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ABSTRACT

Ravishankar, C. S. Ph.D., Purdue University. August 1991. Tree-Structured Non-
linear Adaptive Signal Processing. Major Professors: Saul B. Gelfand and Edward J.
Delp.

In communication systems, nonlinear adaptive filtering has become increasingly
popular in a variety of applications such as channel equalization, echo cancellation
and speech coding. However, existing nonlinear adaptive filters such as polynomial
(truncated Volterra series) filters and multilayer perceptrons suffer from a number of
problems. First, although high order polynomials can approximate complex nonlinear-
ities, they also train very slowly. Second, there is no systematic and efficient way to
select their structure. As for multilayer perceptrons, they have a very complicated

structure and train extremely slowly.

Motivated by the success of classification and regression trees on difficult non-
linear and nonparametric problems, we propose the idea of a tree-structured piecewise
linear adaptive filter. In the proposed method each node in a tree is associated with a
linear filter restricted to a polygonal domain, and this is done in such a way that each
pruned subtree is associated with a piecewise linear filter. A training sequence is used
to adaptively update the filter coefficients and domains at each node, and to select the

best pruned subtree and the corresponding piecewise linear filter.

The tree structured approach offers several advantages. First, it makes use of

standard linear adaptive filtering techniques at each node to find the corresponding
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conditional linear filter. Second, it allows for efficient selection of the subtree and the
corresponding piecewise linear filter of appropriate complexity. Overall, the approach

is computationally efficient and conceptually simple.

The tree-structured piecewise linear adaptive filter bears some similarity to
classification and regression trees. But it is actually quite different from a
classification and regression tree. Here the terminal nodes are not just assigned a
region and a class label or a regression value, but rather represent a linear filter with
restricted domain. It is also different in that classification and regression trees are
determined in a batch mode offline, whereas the tree-structured adaptive filter is deter-

mined recursively in real-time.

We first develop the specific structure of a tree-structured piecewise linear adap-
tive filter and derive a stochastic gradient-based training algorithm. We then carry out
a rigorous convergence analysis of the proposed training algorithm for the tree-
structured filter. Here we show the mean-square convergence of the adaptively trained
tree-structured piecewise linear filter to the optimal tree-structured piecewise linear
filter. Some new techniques are developed for analyzing stochastic gradient algo-
rithms with fixed gains and (nonstandard) dependent data. Finally, numerical experi-
ments are performed to show the computational and performance advantages of the
tree-structured piecewise linear filter over linear and polynomial filters for equaliza-
tion of high frequency channels with severe intersymbol interference, echo cancella-

tion in telephone networks and predictive coding of speech signals.



1.2.1 The Filtering Problem

The term "filter” is often used to describe a device in the form of a piece of
physical hardware or computer software that is applied to a set of noisy data in order
to extract information about a prescribed quantity of interest[ 2]. The noise may arise
from a variety of sources. For example, the data may have been derived by means of
noisy sensors or may represent a useful signal component that has been corrupted by
transmission through a communication channel. In any event, we may use a filter to

perform three basic information-processing operations :

1.  "Filtering", where the aim is to derive information about the quantity of interest

at time t based on data measured up to and including time t.

2.  "Smoothing", where the aim is to derive information about the quantity of

interest at time t based on data measured past time t.

3. "Prediction”, where the aim is to derive information about the quantity of )
interest at time t+t for some t > 0, based on data measured up to and including
time t.
We say that the filter is "linear” if the filtered, smoothed, or predicted quantity of
interest is a linear function of the noisy data or observations, as they are sometimes

called.

In the classical statistical approach to the linear filtering problem, it is assumed
that the joint statistics of the useful signal and unwanted noise are known, and the
requirement is to design a filter so as to minimize the effects of noise according to
some statistical criterion. A standard approach is to minimize the mean square value
of the "error signal" which is defined as the difference between some desired response

and the actual filter output. For stationary signals and observations, the resulting



solution is commonly known as the Wiener filter [ 2].

1.2.2 Linear Adaptive Filters

In this section, we examine the need for adaptive filters, and for simplicity, we

focus our attention on linear adaptive filters that have finite impulse response(FIR).

The design of a Wiener filter requires a-priori information about the statistics of
the data to be processed. When this information is not completely known, it is not
possible to design the optimum Wiener filter. This leads to the concept of adaptive
filters. By such a device, we mean one that is self designing, in which the filter relies
on a recursive algorithm to perform satisfactorily in unknown environments. Figure 1
shows the block diagram of a general adaptive filter. x(k), y(k) and y(k) denote the
input, output and desired signals of the adaptive filter, respectively. In this section the
programmable filter in Figure 1 is assumed to be a linear FIR filter, and hence the
elements of the vector of coefficients c(k) represents the impulse response of such a
filter at time instant k. The algorithm starts from a predetermined set of initial
conditions representing complete ignorance about the environment. In stationary
environments the algorithm should converge ideally to the optimal finite Wiener filter.
In nonstationary environments, the algorithm offers a tracking capability, whereby it
can track time variations in the statistics of the data, provided that the variations are

sufficiently slow.

A wide variety of recursive algorithms have been developed in the literature for
the training of adaptive filters. The choice of one algorithm over the other depends
upon several factors such as computational complexity, rate of convergence,

misadjustment, robustness, and structuref 2].
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Figure 1. Block Diagram of a General Adaptive Filter



The simplest and most widely used recursive algorithm for training an adaptive
filter is the Least Mean Square (LMS) algorithm[3] which is based on the steepest
descent method for finding the Wiener filter. Here the finite tapped delay line or
transversal filter shown in Figure 2 is used as the structural basis for development of

the algorithm. The output of such a filter is given by

§o = ,i; o) x(k = ) = ¢ x(0)
j= ,
where ¢ = [c(0),...,c(L-1)]’ is the vector of tap weights and x(k) = [x(k),...,x(k=L+1)]"
is the input vector to the adaptive filter at time instant k. If x(k) and y(k) are jointly
wide sense stationary sequences, then the mean square error (MSE)
e=E{(yk) - §(k))?}
is a constant convex function of ¢, and if the joint second order statistics of x(k) and
y(k) are known, then € can be minimized over ¢ analytically to yield the Wiener filter.
When the statistics of x(k) and y(k) are unknown, the tap weight vector can be

sequentially estimated based on a training sequence using a stochastic gradient

algorithm :

ek + 1) = ¢(k) + ply(k) — y(k))x(k) (1.1)

where the gain parameter | is a small positive number. Note that (k) is evaluated at
the current weight vector c(k) in the above recursion, i.e., y(k) = c(k)” x(k). Thvis is the
LMS algorithm. If x(k) and y(k) are in fact jointly wide sense stationary, it can be
shown (under further suitable conditions) that c(k) converges to the Wiener filter in
the mean and mean-square sense [2, 3].

Several other recursive algorithms have been developed based on the stochastic
Newton method’ (as opposed to the stochastic gradient method) and also the method

of least squares{1,2,4,5]. The algorithms based on these approaches are

T these algorithms are sometimes referred to as Kalman algorithms
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computationally expensive, but have a faster rate of convergence than the LMS
algorithm. Hence these algorithms become useful whenever the rate of convergence

is a critical factor.

1.3 Modes of Operation of Adaptive Filters

In this section we identify three basic modes of operation of adaptive filters [6].
We discuss these modes in a relatively general context, which means that the
unknown systems need not be linear nor time invariant and the adaptive filters need

not be linear.

The first mode of operation of an adaptive filter is the direct system modeling
mode shown in Figure 3(a), which is used for system identification(3,6]. In this
mode, the adaptive filter is used to approximate the unknown system. Here, the time
series x(k) is input simultaneously to the unknown system and the adaptive filter. The
output of the unknown system y(k) then becomes the desired output for the adaptive
filter. In practice, there is normally additive noise associated with the unknown system
which could be measurement noise and/or noise within the system itself. The
adaptive filter is designed to minimize the error between the output of the adaptive

filter, y(k), and the output of the unknown system, y(k), in some statistical sense.

The second mode of operation of an adaptive filter is the inverse modeling mode
shown in Figure 3(b), which is used for channel equalization[7]. In this mode the
adaptive filter is used to approximate the inverse of the unknown system. Here the
time series x(k) is theAinput to the unknown system. The output of the unknown
system y(k) is the input to the adaptive filter, and the input to the unknown system

x(k) is the desired output for the adaptive filter. Again, in practice there is normally



additive noise present in the unknown system. The adaptive filter is designed to
minimize the error between the output of the adaptive filter, X(k), and the input to the

unknown system, x(k), in some statistical sense.

The third mode of operation of an adaptive filter is the prediction mode shown in
Figure 3(c), which is used in predictive coders for speech and images[8]. In this mode
the adaptive filter is used to predict data at time instant k based on data observed upto
time instant k — T, for some T > 0. Here, the time series x(k) is delayed and input to
the adaptive filter, and x(k) is the desired output for the filter. Adaptivity is required
here since the data x(k) is usually nonstationary. Note that the predictive mode of
operation is a special case of the inverse modeling mode where the unknown system

in the inverse modeling mode of operation simply introduces a delay.

We note that when the adaptive filter is chosen to be linear and FIR, the LMS
algorithm discussed in the previous section can be used in each mode of operation

with obvious changes in notation.

1.4 Applications of Adaptive Filters

Due to the ability of the adaptive filter to operate effectively in unknown
environments and also track the time variations of the input statistics, it has been
successfully applied in such diverse fields as communications, control, radar, sonar,
seismology, image processing and pattern recognition. In this section we briefly
discuss three applications of adaptive filters drawn primarily from the field of

communications, each representing a mode of operation described above.

Echo Cancellation : A practical example of the direct system modeling mode of

operation is echo cancellation across the hybrid transformer used in telephone
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networks [9] (see Figure 4). At any point in a telephone network, when a signal
encounters a mismatch in impedance, a portion of it gets reflected as an echo. This is
annoying to the speaker and in many cases completely disrupts the conversation. The
deleterious effects of such echoes depend upon their strength, spectral distortion and
delay. The main source of echo in a telephone network is at the junction between the
"two-wire" local subscriber loop and the "four-wire" long distance link called the
hybrid. Whenever there is a mismatch of impedance between the subscriber loop
circuit and long distance circuit, a portion of the signal from the transmitter reaches
the receiver at the far end through the hybrid and this is called talker echo. One
method of reducing the talker echo is to construct a filter in parallel with the hybrid
which models the echo path across the hybrid. The echo can then be cancelled by
subtracting the output of the adaptive filter from the output of the hybrid. Since the
characteristics of the echo path is unknown a-priori and time varying, an adaptive

filter is commonly employed.

Channel Equalization : A practical example of the inverse system modeling mode of
operation is the equalization of digital communication channel to combat intersymbol
interference(3, 6, 7] (see Figure 5). Such a channel may be modeled by an equivalent
discrete-time transversal filter with additive noise{7]. The digital signal which is
applied to the channel is a sequence of symbols taken randomly from a finite alphabet.
If the equivalent discrete-time channel has finite bandwidth, each element of the
channel output sequence will contain contributions from several input symbols. This
is called intersymbol interference. The function of the adaptive filter is to reconstruct
the transmitted symbol sequence with a very low probability of error. An adaptive

equalizer is usually trained by transmitting a predetermined sequence known to the
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receiver, prior to the actual data. Subsequent to this training period, it is still possible
to track slow variations in the channel characteristics by using the output of the
decision circuit as a training sequence for the adaptive filter. This is known as a

decision directed equalizer{7].

Predictive Coding : A practical application of the predictive mode of operation of an
adaptive filter is in the area of waveform coding of speech [5,8] (see Figure 6). A
prediction X(k) is made of the original process, x(k), from which the prediction error
signal e(k) = x(k) — X(k) is generated. A quantized version eq(k) of e(k) is then
encoded and transmitted. The speech decoder located at the receiver computes
x(k) = x(k) + eq(k) based upon the (assumed errorless) reception of eq(k). It is easy to
show that if both encoder and decoder predictors have the same initial conditions, the
only error in the reconstructed signal at the receiver is equal to the quantization error
at the transmitter which can be made as small as possible. Since the error signal e(k)
has a very small dynamic range, the number of bits required to represent it is much
less than if we had encoded the speech signal directly. Hence one can achieve a good
compression ratio. Note that adaptivity in the predictor is necessary, since the speech

signal is nonstationary.

Other applications of adaptive filtering in the field of communications include

adaptive spectral estimation, adaptive line enhancer and adaptive beam forming(2].

In the next chapter we demonstrate the need for nonlinear adaptive filtering and
state some of the problems associated with existing nonlinear adaptive filters. In
Chapter 3 we propose a tree-structured piecewise linear adaptive filter to overcome
the problems in existing nonlinear adaptive filters. In Chapter 4 we derive a stochastic

gradient based training algorithm for the tree-structured filter. In Chapter 5 we carry
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out a rigorous convergence analysis of the tree-structured piecewise linear adaptive
filter, wherein we show the mean square convergence of the adaptively trained tree
structured piecewise linear filter to an optimal tree structured piecewise linear filter. In
Chapter 6 we apply our tree-structured piecewise linear adaptive filter as an adaptive
equalizer, adaptive echo canceler and adaptive predictor for speech signals. In each of
the applications, we compare the performance of the tree-structured piecewise linear
filter with that of linear, second order Volterra and third order Volterra types of
adaptive filters. In Chapter 7 we investigate the problem of automatically inspecting
the geometry of a fuel injector nozzle. Here we discuss the direct and indirect
imaging techniques to accurately obtain the parameters that affect the spray process

through the nozzle.
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CHAPTER 2
NONLINEAR ADAPTIVE FILTERING

2.1 Need for Nonlinear Adaptive Filtering

An adaptive filter is referred to as linear if the estimate of the quantity of interest
is obtained adaptively at the output as a linear combination of the available set of
observations applied at the filter input [1]. An example of linear adaptive filter is the
transversal filter shown in Figure 2 in Section 1.2. Although linear adaptive filters are
simply implemented, their performance is inadequate in a variety of applications.
Nonlinear adaptive filters have been used as equalizers[7] when the channel induces
severe intersymbol interference. Nonlinear adaptive filters have been used to identify '
nonlinear systems which occur in noise and echo paths in telephone networks [10-13]
and also digital satellite links where the satellite repeater uses nonlinear devices like a
Travelling Wave Tube(TWT)[14]. Nonlinear adaptive filters have also been used for
nonlinear prediction of speech in the area of speech coding. Such nonlinear systems
are typically modelled by a truncated Volterra series or by a Wiener or Hammerstein
model[13, 15-20]. Thus there is a general need for nonlinear adaptive filtering. In this
section we illustrate in detail the need for nonlinear adaptive filtering in three
applications, namely channel equalization, echo cancellation and speech coding. We
also discuss some of the existing nonlinear adaptive filters and point out the problems
associated with each of them. In chapter 3 we propose a tree-structured piecewise

linear filter which overcomes the problems associated with the existing nonlinear
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adaptive filters.

The channel equalization application :- In Section 1.4 the use of an adaptive filter as a
channel equalizer was discussed. In a bandwidth-efficient digital communication
system, the effect of each symbol transmitted over a linear time dispersive channel
(whose frequency response deviates from the ideal flat amplitude and linear phase)
extends beyond the time interval used to represent that symbol. The distortion caused
by the resulting overlap of received symbols is called "intersymbol interference" (ISI)
[7,21]. ISI increases errors at the receiver and hence the reliability of high-speed data
transmission over low background noise is reduced. An adaptive equalizer is used to
compensate for the unknown time dispersion exhibited by the channel and to

reconstruct the transmitted symbols{21-26].

For the equalization problem, it is common to assume that the channel is linear,
bandlimited and corrupted by additive white Gaussian noise. For quality telephone
channels, linear equalizers are sufficient to combat the correspondingly mild ISIL
However, for multipath radio frequency channels which have deep nulls in their
spectral characteristics, nonlinear equalizers are necessary to combat the
comparatively severe ISI [7,27]. The conventional reasoning here is that, when the
channel has deep nulls in its spectrum, a linear equalizer is too constrained to both
invert the channel characteristics and at the same time moderate the noise in the
vicinity of the dips in the channel response (and peaks in its inverse response). To
illustrate the performance limitations of linear equalizers in presence of severe
intersymbol interference, we show in Figure 7 the amplitude spectral characteristics of
two different kinds of channels, and in Figure 8 the probability of error curves for a

linear equalizer for these two kinds of channels. Figure 7(a) represents the spectrum
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of a typical data quality telephone channel, whereas Figure 7(b) represents spectrum

of high frequency and radio frequency channels.

An alternative and more precise explanation of the need for a nonlinear equalizer
can be based on the fact that the ultimate purpose of the equalizer is to minimize the
probability of error. We shall give a simple argument that in the absence of noise, a
linear equalizer of sufficiently large (but finite) length followedv by a decision device
can exactly reconstruct the sequence of transmitted symbols. The argument can be
extended to show that in the presence of additive noise, the same receiver can estimate
the sequence of transmitted symbols with arbitrarily small probability of error per
symbol as the noise variance tends to zero. Note that these results hold for FIR or IR
channels; even when the channel is FIR and its inverse is IIR, only an FIR equalizer is
required.

So let g(k) denote the impulse response for a noiseless channel and let G(z) be its
z-transform. Let h(k) denote the impulse response of the inverse channel and let
H(z)=1/G(z) be its z-transform. We assume that g(k) and h(k) are BIBé stable. Of
course we can reconstruct the information sequence x(k) from the channel output
sequence y(k) using an (in general) IIR equalizer with impulse response h(k) (see Fig
9a). Suppose that x(k) takes on values +1. We argue that in this case x(k) can be
reconstructed from y(k) using an FIR equalizer with some impulse response ﬁ(k)
followed by a sign detector (see Fig 9b). To see this, fix L for the moment and let

ﬁ(k) = h(k) for k=-L+1,..,0,1,..,L.-1 and zero otherwise. Refering to Figure 9 we have

-L oo
x(k)-X(k)= ¥ hm)yk-n)+ ¥ h(n)yk-n)
n=L

n=-—oo

Since x(k) is bounded and g(k) is stable, y(k) is bounded. Hence since h(k) is stable

o0

-L
sup |x(k) — x(k) | Sszp lym)| ( X |h(n)|+ 3 |[h()|) =0 asL — oo,

n=-—oo n=L



20

(a)

x(k) y(k) - x(k)
gk) | hk) .
channel equalizer

(b)
x(k) y(k) x X (k) x(k)
— . 8k . h® [ | sign |
detector [
channel equalizer

Figure 9. IIR and FIR Equalizers (a). Noiseless System with
Noiseless System with FIR Equalizer and a Decisio

an [IR Equalizer (b).
n Device



21

uniformly for all input sequences x(k). Consequently, we can choose L large enough
such that supy | x(k) — X(k)| < 1, and so x(k) = sign(X(k)) for all k as required.

Now for the case of additive noise, a modification of this argument shows that
for large enough filter length supy P{x(k) # sign(x(k))} — O as the noise variance
tends to zero. We remark that the length of the filter and the size of the noise variance
that is required for the linear equalizer to perform well depends on how fast the tails
of h(k) tend to zero. This provides a connection to the more heuristic argument that a
linear equalizer performs well when |G(e/®)| has no deep nulls : |G(e’®)| has no
large dips when |H(e/®)| has no large peaks, which is essentially true when the tails
of h(k) tend quickly to zero.

The above discussion provides some justification for using a linear equalizer
provided we choose the filter length long enough and the noise is small enough. When

either of these conditions is not satisfied, a nonlinear equalizer is more appropriate.

Echo cancellation application :- In Sé:ction 1.4 the use of an adaptive filter as an echo
canceller was discussed. Echoes are generated as a consequence of impedance
mismatch between the two-wire subscriber loop and four-wire long distance link at
the hybrid junction of a telephone circuit. The basic idea is to synthesize a replica of
the echo and subtract it from the actual echo generated in the telephone circuit. This is
typically a system identification problem. Linear adaptive echo cancellers that have
been proposed in the literature [9,28,29] are based on the assumption that the echo
path in the telephone circuit is linear and all of them accept nonlinearity as an
uncorrectable perturbation. Nonlinear echo paths arise in most practical situations due
to two major reasons[13]. One is due to the mismatch in the compressor and expander

characteristic and the other is due to the harmonic distortion in amplifiers and
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repeaters, the characteristics of both of these anomalies being unknown. In many
cases, these anomalies are of sufficient magnitude to degrade the performance of
linear adaptive echo cancellers. The causes for nonlinear echo paths are discussed in

further detail below.

A highly simplified diagram of the interface between a four-wire digital line and
a two wire analog line in a typical digital telephone network [30] is given in Figure
10(a). The compander and expander shown in the figure are used for the non-uniform
quantization of speech signals[5]. This is necessary to improve the signal to
quantization noise ratio (which is the ratio of signal power at the quantizer input and
the quantization noise power at the output) of the system. A typical compression
characteristic is shown in Figure 10(b). This is a highly nonlinear characteristic and is
called the p-law compression characteristic. At the transmitting end, the original
speech signal is passed through a device with compression characteristic and then
passed through an analog-to-digital(A/D) converter with a uniform quantizer to obtain
the digitally encoded speech. At the receiving end, the output of the digital—to—anaiog
converter(D/A) is passed through a device with expander characteristic which
performs the inverse operation of compressor characteristic. The process of first
compressing and then expanding a signal is referred to as "companding”. A mismatch
in the nonlinearities introduced by compressor and expander makes the echo path

have a highly nonlinear characteristic.

Another source of nonlinearity in the echo path is the presence of automatic gain
control devices which have characteristics similar to the one in Figure 10(b). A
further source of nonlinearity in echo path is the presence of large signal amplifiers in
hybrid circuits(see Figure 10(a)). In practice these amplifiers have a S-shaped gain

curve with linearity in the middle of the curve and this produces harmonic distortion.
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This causes extremely annoying echoes to be heard by the talker.

Thus nonlinear echo paths inherently exist in the current telephone network and
there is a need to cancel the echoes generated by these nonlinear paths whose
characteristics are not known a priori. Linear adaptive cancellers can perform poorly
in such environments and hence the use of nonlinear adaptive filters is more

appropriate.

Speech coding application :- For many classes of information signals, including
speech, the value of the signal at a given instant is correlated with its values at the
previous instants and hence represents redundant information [31]. The nature of the
correlation depends on the manner in which the information signal was generated. An
integral part of signal analysis is to determine the nature of the correlation and hence
reduce the redundancy in the signal by representing it by a small number of
parameters. This is especially useful in communication systems where the existing
channel capacity cannot accommodate the digitized speech without redundancy
removal. Thus, instead of transmitting the digitized speech, the parameters
representing the speech are transmitted which requires considerably less channel
capacity. One of the most popular analysis techniques for speech signals is the
method of linear prediction analysis[32]. Over the last two decades, this method has
become the predominant technique for estimating the basic speech parameters, e.g.,
pitch, formants, spectra, vocal tract area functions, and for representing speech for low
bit rate transmission or storage.

The basic idea behind the linear predictive analysis is that a speech sample can

be approximated by a linear combination of past speech samples. By minimizing a

suitable cost function of the error (e.g., mean-squared error) between the actual speech
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sample and the linearly predicted one, a unique set of predictor coefficients can be
determined which can be used to represent the parameters of the speech signal. This
technique of representing the speech signal by a set of prediction coefficients or

parameters is popularly known as Linear Predictive Coding or LPC [32-36]

Although LPC is well-established as an effective method for redundancy
reduction in speech signals, its residual (defined as the error between the actual speech
sample and the predicted output) still possesses a significant amount of redundancy
and hence predictive component [37,38]. This is because the LPC technique is based
on the assumption that the speech production process can be modeled by an all-pole
time varying linear filter. In reality, the speech production is inherently nonlinear and
can best be represented by a nonlinear dynamical system [39,40]. Furthermore, the
LPC technique assumes that the sound source and the vocal tract are two decoupled
linear systems. In fact,‘it is the interaction between the source and the vocal tract
which actually contributes to the built-in naturalness in the produced speech. It has
been established that this source-tract interaction is a major source of nonlinearity in

the speech production process [36,41, 42].

Many different models have been postulated for quantitatively describing certain
factors involved in the speech production [38-45]. It can be stated with certainty that
no single model has been developed which can account for all the observed
characteristics of human speech. A highly simplified model of the vocal cord/vocal
tract system is shown in Figure 11 [42]. A major source of nonlinearity in this
simplified model is the presence of the nonlinear glottal impedance Z; (representing
the path of source-tract interaction) which depends upon the glottal flow and area A,,
which in turn depend upon the self-oscillating properties of the vocal cord model.

Linear predictors can perform poorly in terms of removing redundancy in such
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environments and hence nonlinear predictors are more appropriate. Furthermore, since
the speech parameters vary from person to person and the speech signal is

nonstationary, adaptive prediction is necessary.

2.2 Existing Nonlinear Adaptive Filters and Their Shortcomings

In general, we expect a nonlinear adaptive filter to have the following desirable
properties: simple structure and training algorithm; good performance (in terms of
asymptotic mean-square error or probability of error and also rate of convergence);

and uses established linear adaptive filtering techniques to the extent possible.

Several nonlinear adaptive filters have been proposed in the literature in a variety
of applications. In this section we focus on nonlinear adaptive filters that have been
used for equalization, echo cancellation and speech coding.

The decision feedback equalizer (DFE) [6,7,46,47] is by far the most popular
nonlinear adaptive equalizer. The DFE consists of two sections, a feedforward section
and a feedback section. Both sections have structures similar to the linear transversal
filter shown in Figure 2. The input to the feedforward section is the channel output
sequence and the input to the feedback section is the sequence of previously detected
symbols. The output of the DFE is the sum of the outputs of these two sections.
Functionally the feedforward section is the same as that of linear transversal equalizer
and the feedback section is used to cancel the ISI caused by previously transmitted
symbols. The idea behind the decision feedback equalizer is that if the previously
detected symbols are correct, then the contribution of these symbols to the ISI of the
future arriving samples can be exactly cancelled. The output of a decision feedback

equalizer can be expressed as
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0 L-1
= ¥ c@xk-j)+ T c() yk-j=c %k
j=-L+1 j=1
where 7 =[x(k +L - 1),..,x(k),yk - 1),....yk =L + 1)]’ and

¢=[c(-L + 1),....,c(L = 1)]". Here (k) denotes the detected output at time instant k.
The weight vector ¢ can be sequentially estimated based on a training sequence using

the LMS algorithm analogously to (1.1) :
etk + 1) = ¢(k) + p(yk) = Fk)Z(k) 2.1)

Note that y(k) is evaluated at the current weight vector c(k) in (2.1), ie,
yk) =c'(k) z(k). In the training mode,
z=[x(k+L-1),..,x(k),yk-1),....y¢(k=L+1)) can be  replaced by
z=[x(k+L - 1),...,x(k),yk - 1),...,y(k = L + 1)]" in (2.1). In the fully adaptive mode
y(k) is replaced by ¥ (k) in (2.1). Although the decision feedback equalizer is widely
used, it suffers from two significant problems. First, at low signal to noise
ratios(SNR), the decision feedback equalizer can feed back sufficiently many
incorrectly detected symbols so as to seriously degrade its performance. Second, the
decision feedback equalizer is limited in its ability to implement complicated
nonlinearities; in fact the decision feedback equalizer only differs from a linear
equalizer with feedback in that the feedback filter contains the previously detected

symbols which are quantized versions of the output of the equalizer.

Polynomial filters [18,48] which include linear and quadratic filters as special
cases, can also be used as nonlinear adaptive equalizers. Polynomial filters can be
viewed as linear filters with an extended input space. The output of the polynomial

equalizer can be expressed as

~ q . . . . Y4
y&)= 2 2 (1, .. ndpdxk—j1) - xk—jp) = CX(k)
p=1 -L+1gj;< -+ Sj,<L-1
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where X(k) is a column vector of inputs x(k—j;) * - x(k—jp) and C is a column
vector of weights c(ji,...,Jjp) (put another way, y(k) is a g-th order truncated
Volterra series in the x(k)’s). The weight vector C can be sequentially estimated based

on a training sequence analogously to (1.1) :

Clk + 1) = C(k) + wly(k) — y(kNX(k) 2.2)

Note that y(k) is evaluated at the current weight vector C(k) in (2.2), i.e.,
yk) =C’'(k) X(k). In the fully adaptive mode x(k) is replaced by y (k) in (2.2).
Apriori, a polynomial equalizer seems like an obvious choice for a nonlinear equalizer
as it appears to possess the desired properties listed above. However, it turns out that
although sufficiently high order polynomials can yield small asymptotic probability of
error they will also in general converge very slowly. The properties of polynomial

filters are further discussed in Chapter 6.

Multilayer perceptrons [49] have also been proposed to be used as an adaptive
equalizer, but they require enormous amounts of training and have a complicateci

structure.

Almost all the nonlinear adaptive filtering approaches to echo cancellation that
have been proposed in the literature make use of the discrete Volterra series
representation to model the nonlinear echo path. Note that truncated Volterra filters
are identical to the polynomial filters mentioned above. This approach has two
problems. First, it is not clear which higher order terms can properly be neglected, and
second, the convergence rate may be extremely slow. In [18], a Kalman filtering
approach to a second order adaptive Volterra filter is proposed. This approach
provides a faster rate of convergence, but is computationally expensive. In [10,12],

echo cancelers based on the principle of "memory cancellation” or "look-up table"
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have been proposed. These approaches do not account for possible time variations in

the echo path response.

The nonlinear adaptive filters that have been proposed as adaptive predictors in
the literature are the discrete Volterra filters and the multilayer perceptron
architectures{38, 50]. The problems associated with these kinds of nonlinear adaptive

filters have been discussed above.

In the next chapter we propose a tree structured piecewise linear filter which

overcome the problems associated with the nonlinear adaptive filters discussed above.
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CHAPTER 3
TREE-STRUCTURED PIECEWISE LINEAR FILTER

A simple and logical alternative to the nonlinear adaptive filters described in
Chapter 2 is to build a piecewise linear adaptive filter such that the overall response of
the filter approximates the optimal nonlinear response. Figure 12 shows a piecewise
linear filter characteristic with a scalar input. The filter we propose is adaptive in the
sense that the number, length and slope of the linear segments get updated as new

samples arrive.

A piecewise linear filter divides the input space into different regions and selects
the best linear filter for those inputs belonging to a particular region. Thus the overall
structure of a piecewise linear filter is of the form shown in Figure 13 and may be
described mathematically as follows. Let x denote the input space RL. Let

1> X2 -+ ., XN denote a partiion of the input space into N disjoint regions i.e.,

N
X=U X iNX=9 ¥ i#j where i,j=1,2,..,N. Let hy(k),...,hn(k) denote

i=1
the impulse responses of N FIR filters each of length L. If the input to the piecewise
linear filter at the k-th time instant is x(k) then the output of the i-th filter at the k-th
instant is given by
L

-1
yi =3 h; (G)x (k=j).
=0

J

The overall output of the piecewise linear filter at the k-th instant is given by

N
yh =% ¥ G Ik e x),

i=1
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where x (k) = [x(k),...,x(k = L + 1)]” and I(-) is an indicator function.

In the adaptive version of the piecewise linear filter, the domains 7;, the filters
h;(k), and the number of domains and filters N keep changing as new samples arrive.
In order to obtain the adaptation in an efficient manner, we adopted a tree-structured
approach. We next describe in detail what a tree-structured piecewise linear filter is.
We start by briefly discussing some basic definitions and terminologies associated

with a binary tree graph (see [51] for more details about tree graphs).

A (binary) tree can be defined as a finite non-empty set T of positive integers and
two functions left(-) and right(-) from T to Ty (0}, which together satisfy the
following two properties :

) For each t € T, either left(t) = right(t) = 0 or left(t) > t and right(t) > t;

(i)  For each t € T, other than the smallest integer in T, there is exactly one se T
such that either t = left(s) or t = right(s).

For each' node t € T, left(t) and right(t) simply indicate the left and right nodes which

branch out from t (or are both zero if t is a terminal node).

The minimum element of a tree T is called the root of T, denoted by root(T). If
s, te T and t = left(s) or t =right(s), then s is called the parent of t and t is called an
offspring of s. A node s is called an ancestor of a node t if
s = parent(t) or s = parent(parent(t)) or - --. A node t is called a descendant of a node
s if s is an ancestor of t. The depth of a node t is the number of ancestors of t. A node
t is called a terminal node if it is not a parent, that is, if left(t) = right(t) = 0. Let T
denote the collection of terminal nodes of T. The elements in T~T are called

nonterminal nodes.
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For a nonempty subset T of T define left;(-) and right; (-) from T, to Ty U {0}
by lefty(t) =left(t) if left(t)e Ty, right;(t)=right(t) if right(t)e T; and
lefty (t) = right; (t) = O otherwise. T, is called a subtree of T if the triple T, left; (),
right;(-) forms a tree. Given te T, the collection T, consisting of t and all its
descendents is called the branch of T stemming from t. It is a subtree of T.

A subtree T; of T is called a pruned subtree of T if root(T;) = root(T), i.e., if Ty
and T share the same root node; this is denoted by Ty < T. It is seen that < defines a
partial order on the pruned subtrees of a tree. A tree, a subtree and a pruned subtree
are illustrated in Figure 14.

To construct a tree-structured piecewise linear filter (or more precisely a family
of piecewise linear filters) we start with a fixed binary tree T,, and for each node
te T, we specify a tap weight vector ¢, =[c(0),...,c(L-1)), an offset d; and a
threshold 6, (actually, there is no threshold 8, associated with terminal nodes t € 'i‘o,
and in many problems there is no offset d, for t=root(T,) ). We then associate a.
piecewise linear filter with each pruned subtree T <T, as follows. Let x be an input
vector, i.e., x € % =R Then each node t e T, is associated with the linear filter

Y= ¢ x+di,
and each pruned subtree T < T, is associated with the piecewise linear filter
y1 =Y,
where t« is the terminal node in T obtained by starting at the root node and using the
rule
¥, >0, go toright(t)
¥ <6, gotoleft(t)
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Observe that this procedure implicitly specifies the (polygonal) domain %, of the linear
filter ¥, at node t. We can write
jr=9; ifxexandteT,
i.e., yT is just the output of the linear filter at node t if t is a terminal node of T and the
input vector x lands in t.
A basic tree T, along with tap weights c,, offsets d;, and thresholds 6, for a

family of tree-structured piecewise linear filters of length 2 is illustrated in Figure 15.
The family of pruned subtrees generated by T, and the associated partitioning of input
space is shown in Figure 16. Note that there are three piecewise linear filters
corresponding to the three possible pruned subtrees, namely T={1}, T=(1,2,3} and
T={1,2,3,4,5}. The root node pruned subtree T={1} corresponds to a linear filter :
Yy =%

The pruned subtree T={1,2,3} with terminal nodes T= {2,3} corresponds to a
piecewise linear filter comprised of two linear filters restricted to polygonal domains

(one filter for each of the terminal nodes) :
V.23) =92 ifxe x2
=y ifxe x3

Here the domains %, and y3 are given by yx;={x:y;<-0.03} and

X3 ={x:¥y1 >—-0.03}. The pruned subtree T={1,2,3,4,5}) with terminal nodes

T = {2,4,5) corresponds to a piecewise linear filter comprised of three linear filters

restricted to polygonal domains (again, one filter for each of the terminal nodes) :
V123,45 =2 ifxe x2

=4 ifxe x4
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~ Figure 15. A Tree-Structured Piecewise Linear Filter
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=ys ifx € s

Here the domains Y3,%s and s are given by ;= {x:¥; £-0.03},
X4 ={x:y1>-0.03, §3 0.7} and ys = {x:y; >-0.03, §3 >0.7}). In general, it is
seen that for any given pruned subtree T of T,, the corresponding piecewise linear
filter is determined by the linear filters §, and polygonal domains %, at the terminal

nodes te T. Furthermore the linear filter y, is determined by the weights ¢ and
offsets d; at the node t, whereas the domain y, is determined by the weights Cs, offsets
ds and thresholds 6 at the ancestor nodes s of node t.

In the above description of a tree-structured piecewise linear filter we specified
two parameters d; and 6, at each node which we referred to as the offset and
threshold, respectively. It is an important observation that we cannot combine these
parameters into a single parameter without restricting the structure of the piecewise
linear filters corresponding to the pruned subtrees. The point here is that the basic tree

T, along with tap weights ¢, offsets d, and thresholds 6, actually corresponds to a

family of piecewise linear filters, one for each pruned subtree T of T,. The idea is to
select the right-sized pruned subtree so as to avoid overfitting the data (this is
analogous to selecting the right number of linear segments in Figure 12); a major
advantage of the tree-structured approach is that the right-sized pruned subtree can be
selected efficiently (see Chapter 4). In order to allow enough flexibility to determine

appropriate values for ¢;, d; and O, without knowing whether the node t will

eventually be selected as a terminal node, we allow both d, and 6, to be nonzero. We

proceed by choosing c; and d; to yield an appropriate filter assuming t will be selected

as a terminal node, and then choose 8; to yield an appropriate split assuming t will be

selected as a nonterminal node; details are discussed in Chapter 4.
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CHAPTER 4
TRAINING A TREE-STRUCTURED PIECEWISE LINEAR FILTER

In the previous chapter we discussed the structure of a tree-structured piecewise
linear filter. In this chapter we specify training algorithms for adaptively updating the
tap weight vectors, offsets and thresholds, and selecting a pruned subtree and the

corresponding piecewise linear filter.

Recall that we are considering a family of piecewise linear filters which are in
one-to-one correspondence with the pruned subtrees of a basic binary tree T,. Let x
be the input vector to the filter. Using the notation introduced in Chapter 3, each node

te T, is associated with a linear filter

and each pruned subtree T < T, is associated with a piecewise linear filter

=%,
where t« is the terminal node in T which is arrived at starting from the root node and
using the rule

¥: > 6, go to right(t) 4.1

¥:£6, gotoleft(t).
Also recall that we write

yr=9, ifte Tandxe 7%,
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We shall describe adaptive algorithms for selecting suitable c,, d; and 8, for
te T,, and also a suitable T<T,, based on a sequence of training samples
x&K), yk), k=0,1,..., where x(k) is the input vector and y(k) is the desired signal at
time instant k.

In the sequel, we shall derive our training algorithms under the assumption that
x(k), y(k), k=0,1,..., are jointly stationary random sequences with (x(k), y(k)) jointly
distributed like (x, y). By appropriately selecting gain parameters, the tree-structured
filter should be able to track sufficiently slowly varying nonstationary sequences.

When a training sample is presented to the tree-structured filter, it is used in two
steps which we shall refer to as "tree growing" and "tree pruning”. To start things off,
the training sample is propagated down the tree. In the tree growing step the tap
weight vectors, offsets and thresholds are updated at each node. In the tree pruning

step, the selected pruned subtree and corresponding piecewise linear filter is updated.
More precisely, let c.(k), di(k), B;(k) be the selected values of ¢, d;, 6

respectively, and let T(k) be the selected pruned subtree of T,, based on the first k
training samples (x(i), y(i)), i=0, 1, ..., k-1. Now fort € T, let

Fe () = c,(0)'x(k) + dy (k)
The k+1-th training sample (y(k), x(k)) is propagated down the tree T, from root node
to terminal node according to the rule

yi(k) > 6,(k) go toright(t)

vi(k) £6,(k) go to left(t)
As the training sample propagates down the tree, the values of Ci(k), dy(k), B (k) are
updated to ¢i(k + 1), dy(k + 1), 6,(k + 1), respectively, during the tree growing step,

and then the selected pruned subtree T(k) is updated to T(k+1) during the tree pruning
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step.
We shall specify optimization problems whose solutions are certain values of Ce»
d;, and 6, which shall be denoted as c_: ,d;" and @;", for te T,. We shall also specify

an optimization problem whose solution is a certain pruned subtree T* of T,. We then
describe the tree growing and pruning algorithms which recursively generate

estimates c,(k), d;(k), 8,(k) and T(k) of ¢; , d,", 6; and T" respectively.

We shall make use of the following notation. Let %,(k) and x: denote the

(polygonal) domains corresponding to the decision rule (4.1) with ¢, dy, 6, replaced

by c¢(k), dy(k), 6, (k) and ¢, , d; ", B; , respectively. Also, forte T, and T < T, let
Yt (k) = ¢ (k)'x(k) + dy (k)
Jr () =5, &) ifte Tand x(k) € % (k)
Jek) =c¢; 'x(k) +d;",
JH) =50 ifte Tandx(k) € %
and
g =c x+d,
Yr =9t ifte Tandxe ¥y, . |
It will be convenient to denote E{ - |x € x:} by E,{:}, P{: |x e x:} by P,{-}, and
Covi{-,-} =Cov{ -,- |x € x: }, i.e., P, E; and Cov, denote the conditional probability,

expectation and covariance given the input vector passes through node t, respectively.

We discuss tree growing and tree pruning in detail below. A summary of the

overall algorithm is given in Figure 17.



Initialization :
1
p(O) = W’
¢ (0)=0, d(0)=0, 6,(0) =0,

Update :
Let (x(k), y(k)) be the k+1-th training sample.
Let ¥; (k) = ¢, (k)’x(k) + dy (k)
Propagate the training sample from root node to terminal node according to
yi(k) > 0,(k) go to right(t)
yi (k) £ 0,(k) go to left(t)
If the training sample passes through node t
ek + 1) = ¢, (k) + p(y(k) - Fr (k)x (k)
d(k + 1) = d (k) + Ry (k) ~ §: (k)
0. (k + 1) = 6,(k) + p(y(k) - 6.(k))
prtk + 1) = py(k) + u(1 - p(k))
ek + 1) = .0 + Ry (K) — 51k — ek
If the training sample does not pass through node t
ck+ D=cik)
dy(k + 1) =d. (k)
0.k + 1)=0,(k)
pe(k + 1) = pr (k) — ppe(k)
gk+1)=¢g(k)
Generate T(k+1) using the pruning algorithm,

Figure 17. Summary of Training Algorithm.
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4.1 Tree Growing

We discuss the weight and offset adaptation, and the threshold adaptation

separately.
4.1.1 Weight and Offset Adaptation

Here we (inductively) define the optimal tap weight vectors Eg and offsets d," for
te T,, and specify algorithms for estimating them. Suppose that 93* , ds, 8" are
defined for all ancestors s of a node t € T, (and hence x: is defined). We choose c_:
and d,” to minimize the mean square error (MSE) between the true conditional filter
output ¥, and the desired signal y, given that the channel output vector x passes
through the node t, i.e., we choose c_:g and d,” to minimize

& =El G-y’
with respect to ¢, and d..
We sequentially estimate the values 3? and d,” based on the training sequence

using an approximate stochastic gradient algorithm :
ck+ 1) =ck) + 1 (y(k) = §i (k) x(k) Ix(k) & x:(K)), (4.2)
di(k + 1) =dp(k) + p (y(k) = §1 (K)) Ix(k) € x:(k)), 4.3)

where the gain parameter p is a small positive number and c(0)=0, d,(0) =0. Note

that these are indeed approximate stochastic gradient algorithms for minimizing e,

over ¢, and d, : the instantaneous gradient of € with respect to ¢, (for example)
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evaluated at X = &(k), y = y(k) and V=3 &) is
—(2/p:' ) (y(k) = v, (k) x(k) I(x(k) e x: ). However for large k, y(k) should
presumably be close to %: . These approximations allow us to update the node
parameters for all nodes in the tree with each training sample, i.e., it is not necessary
to wait until the node pérameters of all the ancestors of a given node have converged
in order to update the given node parameters. Finally, note that in the fully adaptive

mode, y(k) is replaced by §(k) = dec(¥r(x) (k) in (4.2) and (4.3).
4.1.2 Threshold Adaptation

Here we (inductively) define the optimal thresholds 0, for te T,, and specify
algorithms for estimating them. Suppose that c_; ,dg', 8," are defined for all ancestors s
of anode te T, (and hence x: is defined) and also c_:' and d,” are defined (and hence
yt is defined). Let {(t) =feft(t) and r(t) = right(t). We proceed by showing that a
partition %y and X% of . is optimal in a certain sense, and then showing that
x*o(l) and x*,(‘) approximate %% and ¥y, respectively, in a certain sense for suitable
choice of 8, .

Suppose we require that the probability that the input vector x passes through
node {(t) given it passes through node t is 1/2. This keeps the tree balanced. Suppose
we also require that the filter outputs ¥o«y and ¥y be easy to fit to the data over their
respective domains Xy, and X in a suitable sense. A reasonable way to implement
this is by choosing Xy« and Y to minimize the mean conditional variance of the
desired signal y given only the knowledge of whether the channel output vector x

passes through node ((t) or r(t), given that it passes through node t. Let % be the o-
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field generated by the events {x € ¥y} and {X € Yr()}. To condition on—yt’ is to know
whether x passes through {(t) or r(t). Formally, for each nodete T, — 'T‘o we want to
minimize

E (Var(y 14)) (4.4)

over partition Yoy and Y of ¢ subject to the constraint that

1
=. 4.
> (4.5)

P{xe o) =Pi{x€ %y} =
In the Appendix (Section 4.4) it 1is shown that the partition
Yo =6 % Elylx=8) —E(y} S0}, X% = (§ & %’ :E(ylx =8} ~E:(y} >0} in fact
minimizes (4.4), provided it satisfies (4.5). Note that E{y|x} is a conditionally
unbiased estimate of E,{y}, i.e., E/{E{ylx}} =E.{y}). Hence it is reasonable to
believe that X%« and X’y will approximately satisfy (4.5). Now we know that yE(x)
is the optimal affine estimator of y based on x in the MSE sense and E{y|x} is the
Optimeil nonlinear estimator of y based on x in the MSE sense. Put another way, 3¢ (X)
is a wide sense version lof E{y|x]} (see [52]). Hence we can interpret x*o(t) and x*,(t)
as wide sense versions of %) and X’y respectively, if we take 8, =E.(y).
The conclusion of the above discussion is that it is reasonable to take 8, = E; {y].
Now 6, will (trivially) minimize the cost function
o =E, (8, - y)?)
over 9,. We sequentially estimate the value of 8, based on the training sequence using

an approximate stochastic gradient algorithm :

B:(k + 1) =8, (k) + p (y(k) — O (k) I(x(k) € %:(k)) (4.6)
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where the gain parameter { is a small positive number and 6,(0) = 0. Note that this is
indeed an approximate stochastic gradient algorithm for minimizing o, over 6, : the
instantaneous gradient of o with respect to 6, evaluated at x = x(k), y=y(k) and
8, = 0,(k) is —(2/p;) (y(k) — 8,(k)) I(x(k) € % ). However for large k, ¥.(k) should
presumably be close to v.. As with the tap weight and offset adaptation these
approximations allows us to update the node parameters for all nodes in the tree with
each training sample, i.e., it is not necessary to wait until the node parameters of all
the ancestors of a given node have converged in order to update the given node
parameters. The validity of these assumptions are verified by analysis (Chapter 5) and
numerical experiments (Chapter 6). Also note that the offset adaptation (4.3) is
different from threshold adaptation (4.6). This is consistent with the need for both of
the parameters d; and 6, corresponding to the uncertainty whether node t will
eventually be selected as a terminal node, as discussed in Chapter 3. Finally, note that

in the fully adaptive mode, y(k) is replaced by (k) = dec(¥1() (k)) in (4.6).

4.2 Tree Pruning

Here we define an optimally pruned subtree T* of T, and specify an algorithm
for estimating it. We choose T* to minimize the mean square error (MSE) between the
optimal piecewise linear filter output § and the desired signal y, i.e., we choose T to
minimize

ef =E((G7 -y))
over all pruned subtrees T of T,. Note that we can decompose eT* as

* %* *
ET= ) & It
te T
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where

& =E (G -9
and
pr =P{xe /).
as before. Let &,(k), p.(k) denote estimates of € and p: » respectively, based on the
first k training samples. We estimate T* by the pruned subtree T(k) which minimizes
the "estimated” MSE
er@= % & pk)

teT
over all pruned subtrees T of T,. This approach avoids overfitting the finite amount of
data used for training up to time k. For small k, T(k) will typically be the root node of
T,, corresponding to a linear filter being optimal for small data sets; for large k, T(k)
will usually be a nontrivial pruned subtree of T,, corresponding to a piecewise linear
filter being optimal for larger data sets. We next derive the estimates of p,(k) and
g.(k).
First observe that pf will (trivially) minimize the cost function
B =E{(p.~Ix e )’}

over p,. We sequentially estimate the value of p; based on the training sequence using

an approximate stochastic gradient algorithm
Pe(k+1) = py(k) + px(k) € x:(k)) = p:(k)) 4.7)

where the gain parameter W is a small positive number and the p,(k)’s are initialized to

the probabilities of a balanced tree,

1

pl(o) = 2depth(t) .
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Note that if g <1 then p,(k)’s are valid probabilities, ie., 0 <p (k) <1 for all te T,
and Zte ,-l-,pt(k)=1 for all T<T,. Also note that this is indeed an approximate
stochastic gradient algorithm for minimizing (3, with respect to p;: the instantaneous
gradient of {, with respect to p, evaluated at x=x(k) and p,=pi(k) is
—2(1(_75(k) € x: ) — pi(k)). However for large k, x.(k) should presumably be close to

*

At -
Now €, will (trivially) minimize the cost function
%=Ede~Gr-»))
over £,. We sequentially estimate the value of g based on the training sequence using

an approximate stochastic gradient algorithm:
g (k+1) = g (k) + 1 (1 (k) — y(k))2 - & (k) Ix(k) € X (k) (4.8)

where the gain parameter | is a small positive number. Note that this is indeed an
approximate stochastic gradient algorithm for minimizing Y, over & : the
instantaneous gradient of 7y, with respect to € evaluated at x=x(k), y=y(k),
5 =200 and & =e,() is ~2/p}) (G2~ y() ~ (k) I6x(k) € 7). However
for large k, §; (k) and % (k) should presumably be close to ¥¢ (k) and x: , respectively.
In the fully adaptive mode y(k) is replaced by y(k) = dec(}r(k) (k)) in (4.8).

Given p(k), g (k) for te T,, the following simple and efficient algorithm

generates T(k) from T, (see Chapter 3 for tree notation).
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4.2.1 Pruning Algorithm

Assume T, has M nodes t; <t; <..<ty. Let {(t) =left(t) and r(t) = right(t) for

te T,.

T=T,
for t=.tM, v 11
(if te T then
8, = &, (k)p (k)
if te T-T then
{8 =8y + Bry
if g(k)p(k) <93, then
{T e T=(Towy U Trr)
¢()=0, r(t)=0
6, =& (k)pi (k) }}}
Tk)=T a
The pruning algorithm described above is essentially a bottom-up algorithm that
starts from the terminal nodes and proceeds up the tree, pruning away branches. The
pruning algorithm actually generates the smallest optimally pruned subtree, i.e., if T
also minimizes er(k) over T < T, then T(k) < T". The existence and the properties of
smallest optimally pruned subtrees are discussed in [51]. Various pruning algorithms
(including the one mentioned above) have been used to design tree-structured

classifiers[51, 53] and vector quantizers{54, 55].
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4.3 Implementation Issues and Remarks

¢y

()

3

Observe that fi(k)’ d,(k), 6,(k), pi(k) and (k) are computed recursively and

must be updated with each training sample. However, T(k) is not computed
recursively and in fact need not be computed in the training mode. In the fully
adaptive mode T(k) need only be computed when it is reasonably thought to

have changed significantly.

It makes some heuristic sense to scale the gain parameters y in the update

equations for ¢(k), d,(k), 8,(k) and &,(k) so as to compensate for the unequal

probabilities that a training sample passes through a particular node. Note the
factor 1/p; multiplying the instantaneous gradient of the cost functions leading
to these update equations in this regard. One choice of nonadaptive scaling
would be to replace u by p/279Ph®; 3 choice of adaptive scaling would be to
replace | by wp.(k+1) (we scale by 1/p.(k+1) instead of 1/p (k) because if
x(k) € cstk then py(k+1) > p and the gain p/p,(k+1) is bounded).

We have assumed above that x(k) and y(k) are real valued. Suppose now that
x(k) and y(k) are complex-valued. In this case it can be argued that the binary
tree should be replaced by a quaternary tree, i.e., a tree in which each node has
four offspring. Let leftl(t), left2(t), rightl(t) and right2(t) denote the four
offspring of node t on such a tree. The training sample (x(k), y(k)) is now
propagated from root node to terminal node according to

Re[§; (k)] < Re[6,(k)], Im[§, (k)] <Im[B,(k)] go to leftl(t)

Re[y, (k)] < Re[6,(k)], Im[§, (k)] > Im[6,(k)] go to left2(t)

Re[¥, (k)1 > Re[6,(k)], Im[y, (k)] < Im[6,(k)] go to right1(t)
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Re(y, (k)] > Re[6,(k)], Im[¥, (k)] > Im[6,(k)] go to right2(t)
where Re[:] and Im(.] denotes the real and imaginary parts of the argument,
respectively. The remaining changes to the training algorithm are obvious and

we omit the details.

The tree-structured piecewise linear filter described above may be modified into
a tree-structured piecewise nonlinear filter by replacing the linear filter at each
node by a nonlinear filter. For example in the channel equalization application,
a tree-structured piecewise linear equalizer may be easily modified into a tree-
structured piecewise decision feedback equalizer by replacing the linear
equalizer at each node by a decision feedback equalizer. Thus the input vector
x(k) = [x(k),....x(k—L +D]

is replaced by

z(k) = [x(k + L),....,x(k),y(k = 1),...,y(k = L))
in the training mode, and by

z(®) = [y(k +L),...,y(&), 5k ~ 1),..., 5k — L)1’
in the fully adaptive mode where §(k) = dec(¥r) (k).
We point out that the basic tree T, should be chosen as large as possible subject
to hardware constraints. The pruning process will always select the right-sized
subtree and corresponding piecewise linear filter. A dedicated hardware éan be
configured to implement the tree-structured filter. The choice of a large basic
tree does not pose memory problems since the record associated with each node
occupies only a few bytes. With additional memory and a separate processing
unit allocated to each level of the tree it is possible to configure a parallel
architecture which allows samples at different levels of the tree to be processed

simultaneously. Due to the sequential manner in which samples traverse the
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tree, only one of the nodes at a particular level of the tree is processing an input
sample at any point in ﬁrﬁe. Hence, all that is required by this parallel
configuration is to be able to process the input sample at just one node within a
symbol interval. Thus the proposed tree-structured filter can potentially be used

in high data rate applications.

(6) The tree-structured piecewise linear adaptive filter was motivated by the
successful application of classification and regression trees to difficult nonlinear
and nonparametric problems{51]. However, although our tree-structured filter
bears some similarity to classification and regression trees, it is actually quite
different from a classification and regression tree. Here the terminal nodes are
not just assigned a class label or a regression value, but rather represent a linear
filter with restricted domain. It is also different in that classification and
regression trees are determined in a batch mode offline, whereas the tree
structured filter is determined recursively in real-time. On the other hand, like
classification and regression trees, our procedure does perform a sequential,
hierarchical partitioning of the input space. Also a pruning algorithm is used to

obtain a right-sized tree, i.e., a tree which neither underfits nor overfits the data.

4.4 Appendix

Let y and x be scalar and vector (R") valued random variables, respectively. Let
%> X1 and X2 be Borel subsets of R with x; «_x2 =% and %1 ~ X2 = 9, and let &/ be
the o-field generated by the events {xe %1}, {x€ %2}. In the sequel, it will be
assumed that all quantities are conditioned with respect to x € . It is required to

minimize E{Var{y|¥}} over % and Y% subject to the constraint
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P{xe x1 }=P(x€ %2 }=0.5. We shall show that X,° =(§: E{y|x=&} >E(y}},
x0°=1{8: E{ylx=&) <E(y}), is a  solution (assuming  that
P{xe x1° }=P{xe %2° }=0.5). Let4/° be the o-field generated by the events
(xe 1) (xe x°)
We want to show E{Var{y|%}} = E{Var{y|#°}}. From the identity
E{Var{y|¥}} = Var{y} - Var{E{y ¥} ]
it is enough to show that Var(E{y|¥)) <Var (E{y|¥°}}. Let
g(©=E{ylx=§}-E{y}. Note that x;°={§: g(€)>0}, x2°={§: g(® <0}.
Hence
Var(E(y|¥)) =E((E(y|¥) -E{y} *}
=E{E(E(y|x) - E{y} 1¥))*}

=E{E{g® ¥)?*)

E{g® | xe xN?*Plxex)
1

M

1

Elg®Ixe x))?Plxe x )

i
Me

1

1}

2
=2 3 Elg@Ixe w))
i=1

sinceP{xe x; }=05i=1,2.
It is enough to consider the following two cases (the other two cases are similar)
() E{g®Ixe x1)}>0,E{g®xex2)}>0

(i) E{g®Ixe x1)} >0, E{g ®WIlxe x2)} <0
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In the first case we have

2
Var(E(y[¥}} =2 T E{g ® Ixe x))?
i=1

1=

2
<2 3 Elg®Ixe g g ® >0}
i=1

X
<2(3 Elg®Ixe %, g @ >0)?
i=1

=2 E{g @1 x>0}
=2E{g®Ixe u°H?
< Var (E{y|¥°})

In the second case we have

2
Var{E{y|¢}} =2 3 Elg @ Ixe x))?
&

1

<2 [Elg @ Ix € 11, g X >0))?
+E(g® Ix e X2, £ © <O
<2 [Elg @ 1(E®>0)?+Eg®IE®<0)h?]

2
=2 Y E{g®Ikxe 5°)H?
&

= Var (E{y[¥°}}

(in the above cases we have used the fact that if E{Z} 20 then
E{Z)? < B({ZUZ 20)})?, and if E{Z} <0, then (E{Z)})? < (E{Z I(Z <0)})?). Hence

X1°, %2° do in fact have the asserted optimality property.
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CHAPTER 5
ANALYSIS OF THE TREE-STRUCTURED
PIECEWISE LINEAR ADAPTIVE FILTER

In this chapter we analyze the asymptotic (large time) behavior of the training
algorithm for the tree-structured piecewise linear filter described in Chapter 4. A
fundamental difficulty arises because the training data at a non-root node depends on
the unconverged parameters at its ancestor nodes. Hence the training data at a non-
root node filter has a complex nonstationary and dependent character, even with the
assumption of ii.d training data to the overall wee filter. A further difficulty in
analyzing the tree filter is the interaction between the tree growing and tree pruning
steps.

To see more precisely the difficulty in analyzing the training algorithm for the
tree-structured filter, consider the update equation for c.(k) (see (4.2)). This is a
standard LMS algorithm with training data {x)I(x(k) € % (k)), y(k)}. Note that the
domain %, (k) depends on the parameters c,(k), d,(k) and 8,(k) at the ancestor nodes s of
node t, and hence on {x@), y(i) : i < k}. Thus the training data for a non-root node filter
{(x®IxK) € 1 (&), y(k)} is indeed nonstationary and dependent even under the
assumption that the training data for the overall tree filter {x(k), y(k)} is i.i.d.

There is a large body of literature on the convergence analysis of LMS and
LMS-type algorithms with fixed gains and dependent data [56-60]. Consider the
standard LMS algorithm

ek + 1) = (k) + uy(k) — §R))x(K)
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For data with finite memory (i.e. M-dependent data) quasiconvergence of the weights
and outputs to the optimal Wiener solution in quadratic mean has been shown
assuming only the existence of certain moments of the inputs and outputs(39]. For
data with infinite memory (e.g., general strong mixing or asymptotically uncorrelated
data) similar convergence results have been obtained but require bounded
weights[60]. The actual algorithm that is analyzed in the latter case is a projected
version of the LMS algorithm which takes the form
ek + 1) = P(c(k) + p(y(k) - yK))x(K))

Here the operator P: RN — S projects the weight vector into a bounded region S
whenever it attempts to leave S.

Now consider the tree-structured filter with ii.d training data. As mentioned
above, even with this assumption the training data at a non-root node filter is both
nonstationary and dependent. Furthermore, it has infinitte memory and does not
obviously satisfy any of the standard dependence models (like strong mixing). The
actual algorithm that shall be analyzed here is derived from a penalized version of the
LMS algorithm w‘hich takes the form

ek + 1) = (1-p")e) + pyk) — FA)x(k)
The parameter p’ can be viewed as arising from the penalty cost function
E{(y- 9)2} + W’ ™1 [c|2. The advantage of the penalty versus the projection approach
for our problem is that it is much easier to implement and analyze, and does not
require prior knowledge of what region the optimal solution lies in. We are not aware
of any literature on penalized LMS algorithms of this type.

Hence the actual tfaining algorithm for the tree-structured piecewise linear filter

that we shall analyze takes the form (compare with (4.2), (4.3), (4.6), (4.7), (4.8))
Sulk+1) = (1 = e (k) + uy(k) - §. GNxEIEE) € %K)

dik + 1) = (1= p")d. (k) + w(y®) - FENIEEK) € %K)
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B (k + 1) = (1 — p")B, (k) + W(yk) — 8, &)Ix(K) & %K)

gk+1)=(1~ we k) + pu((yk) — 9z(k))2 - & (k)IEK) € x:(k)

pu(k+1) = p(k) + WIEK) € %K)~ pi(k))
Otherwise tree growing and pruning is exactly as described in Chapter 4. Note that the
update equation for p, (k) is unchanged here since p,(k) is bounded a.s.

We shall make the following assumptions :
(A1) (x(k), y(k)} is an iid random process with (x(k), y(k)) jointly distributed like
& y)

(A2) a’x has a bounded density function for all a#0
(A3) x and y have finite eighth order moments

Remark : To avoid trivialities we shall also assume p; > 0, Cov,{x} >0, Cov,{x,y} #0
for all t e T,, so that all of the tree parameters are well defined. In view of (A2) this is
equivalent to just assuming
Cov,{x,y} #0forallte T,.

This can be proved by induction on the levels of the tree. Indeed, suppose for node t
that p; >0 and Cov, {x} > 0. Then ¢; = Cov, {x}™! Cov,{x,y} #0 and so % =¢; ’x+d," is
a continuous random variable. Also E,{J}}=E(y}=6,". It follows that
P.{§%<8,"} € (0,1) and so p," >0 for s =I(t), «(t). Since g’x is continuous for all a=0,

Cov, {x} > 0 for s =0(t), r(t).

We shall prove the following theorem.

Theorem 1: Assume (Al)-(A3)and1<v<1+(1/5)4 depth(Te) Then
. - ne 2
limsup E{(¥rqo®) - 5 &) }=0M*) aspu—0,

where



The theorem asserts that there is quasiconvergence of the output of the selected tree
filter §pqy to the optimal tree filter % in quadratic mean. Note that the theorem
specifies that the output MSE is asymptotically upper bounded by a const.u® where
o< 1 and depends on the depth of the basic tree T, this is in contrast to linear filtering
which yields an upper bound const.u[2]. Also note that the theorem does not specify a
stability bound on u; this is again in contrast to linear filtering where stability bounds
on u (involving the eigenvalues of the input autocorrelation matrix) can be readily
determined[2].

The training algorithm for the tree-structured piecewise linear filter consists of a
collection of coupled difference equations at the nodes of a binary tree. Our approach
to proving Theorem 1 is to perform an order analysis of these difference equations at
the successive levels of the tree. As will be seen in the sequel, there is an interesting

interplay in the analysis between boundedness and convergence.

The proof of Theorem 1 is based on the following two theorems.

Theorem 2 : Assume conditions of Theorem 1. Then forT< T,

limsup E(Gr()) } =0@!~") asp— 0 (5.1)
limsup E(Gr(0) - 51K’ } =0@P) asp—0 (5.2)
where
B= %_ (1 -y +4-depd1(T°))

Theorem 3 : Assume conditions of Theorem 1. Then for T< T,

likmsup Ple'rgy > e} =OWP?) asp—0
—) 00
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Theorem 2 asserts bounds and convergence for the tree-structured filter 7 for a fixed
pruned subtree T of T,. This theorem is concerned with tree growing and is proved in
Section 5.1. Theorem 3 asserts the convergence of the MSE &'ry of the selected tree
filter §™rq) (with T(k) considered as fixed") to the MSE &' of the optimal tree filter

¥'r. This theorem is concerned with tree pruning and is proved in Section 5.2.

Assuming Theorems 2 and 3 are true, we prove Theorem 1 as follows. Here and
in the sequel Ky, Ky,... denote positive constants whose values can change from one

proof to another.

Proof of Theorem 1 : We have
E{G1o000) = 9% )’} = E{Grrag® = ' () 10 = £'1)] (5.3)
+ E{Gra0® - §'r 0) Le'rgo > €7))

Now if gy = € then it is not hard to see that §°rqy(k) = §*r (k). Hence using Theorem
2

E(Grao® =) Le'rgy =€)} <K, max E{(r() - )’}
=0O(uP) (5.4)
as k — e and w — 0. Also using Holder’s inequality and Theorems 2 and 3
E(Gro0® = §'r &) 1€’ > €]
<K ElGre®'} " +E(Gr0)' )™ Plehg > ) 2

A 4 1/2 * *
<Ks (max E{G1() '} + DP9 > €'}

=0 ~"7%) o)

t  ie. e"T(k)=E{(§"‘T(k)(k)—y(k))2 |§x} where §, is the o-field generated by
{x(), y() :i<k]}
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=0Mu%) (3.5)
as k — o and p — 0. Combining (5.3)-(5.5) completes the proof. a

The proofs of Theorem 2 and 3 in the sequel will be simplified by assuming
d,(k)=d,"” = 0. We can do this without loss of generality by considering the augmented
vectors (k) = (i (k)Y, d k)Y, §: =(c.’, d,"Y. There are a few details to be checked here

but we omit further discussion for brevity.

Also we shall frequently refer to the following fact about linear difference

inequalities which we state here for convenience and without proof.

Fact: Let (&} be a sequence of non-negative numbers which satisfies

Skt S (1 —a(w) + B (WG + %W, k=0,1,...

for some functions o), By (W), (W), n>0. Let

B = lign_ggp B (W), (5.6)
W) = ﬁl:n_fgp Y (W) ’ 5.7

If liminf,, _, o ct(i) > 0, limsup,, _, oo(1) < 1 and B(u) = o(c()) as p — 0, then

ﬁlfnjgp Ex = 0(%) aspu— 0. (5.8)

Remark : If the convergence in (5.6), (5.7) is uniform (in ) then so is the convergence

in (3.8). Furthermore, if limsup in (5.6), (5.7) can be replaced by sup, then

()
S?cpgk_o(a(u) +1) asp—0.
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5.1 Analysis of Tree Growing : Proof of Theorem 2

To establish Theorem 2 it will be seen that it is necessary to obtain good
estimates on the deviation between the true and desired domains where the linear
filters are active at each of the nodes. This will require good estimates of the absolute
as well as quadratic weight errors. This will in turn require good estimates on the

second and fourth order moments of the weights.

We will make use of the following Lemmas. It will be convenient to define
1K) =1(x(k) € %K),
17 k) =1(x(k) € %)
and

z.&) =1, - 1; (k).

Lemmal: Forte T,

limsup E{ |cu(®)| fr@E) ) =0@ ") asp—0 (5.9)

lLemma2: Forte T,

limsup E{ |¢u(k) - ¢f % + @k - 8,7} =0@™) asp—0 (5.10)

where

B, _-.%(1 — v + 4~ depthlt))

ILemma3: Forte T,

limsup E{ le® —ci | +16,k) -6, [} =0W™) asp—0 (5.11)

where



Vo= (400
Lemma4: ForteT,
limsup E( |z(k)| } =O@™) asp—0 (5.12)

Remark : Note that |z,(k)| = I(x(k) € % (k) Ax) where A is the symmetric difference

operator. Hence E{ |z,(k)| } = P(x(k) € %.(k) A ¢ } is the domain error mentioned above.

Lemmas 1-4 are proved below. Assuming these lemmas hold, we prove Theorem

2 as follows.

First consider (5.1). We have using Lemma 1

E(G109)'} =E(( I 50 1,6)")

te T
<Ky max E(Gi(0)")
<K; max E{ 1x1*} E(lc:®)]*)
=0u!~Y)

ask — o0 and p — 0, as required.

Next consider (5.2). We have using Holder’s inequality and Lemmas 2 and 4

E{Gr®) - §100) ) =E( (T il L) - 530 1700 )

le’f‘

<K; max E((G,09 1,00 - 9160 1700’
<Kz max E(Gi00 - $100)°) + E(G 102 ®)")
<K, max (B(12/%) E(le(0) - &f )

+1ef PE(xI 2 E{lz®014)'?)

<Ky max E(le@0 -gf I*) +E(1z®)1)1?)
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= 0P + ou") = OuP)

as k - - and p — 0, as required.

It remains to prove Lemmas 1-4. Note that Lemma 3 was not directly used in the
proof of Theorem 2 above but is necessary to establish the other lemmas and in fact
will be proved simultaneously with the other lemmas in an induction proof on the

levels of the tree T,,.

The proof of Lemmas 1-4 by induction proceeds as follows. We first note that

(5.9)-(5.12) are true for the root node t,. To see this observe that ¢, (k) (and similarly

8, (k)) are generated by (essentially’) the standard LMS algorithm with ii.d data
{x(k),y)} and E{|x|%} <o, E{y®} < =. Also since a’x is a continuous random variable
for all a=bf0 we must have E{xx’} > 0. It follows by similar analysis to[61] but

considering fourth means instead of quadratic means that

limsup E(J¢, () —gy'|* + 8,0~ 8,)*} =04?) asp—0 (5.13)
(5.9)-(5.11) (and trivially (5.12)) at the root node t, follow from.(5.13) and Holder’s
inequality.

Next suppose (5.9)-(5.12) are true for some nonterminal node te T,. Let

s =lefi(t) or s = right(t). We will establish the following sequence of propositions.
Proposition 1 :

lignsupE{lzs(k)I}=O(u2"') asp—0 (5.14)

Proposition 2 :

sup E( les() 2 + (0K} =0@!'~¥) asp— 0 (5.15)

T the only difference is the p¥ term and this does not affect the analysis since v> 1



sup E les@1* +(©,k)*) =0@¥!1 =Yy asp— 0

Proposition 3 :

limsup E{ |gs(k) - ¢’ 12+ B,(k)~6,")’} =o(1) asp — 0

Proposition 4 :

limsup E{ 125G +(8,())?) =0(1) asp —0

lignsupE{Igs(k)l“+(0,(k))“}=O(u"") asp— 0

Proposition 5 :

limsup E{|¢s(6) =41 + 0, = 8,")*} = O™) asp 0

Proposition 6 :

limsup E{|¢s(k)~ s | + 18,()~ 8" [} = O") as pp — 0
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(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

The idea behind Propositions 1-6 is as follows. First, the estimate of the domain

error (5.12) and the absolute weight and threshold errors (5.11) at the parent node t of

node s is used to obtain the estimates of the domain error at node s (5.14). Next an

estimate of the second moments of the weights and thresholds (5.15) is derived and

then used to obtain an estimate of the fourth moments of the weights and thresholds

(5.16). Next, the estimates of the domain error (5.14) and the fourth moments of the

weights and thresholds (5.16) are used to obtain the convergence in quadratic mean of

the weights and thresholds (5.17). Next the convergence in quadratic mean of the

weights and thresholds (5.17) is used to obtain a better estimate of the second



67

moments of the weights and thresholds (5.18), and consequently a better estimate of
the fourth moments of weights and thresholds (5.19). Finally the estimate of the
domain error (5.14) and the refined estimates of the second and fourth moments of the
weights and thresholds, (5.18) and (5.19), respectively, are used to obtain the final
estimates of the quadratic and absolute weight and threshold errors, (5.20) and (5.21),
respectively. It should be noted that the estimates of the absolute weight and
threshold errors (5.21) is not simply obtained from the estimate of the quadratic
weight and threshold errors (5.20) by, say, Holder’s inequality; observe that B, and not
Ys depends on v in this regard. The above procedure is fairly well optimized with
respect to obtaining the weakest conditions and best estimates in Theorem 2 and

ultimately Theorem 1. .

The proofs of Propositions 1-6 are given below. Assuming that the propositions

hold, Lemmas 1-4 follow by induction.

Proof of Proposition 1 :
First observe that |z,(k)| =I(x(k)e %, (k)Ax,) where A denotes symmetric

difference. Hence for any § > 0
E{1z,(0)|} =P{xK) € %K) A%}

SP(x® e xM Ax)
+P{E® € 000 N X% M @K Ay )]

<E{]z®|) +P{{H:R < 8,&) A (71K >6,"})
+P{7100 8.} A (7.0 > 8,(K)} }

SE(12®)]} +P{5:K) - 6,() - §(K) —6,")| = 5}
+P{15:.0) - 8, (K)| <8} +P{157) - 6,"| <)

SE(1z®[} +2P([5:() - 8,00~ (F1 (k) — 8,") | 2 3}
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+2P(|¥%(k) -8, | <28} (5.22)

Now as discussed in the Remark following Assumptions (A1)-(A3) we have

¢r #0. Hence ¢; ’x has a bounded density and so
P{1570) -8, | <28} =0(1) § (5.23)
Also by Markov’s inequality

P{15.(k) - 0,(k) - §1(k)—8,")| > 3)

1
5

<

E{15:0 - 501} +E(16,)~6,"|})

IA
oo —

E{IxNE{le® —cr |} +E{16,) -6, }).
Hence by (5.11)

%
P(15:0) - 8,00 - (F109- 8,1 > 8) = 28 (5.24)

ask—wandp— 0.

Substituting (5.12), (5.23), (5.24) into (5.22) gives

Y
E(lz,0)!} =0<u2">+_9(—g—)+o<1>a

as k — o and p — 0. Choose 6= um (this choice will minimize the right hand side of

the above equation). Then
E{lz,(K)|} = Ou*?) = ou®*)

ask—oeand u - 0. O

Proof of Proposition 2 :
¢s(k) and 6,(k) can be treated similarly; we only consider c(k). We have

gs(k+1) = (1 = p¥ —-ux@)x(k)'15(k) £5(k) + pyR)x(k) 1, (k)
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We first claim that forn=0,1,...,
les(k+1) |2 < (-1 =20 + o) u)*) [¢s)|1* + o yuk)* +2npvk)  (5.25)
as i — 0, where
uk) = [x®)| + [y&)| +1
and
vy = (=]xK)Yes(®) | + | y®)|) x(K)'es(k)1,(k)
The details of these expansions are omitted.

Next observe that forn=0,1,...,
E{v(k)|csk)|"}
= E{12KYes® 1 + |y®)]) [xK)Vea®)] |cs(k) | 1,(K))
SE{[(12®)'cs@)] + [y®1) 12KV es®) [ [es() 1,61 }
SE{ 1y 12K es k)| 1¢s®)® I xkYes®)| < 1y()1)}
<SE( 1y012 1eG017)
=E{lyI*} E{lcs®)["} (5.26)
Now taking expected values in (5.25) and using (5.26) gives
E{lcs(k+1)|2) S (1 - 21" + oW E{u*}) E{ | cs(k)[2)
+0(W)E{u*} + 2pE(y?}
=(1=2p" +o(u") E(|cs(k) |2} + O)

as p—0. Here we have used the independence of u(k) and c,(k), and also

E{uk)*} =E{u*} <K, E{|x|*} +E{y*}) < . It follows from the Remark following the
Fact that
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sng{lgs(k)l"} =0(u!~") asp—0. (5.27)
Now taking expected values in (5.25) and using (5.26) and (5.27) gives
E{lcs(+1) %} S (1 —4dp” + o(W)E{W?]) E(|cs(k)1*)
+o(W)E(u®) +4uE(y? )E{lcs )12}
=(1-4p" + oW E{|cs(k) |4} + 0@~ (5.28)

as p— 0. Here we have again used the independence of u(k) and c,(k), and also

E{uk)®} =E{u®} s K, E{I1x]8} +E{y®})) <. It now follows from the Remark

following the Fact that

2-v
P E( 15001} = O(E) =021 ™) asp — 0

Proof of Proposition 3 :

‘ ¢s(k) and 6,(k) can be treated separately and similarly; we only consider c,(k).

We have
Cs(k+1) = (1 = p¥ = px)xk) 1,k) cs(k) + py®)xk)1,(k) (5.29)
Let
s (k1) = (1 - ¥ — px@)xKY' 15’ K) ¢ (k) + py®xK)1, &) (5.30)
and define
es(k) = ¢s(K) - ¢4 k) (5.31)

esk)=cs (k) —cs (5.32)
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We first consider gs (k). Observe that ¢, (k) is generated by (essentially) the

standard LMS algorithm with iid data (x(k) 1,‘(k),y(k)} = {input,output}, and
E{|x]* 1} <o, E{y*} < . Also, since a’x is a continuous random variable for all a =0

and p, >0 we must have E{xx’1, } > 0. It follows by a similar analysis to[61] that

limsup E{les ®)|%}=0@) asp—0 (5.33)

We next consider ¢, (k). We have
gs(k+1) = (1 - p" = ux@x(k)’'1; k) es(k) (5.34)
= kx()x (k) zs (k)cs (k) + pyROxk)z, (k)
Hence
les( + 112 < (1 +0(wu)*) 15®) 1% - 2pe, ®)xMxK) e s(K)1, k)

+Oou®)? |z, (les@|2+1) (5.35)

as i — 0, where

uk) =1+ [x&)| + |yK)|
Let A, be the smallest eigenvalue of E{xx’l, } >0. Since e,(k) is ¥« measurable and

x(), y(k), 15 (k) are independent of f;
E{(1 +o(wuk)* |es®) |2 - 2pe, &Y xExKk) e, &)1 &)
=(1+o(WE(u*}) E{lgs(®)1?} - 24E (es(KYE(xx'1," }es (k)
< (1-2uA, + o) E{|es(k)|?} (5.36)
Hence taking expected values in (5.35) and using (5.36) and Holder’s inequality gives
E(lest+ DI} < (1-2pA, +0() E{ e« %)

+OW) E{u¥}'"? E{]2,()|2}® B{|¢s (k)| 4} +1)12
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S (1-2pA, +0(w) E{ | es(k) |2}
+ 0 E{12,(0) [ }'2 E{1cs®)[ )12 +1) (5.37)
as u — 0. Now using Propositions 1 and 2 we have
E{lgst+1)|?) £ (1-2ph, +0(W) E(|es®) %} +O@> ™" *%)
as k — == and u — 0. It follows from the Fact that

2-v+y,

: 2y (P
l;gsng{!gs(k)l }=0( m

y=0@' "%y asp -0
Since v < 1+ (1/5) 47 %PhT) we have 1 -v+%>0and so

limsup E{les®)|*}=0(1) asp—0 (5.38)

Finally, combining (5.33) and (5.38) gives

limsup E(|¢.(k) - ¢5'|*) <K limsup (E{les®)1%} +E( les'®)(*))

=0(1) aspu -0

Proof of Proposition 4 :
(5.18) follows immediately from Proposition 3.

(5.19) can be established by treating c,(k) and 8, (k) separately and similarly; we
only consider c,(k). Combining (5.18) and (5.28) gives

E{lcs®+1)|*} =(1 = ap” +o(u*) E{ [csK) |4} + oW
ask — e and u — 0. It follows from the Fact that

lignSUPE{lgs(k)l“}=0(ﬁ%-)=0(u1"") as jt — 0
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Proof of Proposition 5 :
¢s(k) and B8,(k) can be treated separately and similarly; we only consider ¢,(k).
Define ¢ (k) and ¢, (k) as in (5.31) and (5.32). Combining Proposition 1, Proposition 4
and (5.37) gives
E{les®&+ 1)) € (1 =2uA, +0(w) E{ |&s() |2} + Ou® v+ 2172,

ask — o and u — 0. It follows from the Fact that

W8V ]
likmsupE{lgs(k)lz}=O(————-L—L———)=0(u ') asp—0 (5.39)

Hence combining (5.33) and (5.39) gives

limsup E{|¢s(k) - ¢ |*) S Ky limsup E{|es (01} +E{ les’®)1*))
=0w>) asp—0

since B, < 1. O

Proof of Proposition 6 :
¢s(k) and 9,(k) can be treated separately and similarly; we only consider ¢, (k).

Define ¢, (k) and e, (k) as in (5.31) and (5.32).
From (5.34) we have
les(k + 1)] < [(1+0Guuk)*) lesk) 1% ~ 2ue (k) xExK)es K)15 (012
+ 0wk |z, (|cs®| +1) (5.40)
as i — 0, where
u®) =1+ [x()] + |yk)|

Let A > 0 be the smallest eigenvalue of E{xx’1, } > 0. Since gs(k) is ¥« measurable and

x(k), y(k), 1, (k) are independent of ¥ we can apply the conditional Jensen’s inequality
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to get

E{[(1 +o(u)*) | es () |2 ~ 2pe,s K)x(k)x(k)es (01, (k)12

S E{[E{(1 +o(wuk)®) | es(k)|? - 2ue, kY xK)xK) e, &)1, (k) | T, )11?)
=E{[(1 +o(WE{u*})|es(k)|? - 2ue, R E(xx'1, Jes &)]1?)

< (1-2uA + o) E{ g5 ()| }

=(1=pA; +o(MN E{ e )|} (5.41)

as >0 (in the last sfep we use (1+m)!2=1+n/2+0(m) as n— 0). Hence taking
expected values in (5.40) and using (5.41) and Holder’s inequality gives
E{lestk+1){} < (1-phy + o) E{ g5 (k)| )
+OWE(u*} 2 E{|z,() 12} E (1) |2} + )12
< (1= ph, + o) E{ e, ()|}
+ O E(1z,®)1}" E{le:®|%}'? + 1)

as p — 0. Now using Proposition 1 and Proposition 4 we have
E{les(e+ DI} < (1= phy + o) E g5 } + O! * %)
as k — o0 and p — 0. It follows from the Fact that

1+,
pl

limsup E{|es®)[ } = O( )=0@™) asp—0 (5.42)

Finally, combining (5.33) and (5.42) gives
limsup E([ () - ¢/’ |} < limsup (B{ les () ) +E{[e5'(0)|2}'2)
=0u*) asp—0

since v, < 1/2. O



75

5.2 Analysis of Tree Pruning : Proof of Theorem 3

To establish Theorem 3 we will make use of the following lemmas.

Lemma 5 : Forte T,
lignsupEua(k)l% D) (%) = 0¥ ="y asp — 0

Lemma 6 : Forte T,
limsup E{|&,00 & | + |p.G0—p; 1} =0u*?) asp — 0

Lemmas 5 and 6 are proved below. Assuming these lemmas hold we prove

Theorem 3 as follows.

Observe that since the number of pruned subtrees of T, is finite, there exists a

8> 0 such that if €7rq) > €'+ then €'y > €' + 5. Hence
P{e'rgy > €7 } =P{e"q > € + 5)
=P{e"700) ~ gy (k) > € ~ £70 (K) + 5}
SP{e'q) ~ e1g9(®) > € — e1 (k) + )

<P{|€q) — erg®) | + €% — e (k) | > 5}

<Pl X Iefp! - eon® > )

te T,
<K; maxP{|&/p; - &®©p0| > 21? -}
. . 5
<K P - -
< 1{23,1’,: {lek)—¢& | + Ip (k) p'|>2IToI(1+|e:l)}

since |py(k)| < 1. Hence by Markov'’s inequality

» * K2 » *
P{em)>er}5—§-gal,xE{let(k)—et [+ IpK)=p; |}



ask — oo and p — 0. Finally by Lemma 6

limsup P(e’q > 7} = OWP?) asp — 0
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It remains to prove Lemmas 5 and 6. Note that Lemma 5 was not directly used in

the proof of Theorem 3, but will be required to establish Lemma 6.

Proof of Lemma 5 :

Since |pi(k)| <1 we need only consider ¢, (k). We have

& (erD) = (1= ¥ ~ L () & K) + K5 0)° 1,60

where §,(k) = y(k) — §.(k).

We first claim that

e(er1)? < (1= 21" + 0(w) & K2 +0(t") (G0 + 1)+ 2pv(k)
as 4 — 0, where
V)=l ®] + 7K el LK.

The details of this expansion are omitted.

Next observe that
E(vi)} =E{]a®] +7K") la®)]| 1,6)
SE(Ila®] +5007) l6®] 1.6 )
SEGWO 16® Kla®| <5m0)
SEF®')
SKIE(y) +EG0')

<Ky 1+E{|a:®)|*)

Hence by Lemma 1

E{v(k)} =0m'~")

(5.43)

(5.44)
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ask 5 e and u - 0.
Now taking expected values in (5.43) and using (5.44) gives
E{e (k+1)*} £ (1- 21" +o(w) E{e,(®)?} + O(u*~")

as k — ee and p — 0. It follows from the Fact that

2-v
likn_x»supE{staoz}=0(”uv )=0W =) asp—>0

Proof of Lemma 6 :
& (k) and p;(k) can be treated separately and similarly; we only consider e, (k)!.
We have
& (D) = (1= ¥ = RLK) 80) + 17" LK)
where ¥(k) = y(k) - §:(k). Let
£ (1) = (1= ¥ — 1 () & (0) + 15 () 1K)
where §; (k) = y(k) - §1(k). Define
eu(k) = & (k) - & (k)
e ()= (k) -¢g
We first consider e; (k). Observe that & (k) is generated by (essentially) the -
standard LMS algorithm with iid data (1;(), 570’} = (input, output} and
E(151") SK(E{]x|%} < . Also E(1} =p; >0. It follows by similar analysis to[61]
that

limsup E{ |e; (®)|*} = O() asp—0 (5.45)

We next consider e, (k). We have

T Infact, since p(k) is uniformly bounded a.s., the analysis of p,(k) is easier
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ek + 1) = (1 - p’ = pi{ &) ey (k) = pz (k) (k)
FIFE00 200 + REX - 57 001K
Hence
leuk + 1)) < (1 =201 &) +o(u)'? e k)|
+ OQukR 2001 (16| + 1)+ O0WIFM) -5 @1 (5.46)

as L = 0, where
u) =1+ |xK)| + [y}

By Jensen’s inequality
E{ (1 -2ul (k) +o@)? } SE{(1 -2u1; k) +o@) }'?
=(1-2up;, +o)"?

=1-up; +o(u) (5.47)

as L —0 (in the last step we use (1+n)2 =1+n/2+0m) as 1 — 0). Hence taking
expected values in (5.46) and using (5.47) and Holder’s inequality gives

E{lek+ 1)1} < (1 - pp + o) E{]ek)|)
+OWE(u*}'? E{|2®) 1%} E(e®?} + 1)'?
+OWE(F® -5’1}
< (1 -pp; +o(W) E{|ey(k)|)
+ 0@ E(12®) 117 Ele&)?}'? +1)
+OWE(7® - 501} (5.48)
as 1 — 0. But by Holder’s inequality and Lemma 2
E(15:00 - 500" 1)

SE{15:&) + J ®)|[7:(k) - §7 @) [}
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<K B2 +E(15001) 7 +E(5®15) B(G0 - 760
SKy 1 +E{]c® %)) Ef [cik) —cf |2} R
=owh? (5.49)

as k — = and p — 0. Hence combining (5.48) and (5.49) and using Lemmas 4 and 5

we get
E{lek+1)]} < (1-pp, +o(W) E{[e,k)|}

a8 k—o and pu—>0. Since v<1+(1/54 depth(Te) it s easily verified that
1-v+v >B./2. Hence

E{lek+1)|} < (1 -pup; +om) E{ e, (k)| } +0q' P72
ask — e and u — 0. It follows by the Fact that

p' B2 B2
limsup E{ e, ()|} =O(——u—)=0(u ) aspu -0 (5.50)

Finally, combining (5.45) and (5.50) gives
limsup E{]&,(k) - & |} < limsup E{le,(k)|} +E{ |e (0)12}'?)

=o™®) asp—0

since B, < 1. 0
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CHAPTER 6
EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter we present results of computer simulations which compare the
performance of the proposed tree-structured piecewise linear adaptive filter with that
of existing linear and polynomial (truncated Volterra series) adaptive filters in the
applications of channel equalization, echo cancellation and speech coding. The tree-
structured filters were trained using the the proposed algorithm in Chapter 4, and the
linear and polynomial filters were trained using the LMS-type algorithms described in
Chapter 2. We also compare the computational complexity and convergence rate of

the tree-structured filter and the polynomial filters.

6.1 Channel Equalization Application

In this section we present results of computer simulations which compare the
performance of a tree-structured piecewise linear equalizer with that of linear and
polynomial equalizers, and also the performance of a tree-structured piecewise

decision feedback equalizer with that of a standard decision feedback equalizer.

In our simulations[62], we considered binary PAM signaling through an
equivalent discrete-time channel with z-transform
G(z) =0.227 + 0.460z™" +0.68827% + 0.460z™> +0.227z*. This is a reasonable
model for a channel encountered in communication systems with severe ISI (| G(e/?)|

has deep nulls) [7]. The channel is corrupted by additive white gaussian noise, which
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is independent of the information sequence. Each information symbol is +1

(independently) with probability 0.5.

A filter of length L =11 was used for all equalizers. For the polynomial
equalizers, polynomials of order q <3 were considered. For the tree equalizers, a full
tree of depth d =35 was chosen as the basic tree T, (these choices will be discussed
further). All of the simulation results to be presented were obtained by averaging over

an ensemble of 200 equalizers with independent data.

In Figures 18 and 19 we show the output MSE as a function of time (up to 5000
iterations) for the linear, second order polynomial, third order polynomial and tree-
structured piecewise linear equalizers for SNRs of 10 dB and 20 dB. For each type of
equalizer and SNR, the gain | was chosen to be about one-half the value where
unstable behavior first occurred. In Figure 20 we show the probability of error as a
function of SNR after about 40,000 iterations when all of the equalizers have
converqu. We make several observations. First, it is clear that a nonlinear equalizer is
necessary to achieve a small asymptotic probability of error. Second, it is also clear
that higher order polynomial equalizers have lower asymptotic probability of error but
converge more slowly ( more precisely, higher order polynomial equalizers require
much smaller gains p for stability which limits the rate of convergence). Indeed, the
second and third order polynomial equalizers have a higher output MSE than the
linear equalizer even after 5000 iterations, although their asymptotic error rates are
much smaller. Next, it is seen that the tree-structured equalizer initially converges
about as fast as the linear equalizer and from then on converges much faster and to a
much lower probability of error. Finally, it is seen that the tree-structured piecewise
linear equalizer converges much faster and to a significantly lower probability of error

than the second or third order polynomial equalizers. In fact, it is verified that no
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combination of the linear, second and third order polynomial equalizers performs as
well as the tree-structured piecewise linear equalizer, either in terms of rate of
convergence or asymptotic probability of error. Fourth and higher order polynomials
exhibited extremely high computational complexity and low rates of convergence. A
detailed discussion comparing computational complexity and convergence rates of the

tree-structured piecewise linear filter versus polynomial filters is given in Section 6.4.

In Figures 21 and 22 we show the output MSE as a function of time (up to 5000
iterations) for the decision feedback and tree-structured piecewise decision feedback
equalizers for SNRs of 10 dB and 20 dB. For each equalizer and SNR, the gain pu was
again chosen to be about one-half the value where unstable behavior first occurred. In
Figure 23 we show the probability of error as a function of SNR after about 40,000
iterations when both of the equalizers have converged. It is seen that the tree-
structured piecewise decision feedback equalizer initially converges about as fast as
the decision feedback equalizer and from then on converges much faster and to a
significantly lower probability of error (about 6dB for an error probability of 10! and
about 2dB for an error probability of 1072),

6.2 Echo Cancellation Application

In this section we present results of computer simulations which compare the
performance of a tree-structured piecewise linear adaptive echo canceler with that of
linear, second-order and third-order polynomial types of adaptive echo cancelers

[12,17,63].

In our simulations [64] we considered an echo path which consisted of a

memoryless nonlinear system followed by a linear and another memoryless nonlinear
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system as shown in Figure 24. The two nonlinear systems correspond to the
compressor and expander shown in Figure 10 and the linear system corresponds to the
hybrid and other associated circuitry in the telephone network [30]. A typical mu-law
compressor and expander characteristic with mu = 255 was chosen for simulation and
the linear system is assumed to have an impulse response[10]
gk)=e 0%k k>0,

This is a reasonable model[30] which takes into account the presence of compander
for nonuniform quantizé.tion of speech signals in digital telephone networks. As stated
in introduction (also see [13]), the volume dependent gain characteristics of these

companders is a major source of nonlinearity in the echo path.

In Figure 24, x(k) is the speech signal from the far end speaker, n(k) constitutes
the speech signal of the near end speaker and/or noise generated in the hybrid, and
y(k) is the output signal of the echo path in the telephone network. n(k) is generated
indepqﬁdently of the input x(k) to the echo path. x(k) is also fed as input to the
adaptive filter and the adaptive filter is trained to minimize the mean square

error(MSE) between the outputs of the echo path and the adaptive filter.

A filter of length L=10 was used for all echo cancelers. For the tree-structured
echo canceler, a full tree of depth d =5 was chosen as the basic tree To,. All of the
simulation results to be presented were obtained by averaging over an ensemble of

200 echo cancelers with independent data.

In Figure 25 we show the output MSE as a function of time (up to 4000
iterations) for linear, second order polynomial, third order polynomial and tree-
structured piecewise linear echo canceler for an SNR of 10 dB. For each type of echo
canceler, the step size |1 was chosen about one half the value where unstable behavior

first occurred. In Figure 26 we show the asymptotic MSE as a function of SNR after
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about 20,000 iterations when all the echo cancelers have converged. We make several
observations. First, it is clear that nonlinear adaptive cancelers are necessary to cancel
echos on nonlinear echo paths. Second, it is also clear that higher order polynomial
echo cancelers have lower asymptotic MSE but converge more slowly. Indeed the
second and third order polynomial echo cancelers have a higher output MSE than the
linear echo canceler even after 1500 iterations, although their asymptotic MSE is
smaller. Next, it is seen that the tree-structured echo canceler initially converges
about as fast as the linear echo canceler and from then on converges much faster to a
lower asymptotic MSE. It is also seen that the tree-structured echo canceler converges
much faster and to a significantly lower asymptotic MSE than the second or third

order polynomial echo canceler.

6.3 Speech Coding Application

In this section we present results of computer simulations which compare the
performance of a tree-structured piecewise linear adaptive predictor with that of
linear, second-order and third-order polynomial types of adaptive predictors for
speech-type signals.

Numerical experiments were performed on real as well as synthesized speech
data[65]. Real speech data consisted of a speaker uttering the vowels a, e, i and u.
Synthetic speech was generated using the simplified model of Figure 11(b). An
impulsive train with a period of 10 milli-seconds was used for voiced speech and
white Gaussian noise was used for unvoiced segments of the speech signal. A
nonlinearity of the form a;exp(~|a;x|) was introduced in the system to represent the

nonlinear glottal impedance in the speech production model. The sequences {a; } and
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{ap} were dynamically generated every 50 milli-seconds using a first order auto-
regressive (AR) model driven by two independent white noise sources wj(k) and
wa (k), i.e.,
a (k) = 0.4a; (k—1) + wy (k)
ay(k) = 0.4a5 (k—1) + wy (k).
A filter of length L=12 was used for all predictors. For the tree-structured

predictor a full tree of depth d=6 was chosen as the basic tree T,,.

In Figures 27 and 28 we show the learning curves (upto 4000 iterations) for
linear, third order polynomial and tree-structured piecewise linear adaptive predictors
for real and synthetic speech data, respectively (the learning curve for second order
polynomial predictor has not been included since it overlaps considerably with the
learning curve of the linear predictor). For each type of predictor, the gain j was
chosen to be about one-half the value at which unstable behavior first occured. In
Figures 29 and 30 we show the SNR (defined as the ratio of power in input signal to
the power in prediction error signal) in dB versus the filter length for linear, second
order polynomial, third order polynomial and tree-structured piecewise linear adaptive
predictors for real and synthetic speech data, respectively. We make several
observations. First, it is clear that nonlinear predictors perform better than linear
predictors for prediction of speech-type signals. Second, although higher order
polynomial predictors yield higher SNRs, they also converge very slowly. Indeed the
second and third order polynomial predictors have higher MSE than the linear
predictor even after 4000 iterations although their asymptotic MSE is smaller. Third,
the tree-structured predictor initially converges about as fast as the linear predictor
aﬁd then converges to a much smaller asymptotic MSE (higher SNR). It is also seen

that the tree-structured predictor converges much faster and to a lower asymptotic
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MSE than the second order or third order polynomial predictors. Finally it can be
seen from Figures 29 and 30 that the performance of different predictors does not
improve significantly when the filter length is increased beyond a certain value. In our

simulations, this value is approximately 12.

Apart from the SNR criterion discussed above to compare different types of
predictors, another important criterion that is used in the choice of a predictor is the
amount of compression that the predictor can achieve for a specified amount of
fidelity or SNR. The compression is inversely proportional to the number of
coefficients of the predictor that needs to be transmitted to the receiver. In Figures 31
and 32, we plot the number of parameters that needs to be transmitted vs SNR in dB
for the different predictors for real and synthetic speech data, respectively. As seen
from the figures, for sufficiently large SNR’s the tree-structured predictor requires
many fewer parameters to be transmitted than the other predictors and hence achieves
a better compression. In particular, for the real speech data (Figure 31) this is true for
SNR’s above 10 dB. It is also true that the tree predictor converges much faster at
these SNR’s. Hence the tree-structured predictors are extremely useful to encode
speech signals for toll and broadcast quality transmissions in communication systems

where such SNR’s are required[32].

6.4  Comparison of Tree-Structured Piecewise Linear and Polynomial (truncated

Volterra series) Filters

We first consider the computational complexity and rate of convergence of an
unpruned tree-structured piecewise linear filter of length L and depth d versus a

polynomial filter of length L and order q.
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We can estimate the computational complexity of training the tree-structured and
polynomial filters as follows. By computational complexity we mean here the number
of parameter updates required for each training sample. For the polynomial filter, the
complexity is just the number of tap weights C which ist

L+q
Lp= -1

For the tree filter the complexity is the combined number of tap weights ¢, offsets d,,

and thresholds 0, along a path from the root node to a terminal node, and also all of
the probabilities p,, which totals
Lr=@+1)L+2)+2¢+1 -2,

Denote by Lt(L, d), Lp(L, q) the explicit dependence of Lt and Lp on L, d, q. Then
Lt(11,5) =140 while Lp(11,1) =11, Lp(11,2) =77, Lp(11,3) =363, Lp(11,4) = 1364
(hence the complexity of the third order polynomial filter is already much larger than
the tree filter for the example considered above). It is seen that the computational
complexity sets severe limits on the ﬁlter' length and order of a polynomial filter
compared with the filter length and depth of a tree filter; in particular for fixed q and d,
the complexity of the polynomial filter Lpe<I9 whereas the complexity of the tree filter
Lre<L. Also, recall that the training of the tree filter can be carried out in a highly
parallel fashion (see Section 4.3), which does not seem possible for a polynomial

filter.

t e number of terms of the form c(y,...,jL) with ji+ <+ HL=p is
L+p-1 qn.[’L+p—l1 ‘F+q

d -1 52]).
an p§1 > q ( see [52])
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We can also get some rough bounds on the asymptotic convergence rates of the
tree-structured and polynomial filters as follows. Suppose we assume that the range
and distribution of the eigenvalues of the (extended) input autocorrelation matrix
E{X X'} for the polynomial filters and the (conditional) input autocorrelation matrices
E,(x x"} of the tree filter are the same (with Ap;, the minimum eigenvalue and A,, the
average eigenvalue). Suppose we also assume that for the tree filter we have
Y (k) = x: and py(k)= pt* and furthermore pt* =1/29Ph®  Then (under suitable
independence assumptions) the convergence of the MSE’s will occur if and only if the

gain parameter | is upper bounded by

for polynomial filter,

_ 2
He LP A'::w

for tree filter,

BT = e,

and hence the corresponding largest time constant will be lower bounded by

2
Tp = for polynomial filter,
R TYGETIY S S b
= 2 for tree filter.

L TG T

These bounds can be derived using standard arguments (see [2]) and we do not go
through the details here. It is seen that the (asymptotic) rate of convergence, like the
computational complexity, sets severe limits on the filter length and order of a
polynomial filter compared with the filter length and depth of a tree filter; in particular
for fixed q and d and also L, large enough such that p, it < 1/An;,, we can use a
Taylor series expansion to show (approximately) that the time constant for the

polynomial filter Tpe<L.? whereas the time constant for the tree filter TpocL.
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Now in the above discussion we have compared the computational complexity
and rate of convergence of an unpruned tree-structured filter and a polynomial filter.
However, an important advantage of the tree-structured approach is that it is possible
to efficiently construct and select a pruned subtree of appropriate size. Indeed, note
that the tree growing phase generates all the pruned subtrees, while the tree pruning
phase selects a particulér pruned subtree with very little additional computation (the
complexity increases by the number of conditional MSE estimates €, along a
particular path from root node to terminal node plus the pruning algorithm itself). The
effect of selecting the pruned subtree is to avoid overfitting the data and to speed the
initial rate of convergence. Now one could conceive of an approach which adaptively
selects a polynomial filter of appropriate order from a sufficiently large bank of
polynomial filters. However it is not clear how to efficiently construct and select from
such a bank of polynomial filters since polynomial filters of different orders are not
clearly related. Furthermore, the family of polynomial filters of different order will in
general be so coarse that no combination of polynomial filters of different order will
perform as well as the pfuned tree filter, as was the case in the examples considered

above.
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CHAPTER 7
AUTOMATIC INSPECTION OF FUEL INJECTOR GEOMETRY

7.1 Introduction

This research is part of an ongoing atomization project investigating the
characteristics of the spray process of fuel injectors. This project is sponsored by the
Engineering Research Center. Previous research has shown that the geometry of the
fuel injector nozzle affects the efficiency of the spray process of the injector and in
turn the fuel efficiency of the engine[66]. A typical fuel injector cup is shown in

Figure 33.

Geometrical features of the nozzle such as circularity of the hole, inlet and outlet
diameters, droop and projection angles, entrance height, taper, and radius of curvature
at the inlet of the injector hole contribute significantly to the performance of the fuel
injector (see Figure 34). However the small éize of the hole of the nozzle prevents
mechanical means of accurately measuring the geometrical features mentioned above.
The goal of this work is to acquire an image of the injector hole optically and use
image processing and analysis techniques to accurately measure the geometrical
features of the nozzle. The first stage of the research was focused on obtaining
information about the circularity and size of the inlet (bottom) and outlet (top) of the
injector hole. The holes were imaged using a microscope, vidicon camera, image
digitizer and composite translation stages for holding and positioning the fuel injector.

This is shown in Figure 33. The circularity information at any given depth was



Figure 33.
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Fuel Injector Cup, Image Acquisition Set-up, Original Image of Bottom
Lit Injector Hole, Original Image of the Top Lit Injector Hole.
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Projection Angle

Figure 34.  Schematic of the Cross Section of the Mold of the Fuel Injector Cup
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obtained by constructing three dimensional wireframe and three dimensional solid
versions of the hole[67,68]. Model fitting approaches and mathematical morphology
was used to obtain information about the circularity and size of the hole near the
outlet. The design of measures that indicate the relative geometry at the outlet hole

with respect to an "ideal" nozzle hole was investigated[ 67, 68].

The second stage of the research was focused on obtaining geometrical
information near the inlet of the hole[69]. Since the injector inlet is at the bottom of
the hole as seen from the outside and since there is a smoothly rounded bevel at the
inlet of the hole, it is not possible to capture an image near the inlet by focusing the
microscope at the corresponding depth. Instead of directly imaging the hole, a mold of
the hole was prepared and image acquisition was performed on the mold rather than
the hole itself (see Figures 35 and 36). We refer to the process of directly imaging the
hole as "direct imaging" and the process of imaging the mold as "indirect imaging".
Examples of direct imaging are shown in Figure 33. Detailed photographic studies and
image processing techniques showed very little discrepancy between the images

obtained from the actual hole and the mold representing it.

The images obtained were slightly blurred due to background noise. Several
image processing techniques were used to obtain accurate information relative to the
inlet diameter, the equivalent area, and the radius of curvature of the bevel at the inlet.
Image segmentation was performed using a histogram oriented approach[70]. The
filtering process used to clean up the segmented image utilizes a morphological filter
for two reasons: removing noise and preserving the geometrical structure of the
nozzle[72]. The discrepancy between the shapes of the real and ideal nozzles was
then obtained. All the relevant geometrical features such as circularity of the hole,

inlet and outlet diameters, droop and projection angles, entrance height and taper were



Figure 35.

Mold Image of the Fuel Injector Cup (Top View)
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Figure 36. Original Image of the Mold of the Nozzle



110

automatically obtained by the inspection algorithm. After obtaining the diameters
along the finger of the mold, spline fitting techniques were used to determine the

effective radius of the bevel[72].
7.2 Image Acquisition

Image acquisition is performed using a microscope, vidicon camera, time base
corrector, image digitizer, a composite translation stage and a light source. For image
acquisition using direct imaging, the fuel injector cup is mounted on the composite
translation stage which holds and positions the fuel injector (see Figure 33). The hole
of the injector is illuminated from the open end of the injector cup. Thus the hole gets
lit from the bottom. We refer to such a scheme of illumination as "back-lighting".
Another scheme of illuminating the hole is to directly illuminate top of the hole,
which we refer to as "top-lighting” (see Figure 33). Since the size of the hole is
extremely small (in the range of ten-thousands of an inch in diameter), the illuminated
hole is optically viewed through a microscope with a large enough magnification of
the order of 200. The microscope is focused at different depths along the nozzle hole
to obtain cross-sectional information. A vidicon camera, attached to the microscope,
captures the image, and a time base corrector is used to synchronize the video signal
output of the camera. The video signal is then quantized to 256 gray levels using a
digitizer and the digitized output is stored as a two-dimensional array on the
computer. This two-dimensional array is treated as the original image for further
processing and analysis. -

Acquisition using indirect imaging is performed by illuminating the mold from

the bottom. Thus the image acquired will have a high contrast with the background
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pixels having gray scale values near 255 and the mold itself having gray scale values

near zero.
7.3 Direct vs. Indirect Imaging

The direct imaging technique described above can be used to obtain accurate
estimates of the outlet diameter and three dimensional wireframes of the hole, but the
technique fails to give provide estimates of the geometrical information near the inlet
portions of the hole. This is because the images obtained at depths near the inlet of the
hole are blurred due to imperfect focusing and internal scattering of the light.
Moreover, an image of the bottom of the hole has a false edge due to the direction of

illumination of the light through the hole.

Indirect imaging using the molds has several advantages. (1) Since the outer
surface of the finger of the mold represents the inner wall of the actual hole it is
possible to obtain geometrical information near the inlet of the hole (see Figure 36).
(2) By using image processing techniques it is possible to obtain the actual diameter
of the hole "at any given depth" and hence the amount and nature of the taper
(linear/nonlinear) can also be determined. It should be noted that in order to achieve
the same information using direct imaging one has to use interpolation techniques
which inherently introduces errors. (3) It is possible to measure the droop angles,
projection angles and entrance height for multiple orifice nozzles, which is impossible

using direct imaging due to the inaccessibility of the inlet portions of the hole.
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7.4 Image Analysis

We discuss analysis on images obtained by direct and indirect imaging
‘separatcly. The inspection algorithm for analyzing images obtained by direct imaging
involves several stages including filtering, segmentation, binary image cleaning, area
measurement, center location, and the discrepancy measurement [72]. The output of
the algorithm contains the effective area and the equivalent diameter of the hole under
study. The discrepancy between the shapes of the real and ideal nozzles is also
contained. A block diagram of the algorithm is shown in Figure 37. A complete

description of the analysis of injector images obtained using direct imaging is in [72].

7.4.1 Indirect Imaging

As mentioned in the previous section, indirect imaging offers several advantages
over direct imaging. In terms of processing and analysis, the back-lit images obtained
by indirect imaging offers an additional advantage in the sense that the complicated
filtering process used for direct imaging is not necessary since the image has a
reasonably high contrast with a clear background. A block diagram of the inspection
algorithm for images obtained by indirect imaging is shown in Figure 38. The input is
the mold of the nozzle and the output consists of geometrical features such as the
droop and projection angles, entrance height, sac edge lines of the mold, center lines
and diameter plots for the fingers of the mold, and the radius of curvature of the inlet

portion of the hole.

The image of the mold of the nozzle is captured using the image acquisition

technique discussed in Section 7.2. A typical image of the mold of the nozzle
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obtained by such a technique is shown in Figure 36. This image is first converted to a
binary image by selecting a suitable threshold and assigning all pixels below the
threshold to a gray level value of O (black) and all pixels above the threshold a gray
level value of 255 (white) (see Figure 39). The choice of threshold is made as follows.
The histogram of the original mold image is obtained which is expected to consist of
two peaks widely separated from each other due to the mold and the background.
Since it is clear that the background pixels have a gray scale value close to 255, and
that the mold is not completely transparent to the light, the threshold value is selected
just before the second peak of the histogram curve. The thresholded image of the
original image is shown in Figure 39. The boundary of the thresholded image is
detected using a gradient technique. The center lines of the fingers of the mold are
obtained by first scanning the thresholded image vertically and obtaining the center
points of the fingers and then finding the average slope of the line formed by the
center points. The sac edge lines are obtained in a similar manner by searching for a
slanted edge immediately below the finger and computing the average slope of the
detected edge. The center lines and sac edge lines for the image in Figure 36 is shown
in Figure 40. The slope of the center line represents the droop angle and projection
angle is simply obtained using the equation y=90 — (ot + ), where o and B are the
angles of the center lines and sac edge lines with respect to the horizontal,
respectively. The diameter versus the distance from the base of the finger is obtained
by scanning the finger at an angle perpendicular to the center line and counting the
number of dark pixels in the finger of the thresholded image. Figure 41 shows one
such plot for the image of Figure 36. The same plot also indicates the amount (if any)

and nature of taper in the actual hole of the fuel injector nozzle.
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Figure 39.  Thresholded Image of the Image in Figure 36
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Figure 40.  Center Lines and Sac Edge Lines for the Image in Figure 36
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Theoretically, the radius of curvature of the bevel (near the inlet) at each point is
obtained by finding the radius of the osculating circle at that point[73]. If f(x) is the
curve obtained by interpolating the discrete points corresponding to the edges of the

images taken at different depths, then the radius of curvature at any point X, is given

3

P2
IEES]

diameter plot. A typical diameter plot for a nozzle with intentionally rounded inlet is

. Here we use the cubic spline interpolation to smooth the

shown in Figure 42. Because of the spatial resolution of the pixels in the image, the
smoothed(interpolated) curve still appears wavy as shown in the Figure 43, which
makes it unsuitable for obtaining reliable estimates of the radius of curvature. Hence
this data is passed through a bank of polynomial filters which then automatically
selects that filter which yields the least average squared error between the data and the
output of the polynomial filter. The best fit polynomial for the given set of data is
shown in Figure 44. The radius of curvature is now obtained using the above equation
. which is shown in Figure 45 as a function of distance along the wall of the finger from

the origin. The distance between two points x, and x; along the curve is evaluated

X1

using [ (1+£(x)%)" dx.
Xo

The techniques used for analyzing the mold iamges have been fully automated
such that once the image has been acquired, the measurements are obtained without

the need for further human intervention.

We are currently extending these techniques to examine the use of direct

imaging by confocal microscopy.



48

120

47

46

45

43

42t

41t

40t

39
0

Figure 42.

Diameter Plot for Intentionally Rounded Nozzle

20

25



48

121

41+

46

T

a5t

T

42

T

41

39
0

Figure 43.

Interpolated Curve for the Plot in Figure 42

20

25



122

48 x . .

1

47

46

T

40

-

39
0

Figure 44. Best Polynomial fit for the Curve in Figure 42



123

100

90

70+

60

T

50

40+

30+

10

T

Figure 45.

Radius of Curvature Plot vs. Distance from Origin

20

25



124

CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

There is a general need for nonlinear adaptive filtering both due to the nature of
signals that needs to be processed as well as performance limitations of linear
adaptive filters in a variety of applications. We have demonstrated that the existing
nonlinear adaptive filters such as polynomial (truncated Volterra series) filters suffer
from several problems. First, as the order of the series is increased, the computational
complexity becomes extremely large and the convergence rate becomes extremely
slow. Second, there is no systematic way of neglecting higher order terms in the

series.

Motivated by the success of classification and regression trees on difficult
nonlinear and nonparametric problems, we proposed the idea of a tree-structured
piecewise linear adaptive filter. In the proposed method each node in a tree is
associated with a linear filter restricted to a polygonal domain, and this is done in such
a way that each pruned subtree is associated with a piecewise linear filter. A training
sequence is used to adaptively update the filter coefficients and domains at each node,

and to select the best pruned subtree and the corresponding piecewise linear filter.

The tree-structured approach offers several advantages. First, it makes use of
standard linear adaptive filtering techniques at each node to find the corresponding
conditional linear filter. Second, it allows for efficient selection of the subtree and the
corresponding piecewise linear filter of appropriate complexity. Overall, the approach

is computationally efficient and conceptually simple.
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The tree-structured piecewise linear adaptive filter bears some similarity to
classification and regression trees. But it is actually quite different from a
classification and regression. tree. Here the terminal nodes are not just assigned a
region and a class label or a regression value, but rather represent a linear filter with
restricted domain. It is also different in that classification and regression trees are
determined in a batch mode offline, whereas the tree-structured adaptive filter is

determined recursively in real-time.

We first developed the specific structure of a tree-structured piecewise linear
adaptive filter and derived a stochastic gradient-based training algorithm. We then
carried out a rigorous convergence analysis of the proposed training algorithm for the
ree-structured filter. We showed the mean-square convergence of the adaptively
trained tree-structured piecewise linear filter to the optimal tree-structured piecewise
linear filter. This involved an asymptotic order analysis of the fixed-gain stochastic
gradient based training algorithms at the successive levels of the tree. The analysis
was complicated by nonstandard dependent training data at non-root nodes
corresponding to unconverged parameters at ancestor nodes. Some new techniques
have been developed for analyzing stochastic gradient algorithms with fixed gains and

(nonstandard) dependent data.

Numerical experiments showed the computational and performance advantages
of the tree-structured piecewise linear filter over linear and polynomial filters for
equalization of high frequency channels with severe intersymbol interference, echo

cancellation in telephone networks and predictive coding of speech signals.

There are also several topics for further research. First, there are numerous
variations of the proposed tree-structured filter and training algorithms which might be

tried. Here we have used an LMS algorithm and a mean thresholding rule for
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computing the node weights and thresholds. Alternatively, we could use a signed LMS
algorithm and a median thresholding rule for computing node weights and thresholds.
We could also abandon stochastic gradient algorithms altogether and use

appropriately conceived recursive least squares type algorithms.
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