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ABSTRACT

Garcia-Melendo, Enrique. M.S.E.E., Purdue University, August 1988. The use of
image processing techniques for the analysis of echocardiographic images. Major
professor: Edward J. Delp.

Echocardiography is a medical imaging modality that uses ultrasound in
order to obtain cross sectional views of the heart. The basic problem in the use of
echocardiography is the ability to obtain a reliable set of physical parameters
related to cardiac status, so that assessment of heart disease caI; be performed
automatically. This work overviews different image processing techniques used in

the analysis of two dimensional echocardiographic images.

After reviewing how the echocardiographic image formation process works, an
outline of the general processing steps from image acquisition to automatic detec-
tion of important features is presented. Special emphasis on cardiac image seg-
mentation is presented. In particular, a relaxation algorithm fox_' image segmen-
tation is discussed. Also, echocérd'ibgraphic image segmentation using temporal
analysis and a new algorithm for boundary detection is described. Measurements

of left ventricular area, wall thickness, and ejection fraction is also presented.

Shape analysis is introduced as a tool for echocardiographic image analysis. A
high level description of the left ventricular boundaries using curvature is pro-

posed. Curvature analysis attempts to identify stable landmarks during the
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beating process. muscles. Tracking these landmarks aids in the detection of
abnormal heart contractions. Finally the use of expert systems is proposed in the

analysis of echocardiographic images.




: CHAPTER 1
BASICS OF HEART ANATOMY, PHYSIOLOGY,
AND ECHOCARDIOGRAPHY

1.1 Introduction to Cardiac Anatomy and Physiology

1.1.1 Cardiac Anatomy

The heart is a four-chambered hollow muscle within the thorax whose task
is to pump the blood to the lungs so that it can be oxygenated, and then pumped
to the rest of the body. The front of the heart is known as the Anterior aspect
(see Figure 1.1) while the back is known as the Posterior aspect (see Figure 1.2).
If we assume that the heart’s shape is close to that of a cone, then the vertex is
called the apex, whereas the top portion is the heart’s base (see Figures 1.1 and
1.2).

An excellent description of the heart was provided by Jacob and Francone

[1:

The structures of the heart include the pericardium; the wall enclosing
the chambers, separated by valves; and the arteries, which supply
blood to the heart muscle.

Pericardium. The pericardium is an invaginated sac consisting of two
layers, an external fibrous and an internal layer (the serous membrane).
The external fibrous layer, which has an inner surface of serous
membrane, is the parietal pericardium. The internal serous layer, which
adheres to the heart and becomes the outermost layer of the heart, the
epicardium, is the visceral pericardium.

Wall of the heart. The wall of the heart consists of three distinct
layers: the epicardium (external layer), the myocardium (middle layer),
and the endocardium (inner layer). The epicardium has mesothelial and
subserous layers of connective tissue and is frequently infiltrated with
fat. Coronary vessels supplying arterial blood to the heart traverse the
epicardium before entering the myocardium. The myocardium consists
of interlacing bundles of striated muscle fibers. This layer is responsible
for the ability of the heart to contract. The endocardium lines the
cavities of the heart, covers the valves, and is continuous with the




lining membrane of the large blood vessels.

Chambers of the heart. The heart is d1v1ded into right and left
halves, with each half subdivided into two chambers. The upper
chambers, the atria, are separated by the interatrial septum; the lower
chambers, the ventricles, are separated by the interventricular septum.

) -—\Left common carotid a.

Brachiocephalic trunk —?\

e

Superior vena cava Left subclavian a.

Ijrch of aorta

75 —Pericardium

Ascending aorta—-
Pulmonary a.

Left atrial

Rigkt atrial appendage
appendage— (auricle)
{auricle) y

‘ +Left coronary a.
Rigkt ventricle

Right coronary a .

Right atrium

Figure 1.1 Anterior aspect of the heart [1].

The right atrium constitutes the right superior portion of the heart. It
is a thin-walled chamber receiving blood from all tissues except the
lungs. Three veins empty into the right atrium: the superior and
inferior venae cavae, bringing blood from the upper and lower portions
of the body; and the coronary sinus, draining blood from the heart
itself. Blood flows from the atrium to the right ventricle.

The right ventricle constitutes the right inferior portion of the heart’s
apex. The pulmonary artery carrying blood to the lungs leaves from the
superior surface of the right ventricle.



The left atrium constitutes the left superior portion of the heart. It is
slightly smaller than the right atrium, with a thick wall. The left
atrium receives the four pulmonary veins draining oxygenated blood
from the lungs. Blood flows from the left atrium into the left ventricle.

Arch of aorta ; Superior vena cava

Left pulmonary a. - Right pulmonary a.

S X : \
Left pulmonary v-3@ ¥~ ‘YRight pulmonary v.

7

Left atriu
_ Right atrium

Inferior vena cava

Posterior interventricular
coronary a.and v.

Figure 1.2 Posterior aspect of the heart [1].

The left ventricle constitutes the left inferior portion of the apex of the
heart. The walls of this chamber are three times as thicker as those of
the right ventricle. Blood is forced through the aorta to all parts of the
body except the lungs.

Valves of the heart. There are two types of valves located in the
heart: the atrioventricular valves (tricuspid and mitral) and the
semtlunar vaelves (pulmonary and aortic) (see Figures 1.3 and 1.4).

The atrioventricular valves are thin, leaf-like structures located
between the atria and ventricles. The right atrioventricular opening is




guarded by the tricuspid valve, so called because it consists of three
irregularly shaped flaps (or cusps) formed mainly of fibrous tissue and
covered by endocardium. These flaps are continuous with each other at
their bases, creating a ring-shaped membrane surrounding the margin
of the atrial opening. Their pointed ends project into the ventricle, and
attached by cords called the chordae tendineae to small muscular
pillars, the paptllary muscles, within the interior of the ventricles. The
left atrioventricular opening is guarded by the mitral or bicuspid valve,
so named because it consists of two flaps. The mitral valve is attached
in the same manner as the tricuspid, but it is stronger and thicker since
the left ventricle is a more powerful pump.

Blood is propelled through the tricuspid and mitral valves as the atria
contract. When the ventricle contracts, blood is forced backward,
passing between the flaps and walls of the ventricles. The flaps are thus
pushed upward until they meet and unit, forming a complete partition
between the atria and the ventricles. The expanded flaps of the valves
resist any preassure of the blood which might force them to open into
the atria, since they are restrained by the cordae tendineae and
papillary muscles.

The semilunar valves are pocket-like structures attached at the point at
which the pulmonary artery and aorta leave the ventricles. The
pulmonary valve guards the orifice between the right ventricle and the
pulmonary artery. The aortic valve guards the orifice between the left
ventricle and the aorta.

An important aspect of heart anatomy and physiology is the coronary
system of arteries and veins that supply blood to the heart. According to Jacob
and Francone [1]:

Blood supply to the heart. The heart is supplyed by the right and
left coronary arteries (see Figures 1.5). These vessels are the first
branches of the aorta. They encircle the heart and supply blood to all
portions of the myocardium. The blood in the coronary arteries returns
to the heart, either by way of the coronary veins or by special sinusoids
in the myocardium. The coronary arteries and their branches are as
follows.

Left coronary artery. The anterior descending branch supplies blood to
the left and right ventricles. The circumflex branch supplies blood to
the left atrium and left ventricle. Right coronary artery. The posterior
descending branch supplies blood to the left and right ventricles. The
marginal branch supplies blood to the right atrium and right ventricle.

1.1.2 Cardiac Physiology and Ischemic Heart Disease

The heart, as a muscle, needs oxygen to perform its task. This oxygen is
supplied by the coronary artery system. Thus, there must be a balance between
the oxygen demand of the heart and the oxygen supply.
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Figure 1.3 Interior view of the heart showing the relationships between
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Figure 1.4 [Vi]ew of the heart’s valve system through the base of the heart
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The oxygen demand is not constant, it depends on many factors, basically it
can be stated that oxygen consumption is closely related to the work performed
by the heart. In other words, the greater the work, the greater the oxygen
demand, and vice versa. Since oxygen is brought to any point of the body by
blood flow, it is brought to the cardiac muscle by coronary circulation. Thus, an
increase in oxygen demand must be answered with an increase in coronary artery
blood flow. Figure 1.6 describes the factors which determine oxygen demand and
supply to the heart.

. Ischemic heart disease is one of the most common heart diseases and results
from insufficient coronary blood flow, or generally speaking, from an insufficient
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Figure 1.5 The coronary artery system of the heart [1].




oxygen supply to the cardiac muscle. One of the factors that produces
insufficient blood flow is acute coronary occlusion, which means a total lack of
blood circulation through part of the coronary artery system. Immediately after
acute coronary occlusion, the area of muscle that is no longer irrigated by blood
is said to be infarcted. The overall process is called myocardial infarction,
commonly known as heart attack.

Acute coronary occlusion is not the only determinant of ischemic heart
disease, it can also be produced by a diminished capacity of the coronary system
to supply a greater blood flow for higher oxygen demand. Angina Pectorts, for
instance, appears when increased heart effort can not be matched with an
increased blood flow. When the muscle cells do not obtain the oxygen they need,
they die. Besides heart failure, abnormal cardiac status can produce alterations
in the beating process and in the general behavior of the organ.

1.2 Echocardiography: An Overview

1.2.1 Viewing Modalities of Echocardiography

Widespread use of ultrasound in the study of the heart is due to its real
time capabilities and noninvasiveness. In addition, it is quite inexpensive when
compared with other imaging modalities. It is also relatively easy to perform on
a patient since the equipment is portable.

Ultrasound is used in order to visualize tissue and organs. One or an array
of ultrasound beams are directed at the organ under examination. When the
ultrasonic wavefront propagates into a transition surface between two tissues of
different density, part of the wavefront is reflected. A sensor at the receiver
collects the reflected energy. Assuming that the speed of the ultrasonic wave is
known, and that the receiver knows the time when the wave was sent, an image
can be constructed from the returned signal, (the time delay and attenuation
must be known). These concepts are shown in Figure 1.7.

There are several aspects in the interaction between ultrasound and tissue
which must be discussed to understand what an ultrasonic image looks like [2].
The first is attenuation. Ultrasound is a longitudinal pressure wave, if we express
the value of the wave amplitude as a function of position, we have:
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to the heart.

A=Aosin{3f-(vt—z)]

Where A is the amplitude, v is the propagation velocity, x is the position, t
is the time, and A, is a real constant. The amplitude of the propagating wave

would remain constant if there were no friction forces, and the medium through

which the wave propagates were homogeneous.
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Figure 1.7 This figure shows the basics of ultrasound imaging. A transducer

(TRN) directs an ultrasound beam at the tissue structure that is to
be visualized. When the ultrasound wave arrives at TS1, the
transition surface between the two superficial layers of tissue, part
of the wave is reflected back to the transducer; t1 is the time it
takes for the ultrasound to travel from TRN to TS1 and for the
reflected portion of .the wave to reach TR again. Part of the
ultrasound signal penetrates the tissue beyond TS1 and encounters
TS2. Again, part of this wave is reflected back to TRN, with a
total traveling time t2. The same happens at TS3 with returning
time t3. Since we can measure tl1, t2, and t3, and the speed at
which ultrasound travels through the different tissues, we can
compute how far away TS1, TS2, and TS3 are from the
transducer. If we further assume that the tissue distribution does
not change along the y axis, and that all the tissue layers are
homogeneous, then it is possible to draw a map of tissue thickness
and distribution (distance between the different layers and the
transducer) from the echoes received at TRN.
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Actually, human tissue is very heterogeneous and there are other
phenomena involved, such as scatter due to the cellular structure, absorption,
and reflection/refraction. Usually attenuation can be modeled by a decreasing
exponential:

B=Bge™"*

Where B is a real constant which is the amplitude of the incident wave on
the surface of the tissue through which ultrasound is propagating, o« is the
attenuation coefficient that characterizes the propagation medium, and z is the
distance traveled by ultrasound through the tissue. B describes the ultrasound
amplitude at the given point z. The coordinate origin is located on the tissue
surface.

Reflection takes place whenever the ultrasound wave encounters the
boundaries of two tissues. The reflected wave depends on the characteristic
impedance of both tissues, and it is given by :

29721 9
Ir=Ii ( )
292y
Where I, is the intensity of the reflected wave, and I; refers to the
intensity on the incident wave. 2z; and 2, are the characteristic impedances of

the tissue on either side of the interface. The characteristic impedance is defined
by:

z = pv

where p is tissue density and v is propagation velocity.

The reflected angle is equal to the incident angle and the direction of the
transmitted beam depends on the ratio of the velocities of propagation in both
media. Figure 1.8 shows the general situation when reflection and refraction
occur. Because the receiver is placed at the same location as the transmitter, the
receiver only detects the reflected waves coming from almost perpendicular
surface to the propagating direction.

When objects encountered by the ultrasonic wave are much smaller than the
- wavelength, then the interaction between ultrasound and tissue is very different.
Energy is reflected in all directions, this phenomenon is known as scattering.

When ultrasound is scattered by the cellular structure, the scattered waves
interfere either constructively or in a destructive manner at all points of the
space where they propagate. When the interference is constructive the intensity
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Figure 1.8 Reflection and refraction phenomena [2].

of the ultrasound signal is reinforced whereas when the interference is destructive
the intensity diminishes significatively or even vanishes. The effect of such a
process is known as speckle and in echocardiography it produces a "grainy"
looking image. The points where the brightness is low, due to the interference,
are known as drop-outs. As stated above, the primary source of scattering in
biological tissue is cells or groups of cells, and it is quite important in
echocardiography, since it affects image quality.

A final phenomenon to be taken into account is the Doppler effect, due to
moving objects, that produces a shift of the frequency of the ultrasonic wave
detected by the transducer. Although it is not important in echocardiography, it
is used as a tool in other cardiac imaging modalities.
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1.2.2 The Echocardiographic System and Display Modes

Figure 1.9 is a block diagram of a typical echocardiographic system. The
source of the ultrasound waves is a transducer usually made of a crystal that uses
the piezoelectric effect. When a crystal is excited electrically, it transforms part
of the electrical energy into mechanical energy by vibrating. The frequency at
which the crystal vibrates depends on the geometry of the crystal. The
mechanical energy is reflected back by the tissue structure under analysis and is
detected by the same crystal. This is possible since the piezoelectric effect works
in the opposite way, i.e., the returning mechanical energy is converted into
electrical energy.

The electrical signal, corresponding to the reflected ultrasound signal, is
amplified and time-gain compensated. Time-gain compensation minimizes the
attenuation of the ultrasonic wave as it travels through the tissue. Since the
distance traveled by ultrasound reflected back from deeper tissue structures is
longer it reaches the transducer more attenuated, hence the signal must be
amplified to compensate for this "depth" attenuation.

There are different ways of displaying the information received from the
transducer. These are known as A-mode, B-mode, M-mode, and 2-D
echocardiography (see Figure 1.10).

In A-mode, the intensity of the returning ray is plotted against time. In
other words, we obtain a plot where amplitude peaks correspond to energy
reflections of the incident beam, and time is the time it takes for the reflected
amplitude to reach the transducer.

In B-mode, the amplitude of the returning energy is represented in the form
of brightness, so it can be displayed on a CRT screen. For instance, assume that
the object is vibrating; in this case B-mode display would contain an oscillating
chain of bright spots. If the brightness is plotted against time onto a strip of
photographic paper which moves at a constant rate then we obtain a M-mode
display.

If many B-mode lines are generated very quickly, either parallel to each
other or from a single point in a fan shape, then a two-dimensional display of a
cross section of the object is obtained. This essentially is a tomographic view of
the region under study. This can be performed by either mechanically steering
the transducer or by phased array techniques. The data collected along each line
of sight (each B-mode line) is known as scen line date. Figure 1.11 shows how
two dimensional displays are obtained."
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Since the dynamic ultrasound signal is very large (between 80 and 100 dB
[2]), and since the human eye is able to perceive only a 25 to 30 dB range, a log
compression amplifier is used in the system (see Figure 1.9). Further signal
processing has to be performed so that a displayble signal can be obtained. This
signal processing is represented by the Rectification and Envelope Detection
block (the original signal is a radio frequency signal, between 2 and 10MHz), the
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Low Pass Filter block, and the Polar Video Signal block. The Polar Video Signal
is digitized and converted to a rectangular format so that it is compatible with a
standard television signal. The digitized signal is also interpolated to fill the gaps
between the digitized scan line data. The digitization process allows storage of
the image and also allows further processing of the image.

1.3 Digital Image Processing of Two Dimensional Echocardiograms

One of the goals of computer processing of two-dimensional
echocardiograms is automatic detection of features of the heart. These features
are then useful for cardiac status assessment. Because of its importance in the
detection of myocardial ischemia, the analysis of the left ventricle has received
the most attention, although other parts of the heart have also been studied|3).

The steps generally used for automatic left ventricular analysis are image
acquisition (digitization and storage), preprocessing, segmentation_land boundary
detection, feature extraction and interpretation of cardiac status.

1.3.1 Image Acquisition

In the early attempts to digitally process echocardiographic images there
was a lack of adequate interfacing between the computer used to analyze the
image data and the image source.

For instance, according to Garcia, et al. [4], initial attempts used video
cameras aimed at a still frame from an echocardiographic sequence displayed on
a CRT, others devices such as flying spot scanners, contour digitizers, and video
disk recorders have also been utilized. '

Buda, et al. [5] proposed direct digitization of the envelope detected RF
signal. Digitized scan line data is known as line mode data. Line mode data is
obtained in polar format. Figure 1.12 shows the processing in a typical echo
machine versus direct digital computer acquisition and processing using line
mode data.

The superior quality of this direct digitization of the signal display is shown
in Figure 1.13. This superior quality is possible since the envelope-detected
signal is independent of all control settings of the the echo system except gain
control. Also the envelope detected signal has a larger dynamic range than the
output signal of the digital scan converter for video data acquisition. The line
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Figure 1.11 Construction of a two dimensional image from line mode data.

mode data can be digitized in real time at 30 images/second, hence image
sequences of the entire cardiac cycle can be obtained.
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Figure 1.13 Top image: image acquired from video screen. Bottom image:
image acquired using a direct computer acquisition system [5].




20

1.3.2 Preprocessing

Before endocardial left ventricular boundaries can be obtained, the image is
processed in order to remove noise. Garcia, et al. [4] smoothed the image
sequence in the spatial and temporal domains. The time domain smoothing
consisted of the weighed average of the pixel under consideration, and the pixels
with the same coordinates the frames before and after the frame under
consideration. The weighting factors are two to one (one for the frames before
and after).

The spatial domain smoothing consisted of a simple 3x3 window operation.
In this case the weighting factors were 4 for the central pixel (to be replaced by
the average), 2 for the adjacent pixels, and one for the diagonally-aligned pixels.
The smoothing process, according to the authors: "increases the statistical
accuracy of each pixel and also helps reduce the effect of drop-outs".

Others have used similar preprocessing techniques [7-11]. According to Delp
et al. [12], temporal smoothing blurs edge locations since the heart is not exactly
at the same position at the beginning of each cardiac cycle due to the fact that
the heart rotates and translates, and it is difficult to assume that it reaches the
same position after each cardiac cycle. The results are "the edges of the
temporally smoothed image exhibit the phenomena of very small radius of
curvature and have large spurious edge locations". Furthermore smoothing data
in the spatial domain may change edge locations.

Other types of preprocessing are gray scale equalization [11], and gray scale
equalization by using different gain settings of the ultrasound scanner [13].

1.3.3 Boundary Detection and Segmentation

Because the left ventricular chamber usually appears as a dark region
surrounded by the much brighter cardiac muscle, edge detection techniques have
been employed. Edge detection is used to identify the regions in the image where
a substantial gray level difference exists between adjacent pixels. Garcia et al. [4]
used a combination of thresholding and second derivative techniques commonly
used in nuclear cardiology.

Other edge detection methods have also been used. The Sobel operator, for
example, uses a 3x3 pixel window mask to compute estimates of the magnitude
of the gradient. A threshold is used to discriminate between those pixels
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considered as boundary pixels and those which are not.

Zwehl, et al. [8] used a Laplacian operator which computes the second
derivative of an image in the X and Y directions. Since the second derivative is
zero at points of inflection, zero crossings of the output of the Laplacian indicate
possible edge locations.

The continuous Laplacian is given by the following:

& N P

VE=
dz? Iy?

In the simple digital version, a 3x3 pixel window operator is usually used as
a kernel. The expression for the digital version is [14]:

VEf(4,5) = [f ((41,5)+f (1—1,5)+f (1,5 F1)+F (,5—-1)]—4F (¢,7)

Where 7 and j are the pixel coordinates. Collins, et al. [9] experimented
with the Sobel operator, the Laplacian operator, and global gray level
thresholding. They reported that no significant differences were found among
these simple methods.

Another procedure, gray-level thresholding, is based on the assumption that
the blood in the chamber and noise have low gray level values, whereas the
myocardium and in general the muscular tissue have high gray level values.
Edges are obtained at the boundaries between two different areas of the
thresholded image. According to Collins, et al [9], the threshold was manually
selected by an operator.

Other more advanced techniques for left ventricular detection will be
discussed in Chapter 2. '

1.3.4 The Left Ventricular Detection Process

All of the techniques reviewed above attempt to obtain automatically the
location of the left ventricular endocardium.

In clinical practices a human operator selects a frame or a sequence of
frames and manually traces the boundaries of the left ventricular inner chamber.
This process is a time consuming task, since the operator often has to watch a
whole sequence of frames in motion so that he or she gets a "feeling" where the
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"real” boundaries are located. Trained human operators are also not objective.
All these reasons motivate the computerization of the detection process.

Most of the previously reported work requires that a human operator pick a
point somewhere within the left ventricular chamber after preprocessing the
image [4, 7-13]. Most of the algorithms perform a radial search from this starting
point after an edge enhancement algorithm is used on the preprocessed image.
The search is stopped when a pixel indicating the presence of an edge is
encountered.

The detected edges may not be "well located” or thin, therefore some sort of
postprocessing is in order to obtain a final useful estimation of the edge locations.
This postprocessing generally includes filling in the gaps due to dropouts in the
original image, edge thining, ete. Figure 1.14 outlines the general procedure.

The strength of this method is that it may be possibile to carry out further
detection in successive frames once the process has been successfully applied to
the first frame. The basic assumption is that the general characteristics of the
heart do not change substantially from frame to frame. In actual
echocardiographic sequences this will probably not be true.

1.3.6 New Trends in Feature Detection in Echocardiography

The use of intelligent algorithms for feature detection and tracking are
becoming more attractive in the analysis of echocardiographic images. Emphasis
is on the use of apriori knowledge has largerly been ignored in previous work.
Ezekiel, et al. [10] proposed the use of a cost function which serves as a
knowledge acquisition tool. The use of cost functions allows a quantitative
assessment of the found edge. In lctddition, such a cost function allows further
comparison between successive detected edges.

Chu and Delp have proposed the use of various new algorithms developed in
the computer vision area and have developed a paradigm for the use of apriori
knowledge [6].
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1.4 Summary

We have reviewed in this chapter the basic concepts of heart anatomy. In
addition the basic principles of two-dimensional echocardiography were also
presented. At the end of this chapter the basic trends in two-dimensional
echocardiography processing was also reviewed.

As far as data acquisition quality is concerned, it seems obvious that the
acquisition problem should be addressed by digitizing the envelope detected
signal. The ability to deal with the original signal also allows a more flexible and
reliable treatment of the digitized image.
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CHAPTER 2
SEGMENTATION

2.1 Introduction

Image segmentation is the process of reducing processing complexity by
examining only those regions in the image that are of interest. In other words,
we try to separate useful information from the "background" (the "background"
is made of those parts of the image which do not convey information for our
purposes).

Segmentation implies a higher level description of the image than that
provided by the original gray level pixels. It separates the "raw" image into
different areas which can be represented by parameters others than the gray
levels. These parameters are known as features.

For instance, if our image is a scene with strong lighting where bright
objects cast dark shadows, and our goal is to extract the shadow locations, then a
simple thresholding operation may be used. We might proceed by choosing a
threshold, i.e. a fixed gray level to which all the gray levels in the picture would
be compared. Then, after performing the comparison for every pixel, a value of
"1" would be assigned to all of the pixels whose gray levels were lower than that
of the threshold, and "0" otherwise. If the threshold value is smaller than the
average gray value of the bright objects in the scene, but not smaller than the
average value of the shadow pixels, then we obtain a second image, where blobs
with value "1" indicate the presence of shadows.

Although simplistic, the previous example illustrates a typical segmentation
strategy. In echocardiography, the segmentation step is very important since we
need to accurately determine the left ventricular boundaries. Most segmentation
techniques used in echocardiography are usually forms of edge detection [6]
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2.2 Segmentation in Echocardiography

Skorton, et al. [7] reported the use of various image segmentation algorithms
that have been used to identify the endocardium boundaries. One method
obtained the boundary locations by thresholding. The threshold is set by
examining the histogram of the pixels. If the histogram contains a deep valley
between two significative peaks, the minimum in the valley is chosen as
threshold. If the histogram is not clearly bimodal, then several thresholds are
chosen in the neighborhood of the probable histogram minimum.

Although segmentation by thresholding seems to be an attractive tool for
the identification of the darker inner left ventricular chamber region from the
brighter surrounding tissue, there are many problems with this simple approach.
Zhang and Geiser [15] pointed out the problems with global thresholding:

In view of the large contrast variation and echo dropout in
echocardiographic images, a global threshold is not suitable for
segmenting the echocardiographic information from the image
background. It is well known that portions of short axis
echocardiographic views will have a large amount of noise or an
excessive amount of dropout if rib-shadowing is present. Thus, if the
threshold is too high, much of the information in a shadowed region
will be lost. On the other hand, if the threshold is low, a great deal of
noise will be included. It is also obvious that the region involved with
shadowing in each image changes because of the rotational and
swinging motion of the heart during the cardiac cycle.

2.2.1 Segmentation of Echocardiographic Images Using Relaxation

Rosenfeld and Kak [14] divide segmentation methods into parallel and
sequential techniques. Parallel methods perform pixel classification at each point
without examining the other pixels in the image. For example, thresholding is a
parallel segmentation technique. We classify every pixel without taking into
account the value of any other pixel. This is a very fast method if parallel
processing is utilized since the final result can be obtained after performing only
one operation per pixel.

Sequential methods make use of other information and the values of
neighboring pixels to decide how a pixel will be classified. Sequential methods are
slower than parallel methods, but they are pontentially more powerful.
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Relaxation methods are a hybrid between parallel and sequential methods.
Relaxation methods used in segmentation are iterative processes where the
segmentation of the image is "improved” in some sense at each iteration.

In order to illustrate what relaxation is and how it works, we will use the
example discussed by Rosenfeld and Kak [14]. Suppose that we want to detect
smooth curves in a picture. For a point P, using a parallel method, we compute
the curvature at that point and it is compared to a threshold to decide whether a
curve at point P is smooth enough or not. In the relaxation approach, let us
assume that we can assign an initial probability e; to P with slope 6; For
another point Q, we compute the probability b; with a slope GJ-A Instead of
thresholding these probability values, the relaxation approach uses b; to modify

a; according to some criterion. For instance, a criterion that depends on the
degree of smoothness by which slope 0]~ at Q merges to slope 0;

This modification process is carried out in such a way that for a single point
in the image, its set of probabilities and the way it is affected by the set of
probabilities of other points is computed simultaneously. These probabilities are
then modified, and the process iterated until significant changes no longer exist.
After a few iterations, the probabilities of the points where smooth curves are
located should increase and the other probabilities should decrease.

The relaxation method can be stated in a more rigorous fashion. Suppose
that we have a set of objects A,,...,A, that must be classified into m
different classes C,, ..., C, . However, the classification of an object A; into
the class C; is not independent of other classifications such as that of the object
A, into the class C;. In order to measure the idea of "dependency”, a function
¢(#,C;3h,Cy) called compatibility is defined. Large values of ¢(i,C;;h,Cy) will
represent "high compatibility” between both classifications. Small values of
¢(#,C;3h,Cy) (which can be either close to zero or negative, depending on the
definition of the compatibility function) will represent "low compatibility” or
"incompatibility".

This compatibility function can be used for modifying the probabilities of
assigning the object C; to the class C;, denoted by p;;. Of course p;; :
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Now we make use of the probabilities p,-gf), where r denotes the current
estimate, and the compatibility function c(z',Cj;h,Ck) in order to address the

thresholding problem.

2.2.2 Relaxation and Thresholding

Bhanu and Faugeras [17], and Rosenfeld and Smith [18] used relaxation
methods to perform image segmentation. The approach of Bhanu and Faugeras
was utilized to segment echocardiographic images. Ordinary par‘i«illel techniques
used in echocardiography threshold gray level values, without taking advantage
of a priori information in the image. The result of such thresholding is a poorly
segmented image due to drop-outs and speckle noise.

Bhanu and Faugeras [17] defined a criterion function as follows:
N
C(P],P2; ... :pN) = Zpiqi (21)
=1

Where p;g; is the inner product of the probability vector p; and the
compatibility vector ¢;. This function is maximized by means of the gradient
projection approach. N is the total number of pixels.

Since we want to produce a binary image that indicates where the relevant
boundaries are located we assume we have two classes X\, and )\,
corresponding to white and black (gray level values 0 and 255 respectively). Now
we define an eight pixel neighborhood V; around the pixel under consideration
and a cost function:

e(f, M550 )=0 k#l jEV; V i
c(i>>\k;j’>‘k)=1 k=12 jE€V;V 4

Next the compatibility vector ¢; is defined as:
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In other words, g¢;()\;) is the mean neighborhood probability of the i-th
pixel for the class under consideration.

W) = g 3 m0) (23)

Intuitively, when we try to maximize C, we are trying to minimize the
discrepancy between the pixel under consideration and its surrounding neighbors.
This is a good strategy, since in noisy images such as echocardiographic images,
this will minimize the effects of drop-outs.

Another important issue is the way the initial probabllltles pi(N¢) are
computed. The simpliest choice is: <
I(¢
) = L 2.4
Where I(i) is the gray level of the i-th pixel and G is the total number of
gray levels. Here we are ignoring the actual gray level values of the image and
are assuming an equally likely pixel distribution. Another way that uses the

information in the gray level values is the ratio between white and black pixels.
Thus we obtain:

- Nyhite - E(>‘1)
Mgk E(N)

—lﬁgpi,(xl) E i(i)_

%2‘_}1’;(%2) - i(l_PiO‘l))
1 1* .
TF;I(,) L (2.5)
T1e, I6), G-I '
N2

Where I is the mean gray level value, and E is the expectation operator.
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The ratio r can be used to modify the probabilities p;(X,) if we want to
modify the distribution of gray levels. Let us assume that I, is the desired
mean for the image under consideration, then we can assign the initial

probabilities as:

N
piOh) = F*{’(%)S : ] + o (26)

Where fo is the desired mean gray level. F is a factor which is 1 if I>I and
less than one if I<<I. We can see that p;()\;) is modified by I, according to
the actual values of I(i) and I. F modulates how much we want this discrepancy
to be.

We can then address the iterative process utilizing a gradient projection
technique:

(n+1) — p(n) (n) .(")- oC

D; (M) = 2" (M) + oY P; 9, (M) (2.7.2)
(1)) = My 4 m) pn) | —9C 7.
p{" ) = 20 + AP | S5 (2.7.b)

Where p(") is a positive step size, P,-(”) is a projection operator, and the
superscript n is the iteration number. Since @ we  require
p" U\ )+p " *()\,)=1 then the projection of the gradient (the projection
operator) should be:

i

ocC 1 ocC ocC
P,‘(n) T = 2 ) )\ _— +
Fpe) |~ 240 7 5 5,00 T om0
In addition:
ocC ocC
2¢;(»;) and - =2¢;(\
3 £(>‘1) ( 1) 81’.'()\2) ( 2)
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then the projection operator turns out to be:

al_0C | _
Pl 3 () =2q; (M) — 1 (2.8)
and
PO = MO )+ (2 (\)—1] (2.9.2)
p{" () =p M +p(M) 124, (M) (2.9.b)

The fastest convergence rate is achieved when p(") is such that
p,-("+1)()\1)=1 or 0 when 2¢;()\;)—1 is >0 and 2¢;()\;)—1<0 respectively. This
can be obtained when:

—_pt ( l)
() _ ] 26:(\)—1
e pi(M)

—2¢;(N)

if 2g;(\)—1>0
p (2.10)

If the convergence rate is desired to be controlled then a factor o can be used
such that:

Q
—

alp(

(ny _ Capbn) if 2¢,-1>0 0=
Ps (n)

— 2.11
agpy) if 2¢,—1<0 0= a =1 (2.11)

2.2.3 Implementation and Results

Since echocardiographic images are strongly unimodal (see Figure 2.1) the
above relaxation algorithm is a candidate segmentation technique. In our
implementation, we experimented with different values of o, a,, F, and fo,
and found that for a fixed F and "fo the segmented areas did not change
appreciably after the first iteration (see Figures 2.2, 2.3, and 2.4). Therefore the
values of «; and oy were set to one in order to obtain a totally segmented
binary image after the first iteration, where pixels with p;(\;)=0 were set to
black and pixels with p;(X;)=1 were set to white.




32

708.000

619.500

8531.000 1

# of pixels
g
o

¢ e
g &
[} [l

177.000

68.3000 -

0.00000
0

32 P % 128 160 192 a8y
Gray level value

Figure 2.1 Typical histogram of an echocardiographic image




33

The segmented regions were very sensitive to the values of F and _70 (see
Figure 2.5).

One conclusion that can be drawn is that this method does not allow an
optimum threshold to be selected.

The images were first smoothed in the original line mode format using a 5x5
square window, then the pixels in the original image were interpolated into
Cartesian coordinates. Smoothing first and then performing coordinate
conversion results in a more effective smoothing of the image, since in the
original line mode format, noise is homogeneous over the image.

After smoothing, segmentation is performed using the relaxation algorithm
described in the previous section. The resulting binary images show that
segmentation using relaxation provides a "cleaner” segmented image than that
achieved by simple thresholding. A "cleaner" segmented image, where the drop-
out and speckle effects are not as severe as in the original image, may aid in the
reduction of the complexity of postprocessing algorithms used -to obtain the
endocardial and epicardial boundaries. In many cases these boundaries turn out
to be ragged because of image dropouts. Relaxation might help to obtain
"smoother” boundaries (see Figure 2.6).

2.3 Segmentation of Echocardiographic Images Using Temporal
Analysis

It seems reasonable to take advantage of the temporal redundancy available
in consecutive frames of the cardiac cycle.

One of the early techniques is averaging several image frames in order to
reduce the noise [10]. One of ‘the main drawbacks of this approach is edge
smoothing or blurring. When two consecutive images are averaged, the cardiac
muscle moves from one frame to the next hence producing blurred edges. A
possible solution is to align images corresponding to the same points in the
cardiac cycle, but since the heart moves in a three dimensional space, and it is
not possible to view the same cross section from one frame to the next.

In order to segment echocardiographic images making use of temporal
analysis, Zhang and Geiser [16] proposed a segmentation algorithm based on the
dynamic characteristics of the heart. Zhang and Geiser define a bistable function

BL(i,7) as follows :
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Figure 2.2 Original image (upper left) and thresholded image after one (upper
right), five (lower _ left), and ten  iterations for
on=05=0.1, F=0.5, and I;=0.0. »
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Figure 2.3 Histograms of original image (top) and segmented image after one
iteration (bottom) as shown in Figure 2.2
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(bottom) as shown in Figure 2.2
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Figure 2.8 Top: Image in Figure 2.3 segmented using a "row' threshold (no
smoothing) (left) and the relaxation algorithm (right). Bottom:
Same image segmented by means of a threshold and the relaxation

algorithm (left and right) after smoothing.
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Figure 2.6 Segmented images for fo fixed and F variable (top), and F fixed
and I, variable (bottom). F=0.3 (top left) and F=0.8 (top
right), in both cases I;=0.0. And I,=0.03 (bottom left), and
f0=0.04 (bottom right), in both cases F=0.5. In all cases the
number of iterations was 5 and a;=0,=0.1.
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BL(i ) = {0 if GY(i,g) = GT} (2.12)

1 if GH(i,5) > Gy

Where G’L(z',j) is the gray level of the pixel at the position (i,j) in the
image frame L and Gp is the threshold value. If B changes from 0 in frame L
to 1 in frame L+1 or vice versa, then the pixel at (i,j) is said to be a moving
pixel. The moving points represent gray value variation from frame to frame.
BL(i,j) is the function that permits quantitative definition of this gray level
variation.

The temporal coocurrence matrix M is a square matrix such that the entry
M;; is the relative frequency of two temporally corresponding pixels, one with
gray level ¢ in the first frame and the other with gray level 7 in the second one.
Hence, M;; will take the value m if there are m points such that their gray
value changes from the value ¢ in the current frame to the value j in following
frame. The size of the matrix M is kXk where k is the number of quantization

levels.

It is assumed that the heart beating process will produce large changes in
gray level from frame to frame on and near the endocardial boundary. Following
this reasoning, it is further assumed that a "good" threshold value should
highlight the endocardial boundary and maximize the number of moving points
in the image.

The moving points in the image are given by P:

Gr & k Gr
P=Y ¥ M;+ ¥ ¥ M; (2.13)

i=1>Gr 1>Grj=1
The first term of the right hand side of the equality is the number of pixels
whose gray levels are less than or equal to the threshold in frame L, but greater
than the threshold on frame L+1, and vice versa for the second term. Then
choosing the optimum threshold G is equivalent to maximizing P. This
approach, on the other hand, does not take into account two dimensional spatial

information, so it is quite sensitive to drop-outs and spurious noise.

Herman and Liu [19] proposed an enhancement operator that looks for time
varying edges (edges that move from frame to frame). Herman and Liu use a
three-dimensional edge detector as a time varying edge detector by treating the
temporal axis as the third dimension. The most important drawback of this
technique is the multiple responses obtained when the intensity jump across time
frames is larger than the jump in the spatial coordinates.
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High level techniques have also been explored. Some of these techniques are
token-based methods. Tokens are spatial features found in images, such as
important structures that remain "essentially” unchanged throughout the cardiac
cycle (e.g., the papilary muscles, various heart wall segments, etc). Tracking
these important features allow more efficient image segmentation to be obtained,
since it overcomes drop-outs and noise. Unfortunately this approach is not totally
successful due +to the gross temporal undersampling in a typical
echocardiographic sequence.

Optical flow estimation is another important method for temporal analysis
of echocradiographic images. Optical flow is used to obtain estimates of the
velocity of each pixel. Here the important assumption is that the movement of
the heart wall is different from the background. Mailloux, et al. [29], used optical
flow to examine echocardiographic sequences. For instance, points in the image
with radial movement can be considered as points belonging to the endocardial
borders of the left ventricle. Again, this technique is limited by temporal
undersampling and a low signal-to-noise ratio, which make veloacity estimation
very difficult.

2.4 A New Algorithm for Boundary Detection

Chu, et. al. [6] described a new algorithm for endocardial and epicardial
boundary detection. This algorithm can be summarized in the following way:
edge enhancement is performed using a general edge operator, then a radial
search is performed for initial edge estimation; finally, nonlinear processing of
edge estimates provides the final edge estimation.

After interpolating the ech'océzfrdiographic images into cartesian coordinates
from the line mode data, the image is enhanced using a linear window with
Gaussian weighting. Since cardiac images have relatively few features, and the
signal to noise ratio is small, large windows are utilized. In this particular case a
41x41 pixel window. Since features that are to be detected (endocardial and
epicardials borders) are far larger, and echo images are not very complex, hence
large windows are justified as a way of reducing the perturbing effects of noise as
much as possible.

The next operation is the application of a digital Laplacian operator. The
zero crossings at the output of the Laplacian operator are considered to be
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potential edge points. The combined steps of Gaussian smoothing and Laplacian
enhancement is commonly known as the V2G operator. Endocardial and
epicardial edge detection is started after picking a point within the limits of the
left ventricular chamber and performing a radial search.

In order to make sure that only boundary points are detected, a search limit
is imposed when looking for edge points, so the search stops beyond a fixed
distance from the center. Further processing is carried out to remove noise and
fill the gaps produced by dropouts and false detections. Missing edge points are
interpolated out of the neighbouring points by means of linear interpolation.

The authors point out that this method is not flawless, since the presence of
the papilary muscles or other structures may occlude part of the boundary from
the point of view of the starting search point chosen by the operator. If such a
thing happens, then a secondary search is performed to complete the original
border. Figure 2.7 shows the detected boundaries obtained by this new
algorithm along with the original images.

2.5 Summary

One of the main problems in automatic processing of echocardiographic
images is segmentation. The simple approach to echocardiographic image
segmentation, thresholding, will not work due to speckle noise and drop-outs.
Some algorithms have tried to overcome these problem by using the dynamic
characteristics of echocardiographic images as well as the spatial information
provided by neighbouring pixels.

The first approach considered in this chapter is thresholding via relaxation.
The drawbacks of this technique is the lack of a criteria for choosing a threshold.
A number of other techniques which make use of the temporal information, all of
them attempting to make use of temporal redundancy in the echocardiographic
image sequence, were discussed.

Finally a new algorithm for endocardial and epicardial boundary detection
and segmentation is described. This algorithm uses a priori knowledge and
produces edge boundaries that are smooth.
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Figure 2.7 Detected boundaries in dog study. Upper left: Original image.
Upper Right: Detected raw edge points. Lower left: Edge boundaries
after processing. Lower Right: Detected boundaries in the original
image.
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CHAPTER 3
ASSESSMENT OF CARDIAC STATUS

3.1 The Importance of Two Dimensional Echocardiography in the
Assessment of Cardiac Status

3.1.1 Introduction

Since the advent of two dimensional echocardiography, new possibilities in
the detection and analysis of abnormal motion of the heart have opened new
diagnostic horizons to physicians. It is well known that cardiac problems due to
coronary occlusion, such as ischemic heart disease, produce abnormal wall
motion.

Sasayama, et al. [20] showed, using coronary occlusion studies performed on
canine hearts, that there are significant changes in the cardiac muscle and in the
way it moves due to cardiac disease. As shown in Figure 3.1, they placed two
pairs of ultrasonic crystals in the myocardium in order to monitor the wall
thickness in an area to be rendered ischemic and in a normally perfused region.
After blocking blood flow through the left circumflex coronary artery, changes of
the myocardial wall were studied. For normal areas the authors stated [20):

In the normal zone, an increase in end-diastolic length has been
reported as a result of acute coronary occlusion and increased systolic
shortening suggested early use of the Frank-Starling mechanism as a
fundamental adaptation to loss of function in ischemic myocardium. In
previous experiments we observed a progressive increase in diastolic
subendocardial segment lengths in normal regions associated with
enhanced shortening beginning one week after chronic coronary
occlusion, a change attributed to the development of hypertrophy in
noninfarcted areas. Similar changes in end-diastolic segment lengths
were observed in the present study, but no significant changes in
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systolic shortening were detected until three week after coronary
occlusion. We also measured wall thickness simultaneously with
subendocardial segment lengths and observed concomitant changes in
end-diastolic wallthickness and wall-thickening dynamics. End-
diastolic segment

ISCHEMIC
SEGMENT

\_ISCHEMIC WALL
THICKNESS

A\CATHETER

T
WALEOTNHIEEIL\]ESS MICROMANOMETER

Figure 3.1 In each dog, 2 pairs of ultrasonic crystals were
inserted at two sites: in normally perfused area and
in area to be rendered ischemic by inflation of a cuff
around the left circumflex coronary artery. One
crystal pair at each site was implanted
subendocardially in the left ventricular wall in the
circumferential plane for measurement of segment
length, and the other pair was positioned across
myocardium for measurement of wall thickness. The
left ventricular pressure was measured by implanted
micromanometer (from [20}]).

lengths elongated and end-diastolic wallthickness decreased in the
weeks after coronary occlusion; consequently it was not possible to
document increased muscle mass over the time span studied in this
approach. Longer studies in one dog, however, clearly showed
progressive hypertrophy, with wall thickening. This change in normal
myocardium during healing after myocardial infarction may resemble
the response to chronic volume overloading, which is characterized by
an immediate increase in diastolic volume and early increase in stroke
volume, followed by progressive dilation and later development of
moderate left ventricular hypertrophy over 8-10 weeks.
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In the ischemic region, changes involved important variations in the wall
dimensions. Because of these and other results, the possibility of using two
dimensional echocardiography to detect physical changes has been extensively
studied.

3.1.2  Detecting Myocardial Ischemia and Infarction Using Two
Dimensional Echocardiography

Two dimensional echocardiography of the left ventricle has advantages over
other imaging techniques because of the excellent spatial and temporal
resolution, direct measurement of some of the physical parameters of the heart
(e.g. wall thickness, area, and ejection fraction), monitoring of heart dynamics in
real time, quick data acquisition, and nonivasiveness [21]. Nevertheless, there are
still some problems which need to be addressed in order to evaluate what is the
role of two dimensional echocardiography when compared with other imaging
techniques. According to Falsetti, et al. [22] there are two basic phenomena that
limit the effectiveness of two dimensional echocardiography: biological and
technical.

To begin with, during the cardiac cycle the heart rotates and translates
within the thorax. In the case of a sick heart with localized contraction
abnormalities, such a behavior may be of considerable more importance,
increasing the distortion or asymmetric appearance of the ventricle. Along with
these biophysical problems, the translation of the whole cardiac body because of
respiration should also be considered, although it is possible to record a few
cardiac cycles keeping the patient from breathing.

There are more subtle biological phenomena which account for these
limitations. It has been observed that the whole cardiac muscle moves inwards
during systole and vice versa during diastole. Thus, any absence of either motion
in any portion of the left ventricular wall is a sign of coronary disease. The
problem arises when defining the limits between normal and abnormal
contraction|20]:

Normal myocardium demonstrates systolic thickening and inward
movement of the endocardium. Thus, absence of systolic
thickening/endocardial inward motion (akinesis), or systolic
thining/endocardial expansion (dyskinesis), is clearly abnormal when
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seen on echocardiographic examination. The difficulty arises when one
attempts to define the lower limit of normal, so that myocardial
segments that retain some, but only minimal, thickening or motion
(hypokinesis) can be identified. This lower limit has not been well
delineated, and there appears to be marked variability of the degree of
thickening and endocardial motion of closely adjacent segments.

This marked spatial heterogeneity of thickening and motion may in
part be explained by intrathoracic cardial rotational and translational
motion and in part by temporal asynergy.

One of the conclusions that can be drawn from this is that unusual or
apparently abnormal contractions do not always mean that an abnormality is
present.

The second problem: technical limitations, refers in part to the lack of
landmarks for the analysis of tomographic sections of the heart. For instance,
the region between the tip of the papilary muscle and the true apex lacks
landmarks, therefore the tomographic sections visualized in this zone can not be
compared with images from other studies. '

In addition, the accuracy of M-mode echocardiography in identifying cardiac
borders has been documented, whereas reproducibility and acchra}:y of two
dimensional echocardiography has not been documented. Despite these
problems, several studies have tryed to assess cardiac status through the use of
two dimensional echocardiography.

3.1.3 Indicies of Cardiac Status

Lieberman, et al. [23] examined the regional percentage of systolic wall
thickening (%Th) and percentagei of endocardial motion (%EM) in infarcted
canine hearts, where %Th is defined as:

%Th = X100 (3.1)

Where Thgg is the thickness of a myocardial segment at end-systole and Thgp
is the thickness of a segment at end-diastole. Positive values of %Th show a wall
thickening process while negative values indicate wall thining.
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The regional percentage of radial endocardial motion toward the center of
an area fixed at end-diastole (%EM) is defined as:

%EM = £S5 100 (3.2)

Rgp

Where Rgp is the end-diastolic segmental endocardial radius and Rgg is the
end-systolic segment endocardial radius. As with the regional percentage of
systolic thining, positive values of 9%9EM indicate an increase of the radius at
diastole whereas negative values indicate a shortening of the radius at systole.

Figure 3.2 shows %EM and Figure 3.3 shows %Th for data obtained from
fifteen dogs to which the left circumflex artery had been occluded acutely and
permanently. ‘

As can be seen from both figures, %EM and %Th can distinguish between
normal, adjacent, and infarcted tissue. However, %Th was more significant in
separating normal tissue from infarcted one. In addition, the variability from
subject to subject is greater for %EM than for %Th [23].

Monyhan [24] also evaluated cardiac status using geometric measurements.
After obtaining two dimensional echocardiographic images of the left ventricle,
the left ventricular chamber was divided into halves, quadrants, and octants.
Area, hemiaxis, and perimeter measurements was obtained to describe
contraction abnormalities. The reproductibility of these measurements was also
studied.

In order to obtain these measurements, a landmark in the left ventricular
wall was chosen. In this case the landmark was the interventricular septum on
the LV endocardial surface in diastole. From this point, an initial axis was
constructed to the opposite lateral LV wall so as to divide the image into equal
anterior and posterior areas (Figure 3.4). Further subdivision into quadrants and
octants was performed. :

Figure 3.5 shows the three kinds of measurements used, the regional area
change (AA), hemiaxis shortening (AH), and endocardial perimeter
contraction (AP). Where AA, AH, and AP are defined as:
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Figure 3.2 Echocardiographic percentage of regional endocardial wall

motion as a function of tissue histology and location. The
horizontal line in each group indicates the mean, adjusted for
dog-to-dog variability. Data for each point were obtained by
combining echocardiographic data from all segments of each
anatomic type within each ventricular ring, grouped according
to anatomic location. The overall standard deviation was
11.5%. From Lieberman [23].

Dy —5
AA = —2—2 %100 (3.3)
D,

Where D, is the diastolic area and S, the systolic area,
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Figure 3.3 Echocardiographic regional percentage change in thickening as

a function of tissue histology and location. The analysis is
similar to that in Figure 3.2. Percentage change in thickening
yielded a clearer separation between normal, adjacent, and
infarcted zones. From Lieberman [23].

Dy —§
AH = 2 —H 100 (3.4)
Dy

where Dy is the diastolic hemiaxis length and Sy the sytolic hemiaxis length,
and

AP = ———X100 (3.5)
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Where Dp is the segmented perimeter length and Sp is the systolic segment
perimeter length.

As stated before, the heart rotates and translates within the thorax
throughout the cardiac cycle. Thus, the same measurement obtained at different
points of the cardiac cycle might correspond to different physical portions of the
cardiac body.

o ——
» ~.

v,
’

------ End Diastole

— End Systole

CROSS SECTION

Figure 3.4 Convention used for different degrees of subdivision of cross
section images. Left: The initial septolateral (S,L) axis,
constructed to divide the diastolic outline into anterior (A) and
posterior (P) halves of equal area. This axis was used for
regional analysis of anterior and posterior halves. Right:
Further subdivision of the left ventricle outlines into octants is
demonstrated. The four bolder hemiaxes indicate the regions
used for quadrant analysis. From Moynihan [24].

To assess how this phenémenon affects the = measurement process,
Moyniham, et al. used a fixed coordinate system and a floating one (see Figure
3.6). In the case of a fixed coordinate system, the division of the LV chamber is
performed automatically at diastole, and the same division is used for the systolic
phase. _

When a floating coordinate system is used the axis is plotted at both diastole
and systole, according to the landmark procedure, and then they are translated
and rotated so that both are superimposed. ’
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The results indicates that there is no significant difference between a fixed or
floating axis strategy, and that the area-based methods were superior in the
evaluation of regional L'V function using two dimensional echocardiography. The
degree of subdivision of the image did not affect the reproducibility and
variability of the experiments.
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Figure 3.5 Schematic of diastolic and systolic left ventricular outlines

subdivided into octants showing different approaches to
measuring regional contraction. A A — regional area change;
A H = hemiaxis shortening; A P — segmental endocardial
perimeter contraction. Similar measurements were made for
the quadrant and halves analysis.

In a later paper Parisi, et al. [25] used the area method for studying
coronary artery disease via octant-based measurements. Their results were
certainly encouraging, and showed that, at least statistically, it is possible to
distinguish between normal and abnormal contractions due to an ischemic
process.

In spite of these results, more research needs to be done since there have
been almost no systematic studies dealing with variability of left ventricle wall
motion, either in normal subjects or subjects with coronary disease. For
example, Pandian, et al. [26] found a great variability among normal subjects so
that qualitative assessments of the symmetry of contraction as a method for
identifying segmental ventricular dysfunction was not possible.
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3.2 Left Ventricular Area, Wall Thickness, and Ejection Fraction

After estimating the boundaries of the left ventricular inner chamber using
the algorithm discused in [6], we computed the cardiac indices related to the
area, wall thickness, and ejection fraction throughout a cardiac cycle for normal
canine hearts and hearts suffering from ischemic heart disease (after occlusion).

FIXED EXTERNAL AXIS SYSTEM FLOATING AXIS SYSTEM
A
S A S 3
S
Fix
Disstolic Axes
L P L L
P P

Fix Systolic Axes
Fix Diastolic Axes

v Transiate and Rotate
A A J
s s
Find Systolic Superimpose
Intersect Points Centers and Axes
L L
L ] ’
Figure 3.6 Fixed and floating axis system conventions for analyzing the

regional function [24].

3.2.1 Left Ventricular Area and Wall Thickness

The left ventricular area was computed by counting the number of pixels
inside the left ventricular contour. In computing the wall thickness the inner
and outer boundary of the left ventricular area (endocardium and epicardium)
were obtained. As previously discused in Section 3.1 a floating coordinate system
was used for every frame.
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In order to compute the center of coordinates, the left ventricle contour was
fitted with a rectangle whose edges were parallel to the picture edges, in s)uch a
way that the left and right points and the top and bottom points are tangent to
the rectangle. The coordinate center was chosen as the intersection of the lines
spanning between the middle points of opposite rectangle edges. Figure 3.7 shows
how the center of the coordinates is obtained.

The next step was computing the wall thickness. First, the number of wall
thickness points is chosen, then we construct from the coordinate center to the
outer boundary the number of radii chosen. Since the exact value of wall
thickness is meaningless, all the distances between the center and the left
ventricular contour within the adjacent radii were computed and averaged. The
outer boundary was handled in a similar manner. The difference between the
averaged outer radius and inner one was defined as the wall thickness. Figure
3.8 shows this in detail.

Finally the ejection fraction (EF) is computed as:

D, —S
EF = 2 —"4 100
D,

Where the ejection fraction indicates how efficiently the heart pumps blood.
A low EF value may mean an abnormal behavor of the heart. Table 3.1 shows
ejection fractions computed for the different studies.

3.3 Results
i
Figures 3.10 to 3.17 show the left ventricular area as a function of time for
four cardiac cycles. Solid line plots show the area change of normal hearts
whereas dashed line plots show the area change of dog hearts after coronary
occlusion.

The titles of the figures are the names of the studies. The x axis represents
the frame number which corresponds to a single image in the image sequence
from which information related to the left ventricle is extracted. The y axis is the
estimated left ventricular area given in pixel units. Every study was performed
on a dog’s heart after undergoing open chest surgery.
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Given the small number of studies, no specific conclusions can be drawn.
However, it can be seen that all the plots show a strong periodicity due to the
cardiac cycle, and that the shape of these periodic waves is quite different from
study to study, but rather similar from cycle to cycle if a specific study is
considered.

It suggests the possibility of using this information to help the boundary
detection process. For example, from the area computed in previous cycles it may
be possible to predict what the next area has to be. If after detecting the
endocardial boundary the computed area is very different from the expected area,
the detection system may trigger further actions in order to obtain a more
realistic estimation of the endocardial boundary.

Figures 3.18 to 3.33 show wall thickness computed for two studies
corresponding to a healthy dog’s heart (d259-bll) and a sick dog’s heart
(d254_ocl). The x axis represents the frame number, and the y axis represents
wall thickness in pixel units. The wall thickness values were computed between
the estimated endocardial and epicardial boundaries, as shown ‘in Figure 3.8.
Wall thickness values were computed every 45 degrees as shown in Figure 3.9.
For every figure, the last two digits of the title represent the angle of the line of
sight along which wall thickness is computed.

Again, no global conclusions can be drawn from these studies. Although a
periodic pattern can also be seen, it is nearly missing for some lines of sight.
Since area computation is an integration process, fine errors are filtered out (area
plots are "smoother"), wall thickness computation is very sensitive to estimation
errors in the inner or outer boundaries. Perhaps statistical studies performed on
a large number of studies would give different wall thickness values for infarcted
and noninfarcted areas of the heart wall muscle.

3.4 Summary

Since ischemic heart disease can cause contraction abnormalities; the
possibility of detecting the presence of an abnormal heart by measuring
geometric parameters such as left ventricular area, wallthickness, left ventricular
radius, and ejection fraction was discussed. For instance, studies carried out
over several days on canine hearts after coronary occlusion showed that heartwall
motion undergoes changes. In addition, it has been reported that it is possible to
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distinguish statistically between normal and abnormal contractions, and between
normal and infarcted tissue using geometric measurements [25].

There are several problems that need to be addressed when using these
measures. First, the normal human heart presents an enormous variability, and
apparently abnormal contractions do not always mean that an abnormality is
present. Furthermore, this variability and the lack of landmarks makes it
difficult to standardize studies among different patients.

We have examined the use of several classical geometric features and have
shown that the variability in a normal heart can indeed cause these features to
provide inconsistent interpretation of cardiac status.
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Table 3.1 Ejection Fraction as computed for 8 studies.

Study EF%

d252_as2 20.4
d254_as2 29.7
d254_bl2 36.5
d254_ocl 22.2
d259_asl 43.2
d259_as2 77.0
d259_bl1 54.0
d259_bl2 58.8




Figure 3.7
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Procedure for computing the center of coordinates is shown.
After finding the coordinates of the delimiting lines for the
boundary: @, and a; (vertical limits), and b, and b,
(horizontal limits), the origin for wall thickness estimation is
chosen as Q(x,y) where z = (ag+a,)/2 and y = (bo+b,)/2.
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Figure 3.8

Q(x.y)

Wall thickness is computed as follows. The initial radii
ri0 and ryy are determined after computing Q(x,y) and angle
¢; (which depends on the number of wall thickness estimates

and the chosen origin of angles which consists of the horizontal
line that originates at Q and runs to the right). According to
6, + Al where
Af = 360° [(number of wall thickness estimates). Then from
pixel p, to pixel p, radii r;; are computed for every inner
boundary pixel, and following the direction given by r,;, the
first outer boundary pixel hit by the line determined by such a -
radius, provides' the coordinates to compute r,;. Wall
thickness is computed as: '

1 N-1
W) =+_1 _go(fzf—fu)
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Figure 3.9 Lines of sight along which wall thickness is computed given the

endocardial and epicardial boundary estimations.
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CHAPTER 4
SHAPE ANALYSIS

4.1 Left Ventricular Shape Anlysis

Shape analysis of the left ventricle has largely been based on crude "low
level" measurements of shape, e.g. regional or global measurements of wall
thickness and area. Higher level shape measures would involve a more general
description of shape or shape change. "Low level” techniques do not take into
account the exact shape of the left ventricle (endocardial and epicardial
boundaries), since area and wall thickness do not "really” represent shape.

Delp, et al. [12] have proposed the utilization of Fourier descriptors as a
more general analysis tool for describing left ventricular shape. Linker and
Pearlman [27] proposed the utilization of Fourier descriptors and invariant
moments, discussing their properties such us computational complexity,
uniqueness, physical meaning, etc. The problem with both these techniques is
that they require a complete closed boundary which may not be available.

In this chapter, we discuss the use of curvature analysis in order to explore
the characteristics of the endocardial boundaries of the left ventricle. Curvature
analysis is justified by the assumption that the general shape of the endocardial
borders has distinctive characteristics which make it different from any other
"pattern” in an echocardiographic image. In addition, it allows the simulation of
the movements of the endocardial boundaries.
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4.2 Computation of Curvature and Detection of "Landmarks”

The curvature ¢ of a planar curve { at a point Q (according to Mokhtorian
and Mackworth [28]) is the instantaneous rate of change of the slope 1 of the
tangent at that point Q with respect to the arc length s, and is equal to the
inverse of the radius p of the circle of curvature at Q:
_4dy _ 1
T ds P

c

(4.1)

The circle of curvature at point Q is a circle tangent to the curve at point Q
whose center P lies on the concave side of the curve and whose curvature is the
same as that at point Q (see Figure 4.1).

Figure 4.1 Geometry of the curvature function at point Q on curve f.

If we define y’=dy/dz and y’’ = dzy/dzz, then:
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’7
c=—4 (4.2)

(1+(y"2)*?
An alternative form of computing ¢ is expressing y’ and y’’ in terms of the
derivatives of the parametric expressions of x and y as a function of the
parameter t, where:

. dz .. d’z
== F=— 4.3,
z yr z e (4.3.a)
. dy .. d%
= —=; = —= 4.3.b
y=g V=5 (4.3.b)
then

(1':2 + g2)3/2

After detecting the endocardial boundaries of the left ventriclé, the x and y
coordinates are computed. In order to compute the curvature it is necessary to
smooth the contour due to the "ragged” nature of the functions x(t) and y(t).
Since x(t) and y(t) are obtained from a digital image there are only four possible
values of x(t) between two adjacent pixels (see Figure 4.2). A sliding 4 point
window is centered about the point then a third degree polynomial is fitted to
the points. The curvature is computed analytically given the coefficients of the
polynomial.

An examination of the relative maxima and minima of the curvature points
of the endocardial boundary suggests the presence of high curvature points.
These points we call "landmarks".

Keeping track of the '"significant” maxima and minima may provide
information about how the heart moves. A significant maximum is defined as -
any relative maximum above the positive average value of the curvature
function, a significant minimum is defined as any relative minimum above the
negative average value. Keeping track of significant peaks involves curvature
function matching. All the curvature functions are first sequentially sorted
according to their temporal correspondence in the cardiac cycle. The curvature
function is then matched.

The following function is computed between two curvature functions
obtained from two successive frames:
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Figure 4.2 This shows the four possible slopes that can be obtained when

dealing with two adjacent pixels. The four slopes are
6=0, 6=1/2, f=00, and 6=—1/2.

N-1
DRy(n) = 5 |ek(i=n) = casali) (4.5)
C V=0 - :
Where k denotes the k-th curvature function corresponding to the k-th frame
and n is the lag value. DRj(n) is similar to a correlation function and describes
the degree of likelihood between ¢,(n) and ¢;.;(n). Assuming that ¢(n)
and ¢;,(n) are periodic, DFy(n) is zero for n=ny when ¢ (n)=ci(n—n).
Since the curvature functions are computed from the detected boundaries for the
left ventricle, neither the length of the boundaries nor the starting points of the
boundary may be equal. This makes necessary the utilization of some matching
process, in this case formulated by DRy(n).
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The algorithm for landmark tracking is the following: given two
consecutive curvature functions ¢, (n) and ¢, ,(n), the length of both
functions is normalized to one, then DF,(n) is computed assuming that c;(n)
and ¢;,,(n) are periodic. Then the minimum of DF,(n) is obtained. The
position of the minimum provides the delay between ¢;(n)and ¢ 4(n).
Shifting ¢;,4(n) is performed in order to set the position of the minimum of
DRy (n) to zero. In other words, we let ¢’ (n)=c; . (n+ng) such that

N-—
DR/ mj= % [euli=m)=e’ ) (45)

has its minimum at n=0. Where DR’ (n) is DR,(n) using c¢’(k).

Landmark tracking consists of identifying the positive and negative peaks of
two consecutive curvature functions which remain at the same place in the cycle.
In order to do this, all the maxima and minima of ¢;(n) are identified. Then
the algorithm takes ¢’j,;(n) and again locates the peak values. Finally the
algorithm finds which peaks in both functions are at similar positions. A "similar

position" means that if a peak is at n, in ¢,(n), there is another peak at

P
position n,tAn in ¢ y4(n).
Obviously, the larger An, the more true peak correspondences will be
missing. Empirical evidence indicated that An should be between 20 and 30.
Figures 4.3 and 4.4 describe the algorithm. This tracking algorithm is very
illustrative since it preserves the significant "corners” of the detected epicardium.

4.3 The Utilization of Landmarks

A whole host of studies can’ bé'performed making use of the landmarks. One
obvious study is wall motion analysis.

To begin with, it is possible to visualize wall motion by substitution of the
detected endocardial boundary with a simplified version of the boundaries where
high curvature points are linked using straight lines. For instance, a set of
consecutives frames corresponding to an open chest study performed on a dog’s
heart covering were analyzed. A single frame of this study is shown in Figure 4.5.

The visualization of these simplified "heart walls" in the form of a motion
picture reveals the area of myocardial infarction. Identification of the portion of
the left ventricle which shows almost no wall motion, can be easily seen. These
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Figure 4.3 Two curvature functions extracted from two consecutive frames are
shown along with their associated difference function DFj(n).
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simplified borders are constructed as follows. Endocardial borders of the left
ventricle are identified and landmark detection is performed. Then landmarks
("corners") are linked using straight lines. Diastole and systole frames are picked
by examining the area plots (diastole is supposed to correspond to the highest
cross section left ventricular area), and the frames in between are computed by
interpolating linearly the position of the landmark. The result was made into an
image sequence. It was noted how easy it was to recognize the infarcted area,
since it hardly moved. Other studies that might be performed are landmark
position tracking from frame to frame in order to assess how risky the
assumptions of radial and linear movement are.

Curves of wall velocity should also help in assessing cardiac status after
performing a comprehensive collection of data from normal and abnormal hearts.
Finally, curvature functions can be the starting point for high level analysis in
performing border detection.

4.4 Summary

It is obvious that a high level description of echocardiographic images is
needed to assess cardiac status.

One such descriptor is curvature analysis. Since the curvature of the
endocardial boundary has distinctive characteristics, it is reasonable to assume
that it might be useful for high level description.

Basically, the high curvature points of the endocardium are detected and
tracked throughout the cardiac cycle. These high curvature points are called
landmarks. The first important application of landmarks is wall motion
visualization. Since the movement of the heart wall is very complex, this
complexity can be diminished by studying the movement of the position of the
landmarks. This simplification of the heart beating process seems to be a
potential tool for the identification of infarcted areas of the heart muscle.

Curvature analysis may be also used for characterizing the endocardial
boundary. After detecting the boundaries in the first frame of a sequence of
images, and the points of high curvature are determined, then it would be
possible in consecutive frames to use this curvature information for the detection
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of the endocardial boundary. For example, the endocardial boundary detected in
the following frame should not have curvature points that are very different from
the previously detected points.
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Figure 4.5 Simplified version of the endocardial boundary.
High curvature points were linked using straight
lines.
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CHAPTER b
CONCLUSIONS AND FURTHER RESEARCH

One of the main goals in the analysis of echocardiographic images has been
automatic analysis. Most of the efforts have been concentrated on the automatic
estimation of the endocardial and epicardial boundaries of the left ventricle by
analyzing cross sectional views. In general most of the algorithms developed for
boundary estimation need to work interatively with a human operator. This is
because image processing techniques work on a pixel basis instead of using a
higher level description. An initial use of higher level knowledge is the use of
curvature analysis for wall motion. )

Identification of landmarks on the endocardial boundary provides a
simplified but valid description that allows visualization of wall motion. This
simplification of the heart beating process seems to be a potential tool for the
identification of infarcted areas of the heart muscle.

An area of further research would be the measurament of velocity and
position of the landmarks. Measuraments of velocity and position might
determine how the landmarks move and allow to distinguish between normal
landmark behaviour and abnormal behaviour due to myocardial infarction.

We feel that landmark detection and tracking may help the boundary
estimation process. As pointed out in Chapter 4, if the analysis is made on a
sequential frame basis, the endocardial boundary detected in the following frame
should not have curvature po’inté that are very different from the previous
detected ones. This additional "supervision" during boundary estimation could be
used to trigger further action in the system if there is no agreement between
landmarks of two consecutive frames, or simplify the analysis of the next frame
by predicting the landmark positions based on the information obtained from
previous frames. '

Finally, further reasearch using experts systems could address the use of
other types of knowledge available about cardiac dynamics and the modes of
interpretation used by phisycians.
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