
and motion; and shape extraction from two dimensional projections.
Many different aspects of these and related problems have been
examined. Ballard and Brown, Horn, Marr, and Grimson provide a
thorough introduction to the history and recent state of computer vision
[7, 39, 51, 82]. Siebers provides an introduction to the three dimensional



aspects of computer graphics [114]. Wilson discusses three dimensional
geometry as a modeling abstraction for Computer Integrated
Manufacturing environments [139].

A variety of sensing techniques have been employed to acquire
information about objects and three dimensional scenes. Most
investigations have been done using cameras to sense the images used
for analysis [100, 123]. Others have used ultrasound [122], X-rays [121],
optical serial sections [79], active stripe coding [133], or CAD information
[11, 103] to obtain data. In these later cases the technique is usually
selected because of some unique properties of the object under
investigation. For instance, X-rays and ultrasound may be used for
medical applications where the object is contained within the human
body.

One major area of interest in three dimensional computer vision is
the area of object recognition. The goal of object recognition is to classify
the object by type or identity. Besl provides an overview of the three
dimensional object recognition problem [10]. He presents a description
of the recognition problem and concepts associated with it. Three
dimensional object recognition has been approached from a number of
perspectives. Some of these include using a single view for feature
extraction [49, 78], surface patch descriptions for matching [33], graph
matching on surface models [61, 140], image sequences [68, 91], range
information [102], evidence approach based upon notable features [60],
features derived from multiple views [65], cross-section matching [145],
multiple silhouette views of an object [17, 24, 25], model based Bayesian
[18], dense range images [4], multiple sensors of a mixed type [44]. It has
been pointed out that recognition algorithms should be scale invariant
and dependent upon shape alone [90].

Another related area of three dimensional computer vision is the
planning of robotic motion within a three dimensional scene. A survey of
recent developments in motion planning is presented by Schwartz [108].
Motion planning is the selection of a series of coordinates in three space
for the motion of an object. Many different methods have been employed
for motion planning. These include a dynamic programming approach



[120], monte-carlo methods [8], search strategies [31], tube path
restriction [119], and backprojections [32].

One analysis method, stereo, has been the basis of shape
extraction techniques due to its unique analogy to the human vision
system. Stereo analysis techniques have been used to extract three
dimensional measurements of a scene [142], surface reconstruction [46],
detailed scene information [45], and object reconstruction [40]. An
argument for the use of structural relationships in the interpretation of
three dimensional scenes has also been presented [89]. Stereo analysis
using only a single image has been explored [118]. This technique uses a
perspective transformation to synthetically generate the second view. An
integration of stereo image pair analysis and sequential image analysis
has been examined [134]. A key area for the success of stereo analysis is
the proper determination of the camera calibration and correspondence
between stereo images [3, 77].

Another technique for extraction of object shape is to make use of
relative motion between the sensor and object to extract information
about the object. It is normal in this analysis to obtain shape and
orientation information about the object. Some of the techniques used to
extract motion and structure include the use of orthographic views [52,
146] and Kalman filters [74, 141]. Motion in the presence of noise has
been examined [136]. Also, a necessary and sufficient condition for the
unique determination of object motion under certain conditions has been
determined [143].

In the case of object recognition, object motion planning, and
object shape extraction; the object was treated as a single item to be
identified, moved, or described. In object reconstruction the goal is to
recreate the detail of the object in our representation of the object. Many
different techniques have been proposed for object reconstruction.
Magee presents a review of multiview techniques [80]. Kanatani
compares Euclidean and Non-Euclidean methods of three dimensional
reconstruction [63].

Tomography [13] is an object reconstruction technique which
reconstructs a mathematical descriptions of object surfaces. It can be
generalized as the reconstruction of multidimensional functions from



their line integral projections. Tomography is an analysis technique
which often used non-visible electromagnetic radiation to probe the
interior regions of an object for structure.

Other reconstruction techniques may be split into two different
categories: orthogonal and perspective reconstruction. In either case, a
number of views of the object are analyzed until sufficient accuracy in
the reconstruction is achieved.

Orthogonal backprojection reconstruction typically uses data from
some form of orthogonal view where there are no unknowns or noise in
the system. Engineering drawings present one problem which is fully
described by this type of data. Interpretation of engineering drawings
by vertice generation has been examined to reconstruct three
dimensional objects [11, 22, 41, 103]. Wire frame models have also been
reconstructed from this data [117]. Finally, Hand input orthogonal views
have also been used for data [36].

The second category relies upon imaged data. The use of imaged
data for reconstruction has led to a variety of techniques. These
techniques include using optical serial sections [75, 79], feature sets
from image sequences [43], successive refinement of stereo depth
information [113], sparse data [99], parametric estimation from
projections [13], and an integrated method using passive sensing to
rough in the object, followed by active sensing to refine the
reconstruction [133]. Backprojection reconstruction is an object
reconstruction technique which makes use of object silhouette
projections to infer outer shape characteristics about an object. It has
been widely used and will be discussed in more detail later.

Two aspects common to all reconstruction techniques are
registration and conflict resolution. Registration is the process of
aligning the different elements of a multisensor vision system.
Registration is specifically examined for serial cross-section alignment
[86]. Conflict resolution is the process of deciding between two
conflicting pieces of information derived from two different sensing
sources. A method of conflict resolution in the reconstruction of an
object which is overdescribed by a set of lines and vertices has been
examined [62].



One specific application of reconstruction is heart ventricle
reconstruction. Heart ventricle study is useful in the detection of heart
disease. Heart ventricle reconstruction has been examined from surface
curvature data [14] and cross-sections from x-ray backprojections [121].
Another application area is industrial inspection [123]. Industrial
inspection is the process of analyzing an object for its correct
manufacture. This application of reconstruction will be examined later.
Our focus, reconstruction through the backprojection of silhouettes, will
then be applied to this area.

1.1.1 Areas Related to Three Dimensional Computer Vision

In order for three dimensional computer vision analysis to be
performed, there are a number of different intermediate or related steps
of the analysis which must be completed without dealing specifically with
object analysis. Examples of these include data storage techniques,
visibility of one part of the object space from another, and computer
decision making.

Three dimensional computer vision requires a more compact
internal representation scheme for data than a complete description of
the scene. Many different methods have been proposed for three
dimensional data representation. Some of these include decomposition
into cross-sections [94], prism trees [95], rectangular parallelpipeds [66],
boundary models [35], oct-trees and quad-trees [6, 135], and other
hierarchical data structures [106, 107].

Beyond developing storage representations for three dimensional
objects, there has been a variety of efforts in the manipulation of these
data structures for specific applications. Walker presents a discussion of
the reasoning which must go into the transformation between two
dimensional and three dimensional representation schemes [132]. Chen
discusses representation, display, and manipulation of objects for the
purpose of medical applications [21]. Mao discusses oct-tree/quad-tree
representations of two dimensional images / three dimensional objects
and the conversion between the two with application to medical imaging
[81]. Finally, geometric solid models have been proposed for the transfer



of data between CAD systems [69]. In each of these representations, the
representation scheme is chosen to facilitate the data analysis of interest.

Oct-trees provide a unique and compact method of storing three
dimensional object information. An oct-tree for volume representation is
a hierarchical data storage whose successive levels of branches represent
a smaller refinement of the volume being represented. Jackins [59]
examines the use and manipulation of oct-trees for three dimensional
representation without discussing how they are generated. Region
growing in quad-trees has been investigated [111]. Quad-trees
construction from an image has been investigated [110]. An introduction
to oct-trees and their construction has been presented [20]. An effort to
give visible meaning to oct-trees has been given for ray tracing [104] and
for line drawings [131]. [105] investigates neighbor finding in oct-trees.

Object analysis must take place in an environment where the
object can be viewed by the computer vision system in a manner
sufficient for analysis. Very little work has been done in the area of
determining characteristics of objects which can be analyzed. Basic work
has been performed by mathematicians in geometric analysis. Lee and
Avis [5, 72] have investigated the determination of the internal visibility
of polygons from edges of the polygon. Lee, Shin, and Fisk [34, 73, 112]
have investigated algorithms to determine the kernal of a polygon.
Culberson and Tor [29, 125] present algorithms for the generation of
convex covering of polygons.

Because of the complexity of the analysis of three dimensional
objects it is quite common for three dimensional computer vision systems
to be confronted with some form of uncertainty in the results or analysis.
In some instances it is possible for some artificial intelligence decision
making techniques to be incorporated into the analysis. Smith [115]
examines the control of backward inference in the decision making
process. Martins [85] examines belief system revision. Lee [71]
compares Bayesian and Dempster-Shafer reasoning. Shafer-Dempster
reasoning has been applied to identification [12]. Shafer [109] discusses
the implementation of Dempster's rule. Hummel [53] presents a
Bayesian viewpoint of applications for Dempster/Shafer evidence theory.
IThara [56] presents a conditional probability extension on hypothesis



based uncertainty testing. Search strategies have been well investigated
[19, 57, 67, 92].

1.1.2 Industrial Inspection

Three dimensional industrial inspection is one example of an
application area where it may be necessary to have a complete
description of the object available for examination. A computer vision
system for the purpose of inspection must be capable of examining
objects and building a description of sufficient detail to perform an
accurate inspection. In general, any part of the object might be
significant to the object Thus, all parts of the object must be accessible
for examination by the vision system. Different computer vision
techniques are better adapted to examine different parts of object.

For instance, silhouettes can readily provide outer contour
information of convex objects but can not provide details about concave
portions of an object. Stereoscopic analysis can provide depth maps of
concave portions of the object but are limited to areas which are in view
of both image viewpoints. Limitations and strengths of each analysis
technique available must dictate the selection of an appropriate
technique.

Inspection analysis requires a comparison between the complete
descriptions of a known desired object and a reconstructed unknown
object to be performed. The comparison must make use of a distance
measure to compare corresponding elements of the models to yield a
meaningful description of differences. A meaningful description of the
differences is reliant upon a priori knowledge of the significant parts of
the object that are to be compared.

The computer vision analysis employed must be able to supply the
detail required for the aforementioned inspection. There are two parts to
achieving this goal. First, the system must combine sensory information
in a manner which maintains the detail and accuracy of the sensory data
after combination. This can be accomplished by an appropriate
backprojection reconstruction system. Second, the system needs to
examine the object in a manner which insures that all significant parts of



the object are sufficiently described. This can be accomplished by an
appropriate view selection for a backprojection reconstruction process.

1.2 Reconstruction Through Backprojection

Reconstruction through backprojection is a computer vision
analysis technique whereby a number of views of an object are combined
to provide a three dimensional description of an object. Unfortunately,
any pairing of views can result in conflicting information about the
object. Also, it is not apparent how many views are necessary for
reconstruction or where the viewpoint should be located in order to
obtain the "best" resulting reconstruction. Even the definition of "best
reconstruction” is open to question.

Reconstruction backprojection is well qualified for the job of
industrial inspection because it requires less registration effort than
other multisensor techniques. This effort in the industrial inspection
using backprojection reconstruction is motivated by the efforts of Tan
[123]. Tan discusses backprojection through reconstruction, an
approach to conflict resolution, the importance of camera calibration to
accuracy and suggests the need for view planning. He implies the need
for objects not to have concave regions for reconstruction to be possible,
but does not develop a characterization for suitable objects. Also,
although view planning is addressed, no attempt is made at proposing a
view planning technique.

All backprojection reconstruction algorithms can be classified as
using one of two types of data. They may be broken down into those
which use orthographic projection in the backprojection routine and
those which wuse perspective projections in the backprojection.
Orthogonal backprojection reconstruction has been used to reconstruct
objects using silhouettes [2] and for medical examination of the heart
[122]. Perspective backprojections have been used to describe a robots
workplace [48] and to reconstruct objects [83].

Closely related to backprojection reconstruction is the internal
representation of the reconstruction space. Unlike other three
dimensional vision analysis techniques, Backprojection Reconstruction



seeks to obtain a complete description of the object. Because of the
- amount of information stored in this complete description, most
reconstruction algorithms make use of some form of data compression.
Potmesil [97] examines oct-tree models of entire scenes of objects which
are obtained from silhouette perspective backprojection reconstruction.
Lavakusha and Chien [26, 70] examines oct-tree models of objects which
are obtained from silhouette orthogonal backprojection reconstruction.
Veenstra [130] presents an algorithm for the oct-tree generation of a
three dimensional cube whose orientation is known. Cyganski [30]
discusses the implementation aspects and performance of reconstruction
using silhouettes. Raviv [100] presents a method of reconstruction from
the shadows of an object where the light source is near the camera.
Noborio [93] presents an algorithm for the construction of an octree from
multiple views.

The backprojection reconstruction technique relies upon the
knowledge that a specific point imaged onto a two dimensional surface
view point must lie somewhere along a line defined by the backprojection
of the two dimensional surface point back through the optical system.
This is shown in Figure 1.1. This figure shows how a single point can be
backprojected and tells us that at least one point of the object must lie
along this line. When this backprojection is performed we only know
that there is at least one point on the backprojection which is part of the
object. We do not know if there is more than one or where they are
located.

The backprojection of any point in the view which is not part of the
object is known not to be part of the object. In those instances, we know
an entire line passing through the reconstruction volume which is not
part of the object. In actuality, the backprojection is accomplished by
backprojecting the lines which miss the object. The object is then found
to be those points in the reconstruction volume which are not determined
to be non-object. The backprojection of a view is the union of the
backprojections of the points of that view.

Backprojection reconstruction can be thought of as iteratively
intersecting additional backprojections of that object within a
reconstruction volume. This is equivalent to the complement of the union
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of background backprojection lines. In both cases, this forms a solid
which must contain the object which was. originally imaged and is the
subject of our reconstruction efforts. The reconstruction system could
assume a perspective or orthogonal imaging system. Reconstruction
takes place when more than one object view backprojection is combined
with the other backprojected views.

The process of combining the view intersections has the effect of
iteratively removing pieces of reconstruction space from possible object
space. This process, shown in Figure 1.2, will result in an outer bound
on the object undergoing reconstruction. Note that in the figure only one
perspective of the reconstruction process is shown. Views are not
restricted to planar views. They may be taken from any angle with
respect to the object which the imaging system allows.

1.2.1 Areas Related to Backprojection Reconstruction

The best possible reconstruction is still limited to a boundary
determined by this removal process. Some objects are not well described
by this process. Figure 1.3 shows a planer view of the reconstruction of
such a shape. Note that for the purposes of illustration the depression is
viewable from the plane chosen. If the depression could be viewed by the
vision system as in the illustration we could reconstruct the object
through the use of a view perpendicular to the page. The symmetry
depicted in the Figure, within the plane of the page, must be present
from all view points for reconstruction to fail.

This suggests that a characterization for objects which would be
suitable for backprojection reconstruction would be related to the
background backprojection reconstruction lines which pare away the
reconstruction volume from the object reconstruction. Such a
characterization would define what class of objects are suitable for
reconstruction by this form of analysis.

Two obvious examples of reconstructible and non-reconstructible
objects are a cube and a drinking glass, respectively. All points on the
boundary of the cube can be viewed from an angle which places the
boundary point along the background. Points on the interior of the glass
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can not be "viewed" in this manner. Since there is no way to distinguish
between object and background the glass is not reconstructible through
backprojections.

Two different types of theory motivate the formalization of this
concept. One was the mathematical concept of visibility sets [16, 127].
This is the mathematical study of the meaning of one set of points being
visible from another set of points in an object. The other is the
underlying properties of sets [50], convexity [64, 128, 129], geometry [87],
and analysis [9]. Each of these areas provides a different key to defining
the types of objects suitable for analysis.

In order for backprojection reconstruction to be performed, it is
necessary that the object be viewed from the proper angles. Figure 1.4
shows an example of reconstruction failure due to improper view
selection. In this case the views are chosen to be the worst possible
views. The backprojection of each view contains a maximal cross section
of the object. The same number of views, all chosen from a slightly
different angle, would have a minimum cross section. In either case, the
vertices of the object can be viewed as the essential points of the
reconstruction. Proper selection of the view angles for these points would
have enabled proper reconstruction.

One source for this information would be a CAD database. As part
of the database the object would be completely specified. The crucial
landmark points could be generated automatically or specified by the
designer. In addition, the best angles from which to view the crucial
landmark points .could be specified either automatically or by the
designer. Each of these options has advantages and disadvantages.
Automatic generation of data requires the least amount of human
interaction and can be viewed as being the most general. However,
human selection of the crucial landmark points could lead to a simpler
reconstruction (if fewer crucial points are needed) and a simpler set of
view angles.

Links between CAD and machine vision have been proposed [47].
Here it is suggested that vision systems be information driven rather
than require training for each new circumstance. Automatic sensor
placement has been investigated for vision systems [28]. Sensing
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strategies in a robotic work cell have been investigated [54, 55]. An
incremental approach where views are added as needed rather than
determined all at once has been examined [27]. Aspect graphs can
provide a unique method of storing the relational information on objects
under examination [55, 144]. A method of computing the aspect graph
for line drawings of polyhedral objects has been presented [37].

Finally, the accuracy measure of any reconstruction should take
into account whether the desired information was extracted. This may or
may not imply reconstruction of the entire object. In most applications
complete object information would not be needed; only information about
certain points or surfaces would be required. If the points of interest lie
on a convex portion the object, a suitable set of views can be found to
provide good results.

A number of different factors determine the accuracy of the
reconstruction. The camera parameters have to be known. These
include the focal length, pixel size, and optical center. Also, the relative
locations of the object and camera must be known in order to prevent as
much reconstruction conflict as possible.

Camera parameter estimation techniques have been examined by
[42], using a rectangle projection; by [15], using a twisted cubic
projection; by [84], using two planes; and by [123], using point
projection. The registration of camera and object has been discussed by
[123]. Error analysis in relation to stereo depth has been investigated by
[88, 137]. Communication detection theory has been extensively
developed by a number of authors including [96, 124, 126]. Puget [98]
discusses an optimal solution for mobile camera calibration. Izaguirre
[58] presents a method for the calibration of a pair of mobile cameras.
Chen [23] presents an algorithm for the determination of three
dimensional object position from a single calibration object. Linnainmaa
[76] presents a technique for the pose determination of an object using
triangle pairs. Abidi [1] presents a method for camera calibration using
volumetric measurements of a tetrahedron. Ray [101] presents a
maximum likelihood estimation of object pose assuming object identity
and geometric models are known. Gilbert [38] presents a procedure for
computing the distance between two convex objects in three space.
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Werman [138] presents a distance metric for multidimensional
histograms.

1.3 Scope of Investigation

There are four main areas of investigation which will be discussed.
Each area will involve a different aspect of the reconstruction problem.
These areas are: an object characterization for backprojection
reconstruction, a limited view, goal driven, volume source method of
backprojection reconstruction for limited object boundary inspection;
calibration, system parameter effects and accuracy analysis in
backprojection inspection, and view planning for backprojection
reconstruction inspection analysis.

The first area noted is an important question which has not been
addressed: the question of what type of objects are suitable for the
reconstruction process. An answer in this area is essential if the
usefulness of backprojection reconstruction techniques is to be
determined. Chapter 2 will investigate this characterization. We will
propose a characterization for objects which can be reconstructed using
backprojection reconstruction, given theoretically obtainable views of the
object. This characterization will be extended to include constraints for
realizable backprojection reconstruction using obtainable viewpoints.

Object inspection using backprojection reconstruction techniques
is the focus of this work. Chapter 3 will introduce a new method for
backprojection inspection. This method will be a goal driven technique
which requires reconstruction of only part of the boundary of the object.
This allows for a limited set of views to be used in the reconstruction of
these areas. The reconstruction technique used is a variation of volume
source backprojection reconstruction. This technique projects the
reconstruction volume under inspection onto the views to determine the
state of the voxel. Most techniques suffer from approximating the
reconstruction voxel by a single point during the projection phase. This
method provides for the maximal use of the information provided in the
view by not approximating the voxels during reconstruction.
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Chapter 4 will investigate the accuracy analysis problem for three
dimensional reconstructions. Three different areas are involved in
determining the possible error of any reconstruction. These are the
calibration technique, the effects of system parameters, and the
techniques used to measure the accuracy in the inspection results. A
clearly justifiable accuracy analysis technique is currently not available
for three dimensional object examination. First, we present a technique
for the calibration of an actual inspection system. Second, the
parameters of this system are analyzed for their interaction and
constraint on the possible accuracy of the system. Third, an accuracy
analysis technique is proposed which is based upon these three areas
and error measures based upon this technique are proposed.

Chapter 5 will propose a method of view selection for
backprojection inspection. The view selection technique which is
proposed assumes a priori CAD information about the object. This CAD
information details what parts of the object are critical to the object, and
therefore essential to an effective reconstruction. We shall define these
critical locations to be landmarks on the object. View selection for the
object can also be a considered a constant because the ideal object
description does not change as the test object changes. Views are
selected which provide information about these specific landmarks on
the object.

Finally, Chapter 6 provides a summary of these investigations and
suggested areas of future work.

1.4 Problem Summary and Statement of Contributions

Within the realm of three dimensional computer vision, industrial
inspection provides some unique challenges for investigation. Most
imaging techniques provide two dimensional views of an object, but three
dimensional information is necessary for the inspection of three
dimensional objects. Using two dimensional views and CAD information
about the object, reconstructed object information can be extracted using
backprojection reconstruction techniques. Accuracy analysis techniques
for this reconstruction are required. Interactions between calibration,
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system parameters, and measurement techniques and their effects on
accuracy need to be addressed. Also, it is desired that the
reconstructions be performed using views which are selected in a manner
which reduces the computational complexity. Finally, a characterization
of objects which are suitable for inspection analysis by this method is
necessary so that a statement may be made concerning the applicability
of the algorithm.

Within this work, there are several specific contributions of note.
These are as follows:

1) A characterization of objects for theoretical backprojection
reconstruction is developed. It is extended to their practical
reconstruction.

2) A new backprojection inspectiori technique is proposed
which is goal driven, requires only limited views of the object,
and uses a volume source technique to improve accuracy.

3) Calibration and system parameters are examined for their
effect on inspection accuracy. A measure is proposed for
inspection accuracy measurement.

4) A new view selection technique is proposed which eliminates
redundancy in an original selection of views. For inspection,
the original views are CAD designated.
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CHAPTER 2

OBJECT CHARACTERIZATION FOR BACKPROJECTION
RECONSTRUCTION

2.1 Introduction

In this chapter a characterization of objects which are suitable for
backprojection reconstruction is presented. In Chapter One we
presented the need for such a characterization with respect to the overall
reconstruction problem. Here, this need is motivated in Section 2.2
through object examples which both can and cannot be reconstructed.
From this the concept of weakly convex objects is introduced in Section
2.3. Our goal is to mathematically formalize the minimal character of the
objects which can be reconstructed by backprojection reconstruction.
Our definitions and theorems are presented in this section within the
framework of linear, topological, set space theory in conjunction with
minimal assumptions about the reconstruction environment. It shall be
shown in Section 2.4 that an object being weakly convex is a necessary
and sufficient condition for an object to be reconstructed through a
theoretical backprojection reconstruction. Section 2.5 will extend this
concept to realizable reconstruction by adding a more practical set of
reconstruction environment constraints. Section 2.6 shall show the
constraints of Section 2.5 provide a necessary and sufficient condition for
realizable backprojection reconstruction under the assumptions
presented. Corollaries of these theorems are presented in Section 2.7 for
different types of backprojection reconstruction and a related three
dimensional computer vision problem. Section 2.8 presents several
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examples of interesting objects. Section 2.9 is a discussion of the
implications of this characterization for backprojection reconstruction.

The mathematical basis of this development will be Topological
Linear Space theory [128]. The approach of this work was motivated by
efforts at determining internal visibility characteristics of a polygon [5,
34, 72, 73, 112] from a point or line segment. This was examined in n-
dimensional space for objects visible from subsets by Valentine [127].
These efforts involve the visibility of interior points of regions from other
points within the region. Our efforts are directed toward determining the
external visibility of a solid. External visibility of object vertices has been
examined by Buchman [16]. General properties of n-dimensional set
spaces are noted in [50, 64, 128, 129], among others.

2.2 Motivation for Characterization

In backprojection reconstruction algorithms, there is the tacit
assumption that the two dimensional views have the ability to image the
boundaries of the three dimensional object. Sometimes it is stated that
these algorithms can be applied to convex objects (Figure 2.1), yet it is
theoretically possible for these algorithms to reconstruct some non-
convex objects (Figure 2.2), but not other non-convex objects (Figure 2.3).
Obviously, the characterization of viable objects for reconstruction is not
immediately apparent. It would be useful to have available a
categorization against which to check objects which are candidates for
reconstruction.

Towards this end we shall examine the three objects of Figures 2.1-
3: a cube, reconstructible; a U channel, reconstructible; and a drinking
glass, non-reconstructible. One effort to describe the difference between
these objects would revolve around the cube being "solid" and the
drinking glass and U channel having an "inside." Efforts to describe the
difference between these two objects have led to the use of the term
convex to describe suitable objects for reconstruction due to observations
similar to a cube being convex and a drinking glass not being convex.
This is not sufficient to include the U channel, which is reconstructible.
A better description is required.



Figure 2.1

Cube: Example of a convex, reconstructible object
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Figure 2.2

Open U Channel: Example of a non-convex,
reconstructible object
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Figure 2.3

Handleless Cup: example of a non-convex, non-
reconstructible object
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The reconstruction problem is essentially one of determining the
boundary of the object undergoing reconstruction by observing boundary
point projection. This must be done for each point on the boundary of
the three dimensional object for complete object reconstruction. An
appropriate object characterization must define what is meant for a point
to be visible for the purposes of reconstruction. This is the focus of our
problem: the formalization of what it means for the backprojection
reconstruction process to observe an object boundary.

This issue has been briefly addressed as different approaches to
backprojection reconstruction were examined. Several authors point out
that backprojection reconstruction algorithms can not reconstruct the
"concavities" of objects [2, 26, 83, 93, 97, 123]. Another claims
reconstruction of "convex objects without holes" [70]. However, there is
no effort to describe the nature of the "concavities" or "holes" which are
not reconstructible. Another description of the reconstruction result is
the "convex hull" of the object [30, 100]. Figure 2.2, the U channel is an
example of an object which is reconstructible from backprojection
reconstruction which is not its own convex hull. Veenstra [130],
presents a definition of a representable object. His definition is based
upon silhouette intersection congruency with the object. This essentially
says that those objects which we can reconstruct are those that we can
construct by silhouette intersection. Our efforts differ from his in that
we shall base our object characterization on the characteristics of the
object and the basics of the reconstruction process.

The backprojection reconstruction process combines silhouette
backprojections of object views in a manner which provides information
about the object, or more importantly, the object boundaries. When we
are backprojecting object view points, we do not know exactly where
along the backprojection an object point was located when imaged. We
only know that at least one point along the backprojection is occupied by
the object. More information is actually obtained from the
backprojection of a background view point. In this case we know that
there are no object points anywhere along the backprojection; thus
eliminating an entire line from possible object space.
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For complete reconstruction to occur, it is required that we locate
each object boundary point while the only points which we can positively
identify are those which are not part of the object. This can only be
accomplished if we are guaranteed that a background backprojection line
passes through all non-object points which are adjacent to an object
boundary points.

Any characterization for reconstructible objects must group objects
in a manner such that we can distinguish reconstructability. The basis
for such a characterization should be a mathematically description of a
general object with a minimal description of backprojection
reconstruction constraints. The term we shall use to refer to this
characterization is Weak Convexity and reconstructible objects shall be
described as Weakly Convex.

2.3 Weak Convexity

Thus far we have described the objects of interest by referring to
the object as a whole, the boundary of the object, or each "point" on the
boundary. In order to formalize the concept of Weak Convexity it is
necessary to formalize the description of the object to be reconstructed,
the reconstruction space, and the observation viewpoints.

This formalization shall be done in a linear, topological, metric
space. We will define this combined space and notation for use here and
in the rest of the Chapter. There are no inherent restrictions on our
development to a specific dimensionality. Significant properties essential
to the definition of Weak Convexity will then be presented. This is
followed by a list of general assumptions which describe the process of
backprojection reconstruction. Finally, Weak Convexity will be defined
for this general case.

2.3.1 Introduction and Notation

The space theory we will use is based on three sets of axioms: one
for set theory, one for algebraic spaces, and one for topology. This
section draws heavily from Valentine [128], Millman and Parker [87], and
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Bartle and Sherbert [9] for a correct set of axioms upon which to base set
theory, topology, and metric norms in an integrated fashion. It should be
noted that no claim is made at a complete discussion of £ spaces and
their properties.

Let us define £" as a n-dimensional linear topological space over a
real field #which has two operations, vector addition and scalar
multiplication,a collection of subsets called open sets, and which have
the usual axiomatic properties of both topology and algebraic spaces
[128]. Unification of these ideas gives us the ability to view a given
problem from either a topological view or a algebraic view and have both
be equally valid. Further, it is valid to freely interchange and mix these
ideas rather than view them as alternatives.

Table 2.1 shows the notation which will be used to describe our
linear topological spaces. Each symbol shown represents two different
qualities in our combined space: one which is normally expressed in set
notation and one which is normally expressed in algebraic space
notation. We will use the terms interchangeable depending upon the
context of the analysis at hand.

2.3.2 Supporting Properties for Weakly Convex Sets

Here we state the properties which are the basis for our spaces.
Most will be familiar with many of the statements. Key definitions are
repeated here for clarity as we make use of the unity between the
concepts of vector, set, topological and metric spaces which are essential
to our development. This unity will then be specifically applied to the
Euclidean space where the reconstruction occurs.

Closed Sets

The object which we shall reconstruct shall be defined to be a
closed set under 2",

Definition A closed set is the complement of an open set < £"
[128].
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Table 2.1 Notation list definition for set and metric space
viewpoints
Term Set Space Metric Space
P real field real field
n N-Dimensional set space N-Dimensional Real
arithmetic space
73 3-Dimensional set space 3-Dimensional Real
arithmetic space
e arbitrarily small scalar arbitrarily small scalar
a a fixed set element a fixed point
w,x,y arbitrary set elements arbitrary points
oo background element background point
0,S arbitrary closed object set arbitrary closed object
volume
M e-neighborhood set e-neighborhood volume
N e-neighborhood subset e-neighborhood subvolume
z arbitrary element of N arbitrary point in N
c,v,V’ arbitrary observation arbitrary observation point
element
v Possible reconstruction set Possible reconstruction
volume
U upper half plane set upper half plane volume
B camera boundary set camera boundary volume
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Boundary

One of the properties we will need to use is the definition of the
boundary of the object to be reconstructed. Reconstruction of the
boundary of the object (or set) will be central to backprojection
reconstruction.

Definition Interior points of a set S are those points x€ Oc S
where O is an open subset of S [128].

‘Definition The boundary points of a closed set S are those points
which are not interior points of S [128].

Notation bd S = boundary of S.

Line segment

A common algebraic concept is that of a line segment. This shall
now be extended to topological spaces.

Definition A line segment is a closed set between x, y € £" such

consisting of the points = ) ( Ax+(1-2)y).
0<A<1
Notation Xy = line segment from x to Y |

Metric Geometry

One of the key properties we will rely on is the property of our
space having a metric geometry. Having a metric geometry allows the
distance between points to be expressed. This allows for error analysis to
be performed between the reconstructed object and the desired object.
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Theorem The linear topological Space on 2" with Euclidean
distance d g is a metric geometry [87].

Definition The length of a vector x€ £" is defined to be

de=||d|= ¥x-x [128].

Betweenness

Another key property of our space is that of representing one point
as being between two other points. The impact of the betweenness
definition is that it gives us the ability to order points on a line in 2".
First we shall define the concept of betweenness and then we shall define
the notation we shall use to express betweenness.

Definition w is between x and y if w,x, and y are distinct collinear
points in the metric geometry on £’and ||w- ¥ | +

[ - Yl =[lw- d[[87].

Notation wx y is used to define three points where x is between
w and y.

‘Neighborhoods

A third property is that of the neighborhood of a point. The
neighborhood definition allows us to select a set of points which are
arbitrarily close to a specific point. First we shall define the concept of a
neighborhood and then we shall define the notation we shall use to
represent this concept.

Definjtion Letae £".
i) For € > O, the e-neighborhood of a is the set
{xe R ||x-all<e
ii) A neighborhood of a is any set that contains an
e-neighborhood of a for some £ > 0. [9]

Notation nh x = neighborhood of x
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2.3.3 Reconstruction Assumptions

The assumptions used are those common to all backprojection
reconstruction problems. The assumptions presented are a minimal set
related to the geometry of the general backprojection reconstruction
problem. These assumptions are that the object is contained in the
reconstruction volume, and that the reconstruction volume is contained
within the universal space. Projections are performed from a space of
dimension n onto one of dimension n-1. Further, the observation point
is allowed to be anywhere outside the object undergoing reconstruction.
Additional assumptions are presented later to address a realizable
reconstruction.

Assumption 2.1 The reconstruction space must be a subset of the
universe S, Vc S.

Assumption 2.2 The object is contained in a subset of the
reconstruction space such that O c V.

Assumption 2.3 The observation view angle can be any value such

that c ¢ O,
Assumption 2.4 Observation range can be anything such that
ce O,

Assumption 2.5 A mapping function exists from dimension n
(object) to dimension n-1 (image) which maps a
line through the object to type object in the
projection and a line missing the object to type
background in the projection.

Assumption 2.6 The background is distinguishable from the
object when two points which are in a common
e-neighborhood map to object and background
differently.
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2.3.4 Weak Convexity Defined

The space in which the reconstruction occurs is characterized as a
set which is partially filled with an object set. The space is linear,
continuous, and has a metric norm defined upon it. This provides both
relevance to our normal analysis techniques and an easy visualization of
the reconstruction in three dimensions.

Definition 1 (Weak Convexity) A set S < £", a linear topological
space, is weakly convex if V x € bd S, let M be
a g - neighborhood of X, VNcM:Nn S=0
Jvg SUN,ze N: mms=®,VzeN,

Definition 1 states that a set S, being a subset of linear space £ is
weakly convex if for all points x being members of the boundary of S we
let M be a € - neighborhood of x such that N © M is disjoint with S, and
there exist point v which is not a member of SU N , and there exists a
point z which is a member of the neighborhood N of x such that the half
line defined by the points v, 2, = is disjoint with S for all z thatisin N .

Observing the boundary as defined by the left hand side involves
being able to see through to the background at all points near the
boundary of the actual object (Figure 2.4). We assume that we can
distinguish between the object and the background. In reality, this is a
difficult problem involving segmentation, lighting, and object reflectance,
etc. The assumptions insure that if we can observe all object boundaries
and adjacent background we can distinguish between them.
Mathematically, this implies that we can distinguish set membership
without ambiguity and are justified in doing so in our analysis.

Observation lines will be required for reconstruction of a single
object boundary point. This line will pass from an observation point,
near a boundary point and on to the background without intersecting the
object. Clearly, the observation points must not be nearby the boundary
point. Another point must be nearby the boundary point but not part of
the object. The establishment of what it means for one point to be
nearby another point is critical. Mathematically, the concept of nearness
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can be established through the use of an ¢ - neighborhood. Refer to
Figure 2.5 for an example of neighborhoods specifying nearness.

2.4 Theorem 1

Definition 1 provided a motivated description of objects which can
be reconstructed through backprojection reconstruction. We will now
show that Definition 1 is a necessary and sufficient condition for
backprojection reconstruction to be accomplished.

Theorem 1 An object defined such that S < £” can be
reconstructed through backprojection

reconstruction iff it is Weakly Convex.

Proof

CASE I Weakly Convex= backprojection reconstruction
Let O be the weakly convex object. Assume O can not be
reconstructed. Let x € bd O be a point which can not be
reconstructed, rather x can not be distinguished from the
background. contradiction. x must be able to be
distinguished by definition of weak convexity and
assumption 2.5 and 2.6. .. O can be reconstructed.

CASE II backprojection reconstruction = Weakly Convex
Let O be the reconstructed object . Let x€ bd O. Let
ze nh x, z¢ O and v the point which observes x. By
assumption 2.5 and 2.6 and O being reconstructed,
VZeoenS=0. |
~ O is weakly convex.

[

2.5 Realizable Reconstruction in £” Space
Thus far our effort has been aimed at determining the minimum

requirements for a theoretical backprojection reconstruction to occur.
This was done under the general constraint of backprojection
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reconstruction processing, but without regard to realizability. In this
section we will examine an additional set of restrictions imposed to
achieve realizable.

In general, realizability will include effects due to lighting,
segmentation, and aspects of the vision system. These properties will not
be addressed. These properties, while affecting realizability, are
limitations of specific vision systems or objects. We seek an invariant
object description limited only by the geometry of backprojection
reconstruction. Therefore, the assumptions used here are restricted to
those which would apply to all reconstruction systems.

2.5.1 Reconstruction Assumptions Revisited

Below are listed some constraints which are due to the mechanics
of typical analysis procedures and not the geometry of reconstruction.
These constraints are different from those noted earlier in that even
though they do restrict the analysis they are not a basic part of
reconstruction analysis and may not be restrictions in the future.

Assumption 2.7 The reconstruction occurs in three dimensional
space z2,

Assumption 2.8 The camera must stay outside the reconstruction
space, C& V,

Assumption 2.9 The camera must stay within some bounding

volume B smaller than £2 but larger than V,
ce B-V,

Assumption 2.10 Let U= upper half space whose lower boundary

is the lower boundary of the object. The camera
¢ must stay in a positive half sphere above the
lower surface of the object.

2.5.2 Weak Convexity Extension for Realizable Reconstruction

It is now possible to state Definition 2, a more restricted version of
Definition 1. Definition 2 has the same form as Definition 1 except that
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some of the more general terms of Definition 1 have been replaced by
more restrictive ones which follow from the assumptions of Section 2.5.1.

Definition 2 An object S c £® is reconstructible iff ¥ x € bd S,
M an ¢ - neighborhood of x, NcM: Nn S=C
JveB-(VUN),ze N:
vzeoenS=@Vze NV zeN,

Definition 2 differs from Definition 1 only in its restrictive nature.

2.6 Theorem 2

Definition 2 proved a description of objects which can be
reconstructed through a more practical backprojection reconstruction.
We will now show that Definition 2 is a necessary and sufficient
condition for backprojection reconstruction to be accomplished.

Theorem 2 An object defined such that S € £ can be
reconstructed through backprojection

reconstruction iff it is reconstructible as defined
by Definition 2.

Proof

CASE I: reconstructed through backprojection reconstruction =
V xe bd S, M an ¢ - neighborhood of X, N < M :
NAnS=@3veB-(VUN),zeN: vzen S=0.

A realizable reconstruction implies a reconstruction occurs.
By theorem 1, the object is weakly convex and therefore M is
a £ - neighborhood of x, NcM:Nn S=0
JvegSUN,zeN: vzeenS=J

Since vz N (B- (VU N)) #J eitherve B- (VU N) or

v' can be chosen such that v' € B- (Vu N) and

v zeon S=@ . Therefore Vxe bd S, M an



38

€ - neighborhood of X, Nc M:Nn S=0
JveB-(VUN),zeN: vzoenS=0
CASEII: V x€ bdS, M an ¢ - neighborhood of x, Nc M :

NAnS=@ 3veB-(VUN),zeN: vzeon S=0
= reconstructed through backprojection
reconstruction.

B-V&S,ve B-V implies v € S. Therefore S is Weakly

Convex and has a backprojection reconstruction.

|

2.7 Corollaries of Theorems 1 and 2

Theorems 1 and 2 show that Definitions 1 and 2 are necessary and
sufficient conditions for backprojection reconstruction under different
sets of reconstruction assumptions. Earlier, as part of the motivation for
the concept of Weak Convexity, several different objects and concepts
were introduced. These will now be re-examined for their relation to
Weak Convexity. Further, several other topics of related interest will be
examined. First, however, the relationship between the two main
definitions will be presented.

2.7.1 Relationship between Weakly Convex and Definition 2

Both Definition 1 and Definition 2 describe objects for the purpose
of backprojection reconstruction. There we shall show that any object
satisfying Definition 2 is Weakly Convex.

Corollary Any object satisfying Definition 2 is Weakly Convex.

Proof Since B-{VUN)c7(SUN]) any object satisfying
Definition 2 is Weakly Convex
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2.7.2 Convex Objects

Convex objects were the previous common description of objects
which could be reconstructed. It was noted that all convex objects
should be reconstructible under any new characterization scheme. First,
we will define convexity.

Definition A set S < £" is convex if for each pair of points x € S,
Yy € S it is true that xy c S. [128].

Corollary All convex objects are Weakly Convex.

Proof Letxy € bd S, znh x such that zn S=J . Let v z be
parallel to XY , vz N S =@, - convex objects are
Weakly Convex.

2.7.3 Convex Hulls

As noted earlier, convex hulls are another earlier attempt to
describe objects which can be reconstructed. A convex hull can be
thought of as the smallest convex region surrounding an object which
may or may not be convex. First, we shall define convex hulls and then
test their suitability as a necessary and sufficient condition for
reconstructability.

Definition The convex hull of a set S < £ is the intersection of all
convex sets in £ containing S, and it is denoted by
conv S [128].

Corollary All convex hulls are Weakly Convex.
Proof Since each boundary point of conv S is the boundary point

of some convex set and all convex sets are weakly
convex, a convex hull is Weakly Convex.
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Proposition All Weakly Convex objects are convex hulls.

Proof Let O be the cube of Figure 2.1. O is Weakly Convex
because O is convex. O is also a convex hull. Remove
one line from a face of O forming a channel in O. O is
still Weakly Convex because a backprojection line may
pass where the line used to be, thus identifying
adjacent boundary locations. O is no longer a convex
hull because it no longer contains the face line.

. The Proposition is false.

2.7.4 Orthographic Backprojection

In orthographic backprojection reconstruction there is a constraint
upon the relationship between the observation lines of a particular view.
This constraint is expressed in the definition below. Weak Convexity
does not express any claims about the grouping of viewpoints into view
images. It is then observed and shown that Weak Convexity is a
necessary and sufficient condition for an orthographic backprojection
reconstruction computer vision system to reconstruct the object.

Definition The observation lines within a specific view of an
orthographic backprojection reconstruction
system must be parallel to each other and
perpendicular to the view.

Corollary Any object can be reconstructed with an orthographic
backprojection reconstruction system iff it is
Weakly Convex .

Proof

CASE I Weakly Convex = an orthographic reconstruction
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Let each view in the orthographic reconstruction contain one
view point from the Weakly Convex reconstruction.
Therefore, all view lines in each view of the orthographic
reconstruction contains parallel view lines and an
orthographic reconstruction exists.

CASE II an orthographic reconstruction = Weakly Convex
Since a backprojection reconstruction exists the object is
Weakly Convex.
|

This restriction on the information which may be obtained from
any one view has the possible effect of increasing the number of views
which may be needed to reconstruct the object. Each view is only able to
contribute reconstruction information along lines perpendicular to the
view. In general, Weak Convexity allows any combination of view lines.

2.7.5 Perspective Backprojection

In perspective backprojection reconstruction there is a constraint
upon the relationship between the observation lines of a particular view.
This constraint is expressed in the definition below. Weak Convexity
does not express any claims about the grouping of viewpoints into view
images. It is then observed and shown that Weak Convexity is a
necessary and sufficient condition for an orthographic backprojection
reconstruction computer vision system to reconstruct the object.

Definition The observation lines within a specific view of a
perspective backprojection reconstruction
system must have a perspective geometry.

Corollary Any object can be reconstructed with an perspective
backprojection reconstruction system iff it is
Weakly Convex .
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Proof

CASE 1 Weakly Convex = an perspective reconstruction
Let each view in the perspective reconstruction contain one
view point from the Weakly Convex reconstruction.
Therefore, all view lines in each view of the perspective
reconstruction contains parallel view lines and an
perspective reconstruction exists.

CASE II an perspective reconstruction = Weakly Convex
Since a backprojection reconstruction exists the object is
Weakly Convex.
||

This restriction on the information which may be obtained from
any one view has the possible effect of increasing the number of views
which may be needed to reconstruct the object. Each view is only able to
contribute reconstruction information along lines of a perspective
transformation to the view. In general, Weak Convexity allows any
combination of view lines.

2.7.6 Object Recognition

In object recognition using silhouette shape, the geometric
relationship between the vision system and the object is not known.
Assuming that the object boundaries must be observable from any angle
by the recognition system for proper identification, an additional
restriction on an object in addition to Weak Convexity is the symmetry of
the object.

Corollary An object can be recognized using silhouette shape if it
is Weakly Convex with a single observation
point and suitable object rotation and
translation.
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Proof Weak Convexity implies that all boundary points of the
object are observable and the use of a single
observation line implies that a boundary
silhouette may be observed under any rotation
of the object.  Therefore, the object can be
recognized.

|

This has several important implications on the recognition system.
First, it implies that the views established for the object must be
rotationally invariant. Weak Convexity implies that a valid
reconstruction exists but it does not imply that the reconstruction is
symimetric.

A realizable solution would require that a rotation exist which
would allow all non-object points in the neighborhood of each boundary
point to lie along the observation line. This would need to be true for all
objects which might need to be recognized by a given computer vision
system in addition to their having distinguishable silhouettes.

2.7.7 Local Convexity on Weakly Convex objects

Thus far we have discussed properties of Weakly Convex objects
and tested classes of objects for the property of weak convexity. Local
convexity is a property of points on objects. We shall define local
convexity and examine Weak Convexity for this property. '

Definition A point x€ S 1is locally convex at x if 3 N a
neighborhood of x such that if we SN N, ye SN N
then wy < S . [64].

Corollary Weakly Convex sets are locally convex.
Proof Let x be the point of the Weakly Convex set O which is not

locally convex. Then there exists a point in OnN
which is not part of O. .. contradiction.
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2.8 Example Objects Evaluated for Weak Convexity

In this section we shall first revisit our examples of Section 2.2 to
check the conformity of our definition with these objects. This will be
followed by several other example objects.

2.8.1 Cube

The featured characteristic of the cube is that it has no
depressions in its exterior surface. It is shown in Figure 2.1. It has the
property of being a convex hull.

Proposition 2.1 The cube shown in Figure 2.1 satisfies Theorem
2.

Proof Let x be any point on the exterior of the cube. All of them
reside on the convex hull of the cube (itself).
Proposition 2.1 is true by the Corollary of section 2.6.

2.8.2 Handleless Cup

The featured characteristic of the handleless cup is a depression in
one of its faces. It is shown in Figure 2.3. It is not convex.

Proposition 2.2 The handleless cup shown in Figure 2.3 satisfies
Definition 2.

Proof Let xbe a point on the interior surface of the cup.
Regardless of the U chosen the extension of the line
segment intersects the object. .. Proposition 2.2 is
false.
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2.8.3 Open U Channel

The featured characteristic of the U channel is a depression in
three of its faces. These depressions are connected in such a manner
that the cross section looks like a U. It is not convex.

Proposition 2.3 The open U channel shown in Figure 2.2 satisfies
Definition 2.

Proof For any point x on the exterior faces of Figure 2.4 have the
same proposition 2.1. For any point x on the interior
of the U shaped surface we can chose a point on an
exterior edge the as Y - wxyeon S Let M be a
£ - neighborhood of x, NcM:ze N Let vz> be
parallel to wxew ., vVZeoeNS=C . Figure 2.4

satisfies Theorem 2 and Proposition 2.3 is true.

2.9 Weakly Convex Implications

Objects or sets which are Weakly Convex can be reconstructed
through backprojection reconstruction. While this was shown in the
general n-dimensional case, several applications were shown in the 3-
dimensional case. While it is true that an explicit algorithm has not been
presented for object evaluation, the definition of Weak Convexity provides
the characteristics which must be present in the object or more explicitly,
at each point in the object's boundary.

Previous descriptions of reconstructible objects have been shown
to be insufficiently descriptive. They did not provide a sufficient
description against which to evaluate potential objects for
reconstructability. Test objects used by various other authors must be
Weakly Convex for their reconstructions to succeed.

Weak Convexity was developed within the framework of linear
topological space theory. By way of corollaries of Weak Convexity, we
have established its place among other types of convexity. Specifically,
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any object is convex is Weakly Convex, but objects which are Weakly
Convex are not necessarily convex. Further, all points on a Weakly
Convex object are locally convex.
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CHAPTER 3

A LIMITED VIEW, GOAL DRIVEN, VOLUME SOURCE METHOD OF
BACKPROJECTION RECONSTRUCTION FOR LIMITED OBJECT
INSPECTION

3.1 Introduction

In this chapter an algorithm is described which will inspect a
limited set of specific locations on an object for accuracy. The algorithm
is goal driven in the sense that the inspection is focused on these
locations only and therefore only requires a limited number of views of
the object. It is able to accurately inspect any object location which is
locally Weakly Convex. The locations of interest will be reconstructed
using a volume source technique which projects elements of the
reconstruction volume onto the sensory data.

In Section 3.2 we shall discuss the different factors which come
together to form this goal driven inspection analysis. This will include a
background discussion of machine inspection and proposed
modifications to octree object representation, object views, and volume
source reconstruction. Section 3.3 will present goal driven inspection.
The section concludes with an example inspection trace of the algorithm.
Section 3.4 will discuss the flexibility of the algorithm under different
goal sets. Section 3.5 discusses aspects of our implementation of the
algorithm.
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3.1.1 Related Topics: Recognition and Backprojection Reconstruction

Recognition and backprojection reconstruction are two areas of
three dimensional computer vision which examine similar data to that
which we are using for our inspection. Aspects of these two fields are
presented to form a background for the development of our inspection
analysis.

Object recognition is the process of extracting information from a
scene or scenes and deducing the identity of the object or objects in the
scene. Often this is done using features which are significant to the
object. The problem of backprojection reconstruction is a method of
object reconstruction which makes use of the silhouette views of an
object. Intersection techniques are used to determine information about
the original object.

Backprojection Reconstruction

Three Dimensional object reconstruction is the process of
extracting three dimensional information from available sensory sources.
Reconstruction through backprojection has been examined from a
number of approaches. Some have used perspective silhouettes [2, 25,
26, 48, 59, 83, 123]. Another approach has been to use orthographic
views such as what might be found in engineering drawings [11, 14, 22,
36, 41]. At least one other has used other sensor sources, such as X-
rays [121] to produce similar results. Another similar approach has been
to use stereo and motion in the reconstruction [40, 52, 135, 136, 143,
146]. .

Tan [123] uses the approaches of backprojection reconstruction to
address industrial inspection. These approaches all project the views
into the reconstruction space. A different approach was presented by
Potmesil [97]. He proposes projecting the reconstruction voxels onto the
images and evaluating the overlap to determine the state of the voxel
during the reconstruction. The voxel reconstruction phase of our
inspection will follow this approach.
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General backprojection reconstruction is straightforward in its
implementation. An object to be reconstructed will have its image taken
from a number of views. This may be accomplished by locating the
object on a light table and employing a camera held in a robot arm to
image the object from a variety of angles.

Since we are using silhouettes of the objects as the initial
observation data, we are limited in the kind of information we can obtain
about the object. This limits us to the types of objects which can be
reconstructed as defined in Chapter 2.

3D Object Recognition

In object recognition the goal is to reduce data. The goal is a
mapping of a quantity of sensory information into a smaller, usually
individual, set of data. Obviously a lot of resolution may be lost in this
process, but the information obtained is on a "higher level." The amount
of information lost is a function of the how much difference there is
between the data implied by the "high level" data and the actual data
itself.

Often, object recognition is based upon the extraction of certain
feature sets from the object. It is these features which distinguish the
given object from others. Inherent in this argument is the assumption
that the significant and distinguishing information about the object is
found in these features. This has the added effect that the "high level"
identification often implies the presence of the underlying feature set.

Several algorithms have been developed for the recognition or
identification of 3D objects from images [25, 33, 49, 68, 78, 90, 91, 140,
145]. Others have emphasized the reasoning aspects which can be
involved in proper identification [12, 60].

Reconstruction and Recognition Compared

Both reconstruction and recognition share the feature analysis of
three dimensional objects with a goal of the extraction of information
from the data. One difference is the type of data to be extracted.
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Reconstruction seeks data without a loss in accuracy and recognition
seeks a higher level data descriptor which may not totally describe the
object in question.

Another difference is in the amount of a priori information used for
processing. In object recognition, it is not assumed that the object or its
orientation is known prior to processing. In reconstruction, it is
assumed that both the object under examination and its orientation
relative to the imaging system is known. It can be argued that there is
therefore no need to perform the reconstruction. This is not true if the
purpose of the processing is identification. Our goal in inspection is a
verification of known object properties.

Since the goal is verification of a specific set of object properties it
is appropriate to make use of the hoped for properties in the evaluation
of the object under examination. In recognition, this might tend to bias
decisions toward objects containing the properties assumed in the
analysis.

One final difference is that recognition will often use features to
distinguish one object from another. Reconstruction does not use
features, but produces features as part of its processing.

Recognition and Reconstruction Implications for Inspection

There are several different areas where recognition and
reconstruction analysis have suggested analysis techniques for
inspection. These include data structures for analysis and data
extraction techniques.

Efficient data structures for analysis are a common goal of both
procedures. Object data even more than image data requires large
amounts of computer memory. The octree data structure which was
modified by us for inspection was initially used by both reconstruction
and recognition.

Data extraction is also a common goal of both procedures.
Whether you are attempting to recognize an object or reconstruct an
object from two dimensional images, the mapping of image data to object
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data is the same. A technique similar to the one we shall employ for
local reconstruction has been applied to general reconstruction problem.

3.2 Motivation for Goal Driven Inspection Analysis

In many instances it is possible that the entire surface of an object
being accurate is not critical to the usefulness of the object. In those
instances an analysis of the entire surface of the object is superfluous. It
would be more efficient to concentrate the inspection analysis on the
areas of the object which are significant to the accuracy of the object.

Such an inspection analysis routine should reconstruct the entire
object as the number of significant locations on the boundary of the
object reaches the limit of including the entire object. In this case, it is
possible that the inspection analjrsis would be less efficient than a
general reconstruction of the entire object. This would be due to a goal
driven inspection analysis being optimized towards those times when the
number of significant locations are a small fraction of the overall surface
of the object.

Several different aspects of goal driven inspection shall be
discussed as motivation for its use. The first of these concerns the use of
object features in the inspection process. Second, we shall examine the
suitability for using octree data structures similar to those used in object
reconstruction to efficiently represent the information needed for a goal
driven inspection. Third, the ability to limit the number of views needed
for goal driven inspection will be presented. Lastly, we shall examine the
use of volume source backprojection reconstruction as an efficient means
to perform goal driven reconstruction of small areas of the object.

3.2.1 Motivation for the use of Object Landmarks

In many cases there are a small number of locations on the object
which are significant to the usefulness of the object. These locations
shall be called the object's landmarks. This is similar to the way that
object recognition uses features to identify the object. Here we will use
landmark verification to "identify" whether the object is "correct.”
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landmarks will be used to represent several different locations and types
of region boundaries on the object.

One simple use of landmarks is to represent points on the
boundary whose location needs to be know. An estimate of these
locations could be used to determine the absolute error in an object. If
this error was too great, the part could be rejected.

Another use of landmarks would be to identify the boundary of a
region whose area or perimeter was significant. Figure 3.1 shows a part
whose end is marked by landmarks. If the function of this part were to
press against something to make an impression, the only part which
would be significant might be the points indicated in the Figure. The use
of landmarks introduces a representation error between the actual
parameter value and the estimated value which can be computed from
the estimated landmarks. This representation error will approach zero
as more landmarks are used to represent a boundary.

Finally, another use of landmarks would be to sample the object
surface for smoothness. The standard deviation of the distance between
the actual landmark and the estimated landmark could be used for this.

3.2.2 Motivation for Octree Recursion

A key part of the recursive nature of the algorithm is a structure
for representing the volume which can be reconstructed. For this case
an octree representation has been chosen for its adaptability to recursion
and its compactness.

Octrees are well suited for recursive analysis because of the ease
with which another layer of the octree can be added to the structure.
This is in fact how this algorithm is implemented. Figure 3.2 shows an
example of octree representations and volumes split up for octree
representation. In our case these eight vertexes represent cubes which
are in turn arranged to form a cube. Each of these vertices is the root for
a sub-octree. This continues on to an arbitrary representation
resolution.
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Example landmark use to identify significant locations
on an object
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Octrees have been extensively used for data representation. In our
modified octree, it will only contain branches which lead to areas of the
volume represented by landmarks to the inspection. Each lower level of
the octree provides a better description of the exact location of a
landmark. This allows for an adaptable representation scheme which
can be modified in the detail of the description as needed.

The algorithm will recurse down the inspection octree to the level
required by the accuracy and the granularity of the result. If a section of
the octree is found not to have the required accuracy the inspection
routine may be exited immediately. Otherwise, a complete traversal of
the octree can be done and the accuracy of the object calculated.

A second reason for the selection of an octree for data
representation is that it provides for a compact data set. It removes the
need for the storage of the entire reconstruction volume. One of the
problems with three dimensional computer vision is that there is a vast
amount of information to be stored and manipulated. An octree
represents information in a compact, easily manipulated manner.

3.2.3 Motivation for Limited View Processing

During the inspection process it is important that all processing be
focused upon the solution to the inspection analysis. One implication of
this focused effort is the limiting of the reconstruction of the object to
those areas significant to the inspection. In the general reconstruction
problem many views may be needed to reconstruct areas of the object
which do not change the overall usefulness of the object. This
reconstruction is unnecessary for inspection problems which require
inspection of only a small portion of the object.

Further, processing views for the reconstructions should be limited
to those views which provide the most information about the areas
inspected. Chapter 2 provides a description of the minimum
requirements for a boundary location to be reconstructed. It does not
provide a means to group these individual view lines into views. Ideally,
we would select all view lines to be part of a single view. Intuitively and
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in practice, a single view is not sufficient, but the goal of limiting the
views is to use as few as possible.

We desire a set of views which shall efficiently describe the limited
set landmarks on the object which are needed for inspection. Efficiency
shall be evaluated in terms of the views being the minimal set of views
needed to perform the inspection analysis presented. Chapter 5 will
present an algorithm for the best way to select these limited views.

3.2.4 Motivation for Volume Source Method of Reconstruction

There are two different ways to relate the information in the three
dimensional reconstruction space to the information in our two
dimensional views which are consistent with backprojection
reconstruction. The first way is to project the images into the
reconstruction space and perform an intersection of the projections. We
shall refer to all routines which use a variation of this method as volume
intersection methods (Figure 3.3). The second is to project the elements
of the reconstruction space onto the views and perform an intersection of
the objects original projection and the projection of the reconstruction
space. We shall refer to all algorithms which use a variation of this
method as volume source methods (Figure 3.4).

We shall use the volume source method for several reasons. The
first, and perhaps most important is that it is computationally easier to
perform an intersection in two dimensional space than it is to perform
one in three dimensional space. Thus, the volume source method
provides a more efficient reconstruction.

Second, projection of the reconstruction volume onto the views is
more easily adapted toward a limited reconstruction of the object's
surface. In volume intersection reconstruction, it would be difficult to
limit the intersection to the regions of the object which are of interest.
Since the volume source method projects from the reconstruction space
onto the image space it is possible to only perform those projections
which are of help to the inspection analysis.

Third, the volume source method performs better at a variety of
resolution combinations between the views and the reconstruction
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Volume intersection backprojection reconstruction
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Figure 3.4

Volume source backprojection reconstruction
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volume. This difference in accuracies is due to the volume source
method's ability to take advantage of all the information in the overlap
between the original view and the volume projection while most volume
intersection methods estimate voxel location with a single point.

Finally, the volume source method can accurately label as void any
volume where more than half the projection into a single view is
background using only a single view. This 50% overlap rule will be
discussed in more detail in Section 3.3.4 and Chapter 5. Volume
intersection techniques require an examination of several views before a
decision on a single voxel can be finalized.

3.3 Aspects of Goal Driven Inspection Analysis

The goal driven inspection analysis problem is one where there is
no effort to inspect the entire object. Only those portions of the object
which are of special significance are inspected. Here we shall examine
several different parts of this problem. The first and most important part
is the octree inspection map. This map provides a description of the
object for the inspection algorithm to follow. Second, the information
maintained about each reconstruction voxel is discussed. Third, the
process of using a limited number of views of the object is presented.
Finally, the reconstruction process itself is presented.

3.3.1 The Octree Inspection Map

Before the actual inspection is done, the object must be
preprocessed for inspection. This phase creates a map which will guide
the actual inspection process. It presupposes a knowledge of the object,
as well as a decision on the landmarks of the object. This map will
contain the landmarks critical to the object's usefulness by marking
voxels which need to be present on the object and by marking voxels
adjacent to the object which must be void of object.

Critical to the usefulness of the preprocessing phase is the
assumption that the object to be inspected is registered with the
inspection system. The preprocessing phase builds an exact model of
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object detail for the inspection. This exact model is not useful if the
object is not where the model presupposes. In our analysis, we assume
that the object is registered with the inspection system. In actuality, this
is not a unreasonable assumption since the object was in registration
with the manufacturing apparatus during manufacture. Ideally,
inspection would take place immediately after each manufacture, and
could thus make use of the registration already in place.

Landmarks which identify significant features could be specified
for the object to be preprocessed by users during the CAD object design.
These landmarks might define a region, hole, or corner which is
significant to the overall usefulness of the object. Object examples with
landmarks indicated are shown in Figure 3.5-7. In each figure a different
type of significant feature is indicated by the landmarks. In Figure 3.5,
the dimensions of a post are determined its four corner points. In Figure
3.6, the dimensions of a hole are determined by several samples along
the hole's perimeter. In Figure 3.7, the smoothness of a plane face is
estimated from several samples on its face.

These features are then represented as part of a sparse octree
where the only branches present are those which lead to the features --
our landmarks. The associated sparse octree for the object of Figure 3.6
is shown in Figure 3.8. A sparse octree such as this can be efficiently
used to represent the landmarks as well as to provide an efficient way to
scan the landmarks during an inspection. One traversal of the tree will
pass through all landmarks. In fact, a single satisfactory tree traversal
indicates that an object has passed a minimal set of inspection criterion.

An octree representation of an object by its nature presents an
increasingly detailed description of the object as tree depth is increased.
Our sparse octree provides an increasingly detailed description of
significant boundary locations of the object as depth is increased. We
will show later that the inspection analysis can take place at a variety of
levels within the octree. The level at which the inspection takes place is
determined by the accuracy required for the examination of the object
and the granularity that is allowable in the result of any inspection. This
granularity occurs because specific object boundary locations are only
known to be within the size of the boundaries of the current voxel.



Figure 3.5

Landmark identification on a post for dimension
determination using four landmarks
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® _ |andmarks at 22.5 degrees

Figure 3.6 Landmark identification on a circular hole for area
determination using sixteen landmarks



Figure 3.7
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Landmark identification on a surface for smoothness
determination using twenty five landmarks



Figure 3.8

® . Landmarks

Sparse octree representation of the landmarks of
Figure 3.6
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Thus far, only the landmarks on the boundary of the object have
been represented in the octree. From Chapter 2 we note that it is not
possible to reconstruct specific boundary locations on an object; we must
reconstruct locations adjacent to these boundary locations. Therefore,
our octree will be extended at each level where an inspection might occur
to locations adjacent to the boundary location in question. Unlike
extensions to an octree which subdivide octants into increasingly smaller
descriptions of a region; these extensions describe adjacent voxels of the
same size.

It is possible that there may be an overlap in the representation of
the adjacent voxels. This shall be represented by a divergence from a
normal tree structure. A single child adjacent node in the tree structure
may have several parent adjacent nodes. Tree structure is maintained
through the various resolution levels of the octree which lead to
landmarks. This modified octree structure is show in Figure 3.9. In the
Figure, the octree portions which lead to landmarks are shown in dark
lines with filled circles for nodes indicating increasing resolution. The
octree portions which represent adjacent locations are shown with grey
lines with grey circles for nodes. Note that it is possible for a voxel to be
both on the path to a landmark as well as an adjacent node to another
boxed location. Further, note that there are no adjacent node links
among resolution levels.

Chapter 2 indicates that it is only necessary to know the adjacent
locations described in the octree thus far to know that the object point is
in fact a boundary point. In the inspection problem, we must allow that
the boundary may not be where we want it to be. One option mentioned
earlier is to reconstruct the entire reconstruction space so that all
boundaries are found. Our approach is to reconstruct only those areas
significant for the inspection. These significant reconstruction spaces
may extend beyond a single adjacent reconstruction voxel. The extent to
which this representation expands is dependant upon the accuracy
required in the object before it is rejected by the inspection process. We
reconstruct the surrounding region which represents the allowable error
in the object.
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® - Landmarks

#® - Adjacent Nodes

Figure 3.9 Sparse octree representation of the landmarks of
Figure 3.6 with adjacent voxel sharing indicated
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Figure 3.10 shows a single octree resolution level with shared
adjacent nodes. At each level of octree resolution a network of adjacent
nodes is formed. Each adjacent node may have other adjacent nodes
attached to it. This network is searched during the inspection process
for a certain distance from each boundary voxel to determine the status
of the locations around the significant voxels. This process will be
described later.

Each voxel will be reconstructed only once, and then only if it is
needed. The result will be stored in the modified octree. During an
inspection traversal to the octree, when a non-reconstructed voxel is
reached it shall be reconstructed and the result both stored and passed
back to the calling voxel. In this manner, each voxel will only have to be
reconstructed once.

3.3.2 The Voxel Data Structure

The modified octree just described will also be carried into the data
representation at the octree leaf level. There will be four types of nodes
in our modified octree. The first type is the degenerate, missing node
whose children lead only to portions of the reconstruction space where
there are no landmarks to the reconstruction. The second type of node is
one on a path leading to at least one landmark, but which is at a
resolution level within the octree where the inspection would never be
carried out. The third type of node is the leaf node representing such a
landmark. The fourth type of node is an node which is adjacent to
another adjacent node or a type three node. Each of these nodes will be
described below.

The type one node is the nonexistent node. It is represented as a
null pointer in the data structure at the highest level where all children
below that point in the octree are insignificant to the inspection.

The type two node is singly linked downward to each of its eight
children. This node provides a description of the inspection structure
above the level where the inspection will occur and may be thought of as
a normal octree node.
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® - Landmarks

@ - Adjacent Nodes

- Shared Adjacent Nodes

Figure 3.10 Single layer of the octree representation of the
landmarks of Figure 3.6 with multiple layers of
adjacent voxels
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The type three node is a singly linked downward node at all levels
except the leaf level of the octree. At the leaf level this node has null
pointers to its children. At other levels this node provides downward
links to its children providing structure to the inspection. A type three
node also has pointer to its siblings. This set of twenty six pointers
indicates the neighbors of the type three node at the same reconstruction
resolution as the node.

These siblings shall be type four nodes. There role shall be to
determine if the areas adjacent to a significant boundary location are
indeed void. This, combined with the significant boundary location being
filled with object will be sufficient for the inspection analysis to determine
that the object is correct by the definitions of Chapter 2.

The type four node is a doubly linked node. The double linkage is
to each child adjacent node and to each parent node. The second linkage
is obviously a subset of the first list and the two lists are stored together.
It should be noted that a type four node contains all the information of a
type three node and when a landmark is also an adjacent node, it is
represented as a type four node.

3.3.3 The Limited Views

One of the significant features of our Goal Driven system is its
ability to use a limited set of views. The views which are needed by the
goal driven system are only those required by a Chapter 2 analysis of the
landmarks to be inspected. Weak Convexity indicates that there are
points in the neighborhood of the landmark boundary point which are
visibly void.

Since the Goal Driven Inspection process only requires that we
reconstruct a limited number of boundary points, we only need views
which will enable us to reconstruct those points. This will result in a
number of views which is less than or equal to the number of views
needed to reconstruct the entire object. The exact number of views will
depend upon the number and arrangement of the locations to be
reconstructed. Typically, this could be much less than the number of
views needed for an accurate reconstruction of the entire object.
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We shall assume that a set of views are collected that is such that
information required for the analysis is present using the fewest number
of images possible.

3.3.4 Volume Source Reconstruction

Reconstruction through backprojection implies the use of two
dimensional image data to infer the shape of a three dimensional object.
The volume source method of reconstruction used here relies on the
forward projection of volumes from the reconstruction space onto image
data to more accurately determine the shape of the object. This is
different from other methods which rely upon point sources for forward
projection and methods which rely on pure backprojection. This
reconstruction method closely follows the work of Potmesil [97].

The advantages of the volume projection scheme are derived from
the additional information present in the volume projection. Point source
models assume a symmetry of the voxel which is not true. When a point
source is projected onto an image it does not take into account the
orientation of the voxel with respect to the image. Thus, it cannot
accurately represent what happens when the voxel was originally imaged.
Voxel projection presents a better representation of the actual portion of
the object which was originally imaged when the data was taken. These
two methods are compared in Figure 3.11.

The heavy projection line in Figure 3.11 shows a forward projection
from the center of a voxel onto a 2D projection of a 3D object. In the
Figure the center of the voxel projects onto non-object in the image. The
projection of the entire voxel onto the image is shown by the grey lines.
In this case, a significant portion of the object is within the projection.
While insufficient illumination from the object is present to turn the
image pixel "on", this information may be significant in conjunction with
other projections. The volume source method used allows for this
information to be taken into account during the reconstruction. These
effects are significant whenever the resolution of the voxel representation
is less than or equal to the resolution of the object images.
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Figure 3.11

A comparison of Volume Source and Volume
Intersection techniques for backprojection
reconstruction
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The Volume Source Method of Voxel Reconstruction

Central to the volume source method of reconstruction is voxel
projection. A flowchart of the general voxel reconstruction routine is
presented in Figure 3.12. Since a key part of the reconstruction is the
projection of voxel vertexes this part of the algorithm will be examined
first.

This point projection is a translation of coordinates from the object
reference frame to the image reference frame. Several elements are
involved in the transformation. The key elements are the camera focal
length, pixel size, optical axis, and relative camera/object angle and
position. The mathematics relating positions in these two reference
frames are relatively straightforward [97, 123].

In order to project a voxel onto an image, the orientation of the
image with respect to the voxel is first calculated. This is done by
determining from which of twenty six quadrants surrounding the
reconstruction volume the view was taken (Figure 3.13). A table look up
method is used to determine the relative position between the object and
the camera and the orientation of the voxel projection. This avoids the
necessity of doing location coordinate calculations and comparisons.

This always uniquely determines which vertices of the voxel will be
vertices of the projection onto the image and their relative orientation
and connectedness. Figure 3.14 shows the relationship between the
octant location of the view, the view projection, the view shape, and
which vertices are projected. This allows us only to project the vertexes
of interest. Since we also know the connectedness of the vertices in the
projection, this provides a bounding curve in the image of the projection.

Once the projection has been determined it is possible to compare
the projection of the voxel to the image of the object. The intersection
between the projection and the image gives an indication of whether the
voxel could have generated the image. If the intersection is empty, then
the voxel is not part of the object. If the intersection is equal to the
object, the voxel is part of the object. If the intersection is partial, the
amount of overlap must be examined to determine if voxel identity can be
established.
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Figure 3.13

7

Quadrant map for view projection determination
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From geometric considerations, it can be shown that an
intersection that is less than 50% overlap will insure that the voxel
identity is always void. Figure 3.15 shows some examples of different
voxel descriptions which yield 50% overlap projections. Anything less
than 50% overlap is indeterminate. In practice, this means that as soon
as 50% of the overlap has been evaluated to void the overlap scan can be
stopped and the voxel labeled void. This will be used in Chapter 5. Here,
we shall assume that be will always be able to view at least 50% overlap
of any voxel which should be void. In Chapter 5, the view selection
process will insure that this is correct.

3.3.5 Sources of Conflict during Reconstruction

Sources of conflict in the reconstruction process can come from
two main sources. The first is inaccuracies in the view/reconstruction
volume registration and calibration. The second is inaccuracies in the
segmented and thresholded image itself.

Imaging setup calibration inaccuracies arise from imprecision in
the knowledge of where the images are with respect to the object. This is
illustrated in Figure 3.16. Different views which may have almost
identical information have different projection images associated with
them. This can result from camera alignment, object alignment, or the
mechanism which moves the camera from view to view. As noted earlier,
the purpose of this reconstruction is a comparison of known object
features to the reconstructed object, therefore registration is assumed
and mis-registration is treated as an error.

Images inaccuracies can arise from a number of areas. The result
of all the inaccuracies is a improperly segmented image. Major causes
result from the interaction of the object surface, lighting, and camera
orientation. Figure 3.17 shows how improper segmentations can result
in reconstruction conflict. Note that two improper segmentations have
reinforced each other and have created a potential error in the boundary
of the object.

This illustrates an interesting and harmful property of image
inaccuracies. This is that inaccuracies can sometimes reinforce each
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Registration conflict during reconstruction
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Segmentation effects during reconstruction

79



80

other such that the wrong conclusions are assumed about the
reconstruction. These effects will cause the inspection analysis to
incorrectly presume that the object is inaccurate.

Whether the conflict arises from improper calibration or improper
segmentation, the end effect during voxel reconstruction is an improper
description of the object resulting in inaccurate object measurements.
This is clearly a problem since the goal of the reconstruction is
measurement. Since these effects originate in the view data itself, the
most straightforward way to eliminate the problem is to insure good view
data. It is beyond the scope of this presentation to incorporate efforts to
correct for lighting effects on the quality of the views.

3.3.6 Accuracy Calculations

The first accuracy test is the successful traversal of the inspection
octree. A successful traversal of the tree indicates that the object is
sufficiently close to the desired object that it passes a minimal set of
criterion. In practice this means that the inspection octree could
determine the boundary of the object: either in the correct location or in
some area close enough to the correct location to be on the octree
inspection map.

Once this has been successful it is possible that no further
calculations would be required. This would be the case if the inspeétion
problem was one of accepting or rejecting the part. Further calculations
are only required if it is required to know an exact accuracy of the
specific object just inspected.

This could be performed by either a second traversal of the tree or
during the first traversal. A second traversal could be used if the local
accuracies of a rejected part was needed. This could be done more
efficiently during the first traversal if it was known a priori that this
information would always be needed. This is another example of the
flexibility of this general inspection scheme.

The actual error at each landmark can be measured by
determining the number of voxels between where the boundary should be
located and where the boundary is actually located among the adjacent
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nodes. For instance, if the boundary is in the correct location then the
error number would be zero. If the boundary is not in the correct
location the error number is equal to the number of adjacent
reconstruction voxels which should be void but are reconstructed to
object plus the number of object voxels which are reconstructed to void.

A minimum error could be defined similarly. Examples of
reconstruction errors are shown in Figure 3.18. The error number times
the size of the reconstruction voxel used in the inspection process gives a
size of the volume error in the neighborhood of the landmark.

The overall error can be represented in two ways. The first is a
simple sum of the volume errors. This number is an expression of the
total amount of error that is present in the object being evaluated. The
second error representation is using the maximum volume error.

Often, the errors in specific locations are not the goal of the
inspection process. In many cases it is the relative locations of the
landmarks which are significant. This might be the area or perimeter of
a region, or the smoothness of a surface. In these cases the measures
described earlier are not sufficient to express the error.

Since we are interested in the relative locations a second pass
through the results of the inspection analysis may be required if the
absolute error test is passed. Once again, this would be more efficiently
performed if all tests were accomplished during one pass. During this
pass the maximum and minimum estimate for the location of the
landmark shall be determined. Figure 3.19 shows an example of the
reconstruction error where the maximum error is two and the minimum
error is zero. It is important to remember that the furthest possible
location will be bound by the depth of the type four nodes in the
inspection map. Further, if the error overflows the adjacency nodes, it is
not possible to give upper bounds on the error estimates for the
landmarks and only lower bounds if they are less than the error
overflows.

This set of two points for each landmark allows us to bound the
parameter calculation based upon the landmarks. For instance, if the
landmarks defined a hole in a part and the significant parameter was the
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perimeter, an upper and lower bound on the perimeter can be
established for the polygonal fit of the hole.

1=N-1
(Perimeter)max 9, (Landmark(#+1)-Landmark(i)) max
1=1 (3.3.6-1)

A minimum bound could be defined in a similar manner. Likewise,
an upper and lower bound on the area of the polygonal fit of the hole
could be calculated. One method of calculating this area would be to
reconstruct the hole by plotting lines through the landmark estimates,
filling in the hole, and counting the pixels present.

Note that the error due to polygonal fit is due to the landmark
representation of the hole for inspection analysis and not due to the
inspection analysis itself. If the amount of error due to the polygonal fit
is unacceptable for the inspection analysis it is only necessary to add
additional landmarks along the path to be represented. This will yield a
more accurate description of the computed parameter.

Similarly, the smoothness of a surface can be evaluated from the
set of minimum and maximum estimates for the landmarks. This could
be estimated from the standard deviation of the distance from the
landmark estimates to the ideal landmark location. Bounds on other
parameters could be defined similarly.

3.3.7 Resolution and Accuracy Decisions

One aspect of the octree inspection representation is that we can
trade off accuracy and resolution. At higher levels of the octree there is
less resolution of the object boundary because the voxels are larger. This
makes it more likely that the reconstruction of these voxels will be
evaluated correctly, Small errors in the object would be averaged out
over these larger voxels. This analysis would also be potentially faster
because of the 50% overlap rule in voxel determination completing
overall evaluation of a single large voxel faster when compared to a lot of
smaller voxels.
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The penalty for this is that the possible accuracy measure is
reduced due to the large voxel size. The boundary location on the object
which is represented by our landmark is a specific location. The extent
to which we can discriminate between different locations on the object is
limited by the size of our reconstruction voxels. Tradeoffs between
resolution accuracy and processing speed are explored more in Chapter
4.

3.3.8 A Typical Inspection

This section shall describe a typical inspection process from
conception to error analysis. A flowchart of this process is given in
Figure 3.20. The first step in an inspection process is the confirmation
that the part can be inspected by the algorithm. This requires that the
landmarks be selected which describe the significant locations on the
object. This selection is most efficiently done during the part design
phase by those who designed the use of the part in question. Once the
landmarks are selected it is necessary to determine if the object is
Weakly Convex at each landmark.

Chapter 2 states that if an object is Weakly Convex at a boundary
location on the surface of the object it is possible to reconstruct that
location using backprojection reconstruction. Since this reconstruction
is the basis for our inspection it is also the requirement for us to be able
to perform the object inspection.

Once all the landmarks have been determined to be Weakly
Convex, it is then necessary to construct the octree inspection map of the
object. First, an octree object representation is found for the object. The
depth of this octree must be sufficient for each landmark to be Weakly
Convex with a point size equal to the smallest voxel size.

After the representation has been found, type two nodes are used
to pare off those sections of the octree which don't lead to landmarks.
This representation is then further modified by substitution of type three
nodes for each landmark in the representation. Type four nodes are then
added onto the type three nodes to a depth determined by the accuracy
requirements of the inspection.
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At this point it is necessary to evaluate all type four nodes which
evaluate to void during reconstruction for their visibility during
reconstruction. Any type four nodes which are not visible must be pared
from the octree because it is not possible to evaluate an error dependent
upon their reconstruction. Recall that Weak Convexity guarantees that
there is at least one adjacent vertex to each landmark which will survive
this paring.

The octree inspection map is now complete.

The next step is the selection of the views for the inspection
analysis. This is dependent upon the Weak Convexity of the landmarks
and the visibility of the type four nodes. Suitable views must be selected
which allow for all the type three and four nodes in the inspection map to
be visible for reconstruction. Chapter 5 explores this in more detail.

Once the views have been selected, they be acquired through the
use of some form of computer vision system. This is the first step of the
"on-line" inspection process. The computer vision system must be
capable of both capturing an image of sufficient quality that the object
silhouette can be extracted as well as identifying the location of the view
with respect to the reconstruction volume and object map. Recall that
we have assumed that the reconstruction volume and the object
inspection map are registered.

The views now need to be processed so that the (possibly) grey
scale views of the image are segmented and thresholded to yield
silhouettes of the objects from the directions required by the view
selection. For this, known segmentation and thresholding techniques are
used. It should be noted that this is not always a straightforward
process but known methods can yield useful results.

Now that we have both an inspection map of the ideal object and a
set of silhouettes which describe the object to be inspected, the
inspection analysis can be performed. This is done by a single traversal
through the type two, three nodes and some type four nodes of the octree
inspection map.

During the traversal, each type three and four node which is
traversed is reconstructed. When a type three node is crossed during a
traversal the inspection algorithm has detected another location whose
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accuracy must be determined. This accuracy is determined in a two step
process. The first step is voxel reconstruction.

This is done by first reconstructing the type three node, the
landmark. If this voxel is correctly identified as object, the adjacent type
four nodes are reconstructed to see if the landmark is in the correct
location. This is determined by the reconstruction evaluation of each
voxel matching the value from the inspection map. Any type four node
which is not evaluated correctly starts a recursive evaluation of its
adjacent type four nodes. This continues until a set of adjacent nodes
are evaluated correctly or a depth limit is reached by the recursion.

If the landmark voxel is not reconstructed to object, the inspection
process has yet to find the object. The first step is to try to find the
object near where it should have been located. All the adjacent type four
nodes are then evaluated to determine if any of them evaluate to object.
All voxels which evaluate to object are then treated as possible locations
for the reconstructed landmark. Thus, the adjacent type four nodes of
each of these locations is evaluated to see if their reconstruction match
the inspection map. Any type four node which is not evaluated correctly
has its adjacent type four nodes evaluated by reconstruction.

In either case, this recursive process is continued out to a
maximum depth of type four nodes. It is necessary to maintain a check
against this depth rather than examining for leaves without children
because the depth limit used in the construction of the octree inspection
map may have linked landmarks together in a manner which in an
extreme case could link all landmarks. An example of this would be a set
of landmarks chosen such that the entire object will be reconstructed.

Note that any time a type four node needs to be reconstructed, a
check is made to determine if the node has already been reconstructed
from an earlier part of the traversal. This limits to some extent the
number of reconstructions which need to be performed as the selection of
the landmarks on the object become more connected. This could happen
if landmarks are in adjacent voxels or if a path of type four nodes exist
between two landmarks.

As noted, the actual process of reconstructing the type four nodes
is done in a recursive manner. Reconstruction of a type four node which



89

evaluates to the correct value in the inspection map terminates the
recursion which is leading away from the landmark in an effort to find a
match with the irispection map. Any time a type four node is found
which does not evaluate correctly to the value in the inspection map, a
new layer of recursion is generated as the adjacent type four nodes to
this location are reconstructed. This recursion continued our to a
predetermined depth before the search is given up.

During this recursive evaluation of the type four nodes there are
two measurements to be maintained. The first is the maintaining of the
maximum error number of the landmark and the second is the number
of incorrectly reconstructed voxels near each landmark. This latter
provides a measure of local error in the neighborhood of the landmark.
The result of these two measures are stored in the type three landmark
node for use in later parameter evaluation.

A constant check is made of these two measurements against error
bounds for the part. In some cases, we are not interested in the amount
of error in a part, only in the fact that the error exceeds some bound.
There are two instances when this bound could be exceeded. The first is
if there is a gross error in some aspect of the part. This could be
significant "extra" or "missing" object or a "bridge" between two void
nodes. The second is if there is an alignment problem in some part of
the manufacturing process which might result in correct landmarks in
the wrong location. The inspection routine can immediately exit at a bad
part evaluation in these instances.

Thus, each type three node is evaluated through the evaluation of
type four nodes. A successful traversal of the tree would indicate that
there were no catastrophic errors which would cause the part to be
rejected. At this time the total and maximum error values are known for
each landmark. Secondary traversals could now be performed to yield
additional parameter values if needed. These could be the area or
perimeter parameters noted earlier.
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3.4 Flexibility of This Inspection Algorithm

One of the most appealing aspects of this approach to inspection
analysis is its ability to be set up a priori for a very rigorous inspection
and then be adapted at execution to a more appropriate level of analysis.
This a priori setup of the inspection is essentially a very detailed octree
inspection map. There are many different ways in which a such an
inspection map could be adapted to a specific inspection problem.

One way would be to prune some of the landmarks by masking
some branches of the octree. The resulting octree could then be used to
examine the remaining portions of the tree.

Another adaptation of the inspection map would be to limit the
depth of the tree search. This would have the effect of setting an
accuracy granularity in the resulting error calculations. The best
accuracy granularity achievable would be that obtainable when using the
entire octree. Limits and tradeoffs in this area are examined in Chapter
4,

Another adaptation of the inspection map would be to limit the
depth of the adjacent nodes which are searched. Each additional layer of
adjacent nodes which are searched allows the algorithm to measure a
larger error at each landmark. Limiting the depth of this search, limits
the amount of error which can be measured at any location. Depth
overflows at any given location could be used to reject a part as having
too much error.

Further, additional inspection analysis of parameter values could
be performed conditionally or during all executions of the inspection.
The strength of each of these adaptations is that they can be done at the
execution time of the inspection. Data processing and storage could be
reduced by each adaptation. This can be done by skipping data
processing which is not called for and freeing those portions of memory
which are not filled by data processing during the analysis.
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3.5 Implementation

There are two main aspects to the inspection analysis. These are
the preprocessing before an inspection and the inspection itself. Each is
comprised of two steps. The preprocessing is comprised of the
generation of the octree inspection map and the selection of the views of
the object. The actual inspection is comprised of the octree inspection
map traversal and the subsequent error calculations.

3.5.1 Octree Inspection Structure Generation

The octree inspection map will be generated by a three part
procedure. Figure 3.21 flowcharts this procedure. The first part is a
complete octree representation of the ideal object. The second part is the
labeling of landmarks within the octree structure and a pruning of non-
landmarks. The third part is to add the type four nodes to the type three
nodes.

The complete octree representation may be generated using a know
technique, from CAD information about the object. This information
could be preserved in case of future modification of the inspection
routine at the expense of additional unnecessary tree search during
inspection. Note that no additional reconstructions would be generated;
just additional tree traversing through unnecessary nodes. The octree
representation should be generated to a sufficient depth such that the
granularity in the representation due to voxel size is below that required
by the inspection analysis and such that Weak Convexity is obtained in
the voxel representation for all landmarks.

The labeling of landmarks for inspection is done by substituting a
type three node into the octree structure. This is the beginning of the
octree modifications which turn the octree representation into an
inspection map.

Finally, type four nodes are attached to the type three nodes to
indicate areas adjacent to the landmark. Each of these nodes is labeled
as to whether it should be object or background by a comparison to the
original octree representation. Additional layers of type four nodes may
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be attached to these type four nodes. This is continued until a sufficient
depth of nodes is obtained which exceeds the maximum amount of error
in the object which we wish to measure. Any error exceeding this depth
will only be noted as exceeding the maximum measurable error.

3.5.2 View Selection

Chapter 5 will present an algorithm for the selection of an efficient
set of views. In this chapter the view angles and locations will be
selected by hand in a manner which will insure that the significant areas
can be reconstructed. This selection manner is sufficient for the
verification of the inspection algorithm itself.

A limited set of views will be used since the number of landmarks
which will be reconstructed will be limited. However, the number of
views chosen per significant area will be such that the landmark will be
overdescribed. The algorithm presented in Chapter 5 will reduce the
number of views through the 50% rule for voxel identification.

3.5.3 View Registration

An obvious problem which must be solved with this inspection
analysis technique is that the views obtained during inspection must be
properly registered with the octree inspection map. During the testing of
the inspection algorithm, this shall be insured by manual registration.

Hand registration is obviously not possible in an automated
inspection system. In all instances however, any part which is being
subjected to inspection has at some time been registered with the
apparatus which manufactured the part or with an apparatus which is
going to use the part. Ideally, any inspection would take place either just
after manufacture or just prior to use. Therefore, while the registration
is a problem for our testing, it is not a problem for an actual inspection.



94

3.5.4 Physical Aspects of Inspection Accuracy

In our object inspection analysis, the goal is to merge data with the
goal of determining the location of certain landmarks. Several sets of
data are used to reconstruct this information. It is necessary for the
accuracy of the view data to be propagated through this merging.

This means that the accuracy of the data taken is heavily
dependent upon the physical relationships of the camera parameters,
camera view location and angle, pixel shape, size and number, and
camera manipulator. Chapter 4 will examine the interaction of some of
these specific factors.

As might be expected, these factors are interrelated. The
inspection algorithm's limiting factor has been described as the smallest
resolution voxel of the inspection map. The actual minimum size of this
voxel is limited by the factors mentioned above. This limits the accuracy
which may be obtained by the inspection.

Other physical limitations are more general in nature. These
include the table which the object is placed on for observation, the
available lighting, and the manipulation range of the camera. Figure
3.22 shows some of the physical limitations on a general reconstruction
environment. The object to be reconstructed must exist on some table or
be held in some fixture for viewing. Limited camera angles may be
available. Lighting may or may not be good or uniform.

This has the effect of limiting the number of view positions which
will give good information. In essence, there are a limited number of
object camera angles available for reconstruction. This limits the quality
of any inspection by reducing the number of view locations. As was
shown in Chapter 2, this has the effect of reducing the number or type of
objects which can be reconstructed.



Figure 3.22

95

Physical limitations on backprojection reconstruction



96

CHAPTER 4

CALIBRATION, SYSTEM PARAMETER EFFECTS, AND ACCURACY
ANALYSIS IN BACKPROJECTION INSPECTION

4.1 Introduction to Accuracy

Accuracy considerations in industrial inspection involve the
determination of just how accurately an inspection process can
determine object parameters well as the determination of how accurately
a part is manufactured. This determination can be expressed in two
ways. The first of these is a minimum a priori discrimination (MAD)
specification -- the smallest location accuracy that any inspection can
measure as restricted by a priori knowledge of the ideal object. This is
limited by the ideal object representation. The second is a minimum
experimental discrimination (MED) specification. This is an expression of
the minimum discrimination of the inspection process. This is as a
function of the vision system parameters in the inspection process.

The accuracy analysis presented here is restricted to analysis of
the limited view, goal driven, volume source inspection algorithm of
Chapter 3. Calibration of the inspection computer vision system will
form the introduction to this analysis. Section 4.2 presents aspects of
the calibration problem for backprojection inspection. Section 4.3
presents an algorithm for the calibration of a backprojection inspection
system. This calibration procedure is then applied to an experimental
setup to test the effectiveness of this procedure.

Several different elements interact to determine the actual bound
on inspection accuracy for a given inspection system. Section 4.4
presents these different elements of inspection and their relationship to
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accuracy. Section 4.5 presents an expression for the accuracy bound on
a given inspection representation. The MAD specification presented will
follow from characteristics of the octree inspection map which is used to
represent the object. Section 4.5 will also present a set of expressions
which together express the combined accuracy bound for a computer
vision inspection system. The MED specification will integrate the
camera parameters and the view locations into this bound.

A general inspection error measure is presented in Sections 4.6.
Here, the results of accuracy inspection will be merged into a more
meaningful implication for measuring accuracy for inspection.
Implications for the general inspection problem from accuracy analysis
are presented in Section 4.7.

First, we shall review two topics related to the inspection analysis
of Chapter 3: landmarks and backprojection inspection.

Landmarks

An object landmark is a significant location on the three
dimensional object to be inspected. This concept was first introduced in
Chapter 3. The location is selected as important to the overall
characteristic shape or usefulness of the object. In Figure 4.1 an object
is shown with several landmarks indicated. These particular features
might be important if the object were a stamp whose end point
dimensions were significant. In some instances, an object may only have
a few landmarks. For a complex object, it would be possible to have a
large number of landmarks. In the limit, the number of landmarks could
cover the entire surface of an object.

One method of locating landmarks is to determine them during
CAD design. During design it would be straightforward and logical for a
designer to specify which points were significant for an accuracy
analysis. In Chapter 5 the concept of landmarks will be used in the
development of view planning. The goal of view planning is to select the
views which give the best reconstruction as measured by the accuracy
criterion presented in this chapter.



Figure 4.1
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Backprojection Inspection

Backprojection inspection is the process of determining accurate
manufacture of an object through silhouette backprojections of the object
to be tested. A modified octree is used to represent an inspection map of
the ideal object.. The particular algorithm presented in Chapter 3 uses a
volume source method to accomplish the reconstruction of the
landmarks which are significant. These locations are represented in the
octree as voxels -- volume elements of the reconstruction space. This
algorithm projects elements of the reconstruction space which are
significant to the object onto the views to perform the reconstruction.
Typical backprojection inspection projections are shown in Figure 4.2.
Inspection is performed by a reconstruction of the areas in the
neighborhood of the landmark. The pattern of this reconstruction is
such that only those areas which need to be inspected are reconstructed.

The use of landmarks serves to restrict the complexity of the
inspection analysis by limiting the scope of the inspection reconstruction.
Inspection accuracy analysis is only valid near these landmarks. This
inspection process only estimates a landmarks location in the
reconstruction space near where it should be located.

4.2 Calibration and Registration for Backprojection Inspection

An essential part of backprojection inspection is the backprojection
reconstruction of individual voxels near landmarks. One unique feature
of backprojection reconstruction is its relatively simple method of
calibration. As shall be shown the complicated part of the calibration
scheme is the analysis of the camera for its characteristics. These are
invariant under the analysis of different objects and need be done only
once. We shall assume a pin hole camera model for this analysis.

Our inspection system is composed of two parts; the camera and
the object. The calibration process for this system is twofold. First, we
must determine the characteristics of the camera which are not available
by direct measurement. Second, we will determine the camera/object
relationship. Figure 4.3 shows the camera/object system parameters.
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Figure 4.2 Typical backprojection inspection projections from the
voxel space onto the view space
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From these parameters a set of transformation equations are derived
which relate the object data to the view data. The registration problem
between the ideal object and our measurements is addressed. Finally,
other techniques will be compared to this method.

4.2.1 The Calibration Problem

Camera/object calibration is used to describe the process of
orienting the object so that its position relative to a set of calibrated views
is known. There are two ways of accomplishing this task. The first
method could involve the use of a robot mounted camera which moves a
camera around an object on a table to view it from a number of angles.
This method would be typical of an inspection cell. The second method,
which we examine in our analysis, is to fix the camera and move the
object by placing it in a fixture which provides for rotation and
declination.

The camera parameters are not available by direct measurement.
They are the optical center, the focal length, and the pixel size. These
need to be determined during calibration. The optical center is a
parameter of the camera optics. Its location in a view is a function of the
digitizer's alignment with the camera's sensor and optics. The focal
length is also a function of the camera optics. This parameter can not be
directly measured because the location of the camera sensor is not
available. Finally, the pixel size is a parameter of the camera scanning
pattern and the digitizer. Each of these parameters affect the
transformation from the test object to the view.

The other half of the calibration problem is determining, and
maintaining during analysis, the relationship between the object and the
camera. This includes knowledge of where the optical center passes
through the object and the view distance and orientation with respect to
the inspection space. Together, this is referred to as the view location of
the view. This information is needed to be able to determine the
orientation of the silhouette to the reconstruction space.

Knowledge of the camera parameters and the camera/object
orientation give us the ability to define a set of transformation equations
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between the view and the inspection space. Figure 4.3 labels the
parameters of the transformation on the view and in the reconstruction
space. The parameter definitions follow those of Tan [123]. From the
calibration and these definitions a set of transformation equations can be

determined.
mg = [ . (P:'E)'h + mg
Ap (P-C)ed] (4.2.1-1)
¢ (P-C)ev
ng= | —-_sS—|+t1
’ va (P-C)ea| (4.2.1-2)

These equations describe a transformation from the point on the
object onto a point in the view plane

4.2.2 The Registration Problem

The calibration problem discussed thus far describes a
determination of the relationship between the views and the object to be
measured before reconstruction. The related problem concerns the
registration of the unknown object data and the known object inspection
map after reconstruction. This completes the loop by giving us the
ability to compare the data taken during inspection analysis with the
know object data. The use of landmark driven inspection also assumes
this registration.

Registration requires that the unknown object must have a known
orientation. In general, this is difficult. Any landmarks on the object
which could be used for registration might be corrupted and unsuitable
for analysis. In practice, it is reasonable to assume that registration can
be obtained and maintained by the manufacturing cell.

In order for an object to be manufactured, it is necessary for a
machine tool to know the location of the part or raw material for
manufacturing. The machine tool will then make modifications to the
part or raw material which will require registration between the tool and
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material. The inspection process can make use of this same registration.
It can either regain it in the same manner it was initially obtained or the
inspection can be performed immediately after modification by the
machine tool before registration is lost.

4.2.3 Calibration of Other Methods

All methods of reconstruction require some form of calibration.
Some effort has gone into the examination of techniques used for this
purpose. One form of automatic calibration is the comparison of lines
and points in the images for correspondence between points and lines
[77, 116]. Others have limited themselves to two perspective views for
the analysis [137]. Other techniques for ‘reconstruction, namely stereo,
require a calibration phase for each reconstruction. This technique
requires calibrating the two images using a correspondence map to
determine calibration of the images [88].

4.3 The Calibration Procedure

The calibration techniques we use follow those of Tan [123].
Others have made use of similar calibration configurations [48]. In each
instance, an effort is made to determine unknown camera parameters
and to establish a unified reference frame for the camera and object.

In our experimental setup the camera has the ability to move up
and down, and side to side in our mount. This gives us the ability to
orient the camera such that the camera is aligned with the center of the
object. The fixture for calibration analysis is shown in Figure 4.4.

The first step in the camera calibration procedure is to locate the
optical center of the lens/digitizer system. This is the point in the image
which remains fixed as the distance between the lens and the object
change. The geometry of this procedure is shown in Figure 4.5. This is a
side view of the experimental setup. When a point lies off the optical
axis, it will move as the range between the camera and point changes. If
a point lies on the optical axis, the point will not move.
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The second step in the camera calibration procedure is the
determination of the focal length and pixel size. As can be observed from
the transformation equations in 4.2.1-1,2, we only need the ratio of these
two numbers. This ratio may be determined from the geometry of the
imaging system without knowing either number specifically. Fortunately,
only this ratio is required by the backprojection reconstruction
inspection procedure.

The geometry of this procedure is shown in Figure 4.6. This ratio
of focal length/pixel size can be determined from similar triangles. A
number of points off the optical axis in both the horizontal and vertical
directions are used at a number of displacements. This creates a large
sample set of data for analysis to determine the system parameters.

4.3.1 Calibration Analysis for Chapter 3 Inspections

Recall Figure 4.4 showing the calibration measurement setup. A
camera and object fixture are mounted on rail. The mounting for both
the camera and object are such that they can be moved horizontally and
vertically with respect to each other. Movement of the mounts along the
rail provide for depth adjustment.

Careful adjustment of the camera and object mounts are required
during both of these operations. Small adjustments of the point being
imaged can result in a large changes in the point on the image. During
the first step of the camera calibration procedure, we found the optical
axis to be located at (264,273). The location of the optical center is in
pixels relative to the lower left hand corner of our display system. This
test was performed through movement of the camera along the rail.

The second step in the calibration procedure involved the
movement of the camera along the rail as well as the movement of the
object in the movable mount. The projection of a point onto the sensor
array is then recorded for a variety of relative movements between the
object and camera. Table 4.1 shows the results of this data gathering for
horizontal displacements of the optical axis. Table 4.2 shows the results
of this data gathering for vertical displacements of the optical axis. Note
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Table 4.1 Projected point object location for horizontal object
displacement for the experimental setup of Figure 4.4

Horizontal Displacement
meas 0 1 2 3 4 5 6
opt axis | -0.762 |-0.508 |-0.254 0 0.254 | 0.508 | 0.762
Z axis 25 25 25 25 25 25 25

hor 275 271 267 264 259 255 252
vert 273 - 273 273 273 273 273 273
Z axis 31 31 31 31 31 31 31
hor 277 272 268 264 259 254 250
vert 273 273 273 273 273 273 273
Z axis 37 37 37 37 37 37 37
hor 279 273 268 264 258 253 248
vert 273 273 273 273 273 273 273
Z axis 43 43 43 43 43 43 43
hor 281 275 269 264 257 251 246
vert 273 273 273 273 273 273 273
Z axis 49 49 49 49 49 49 49
hor 285 277 271 264 256 250 242
vert 273 273 273 273 273 273 273
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Table 4.2 Projected point object location for vertical object
displacement for the experimental setup of Figure 4.4
Vertical Displacement

meas 1 3 5 7 9
opt axis -0.04 -0.02 0 0.02 0.4
Z axis 25 25 25 25 25
hor 264 264 264 264 264
vert 266 269 273 275 278

Z axis 31 31 31 31 31
hor 264 264 264 264 264
vert 265 269 273 276 280

Z axis 37 37 37 37 37
hor 264 264 264 264 264
vert 264 268 273 276 281

Z axis 43 43 43 43 43
hor 264 264 264 264 264
vert 263 268 273 278 282

Z axis 49 49 49 49 49
hor 264 264 264 264 264
vert 262 267 273 279 284
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the small deviation of the pixel indices as the point being imaged is
moved. In some cases displacing the point did not change the image
location. This occurred in spite of the camera being moved along a large
portion of the rail.

Table 4.3 and 4.4 show a calculation of the focal length/pixel size
using various pairs of similar triangles as shown in Figure 4.6 and
described by:

Axfav - SH )

(4.3.1-1)

These pairs make use of all possible pairs of similar triangles for
the data taken. Since they represent an analysis of the same camera
system, they should all be the same with the bounds of experimental
error. A statistical examination of these results is presented in Table 4.5
as a function of range pairings and in Table 4.6 as a function of
displacement from the optical axis. In both of these cases there are no
clear trends in the data and the standard deviations are high.

An overall average value for the a focal length/horizontal pixel size
is found to be 903,570, and a focal length/vertical pixel size being
1,854,915. Respective standard deviations in these values are 836,409
and 1,352,084. The large value of focal length over pixel size is
appropriate for a small pixel size but the large value of standard
deviation raises questions about the usefulness of this data.

An examination of the original data presented in Tables 4.1 and
4.2 reveal that the data is changing with the expected slope as the
independent variables are changed. An examination of slight deviations
from the recorded data reveals that errors in data acquisition can not
account for the high standard deviation. One possible factor is
quantization due to the sensor size; the quantity we are attempting to
measure. This effect can be eliminated using an experimental setup
which allows observations from a distances where the quantization
effects are not this profound. These errors, once eliminated during
calibration, will not reintroduce themselves during an inspection
analysis.
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Table 4.3 Horizontal focal length to pixel size computations for
Table 4.1

Displacement Horizontal
meas 0 1 2 3 4 5 6

opt axis| -0.76 -0.51 -0.25 - 0.254 0.508 0.762
31/25 1299902 |870614 (1690299 | - - 765000 248031
37/31 (304264 877039 - 1578472 759000 244094
43/37 1308657 |443356 {1702961 | - [1566283 (375018 (240189
49/43 |157648 449852 861012 |- (1554142 |[741142 (117189
49/25 1246850 (591079 (1709220 | - 2088315 602362 192076
37/25 1302067 873815 3380598 | - 3156945 [761988 (246047
43/31 1306445 588976 (3405921 |- (1572354 [|502000 (242126
49/37 1208701 1446581 (1143748 | - 1560189 498031 157522
43/25 304232 660162 (2544909 | - 2358531 |566973 |244063
49/31 |233105 |533934 |1715622 | - [1566236 562500 178642




Table 4.4 Vertical focal length to pixel size computations for
Table 4.1

Displacement Vertical
meas 1 3 5 7 9

opt axis -0.04 -0.02 - 0.02 0.4
31/25 | 583800 2277000 | - - 1057350
37/31 ] 1180200 - - 12162760 | 1049400
43/37 11188630 | 1150920 | - - 1041480
49/43 | 600660 2326860 |- |2146680 | 1033590
49/25 | 789520 2301750 |- | 4309380 | 1045380
37/25 | 798040 1540080 |- | 4293360 | 1037520
43/31 11184400 |{2301840 |- | 4325520 | 1045425
49/37 | 798040 1540080 |- | 4293360 | 1037520
43/25 | 881955 2293500 |- | 6488280 | 1049370
49/31 | 894600 2310120 |- | 3232035 | 1041450
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Table 4.5 Statistical analysis of horizontal and vertical focal
length to pixel size data as a function of the ranges
compared for Tables 4.3 and 4.4
Vertical Horizontal
range pr AVE STD AVE STD
31/25 1306050 | 873568 774769 |581040
37/31 1464120 | 608564 752574 | 537860
43/37 1127010 | 76433 772744 (672411
49/43 1526948 | 841692 646831 |536023
49/25 2111508 |1607391 904984 |7978316
37/25 1917250 {1613971 1453577 11429223
43/31 2214296 |1515682 1102970 [1226765
49/37 1917250 [1613971 669129 | 560676
43/25 2678276 (2616887 1113145 1050150
49/31 1869551 1108564 798340 |672327

114



115

Table 4.6 Statistical analysis of horizontal and vertical focal
length to pixel size data as a function of the
displacements compared for Tables 4.3 and 4.4
Vertical Displacement
meas 1 3 7 9
opt axis -0.04 -0.02 0.02 0.4
AVE 1043849 3906422 2004683 889985
STD 7033 1408915 459869 (227215
Horizontal Displacement
meas 0 1 2 3 4 5 6
opt axis| -.076 -.051 -.025 0 | 0.254 0.508 0.762
AVE 1267187 (633541 2017143 |- [1889052 [613401 210998
STD 53009 |180281 905330 |- 558249 (137434 | 46755
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A second possible factor are inaccuracies in the movable mount
and camera rail. Both of these must allow for accurate movement of the
relative camera/object system. Any errors in our knowledge of the
object's movement as we vary its position will introduce errors in our
estimate of the focal length/pixel size. Errors due to this factor would
also introduce errors into any inspection analysis performed.

The outcome of accurate results from the two parts of the
calibration process is a specific set of transformation equations which
relate points in views to points in the inspection space. This mapping of
points is an essential part of all forms of backprojection inspection and
backprojection reconstruction.

4.4 System Parameter Effects in Backprojection Inspection

It is necessary to measure the accuracy of our inspection. Several
different factors affect our ability to perform an accurate inspection.
These include the camera parameters, the sensor resolution of the image,
the ideal object representation, the range of the view from the object, and
the angle of the view to the object. Each of these limits accuracy in a
different manner.

Our goal is to measure the distance between a landmark on the
CAD model of an object and that same point in the reconstructed object.
This distance would give a measure of how much error has been
introduced. Together these aspects of accuracy limit our ability to
distinguish the voxels which will determine this distance.

4.4.1 Camera Parameter Effects

Some camera parameters which affect and limit accuracy were
discussed earlier as part of the calibration procedure. The focal length
and optical axis of the camera determine the transformation equations
used to project points from the inspection space into the view space.
Recalling Figure 4.4, the general transformation equations stated before
are:
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e +
Ap, (P-C)ea ) (4.4.1-1)
o [ ¢ (P-C)ev
- o — C
® |8p, (P-C)ea 4.4.1-2)

A camera parameter which does not affect the transformation
equations but which does bound the inspection process is the depth of
field of the camera. The depth of field limits the valid range of the
transformation equations to a certain distance from the camera.

dmin pF € d € dmax DF (4.4.1-3)

4.4.2 Image Plane Sensor Resolution and View Thresholding Effects

Typically, the imaging sensor which is used to acquire the view
measures a grey scale image. It does this by quantizing the view into
grey scale values over a pixel grid. The size of the pixels, or image plane
sensor resolution, provides the smallest unit of discrimination in the
view. Our accuracy, projected onto the view plane, is bounded by the
effect of these values.

MAX {Apy, Apn} £ Projected MED 4.4.2-1)

Once the view has been obtained it is necessary to threshold the
image to obtain the silhouette of the object viewed. This process removes
any information which may be present in the grey scale values in order to
simplify processing of the silhouettes.

The non-linear nature of thresholding will accentuate any errors
which might be present in the object view itself and remove any sub-pixél
accuracy which might be present. This means that if the actual
boundary between the object and non-object lies across a pixel, the pixel
will only be able to represent one value after thresholding. The threshold
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used is usually determined from view statistics or a priori information
about_the view.

4.4.3 Octree Inspection Maps and the Inspection Space

The octree inspection map provides the only representation of the
ideal object. All information known about a ideal object is represented by
this map. Accuracy can not be measured beyond the knowledge of the
ideal object, regardless of the accuracy of a computer vision system.

This map is a hierarchic structure where the top level of the octree
represents a cubic, geometric real space of a specific size. The depth of
the octree has a direct effect on the smallest size volume, or voxel, which
is represented by the octree. At the bottom level of the octree each leaf
represents a voxel which does not necessarily need to be cubic in shape.
It could be any shape which can be recursively packed to describe the
entire space. Usually, this shape is chosen to be cubic for simplicity.

A cubic representation of a space may always be constructed by
selecting the shortest length of a voxel side as the length of the cubic
side. This will always describe the space with a number of voxels greater
than or equal to the number used in the non-cubic representation.

If the number of cubic voxels is greater than the number of other
voxels the resolution in the representation is increased. For the cubic
case, it is easy to express a relationship between the octree depth and
the size of the inspection space. The relationship between the size of the
reconstruction space, the depth of the octree, and the smallest cubic
voxel is given by:

cubic reconstruction
AV = cubic voxel _ _Space side length
~ side length ~ g octree depth

(4.4.3-1)

This cubic voxel side length provides a bound on the MED in the
object space rather than the view space as described in the preceding
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section. The relationship between these two spaces is examined in the
following section. The bound, based upon the cubic voxel side length is:

AV < MED

(4.4.3-2)

Thus, for a given size octree inspection map, this equation provides
a bound on the resolution of our inspection. Ultimately, this size of the
smallest voxel is limited by the memory size of the computer system used
for the inspection. In the following Sections, a cubic representation of
the inspection space is assumed.

4.4.4 View Range Magnification Effects

The distance between the test object and the views will have an
effect upon the amount of information that any given area of a view can
contribute to a reconstruction voxel. This is due to the magnification
and perspective transformation of the voxel in the view. This was
examined by Tan [123] for the case of an arbitrary set of views. Our
analysis differs in its incorporation of perspective information and a
tighter bound on the maximum voxel projection size. Further, this
analysis shall assume that all views of an object and the reconstruction
space are available.

We are interested in finding the effect of range on our ability to
reconstruct regions of the inspection space. In order for this inspection
to occur we must be able to distinguish between adjacent voxels during
the inspection. The limiting case of this ability to distinguish voxels
would use the largest possible projection of a voxel distinguished by the
smallest number of view pixels. The smallest number of pixels which
could be used would be one pixel per projection. The largest voxel
projection would be a diagonal view of a voxel. As discussed in Section
4.4.3, we shall assume a cubic inspection space representation without
loss of resolution. We shall restrict our analysis to the view which
provides this largest projection into the view. Figure 4.7 shows this voxel
projection with notation which we base upon Tan's analysis. This
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projection is the largest which can occur during inspection. Therefore,
we wish to find the maximum sensor dimensions (pixel size) which can
dlstmgulsh thls voxel from an adjacent voxel.

Let V H and Z be the unit vectors of the corner of the voxel we will
view diagonally as shown in Figure 4.7. Let the length of the side of a
voxel be AV and the distance from the focal center to the view be d.
Figure 4.8 shows the effect the perspective transformation has on the
effective length of V. Hand Z are similar due to symmetry about the
optical axis. From similar triangles, X can be determined.

_ w2
d-Av/V2 (4.4.4-1)

This gives an effective length of AV to be projected between parallel
planes of the sum of this and the orthogonal projection.

X4+ AV _ dAV /{2
2 d-AV /12 (4.4.4-2)

Figure 4.9 shows the projection of this vector onto the view plane.
The length of the projection, assuming parallel vectors, can be
determined from the figure using similar triangles.

Y=-f—(X+ A\Lj

d ) (4.4.4-3)

The projection of V» H, and Z onto the view can now be determined
as follows:

W= ﬁ(ML_] (Veh + -Ve9)

d-av/V2 (4.4.4-4)

Wh= ﬁ(M;] (-Heh + -He¥)

d-av/V2 (4.4.4-5)
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*-L(dszvz j(f h+ -7 A)
Wy= Zoh + -Zev
“d\d-av/i2 (4.4.4-6)

These projections have origin in the view plane and all have the
same length. The angle between Wv» Wh, and Wz js 120 degrees from the
symmetry of the original voxel and the optical axis being along the cube's
diagonal. This is shown in Figure 4.10 with the arbitrary selection of

Wy ® h‘ = 0, We shall now project these vectors onto the view plane axes.

pH = [w, «¥ and pff = [wy, * (4.4.4-7)
51 = iy 5 and pf = iy

pv = [wy eV and pfl = Wy ¢h (4.4.4-8)
py = |w, *V and pf! = [w, *h (4.4.4-9)

Form the length of each projection in the view.

rH = V(39?2 + ()2 (4.4.4-10)
rH = V(9?2 + (pY)? (4.4.4-11)
rH = V(52)? + (52)? C (4.4.4-12)

Recall that all these projections are of the same length, but with
different orientations.

r=ril=rV=rZ= |\7;v‘ = Wh‘ = WzJ 4.4.4-13)

We wish to determine the maximum pixel size which can
distinguish this projection length for all three projections at the same
time. For a rectangular pixel, the length of the shortest side is a lower
bound on the pixel's ability to distinguish distances in a single direction.
For any rotation of a pixel with respect to a voxel projection, the pixel's
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diagonal is a lower bound on the projection length to guarantee
discrimination.

rd = /(Apn)? + (Apy)? (4.4.4-14)

This distance is the discrimination requirement stated by Tan
[123]. We claim a less stringent requirement as sufficient for
discrimination: The longer side of the pixel must be less than or equal to
the shorter side of the smallest bounding rectangle containing the
projection of the voxel edges into the view.

Apy n { shorter side of the smallest bounding rectangle (4.4.4-15)

From the geometry of the projection into the view shown in Figure
4.10 we find:

A 3
Pun{y T (4.4.4-16)

Recalling that r is the magnitude of all three unit vector projections
into the view; this can be stated in terms of h"’zJ

3=
Apv.n (34 4.4.4-17)

w4 immediately follows from the projection into the view as:

W)= £ ( dAv /{2 )
d\d-Av /V2 (4.4.4-18)
This gives us an overall expressions relating focal length, distance,
and voxel size to the maximum pixel dimension.

Apvn % (5) (dd-AA\; /%j

(4.4.4-19)
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An examination of this equation shows that for cases where
d >> A V, this equation can be simplified to:

Apv,h % (i) (%) (4.4.4-20)

This is the usual case when the view is a reasonable distance from
the inspection space or when orthogonal transformations are used.

4.4.5 View Angle Effects

In a similar manner to the distance from the object, the number of
voxels ‘within an angle of the view has an effect on the number of pixels
required to discriminate between adjacent voxels. This angle, ©, shall be
expressed as the greatest angle between a voxel along the optical axis
and the most distant voxel from the optical axis we wish to concurrently
view. The magnitude of the view angle will constrict our ability to chose
the view to yield a largest projection for all voxels within this angle. The
number of voxels within the view angle shall be expressed by a distance
D from the optical axis to a vertex of a voxel off the optical axis. We will
assume a cubic inspection representation and select a geometry which
maximizes the voxel projections for a given angle.

Figure 4.11 shows these voxels, the angle describing them, and the
distance between the optical axis and the most distant voxel. Once
again, a maximum projection will be found when the optical axis passes
through the major diagonal of a voxel. This view is selected for the voxel
lying on the optical axis. Unfortunately, a view does not exist which
allows more than one voxel to be viewed along the line of maximum
projection. Even though it is not possible to select a view line which
passes through the diagonal of the voxel a distance D off the optical axis,
a view is chosen such that the view line passes as close to the diagonal
as possible. This will result in projections similar to those of Figure 4.10,
but without the symmetry.
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The distance between the optical axis and the furthest voxel to be
reconstructed is an measure of the amount of the inspection space which
we need to be able to reconstruct with the given view angle. From this,
the distance along the view line can be determined.

d = Dsinl@ (4.4.5-1)

In this case the view line through the most distant voxel will not
lay along the optical axis or through the diagonal of the voxel. The
projection will take place at an angle to the optical axis and this angle
passes through the reconstruction voxel at an angle determined by the
view angle. Figure 4.12 shows the projection line passing through the
reconstruction voxel with associated terms labeled. The effect of this
angle is a perspective transformation from the object to the view due
solely to the view angle.

In a similar manner to Section 4.4.4, a unit vector of the voxel at
the maximum view angle can be projected into a plane parallel to the
view. Unlike Section 4.4.4, the projection of a unit vector lacks the
symmetry shown in Figure 4.10. Projections toward the optical axis and
away from the optical axis must be performed separately. The
projections will take place in a plane determined by the optical axis and
the view line. All three voxel vertices will not lie in this plane. We shall
use AV to represent the projection of the voxel edges into this plane,
away from the optical axis; and AZ to represent the projection of the
voxel edges into this plane, toward the optical axis.

The effect of the view angle, as shown in Figure 4.13, is to lengthen
the projection of a voxel edge, AV, which points away from the optical
axis in comparison with the projection of Section 4.4.4. From similar
triangles X can be determined.

_(Av/V2) dsin® + (AV)? 2
d cos® - AV/V2 (4.4.5-2)

X

From this the effective length of the voxel edge can be determined.
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Figure 4.12 Symbolic view of large voxel projection due to angle
effects



131

AV
2
d sin ©
D
- >
d cos ©
Figure 4.13 Perspective effects on a voxel edge slanted away from

the optical axis but off the optical axis, for large voxel
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AV _x = (AV/12) d(cos® + sin®)
2 d cos® - AV/(2 (4.4.5-3)

The effect of the view angle, as shown in Figure 4.14, is to shorten
the projection of a voxel edge, AW, which points toward the optical axis in
comparison with the projection of Section 4.4.4. From similar triangles X
can be determined.

_ (AW/VY2) dsin® - (AW)?2/2

X
d cos® - AW/V2 (4.4.5-4)

From this the effective length of the voxel edge can be determined.

AW _x _ (AW /{2) d(cos® - sin®)
2 d cos® - AW/V2 (4.4.5-5)

In a similar manner to the previous section, we wish to chose a
geometry for these projections which yields a maximum area in the view.
The pixel size is then determined from the minimum size of the
projection. The maximum projection will have a minimum distance in
the plane formed by the optical axis and the view line when a voxel edge
is aligned with the plane formed by the optical axis and view line as
shown in Figure 4.15. The distance along the shortest side of the
smallest bounding rectangle can once again provide the discrimination
requirement.

(AV/V2) d(cos® + sin®) . (AW /2) d(cos® - sin®)
d cos® - AV/V2 d cos® - AW/(2 (4.4.5-6)

This discrimination requirement is difficult to simplify into a form
which provides either intuitive meaning or simple determination even if
AV and AW are related in a simple manner. For the view angle case we
propose a more stringent requirement as sufficient for discrimination:
The longer side of the pixel must be less than or equal to twice the
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magnitude of the projection of the sum of two voxel edges toward the
optical axis.

Apyn ( twice the magnitude of short projection (4.4.5-7)

Letting r be the length of the projected edge:

Apyn{(2r (4.4.5-8)

The length of the voxel edges projected into the plane defined by
the optical axis and the view line is:

W = AV
AW =1 (4.4.5-9)

Projecting this into the view yields:

- (AV/2Y2) d(cos® - sin®)
d cos® - AV/2V2 (4.4.5-10)

This provides an overall expression relating the view angle,
distance to be examined, view distance, focal length, and pixel size of the
Sensor.

Apvn{2 (L ((AV/2V§) d(cos® - sin®) ]
P (d) d cos® - AV/272

(4.4.5-11)

Unlike the limit from Section 4.4.4, this relationship provides
information on how a single view can be used to view more than one
voxel. Note that d can be eliminated to yield an expression which is not
dependent on the view distance. This relationship is fundamental to the
Chapter 5 algorithm which selects views for inspection. As © becomes
small and d >> AV, this relationship becomes:
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Apv,n( 2 ('Gfl—) (%] (4.4.5-12)

This is consistent with our results from Section 4.4.4 for viewing
along the optical axis from a reasonable distance. This bound is 33%
more restrictive on the pixel values because of the looser bound on the
boundary of the projected edges.

50% QOverlap Rule

In the limiting cases just described, the voxel was determined by a
single pixel in the view. When voxels are examined from an angle we are
no longer attempting to find a view which will have a voxel projection
which is all object or void. Thus, in the non-limiting cases the voxel
projection may be mixed. This requires the ability to determine the
identity of a voxel from a mixed projection.

What is required is a way to determine if a separating view exists
given a view which does not provide a projection which separates the
voxels into object and background. This is provided by the 50% Overlap
Rule. Figure 4.16 shows several views of an object which result in partial
projections, but for which a separating view exists.

50% Overlap Rule: Any voxel projection which provides an overlap
between voxel projection and the object in the view of greater than or
equal to 50% with the void in the view could be viewed from an angle and
location which will make the overlap contain only void.

This rule provides assurance that the projections along angles not
along the optical axis can always distinguish voxels as required by the
Wealk Convexity of Chapter 2.

4.5 Minimum Discrimination Specification

Thus far, we have discussed the calibration of the inspection
process and some bounds on our ability to measure the accuracy of the
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inspection reconstruction. These were based upon the constraints of the
inspection reconstruction process itself. These bounds will now be
grouped and re-expressed in a manner which will define overall bounds
on the inspection system.

4.5.1 Minimum A Priori Discrimination (MAD) Specification

Recalling Section 4.4.3, the minimum a priori discrimination is the
smallest measurement which can be confirmed by an inspection process.
This is a function of the representation of the ideal object. It is in terms
of the size of the inspection reconstruction space.

cubic reconstruction

AV = cubic voxel _ space side length
~ side length ~ g octree depth

(4.5.1-1)

4.5.2 Minimum Experimental Discrimination (MED) Specification

The minimum experimental discrimination is the smallest
measurement which can be performed by the experimental inspection
system. This amount is bound by the expressions of Sections 4.4.1-2
and 4.4.4-5. A satisfactory inspection must occur under conditions
satisfied by these equations.

When performing silhouette backprojections it is not possible to
achieve an accuracy better than the object representation.

AV < MED

(4.5.2-1)

Distance between the object and view has a magnification effect
along the optical axis described by 4.5.2-2 when only one voxel needs to
be observed.
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apvn (3 (L) [——J——Edd_AA‘; y %]

(4.5.2-2)

Distance and the angle of the view are related in 4.5.2-3 to the
pixel size when more that one voxel needs to be observed.

Apen(2 (£ {(AV/z\/?) d(cos® - sin®) j
P (d) d cos® - AV/2V2

(4.5.2-3)

A satisfactory solution of these equations is necessary whenever an
inspection is to be performed.

4.6 Accuracy Analysis in Backprojection Inspection

It is necessary to quantify the accuracy of our inspection.
However, it is not obvious how to form the raw inspection results into
meaningful information. While there are many methods for dealing with
error in two dimensional data, this is not as obvious for three
dimensional data. Any accuracy measure is a distance measure between
a desired result and the measured result. With three dimensional data,
it is not obvious how to select the measured result for comparison.

Therein lies the problem with applying error measures to three
dimensional data. There is no obvious way to measure the error distance
between the differences of two objects. Our method uses object
landmarks to give us specific locations on an object to evaluate instead of
attempting to evaluate the object as a whole. Differences can then be
examined on a point level instead of on an object level. These differences
can then be related to our original goals of a minimal a priori
discrimination (MAD) specification and a minimal experimental
discrimination (MED) specification.

Because it is not possible to characterize the error which is present
in the reconstructed object we lack a straightforward method to estimate
the location of a point which has been improperly reconstructed. There
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is an entire object boundary, many of whose points may correspond to
the actual object point which was not correctly reconstructed. It is
therefore necessary to make use of an error measure which non-
parametrically estimates the location of the improperly reconstructed
point.

None of the aspects of accuracy which we have discussed have
provided a manner to express the result of the accuracy inspection itself.
We shall now present some ways to describe the results of the algorithm
of Chapter 3. These are algorithms for combining the results of the
accuracy inspection to form some useful expression of error.

4.6.1 Previous Methods

Other error measurement methods which have been used for three
dimensional analysis include volume and area calculations. The volume
method involves simply comparing the volume of the two different
objects; the first being the know and the second being the unknown.
This has the advantage of being simple to calculate but has the
disadvantage of being almost meaningless. It would be easy for the test
object to be quite different from the goal object and to have
complementing volume errors cancel out and yield a low error inspection.

The area method involves the determination of the area of a hole in
an object. This was done by Tan [123]. There is an implied assumption
that the edges of his hole were found by assuming that they were in the
plane face of the inspection space. This allowed for the formation of an
average of dimensions at different depths into the hole. For the specific
case, this is acceptable. However, the error measure makes use of the
orientation of the object in the inspection frame. This is not general and
it restricts measurements unnecessarily.

Another proposed method involves defining the error as the
distance along the surface normals from the know to the calculated
object. This gives a distance measure along a line which is normal to one
of the two surfaces. Sometimes this can lead to surprising results at
places of large curvature. Further, there is no real justification behind
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the assumption that the surface normal provides an appropriate
mapping from one surface to another.

4.6.2 A General Inspection Error Measure

We propose an error measure which is based upon the minimum
and maximum distance between the ideal landmark location and
estimates of its location in the inspection reconstruction. Both the
minimum and maximum distance shall be noted in relation to the
landmark. Figure 4.17 shows these distances. We assume that the error
distances are such that they can be represented by the inspection
process; i.e., the distance is less than the adjacent voxel depth in the
inspection map.

This provides error distances which give the minimum and
maximum displacement of the reconstructed surface from the actual
object. The reconstruction error measure at each landmark will consist
of the mean of these maximum and minimum error distances. This
provides bounds on the overall object error as well as a specific estimate.

4.6.3 Statistical Parameter Analysis

A statistical analysis of the error in an object could be calculated
by simple statistical analysis. This statistical analysis is based upon the
maximum, minimum, and average of the general inspection error
measure noted in Section 4.6.2. Each of these statistical error estimates
seeks to find a general description for the error in the object as a whole.
In the equations which follow, the parameter i varies over the N
landmarks defined on the inspected object.

Object Mean Error

The overall error measures for the object could be estimated as the
mean of these the landmark error bounds and averages The
interpretation of this would be an expression of averages over the surface
as represented by the landmarks.
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N
ave-errorax = L z €TrTO0Tmax,1
N 33 (4.6.3-1)
N
ave-errormn = 1 z errormin,1
N 31 (4.6.3-2)
N
ave-error = AV€-€TM0 gy + ave-erroryy _ 1. 2 erroTayer
2 N 3 (4.6.3-3)

Object Error Variance

The overall variance in the error measures for the object could be
estimated as well. These are as follows.

N

std of errormax = L 2 (errormax,1 - AD€-erroTmay)>
N o . (4.6.3-4)
N
std of erroryn = 1 2 (errormin,; - QVE-Erroryy)?
N o (4.6.3-5)
N
std of ave error = # Y (erroraye 1 - AVE €ITO0Taye)?

=1 (4.6.3-6)

Object Maximum Error

Another expression for the error in the object could be the
maximum and minimum of the individual errors. This would have the
interpretation of indicating the maximum and minimum errors found at
any point on the object.

N
max error = NLAlX (errormax.1) (4.6.3-7)

N
min error = MIN (errorin, 1) (4.6.3-8)
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4.6.4 Geometric Parameter Analysis

Geometric parameter analysis consists of interpretating the
correctness of the inspected object on the basis of a parameter
calculation. This parameter would be based upon the individual error
measures at each landmark as described in Section 4.6.2. The use of
parameters seeks to base correctness in an inspected objects ability to
possess the property of a parameter.

Distance

One parameter could be the distance between two landmarks. On
the ideal object, this would be a specific distance. In the inspection, this
distance would be based upon the maximum and minimum estimates of
the two landmark. Two approaches are possible.

The first approach would be to base the minimum distance
measure upon the distance between the two minimum estimates of the
landmark. Similarly, the maximum distance measure could be
calculated. This approach is not precise, but it does not require a further
search of the inspection map result.

Better results could be found be re-searching the inspection map
for the minimum/maximum distance between the estimates of the two
landmarks. It is possible that this combined minimum/maximum would
be different from that found using the minimum/maximum found for
each landmark individually. These could be found by examining all
pairwise combinations of possible landmark estimates, selecting one from
each landmark.

Perimeter

The perimeter parameter is based upon the estimated location of a
set of landmarks. Combining this information presents similar problems
to those described for the distance parameter. A minimum and
maximum bound on the perimeter could be found from a search of the
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inspection map combining all possible combinations of landmarks
estimates, selecting one from each landmark on the perimeter.

A computationally simpler estimate of the perimeter could be found
from by calculating the minimum perimeter through all the minimum
landmark estimates. A maximum perimeter estimate could be calculated
through the maximum landmark estimates.

Area

Area estimates could be found in a similar manner. These could
be based upon either an analysis of the relationships between the
landmark estimates or the immediate use of the maximum and minimum
error estimates of the landmark.

Volume

Volume estimates could be found in a similar manner. These
could be based upon either an analysis of the relationships between the
landmark estimates or the immediate use of the maximum and minimum
error estimates of the landmark. A difference between this volume
estimate and those of others is that the volume estimate can now be
presented as a bounded estimate rather than a specific value.

Comments on Parameter Accuracy Measures

Parameter estimation rapidly presents computational problems in
the estimate of errors for three dimensional objects. This is due to the
uncertainty in the location of the landmarks which define the
parameters. The computationally simpler parameter estimates provide
an estimate of the parameter without the additional computational cost.
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4.7 Implications of Accuracy Analysis for Backprojection Inspection

Calibration

The amount of accuracy which can be achieved during
reconstruction is limited by the quality of the calibration used for
reconstruction. There are two sources of error in calibration. The first of
these is an inaccurate calculation of camera parameters. The second is
an error in the alignment of the object/camera system.

In the case of camera parameter error, we have a statistical
description of the focal length/pixel size ratio but no statistical
knowledge of the accuracy of the optical center calculation. In the case
of the object/camera alignment we don't know how well the alignment
succeeded. Errors in either case will show up as errors in the inspection.

Inspection Accuracy

The purpose of our inspection is to analyze an unknown object
which may have defects. This might be the case of a cast part with rough
edges or an assembled part which was miss assembled. In any case we
have no knowledge of the statistical nature of the errors. In a sense, the
inspection procedure is being used to calculate data on the errors in the
case of the part in question.

There are two limits on our ability to measure these errors. The
first is our representation of the ideal object. We can not measure more
accurately than we know the correct answer. The second bound on the
error is determined by the selection of the inspection system. This is
comprised of the camera and the view locations.

Within limits we can balance parameters to give an acceptable
inspection systermn. For instance, a camera with better sensor resolution
would require fewer views to achieve a constant error bound.
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CHAPTER 5

VIEW PLANNING FOR BACKPROJECTION INSPECTION ANALYSIS

5.1 Introduction

The number of views processed to obtain the reconstruction is
directly related to computational intensity. It is desirable to obtain the
best reconstruction possible from the fewest views. It is the goal of a
view selection algorithm to remove the redundancy of information in the
views and to insure that a sufficient number of views are used such that
the fewest number of views are used to describe the object.

We shall refer to this process as view pattern analysis. Section 5.2
will provide motivation for this analysis in relation to the inspection
problem. It will also relate view selection to the more general
backprojection reconstruction problem and robot vision planning
systems. Section 5.3 will present a number of different aspects of the
view selection problem. These areas will show different constraints
which require more views or allow views to be eliminated. Section 5.4
will discuss variability in the view position, and view combination.
Section 5.5 presents the View Pattern Analysis algorithm in two parts, a
preprocessing section where the information about view interaction and
variation is determined, and a view selection section where the views are
selected based upon the preprocessing. Section 5.6 discusses an
implementation of this algorithm and Section 5.7 discusses the
implications of this algorithm for backprojection inspection and
backprojection reconstruction.
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5.2 Motivation for View Pattern Analysis

Thus far in our examination of backprojection inspection we have
examined a characterization of objects which we can inspect, presented
an algorithm for the inspection, and analyzed the accuracy
considerations of the inspection. We shall now examine how to acquire
the data for the inspection analysis. In any analysis procedure, the
important consideration is collecting a sufficient quantity of data to
perform the analysis. In three dimensional computer vision inspection, it
is important to limit the collection to only the data which is necessary to
perform the analysis.

The general inspection process is one that will be repeated over
and over again. The processing of view data will be computationally
intensive because of large amounts of data. View selection allows the
amount of data processed during each inspéction to be minimized by
performing some analysis which is common to all inspections before any
of the inspections. This a priori limiting of data collection for
backprojection inspection is called view pattern analysis or view
planning,

The problem of view planning is essentially one of selecting the
views which are most appropriate for the inspection problem. First, the
existence of such views comes from the object characterization of
Chapter 2, assuming an appropriate object has been selected. All objects
to be inspected must possess this characterization which allows them to
be inspected. Second, we are limited by the accuracy considerations
presented in Chapter 4. These express the interaction of the different
system parameters and their effect on the accuracy of the inspection.
Views need to be selected in a manner which is consistent with accuracy
requirements of the inspection. The resolution of the information
contained in these views will limit the accuracy which can be obtained
from the inspection. Underlying this process is the need to select data
which is useful for the inspection algorithm of Chapter 3.

The view planning process itself requires data for analysis. The
view planning algorithm must be based upon available data which is
consistent with the inspection goals. The process should be driven from
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available data with minor hand analysis. This data will have to contain a
description of the object in sufficient detail to allow the selection of views
for inspection. One obvious starting point would be CAD information.

There are two advantages to the acquiring of the information from
a CAD database. The first advantage is that it allows the designer to
select landmarks during design and to have the inspection process follow
from these specifications. The second is that it provides the designer
feedback on his design from the standpoint of its ability to be inspected.
CAD driven machine vision was discussed by [47]. Several have
investigated the properties of view selection. In some cases, the views
were chosen sequentially [27, 55], and sometime all views were
determined simultaneously [28].

The approach we will use is to initially over define the number of
views required to reconstruct the object. This will be done by first
defining the views required to properly view certain points on the object
which are for some reason critical. These points will be referred to as the
landmarks of the object. The points and the best views of these points
will be hand selected. This forces the number of views up because each
voxel to be reconstructed must have its best view in a view. This
provides a description of the inspection which may have a large number
of views, but which can have the maximum amount of accuracy at each
landmark -- limited only by object representation.

This can be considered a reasonable approach to the process since
there are usually a finite number of points on the object which are of
concern during inspection. For a single point, the best views are often
obvious. In fact, this initial selection of a set of best views of a landmark
by the user will allow the user to select an accuracy bound for each
landmark.

Once the initial data has been extracted from the CAD information
and determined by the user, the view planning process may proceed.
The general technique is one of identifying the views which contain the
most redundancy and eliminating them one at a time. This has the effect
of reducing both the number of views and the accuracy. Accuracy
considerations from Chapter 4 provide a way to measure the interaction
between the number of views, their location, and the accuracy of the
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inspection. Increased accuracy will require views which are closer to the
object which would in turn require a greater number of views to observe
the entire object.

Other areas of three dimensional computer vision can benefit from
similar view planning analysis. Closely associated with backprojection
inspection is the backprojection reconstruction which is performed on
each voxel to be inspected. This technique is also used to perform whole
object reconstruction. Another related areas is robot vision systems for
scene viewing and motion.

5.2.1 Backprojection Reconstruction

Backprojection reconstruction techniques are a central tool in the
inspection technique presented in Chapter 3 to reconstruct specific
locations on the surface of three dimensional objects. These techniques
are also used to reconstruct entire objects. In this case the emphasis is
not on the accuracy of specific locations on the object examined, but on
an overall accuracy of the object reconstruction. In either case,
appropriate a priori selection of views can reduce the amount of
processing which will be required to perform a reconstruction.

In the overall backprojection reconstruction case, views would need
to be selected to reconstruct the entire surface of the object. This could
be done by selecting landmarks distributed over the surface of the object.
As a limiting case, all object boundary points could be selected, with the
view selection algorithm removing the redundancy. While this may seem
like the easiest solution, it is possible that this could still result in over
processing during reconstruction.

5.2.2 Other View Planning Areas

There are two other main areas which have used planning in their
analysis: data representation and a planning application area. The data
representation technique is aspect graphs. Aspect graphs provide a
description of an object under analysis. An application area for this is
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robot motion planning. Robot motion planning requires the viewing of a
three dimensional scene within which the robot will move.

Aspect Graphs

Aspect graphs provide a compact information set for CAD
information. Aspect graphs show relative relationships between viewing
locations of the faces of an object. Aspect graphs have been used in
several CAD applications. They have been used for vision sensing
strategies [47, 54, 55].

Aspect graphs may be thought of a description of the space
surrounding an object. Assume that the surface of an object is made up
of a set of plane surface sections. If we divide 3 space up into regions by
extending these plane sections as planes we end up with a set of closed
and unclosed regions. We can construct the object's aspect graph by
making each region a vertex of the graph and connecting those vertexes
which are adjacent in space. Figure 5.1 shows an example of an aspect
graph for a figure confined to a plane.

Aspect graphs provide a good measure of the general relationship
between location and viewable features. They do not provide a means to
describe how well a feature may be seen from a given location. A
technique similar to aspect graphs is used in Chapter 3 to determine the
projection of the vertices of each voxel.

Robot Motion Planning

Robot motion planning is the process of selecting a successive set
of coordinate frames for a robot to move through. This could be for a
mobile robot or a robot arm moving within a work cell. In either case,
this requires that the scene be analyzed for collision avoidance. It
requires the knowledge of locations and surfaces within an scene which
must be avoided.

Once again, inspection accuracy is not required for this analysis.
It is only necessary to know the location of objects and surfaces with
enough accuracy to insure avoiding a collision. Views which would be
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Figure 5.1 Aspect Graphs
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useful in determining where obstructions are located do not necessarily
provide information concerning how well a specific landmark can be
seen.

5.3 Aspects of View Pattern Analysis

Several different areas impact or restrict our ability to perform view
pattern analysis. Each of these areas shall be discussed separately
before introduction of the view pattern analysis algorithm. Each area
can be categorized as providing the view selection algorithm with object
information or providing view combination rules. Finally, we shall
discuss a method of combining all this information into the process of
view pattern analysis.

The areas providing information about the an object include the
use of landmarks as search goals for our restricted set of views, the use
of best views of landmarks to indicate the needed view information, the
octree inspection map for providing the requirements of the inspection,
and a representation map of the object for a complete object description.

View combination rules provide information about how the views
can be combined and how the inspection process makes use of
information during an inspection. These include the 50% rule for the
determination of a voxel's identity, the use of obstruction checking to
determine variation possibilities in the best views, the effects of the
inspection system itself to limit the view selection. In Section 5.4, some
of these rules are combined to determine the variation possibilities of the
best views such that the equivalent information is provided by the new
view.

5.3.1 Landmarks as Goals

One of the inputs of the algorithm is a set of landmark locations on
the object to be inspected. Any accuracy calculation is dependent on
significant landmarks of the object. Figure 5.2 show an object with
landmarks indicated. In this instance, the object can be thought of as a
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Figure 5.2 Landmarks for View Selection
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stamp whose critical parameters are at the end which will make an
impression.

While it might be possible for automated selection of landmarks, it
might not be desirable. Automated selection of landmarks assumes that
all "significant" features of the object are significant for the determination
of reconstruction accuracy. As can be seen from the example just cited,
this may not always the case. In most instances, we are concerned with
computational intensity, and overspecification of landmarks is something
to be avoided.

Only the object designer, or another designer who must use the
object, can specify what the significant locations are on the object. The
use of landmarks specified by the designer allows him to be involved in
the inspection configuration as well. This enhances the integration of the
object's design phase with the manufacturing phase of development.

5.3.2 Best Views of Landmarks

In addition to the specification of landmarks by the designer, we
will also presuppose that he has specified a set of "best views" of each of
these landmarks. These best views specify a set of optical axis view
angles which are required to determine each landmark. A single best
view could be described by a set of best sub views, any one of which
provides the information of the "single" best view.

Best View A = (best sub view 1) or (best sub view 2) or ... (5.3.2-1)

This equation emphasizes that in some instances a single best view
can be described by any one of several views. It is in part for this reason
that the designer must describe the object by a set of best views for each
landmark. Each landmark will be described by the set of best views, all
of which must be present to describe the landmark

Landmark Observed = (Best View A) and (Best View B) and ... (5.3.2-2)
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This description of the landmarks by best views is consistent with
Weak Convexity of Chapter 2. Weak Convexity guarantees that a set of
best views can be found for each landmark. Figure 5.3 shows an
example of best view description of a landmark.

The best views of a landmarks must be determined a priori to the
view pattern analysis. This determination provides a set of views which
are known to properly describe the single specific landmark on the
object. The best views are along the optical axis of a view. In most
instances this provides for an overdescription of the landmarks since it is
probable that more than one landmark is visible from a given view. This
will be determined by the parameters of Sections 5.3.4-7.

5.3.3 Octree Inspection and Representation Maps

The octree inspection and representation maps provide
descriptions of the object for the process of view pattern analysis. The
octree inspection map provides a description of the landmarks of the
object. The representation map provides a description of the object for
obstruction checking.

The octree inspection map, developed in Chapter 3, provides all the
information the inspection algorithm needs to perform the inspection. It
also provides view pattern analysis with a description of the inspection
requirements for view selection. The requirements provided are a listing
of the landmarks, their locations on the object and the maximum
resolution of the inspection process. Figure 5.4 shows an example of an
octree inspection map.

The representation map is a complete description of the object in a
three dimensional array. This array represents an objects location by
object and non-object entries. The array resolution is equal to that of the
octree inspection map. This could be a large array and may not be
appropriate for any online inspection processing. It is only used during
the preprocessing phase of view pattern analysis to check for
obstructions. Figure 5.5 shows an example of the representation map.
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Figure 5.3 Best views of a landmark determined a priori
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® . Landmarks

Figure 5.4 The octree inspection map with modifications for view
planning
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Figure 5.5 The representation map with modifications for view
planning
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5.3.4 50% Rule for the Determination of a Voxel

The representation scheme used for the inspection is an octree
inspection map. This map is discrete. During the volume source
backprojection reconstruction of the individual discrete voxels of the
octree decisions must be made which discretize the inspection process.
This decision process led to the 50% rule discussed in Chapter 4.

The 50% rule for voxel determination provides a measure of a
voxels ability to distinguish between background and void in the
determination of a voxels identity. It states that any voxel which has a
projection of 50% or greater of void onto any single view during
inspection must in fact be at least 50% void itself. Figure 5.6 shows an
application of the 50% rule.

This provides our first rule for view pattern analysis.

RULE 1 Valid views of an object voxel which is at least 50% void must
always project to at least 50% void.

5.3.5 Obstruction Checking

Obstruction checking involves insuring that views which are
selected can observe the landmarks of interest on the object. Obviously,
any initial best view is able to observe its associated landmark. During
the view selection process other views will probably be selected to observe
a given landmark. Obstruction checking insures that the new view can
observe the landmark.

There are two types of obstructions which may occur. Both
obstructions restrict the view positions by disallowing certain positions
and orientations. Certain bounds limiting the view selection may not be
directly related to the object. These bounds are related to the universe of
the reconstruction environment. Figure 5.7 shows examples of these
environmental restrictions. Other bounds limiting the view selection are
related to the object. These types of object limitations are discussed in
Chapter 2 and examples are shown in Figure 5.8. It is necessary to
check each view modification to insure that the new view chosen is not in
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Figure 5.7 Environmental limitations on views
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Figure 5.8 Object limitations on views
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some way blocked by the object. While Weak Convexity guarantees that
view locations exist that will distinguish a landmark, there are views
which will not. Obstruction checking insures that the views selected
maintain the observability of the landmark.

RULE 2 Valid views of an object voxel must not be obstructed by the
reconstruction environment or the object.

5.8.6 Accuracy and Inspection System Parameter Effects

The accuracy analysis of Chapter 4 indicated a close interaction of
the parameters of APv, APn, AV, d, f, ® = Within the parameters of view
pattern analysis we will assume that APv: APh, AV, fare fixed by the
inspection system and are known. The factors which can be varied are d,
the distance to the object along the observation axis; and ©, the angle
between the observation axis and the optical axis. These factors describe
the varying of the position of the view with respect to the object under
inspection.

One result from Chapter 4 was a lower bound on the minimum
experimental discrimination (MED) specification. This bound relates the
voxel size in the inspection representation to the MED. This will provide
a useful manner to incorporate an accuracy requirement into the view
selection procedure.

AV < MED (5.3.6-1)

In the view planning case, APv and Apn are fixed and provide a
bound on the obtainable accuracy for any view selection. Assuming that
the accuracy needed satisfies equation 5.3.6-1, the MED will provide an
upper bound on the measurements of APv and Apnw for the purposes of
the view selection process as described in Chapter 4. This will be used
later to modify our relationships to have an accuracy bound instead of a
pixel size bound.

Chapter 4 examined the inspection system parameters for their
effect on accuracy. The limiting accuracy case occurs when the
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observation line provides the inspection system with the largest possible
projection. This observation line can always be chosen. The inspection
system must be able to detect the smallest dimension of this projection.
This leads to a observation line near one of the major diagonals of the
voxel.

This projection is not symmetrical. For simplicity, it was assumed
to be symmetrical about the smaller projection. Figure 5.9 shows a cross
section of this projection relating the parameters shown above to it.
Chapter 4 concludes with an expression which relates all the parameters
shown in this figure.

Apyn{ 2 (L) ((AV/%/?) d(cos® - sin@®) ]

d d cos® - AV/2V2 (5.3.6-2)

A satisfactory solution of these equations is necessary whenever an

inspection is to be performed and is thus a requirement for a view

selected during view planning. As noted earlier, this can be modified into
a bound based upon the needed accuracy of the view selection.

Apor(2 (£ [(MED/2\/§) d(cos® - sin®) ]
Pua (d) d cos® - MED2V2 (5.3.6-3)

As © becomes small and d >> AV, this relationship becomes:

Apen(2 (§) (%%j (5.3.6-4)

Note that in each of these cases we have defined an upper bound
on the sensor size. Any sensor size smaller than this will be sufficient to
determine the dimensions of the projected voxel.

An examination of this relationship reveals that as the accuracy
requirements of the inspection are increased (MED reduced), the distance
between the view and the object must also decrease for a fixed
relationship to the pixel size and focal length. This is consistent with our
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intuition that a more detailed analysis will require a close examination of
the object.

RULE 3 Valid views of an object voxel must satisfy equation 5.3.6-3.

Another restriction on the allowable views follows directly from the
camera characteristics. This relates the depth of field (DF) to the
allowable distance between the view and object.

dmin pF € d € dmax DF (5.3.6-5)

This directly implies a requirement for view selection.

RULE 4 Valid views of an object voxel must be within the camera
depth of field as specified by equation 5.3.6-5.

5.4 View Variation

Thus far in our discussion of the aspects of view selection we have
examined specific information about the object inspection system in
Sections 5.3.1-3; and rules which govern valid view determination in
Sections 5.3.4-6. These sections provide information about the object
inspection system and about what views we can use but they do not tell
us what views to select.

Section 5.3.2 provides knowledge of certain best views of the
landmarks which do provide the information which is needed for the
inspection. Sections 5.3.4-6 imply that these views are not unique. In
this section we shall examine the variation of a view from a know
orientation for compliance with the rules of Sections 5.3.4-6. Any view
thus described can provide equivalent information for the view analyzed.
This will provide a set of valid views for each view which is known. These
sets of views will be the basis for the view selection process to be
presented.

We will begin with an examination of the single best views provided
by the designer and how much these can be varied. We shall then
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examine a pair of landmarks viewed from a single location and the
variation of this view. Finally, this shall be generalized to a view which
observes more than two landmarks.

5.4.1 Best View Variation

The single best view provided by the designer can be varied in three
ways. The first way is to change the range between the landmark and
the view. This provides a scaling effect on the projection of the voxels in
the landmark location and is governed by equation 5.3.6-3,5 with ©
fixed.

The second way this view can be varied is to translate the optical
center of the view. This is shown in Figure 5.10. During this translation
the view plane remains in its original orientation; only the optical center
changes. This might be necessary if there were two best views which
were parallel to each other and were combined. The limiting factor on
the translation is the angle ©. This angle determines the projection angle
of the voxel onto the view and is limited by equation 5.3.6-3 for a fixed
distance D. We can find the maximum of this type of translation.

C=Dtan ® (5.4.1-1)

A third way that this view can be varied is a rotation of the view
plane. This is shown in Figure 5.11. In this case the optical center
remains in the original view plane but the view plane itself is rotated
such that the limiting case is when the optical axis of the view is at an
angle © to the original view plane. This is once again limited by equation
5.3.6-3 for a fixed distance D. We can find the maximum of this type of
translation.

C=Dtan© (5.4.1-2)
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5.4.2 Two Landmark View Variation

A single view which observes two landmarks can be moved in a
similar manner to the movement of the best view above. The difference is
that the symmetry of the single landmark case is lost. We shall examine
the movement in a plane determined by the optical center of the view,
and the two landmarks.

We will first examine movement of the optical center while the view
plane must remain parallel to the original view plane. Figure 5.12 shows
the original view in the center of the page and movement of the optical
center in the four views surrounding it. We have assumed that the
optical axis bisects the distance between the two landmarks for
simplicity. If this is not the case some of the asymmetry which we will
discuss later will be present in this simple case.

As the view plane is moved toward the object, the angles between
the optical axis and the observation lines grow to a limiting value of ©.
Beyond this point the view can not be moved closer to the object. As the
view plane is moved away from the object the angles become smaller.
There is no limiting case for movement in this direction due to angles.
Movement away from the object is limnited by equations 5.3.6-3,5 because
of either the camera depth of field or accuracy limitations.

Movement of the view plane to the "left" or "right" with respect to
the figure is limited by the view angle © reaching a maximum. Figure
5.13 shows a cross section of this type of translation. In the figure the
more general case of an angle of b < ® between the observation line and
the optical axis is shown to be moved to the maximum position at an
angle ©. The distance B is the maximum distance which the optical
center may be translated and still observe the landmark.

B=A( sin(@-b)j

cos ©® cosb (5.4.2-1)
Note that as the angle b >> O we have the same equation as for the

single best view. Thus this equation could describe both cases in our

determination of view variation. ’
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The other way in which the optical centers orientation with respect
to the two landmarks can be varied is by a rotation of the view plane
during these same translations just discussed. These translations and
rotations are shown in Figure 5.14. They are similar to those of Figure
5.12 except for the rotation. The view plane could be rotated in either
direction but only one direction is shown for simplicity. This
consideration is valid because of symmetry considerations of the
rotation.

As the optical center is moved closer to the landmarks one of the
two angles between the optical axis and the observation line will reach a
maximum of ©. This provides a limit on the translation toward the
object. As the optical center is moved away from the landmarks the
angles diminish without bound as before. Once again, the limiting factor
is the depth of field and accuracy considerations as defined by equations
5.3.6-3,5.

The asymmetry of translation to the "left" and to the "right"
precludes a common treatment as done for the earlier case. Translation
to the "left" is shown in Figure 5.15 and translation to the "right" is
shown in Figure 5.16. An evaluation of the limiting case for translation
of the optical center can be determined in each of these cases
respectively.

_ sin(© - a)

B=4a [cos (® + ¥) cos (a+ ‘P)) (5.4.2-2)
_ sin(@ - b)

B=4a (cos (©-¥)cos(b- ‘P)] (5.4.2-3)

Note that once again that as ¥ >> 0 in each of these equations we
get the equation (5.4.1-1). This would allow for the general use of these
equations, but the asymmetry will preclude the usefulness of this
generalization.

Each of these equations helps to describe an overall limitation on
allowable locations for the optical center with respect to the two
landmarks which are observed with the plane to which we confined our
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Figure 5.16 Displacement effects toward one landmark of view
plane rotation with respect to two landmarks
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variation. We have not addressed the variation of the optical center in
locations which are not in this plane. As the optical center moves out of
this plane the view angle © will always be larger than for its projection
into the plane we are using. From this we can conclude that translation
in a plane parallel to one we are using will always be less extensive than
the plane just analyzed. Figure 5.17 shows this effect using plane slices.
As we shall see in the next section, the introduction of more landmarks
to be observed by a single optical center will increase the complexity
further.

5.4.3 N Landmark View Variation

When there are more than two landmarks that are observed by a
single view the valid locations are a function of the angles from all N
landmarks in a similar manner to the way the valid locations were a
function of the two landmarks analyzed above. The result is a volume
which describes possible locations for the optical center. The complexity
of this analysis precludes further objective examination. Instead, we will
examine a constructive method of determining this volume in the next
section.

5.4.4 Sequentially Combining Views for View Variation

The starting point for our view pattern analysis was an over
description of landmarks by having each landmark have its own set of
views. This causes an important part of view pattern analysis to be the
combining of two views into a single view. This is done using the view
variation discussed in the preceding section.

In order for two views to be combined, it is necessary that there be
at least one equivalent view for each original view from the same location.
By comparing the view variation lists of the two views to be combined we
can determine if and where such an overlap exists. Any one of the views
common to the two lists is sufficient as the combined view. Further, the
view variation list for the combined view is comprised of the views which
are common to both the original lists.
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This intersection of the view lists of the two original landmarks
precludes the need for a direct computation of the view variation of the
new view. It is not possible for a view variant to be a member of the
combined set and not be a member of both of the originals. This affords
us the possibility of exploiting the symmetry of the original best view to
determine its view variation.

The use of view variation lists also precludes the need to determine
a single view for the combination of two views. This is satisfactory at
intermediate stages of combining a sequence of views. A flowchart of this
part of the combination routine is shown in Figure 5.18. Ultimately, a
specific view will need to be selected from a set which provides equivalent
information with respect to the view selection parameters.

The notion of equivalent views was sufficient to describe the views
during view pattern analysis. The specific view selection after combining
the view variations will need to be done using a criterion which does
distinguish among the equivalent views. This final view selection is
shown in the flowchart of Figure 5.19.

The criterion we will use is to select the final view which provides
the most accuracy for the inspection. The equivalent views were only
guaranteed to possess a minimum accuracy in their information. We
desire to select a minimum number of views which provide the greatest
possible accuracy. This view with the greatest accuracy will be the view
which is closest to the object but can still observe all of its landmarks.

It is not immediately apparent which view is the closest to the
object. After view combination there are several landmarks associated
with each view. Each view-landmark distance will be different. We will
use the minimum sum of the distances as our distance criterion. Even
so, it is possible that the view determined in this manner may not be
unique because views also possess an orientation attribute. From among
the views giving the most accuracy to the inspection we will select the
median of the angle orientations. This will insure that if possible none of
the landmarks will be at the boundary of our ability to distinguish them
from the background.



Figure 5.18

(o )

l

Form intersection of
the view lists of the
two views to be
combined

h 4

assign this view list
to the new, combined
view -- the specific
orientation will be
found if needed

:

discard the old views

( Stop

Sequential Combination of Views

181



Figure 5.19

( Start

|

select a set of view
variations

|

average the
Landmark locations
which are seen by the
view variation list

|

select the single view

variation which looks

closest at the average
as the view

l

D

View combination algorithm

182



183

5.5 View Pattern Analysis

The purpose of view planning analysis is to make use of known
information about an object to select views which are sufficient to inspect
the object using the analysis of Chapter 3. Figure 5.20 shows a
flowchart of this analysis from the designer specifying the items to be
inspected to the selection of the final views which will be used for
observation.

The view selection process needs to combine the view vectors in a
manner which removes redundancy in the view information while
maintaining a desired level of potential accuracy for the inspection. The
algorithm will terminate when the number of views desired is obtained,
with the resultant accuracy being a function of this number of views; or
when the number of views is a minimum for the accuracy bound
specified. The algorithm fails if it is unable to maintain the desired
accuracy using some maximum number of views.

5.5.1 Preprocessing of the View Information

The preprocessing of the view information is the determination of
the view variation characteristics of the best views. A flowchart of this is
shown in Figure 5.21. A comparison of the view variation characteristics
will provide the view selection routine with a map for selecting the best
views.

The view variation data is calculated from the parameters defined
in Section 5.3. Bounds are found by fixing all parameters but one and
evaluating for the bound. The view variation list is formed by filling in
between these bounds. The symmetry of the best view is exploited
wherever possible.

5.5.2 View Selection

The preprocessing of view variation information makes the view
selection process rather straightforward. It is flowcharted in Figure 5.22.
We desire to use the views which provide the greatest information about
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the landmarks. These are selected iteratively by intersections of the view
variation lists.

Termination of the view selection process occurs when there are
not views to combine or a desired number of views has been obtained. A
desired accuracy is maintained by limiting the preprocessing view
variation calculation to those view locations which maintain the desired
accuracy.

5.6 View Pattern Analysis Implementation

The program was implemented on a Macintosh computer in Think
C. C was chosen for its flexibility in handling data types. Since much of
the data which is manipulated was in the form of lists, a data structure
based upon LISP's list structure was used. C was chosen over LISP
because the lists were more easily constructed in C and the construction
of correct LISP structures in C subroutines in non-trivial.

5.6.1 Processing

The general structure of the program is shown in the flowchart of
Figure 5.23. After initialization, a data input subroutine is called. This
routine prompts for input or reads data from a file. The information read
includes computer vision system parameters as well as landmark/best
view information. The best views may be specified in sets of OR lists
which will be AND related.

Next, the variation scanner routine is invoked. This routine scans
through all the best views, regardless of whether the view is AND or OR
related and builds a view variation list to associate with the view. This is
followed by an intersection scanner. This routine scans all possible view
pairs, once again regardless of type and computes view variation
intersection lists and counts for each.

Now the OR redundancy in the views is removed by scanning for
the single OR view which has the largest intersection with a view which is
not OR related to it. This process is shown in Figure 5.24. This view
should be AND related to the others because of its large intersection. All
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the views which were OR'ed with it are removed -- both themselves and
their intersection possibilities with other views. Now the next largest
intersection is found in the same manner as above. This is repeated
until all the OR lists have been converted into AND'ed views. The
selection of the intersections from largest to smallest insures that an
early selection from a given OR list does not eliminate what would be a
better match later.

Finally, the AND'ed views are reduced through view combination.
This is unlike the OR reduction when views were eliminated, but still
leaving the same number of AND predicates. The AND combination
occurs by iteratively finding the largest intersection of two views. These
two views are combined by having the new view have as its view variation
list the intersection list from its parent views. The landmarks associated
with the parents are maintained for later use in selecting the final view.
This process continues until the intersections between remaining views
are empty or some minimal threshold of intersection is reached.

The final view is now selected from the view variation lists. This is
done as was described earlier in Figure 5.19. The landmarks associated
with the each view variation list have their positions averaged. The final
view is chosen as the view which looks most directly toward the average
landmark location.

5.6.2 View Pattern Analysis Testing

The view selection algorithm was tested for two simple
configurations of views. The view variation space was approximated
using a simple cube.

The first of these combined two views which were to be AND'ed
together. A diagram of this is shown in Figure 5.25. The processing for
these views took approximately thirty seconds. The second test involved
the combination of two views to be AND'ed together along with two pairs
of views OR'ed together. A diagram of this is shown in Figure 5.26. In
this case the view selection took over seven minutes.

From this we can conclude that the algorithm is capable of view
combination for simple cases which verify our intuition. The time
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required for the analysis even in simple cases implies that the usefulness
of view planning by this method is restricted to those instances where the
planning will be used in a large number of inspection cases.

5.7 Implications of View Pattern Analysis for Inspection

The implications of view pattern analysis for inspection is the
selection of a limited set of views which will adequately describe the
landmarks of an object for the purposes of inspection. Further, the
failure of the view pattern analysis implies that a set of views using the
variation analysis of Section 5.3.7 can not be found which are sufficient
for the inspection. Except for the limits of this variation analysis, a view
pattern can not be found in any case.

View pattern analysis possesses two possible goals. The first is an
inspection analysis which requires less than a specific number of views.
This is analogous to having a computational time limit for the inspection.
The second is obtaining a desired level of accuracy during the inspection.
This limitation may force a greater number of views to be used for
inspection.

The view pattern analysis presented meets both these goals by
selecting a minimum number of views which provides the greatest
possible accuracy subject to the constraint of a minimum accuracy for
any specific landmark. The solution is a set of view locations and
orientations which can be directly used to perform the inspection.

5.7.1 Implications for Backprojection Reconstruction

In a similar manner to the inspection process, backprojection
reconstruction can benefit from the use of view pattern analysis. It has
the goals of using a minimum number of views to provide the best
possible reconstruction. It differs in its lack of landmark goals for the
reconstruction.

If such a set of landmarks existed for the object to be
reconstructed, the problem would be equivalent to the one for inspection.
There are two different ways which this could be achieved. The object
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designer could specify landmarks in a similar manner to the inspection
case. Here his goal is providing landmarks to describe the object for
reconstruction. Another way to specify the landmarks and best views is
to generate them from a description of the object. Curvature or another
form of feature extraction could be used to extract landmarks. Best
views could be generated using the constraints of Chapter 2 for the
reconstruction of these landmarks.

Two things should be noted about such a reconstruction. First, in
the limiting case, a landmark could be specified at each boundary point
on the surface of the object. This would produce a computationally
intensive view pattern analysis, but the analysis would remove the
extreme redundancy in the view information. Second, any landmarks
selected by computer analysis or by large overdescription will need to be
Weakly Convex.
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CHAPTER 6

CONCLUSIONS

6.1 Summary of Research

The purpose of this work was fourfold: to determine a
characterization for objects which are suitable for backprojection
inspection, to develop an accurate backprojection inspection algorithm,
to examine the accuracy considerations of this inspection, and to
examine the view selection process for the inspection. Together, the
results provide a framework for practical backprojection inspection in
conjunction with a CAD system or another system capable of providing
the necessary a priori information about the objects to be examined and
the views of the sample objects. In each of these areas, results were
obtained which satisfy these goals.

In Chapter Two, a characterization of the types of objects suitable
for reconstruction was defined. This characterization, called Weak
Convexity, was based upon the examination of local surface
characterizations at every point on the surface of the object. The
characterization was shown to be a necessary and sufficient condition for
the object to be reconstructed.

In Chapter Three, a backprojection inspection algorithm was
presented which only required the examination of a limited portion of the
surface of the object. The portion inspected was local to landmarks of
the object. These landmarks indicate the locations of the object which
were significant to the accurate manufacture of the object. Accuracy
measurements were made based solely on the inspection of these
locations.
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In Chapter Four, three different, but related aspects of
backprojection inspection accuracy were examined. The first of these
was the calibration and a procedure for inspection calibration was
presented. Second, parameters of the inspection process were examined
for their interaction in determining the obtainable accuracy during an
inspection. These were the object/sensor distance, the viewing angle of
the sensor onto a certain size object, the focal length, and the sensor
pixel size. These were found to be a highly interdependent set of
parameters whose selection would be case-dependent. Finally, methods
of combining the inspection results into useful inspection measures were
presented. Central to this was a general, local error measure based upon
the accuracy found at each landmark.

In Chapter Five, a procedure was presented for the combining of
views in an effort to limit the number of views used to perform an
inspection. The selection and use of the proper views is essential to a
correct inspection. The procedure presented was based upon the
inspection procedure of Chapter Three and the accuracy requirements of
Chapter Four.

6.2 Suggestions for Future Work

There are several areas where the reconstruction results presented
here can be extended. Some are related to a further examination of the
results and how the data can be applied. Others relate to the underlying
data; how robust the techniques are and the addition of automated
preprocessing.

1) The definition of Weak Convexity in Chapter One provides a
characterization for the types of objects which can be inspected through
backprojection inspection. It does not provide an algorithm for the
determination of the Weak Convexity of an object. It is important that a
method be found for the determination of an object's Weak Convexity.

2) Several examples of results from the inspection algorithm of
Chapter Three were presented to verify the usefulness of the algorithm.
An examination of how useful the algorithm would be under actual
manufacturing conditions was not presented.



197

3) The accuracy effects presented in Chapter Four provide a
measure of the bounds which restrict backprojection inspection. A
further examination of the interaction of these bounds could lead to
computational limitations of backprojection reconstruction.

4) In Chapter Five, a method of combing an overdescription of
the landmarks to reduce the number of views required was presented. It
may be possible to incorporate information concerning how much
redundancy is required by the environment to insure that reconstruction
conflicts can be resolved.

5) There could be an examination of the results with respect to
the determination of actual thresholds for accepting or rejecting parts in
an industrial environment. Also, a further study of the camera
calibration statistics which could be used for accuracy verification.

6) An examination into the automatic derivation of the best
view of a point; or even an automatic determination of the significant
points on an object. In the special case of convex shapes, a study could
be done to determine the limits of concavity which affect the results.
Further, automatic object registration with the optical system could be
examined for objects within certain defect bounds.
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