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ABSTRACT

Song, Jisheng. Ph.D., Purdue University, August 1991. A Generalized Morphological
Filter. Major Professor: Edward J. Delp.

Mathematical morphology is an important class of image transformations that have
been studied extensively in image processing and analysis. Mathematical morphology is
a set algebra developed to deal with the geometrical structures of objects. Basic mor-
phological transformations are performed using a set, known as the structuring element,
which specifies a geometrical structure with certain shape and size properties. Morpho-
logical transformations can be used to extract information relative to the distribution of
the geometrical structure specified by the structuring element. They can also be used to
transform an image into another image which contains the specified geometrical struc-

ture.

One of the basic design requirements in image enhancement is to remove noise and
minimize the blurring effect. A traditional morphological filter uses only one structuring
element which is usually supported on a square or circular region. This filter can effec-
tively remove impulsive noise with geometrical feature preservation if the image in con-
sideration consists of large homogeneous regions. For an image that has fine details, the
transformed image, resulting from the use of a single structuring element, has only the
one geometrical structure specified by the structureing element in it and will not be visu-
ally pleasing. Morphological filters using multiple structuring elements are developed to

address the difficulties of the traditional morphological filter. The goal is to preserve



xiii

within an image multiple basic geometrical structures, as defined by the structuring ele-
ments, that can form fine details and also maintain noise suppression. Motivated by
exploiting the merits of linear filtering and morphological filtering techniques, we have
developed a new filter structure which is known as the Generalized Morphological Filter
(GMF). The output of the GMF is the linear combination of the ordered outputs of mul-
tiple morphological operators using different structuring elements. The deterministic
and statistical properties of GMF have been investigated. Optimal coefficients in the
linear part of the GMF combination have also been derived. The quantitative evaluation
of the performance of the GMF has shown superior performance in comparison with

other popular filters such as averaging and median filters.



CHAPTER 1
INTRODUCTION

1.1 The Necessity of Using Geometrical Structure Information

in Image Enhancement

The main objective of image enhancement is to process an image so that the result
is more suitable either by being visually pleasing or for use in further processing, such as
image analysis. Removing spurious content from an image is the goal of image
enhancement. The spurious content of the original image is usually referred to as noise
which is partly caused by image formation, acquisition, as well as transmission. For
example, film-grain noise is formed in photographic film due to the randomness inherent
in the silver grain deposition. In the case of photoelectronic systems, one process that is
known to contribute noise in the acquired image is the random thermal noise sources in
the circuits[1]. Recovering the noiseless image from the noisy one requires not only
effective noise suppression, but also the preservation of the underlying geometrical

structures in the image.

Many popular filtering techniques for suppressing noise in an image explore the
algebraic information in an image, such as signal correlations, spectral content, and fre-
quency response. Most of these techniques are direct extensions of one dimensional
techniques to the two dimensional space. They, however, take into account little of the

underlying geometrical structures in the image. This greatly affects their performance.

Image analysis is another area where geometrical structures of a scene are very

important. In image analysis, shape, size, and orientation of the geometrical structures



are examined for feature extraction, shape description, pattern recognition, image seg-
mentation, etc. Hence, developing appropriate mathematical tools to accomplish tasks
related to processing geometrical structures in an image is very beneficial to both image

processing and analysis.

1.2 Mathematical Tools

One set of mathematical tools that can be used in image processing that makes use
of geometrical structure information is known as mathematical morphology. Developed
to deal with geometrical structures of objects, mathematical morphology is a set algebra
defined on a Euclidean space. It was first introduced in 1964 at the Paris School of
Mines by two French mathematicians, G. Matheron and J. Serra. At that time they were
asked to inspect and measure geometrical structures of microscopic images of mineral
specimens and investigate their relationships with physical properties such as permeabil-
ity and milling properties. Since then their work has resulted in a new branch of
mathematics which opened an arena for theoretical research, and hardware development
in image processing and analysis [2-4].

From Webster’s Dictionary, the word morphology means "a study of structure or
form". As its name suggests, mathematical morphology is the quantitative description
of geometrical structures of objects. Matheron and Serra have written several books
introducing mathematical methodology: Random Sets and Integral Geometry by Math-
eron [5] and Image Analysis and Mathematical Morphology, volumes 1 and 2 by Serra
[2,3]. Mathematical morphology was initially developed to handle binary images. It
was later extended to deal with gray scale images. Goetcherian introduced the extension
of many binary image processing algorithms to gray scale images [6]. Sternberg and
Preston used the umbra concept to extend morphological operations to gray scale images
[7-10]. Among the hardware developments related to mathematical morphology, the

first prototype of a texture analyzer was built at the Paris School of Mines by Serra and



his colleagues in 1965 [2]. Sternberg led the construction of a special purpose computer,

known as the Cytocomputer, for morphological operations [8,9, 11].

Basic morphological transformations involve set operations defined on an image
and another set known as the structuring element[2, 12]. The structuring element acts
like a probe to extract or preserve shape information in the image. By applying morpho-
logical operations, an image is transformed into another image that contains information
describing the distribution of geometrical structures, represented by the structuring ele-

ment, contained in the original image.

Due to the utilization of structure information, mathematical morphology has been
successfully used in image processing and computer vision [4, 13]. A brief discussion of
some applications is given below. Morphological filters have been extensively used in
image enhancement[2, 3,14, 15]. The relationship between a morphological filter and
other nonlinear filters, such as rank order filters, has also been well established[14].
Morphological filters have been used to remove nonlinear variations in a signal due to
background drift and signal dependent noise. Examples of this include removing streaks
appearing in electrophoretic gel images, suppressing impulsive noise and background
normalization of EKG signal, and enhancing infrared target images[9, 16-18]. Morpho-
logical techniques have also been used to remove speckle noise from radar imagery[19].
By designing a structuring element to describe a specific object, morphological opera-
tors can be used to detect the occurrences of this object in an image[20], e.g. determin-
ing the locations of protein spots in a gel image[16]. Using image functionals, one can
define covariance functions, size distribution functions, and develop correlation type
measurements using morphological operators to recognize objects[21, 22]. Edge detec-
tion algorithms using morphological operators have also been developed[6,23,24].
These edge operators have performance comparable with zero-crossing edge operators
and are less computational expensive[23]. Morphological operations have also been

used in the segmentation of ultrasound heart images corrupted by impulsive noise[25].



Morphological operators can be used to produce skeletons of an image which are suit-
able for image coding[26-28]. A digital morphological sampling theorem has also been
developed[29]. In the following chapters, we will show how structure information can
be used to improve the performance of a morphological filter used in image enhance-

ment.

1.3 Contributions and Organization

Despite all the above work, it is still difficult to successfully use mathematical mor-
phology in practical image processing and analysis. One reason for this difficulty is the
lack of image models suitable for morphological operations. Another reason is the limi-
tation of basic morphological operators in the description of geometrical structures
represented by the structuring element. Although basic morphological operators can
extract information relative to geometrical structure represented by the structuring ele-
ment, this extraction is, however, quite restrictive in the sense that it does not allow vari-
ations. That is, it does not produce information about variations of the geometrical
structure represented by the structuring element. In a real application, this places a limit

on the performance of morphological operators.

In this thesis, we develop a new morphological filter known as the Generalized
Morphological Filter (GMF) that uses multiple structuring elements. The outputs of the
multiple morphological operators are linearly combined. Various versions of the GMF
can be obtained to suppress different types of noise. Empirical studies have shown that
the GMF has greatly improved the performance of morphological filters in image

enhancement.

Another original development is the derivation of output probability distribution
functions of morphological operators in terms of the input probability distribution func-

tion. There have been other efforts in this area [30,31]. Indirect approaches were used



to obtain results, based on the threshold decomposition concept. Stevenson and Arce
derived the output probability distribution functions of a cascade of opening and closing
operators [30]. Although Neuvo, et al. derived the output probability distribution func-
tion of opening and closing operators, they did not address the difference between the
one and two dimensional cases. Our derivation is directly based on the definition of

gray scale morphologicél operators and can be easily verified.

An optimal design of the GMF is also developed in this thesis. The design is for a
set of special structuring elements and is based on the minimum mean square error. The
correlation matrix of the ordered outputs of the multiple morphological operators for the
set of structuring elements is derived. Using the output probability distribution function
and the correlation matrix, the optimal coefficients of the GMF are obtained. The results
of the optimal design provide very valuable insights into how to design the GMF for any

application.

The thesis is organized as the following. Following the introduction in this chapter,
Chapter 2 contains a preliminary introduction to mathematical morphology. The statisti-
cal analysis of morphological operators is also presented in Chapter 2. As an example of
the application of mathematical morphology in image analysis, Chapter 3 presents an
geometrical inspection algorithm using mathematical morphology. Chapter 4 presents
the structure of the GMF and some studies of the filter. In Chapter 5 we investigate the
syntactic properties of the GMF. Some properties of morphological operators using
multiple structuring elements are also developed in Chapter 5. They are used to prove
the invariant properties of the GMF. The root signal structure of the GMF is also studied
in Chapter 5. Chapter 6 introduces an optimal design of the GMF. In this chapter, the
analytical derivation of the joint and marginal probability distribution functions of the
outputs of several morphological operators is presented. They are then used in the com-
putation of the optimal coefficients. In Chapter 7, we make some comments about pos-

sible future research in this field.



CHAPTER 2
MORPHOLOGICAL TRANSFORMATIONS AND FILTERS

In mathematical morphology, each image is viewed as a set in a Euclidean space.
By using set operations, a morphological filter is used to transform an image. An image
contains an unstructured wealth of information, most of which is of no use to us. From it
we have to extract what interests us, obtaining a structure which is in fact a simplified
sketch of the original image. This extraction involves a controlled loss of information,
since we eliminate irrelevant features. Thus, the word "filter" used here implies the
transformation of signals by "filtering out” or modifying some of their geometrical
features. For example, in optical character recognition, one can simplify the recognition
task by first transforming the binary image, representing the text, using a skeletonization
technique, which reduces each connected component to a one-pixel thick skeleton. This
discards all (useless) information relative to the thickness of the characters and makes

further recognition steps quicker and easier.

To extract structural information, we first have to have a spatial or geometrical
definition of the structure. This a prior spatial information is represented by a set known
as the structuring element. A structuring element usually possesses a rather simpler
shape and size. The structural information relevant to the defined structure is obtained
by interactions between the structuring element and the original set. These interactions

define various morphological operations.

Mathematical morphology was first developed for processing binary images by

Matheron and Serra [2,5]. Its very basic operators are known as erosion and dilation,



which is also known as the hit or miss transforms [2]. Based on these two operators, two
other basic morphological operators are constructed known as opening and closing.

Opening and closing are often used to smooth contours in a binary image.

In this chapter, we will first review the basic binary and gray scale morphological
operators and their properties. The statistical analysis of morphological operators, espe-

cially opening and closing are then presented.

2.1 Morphological Transformations
2.1.1 Binary Morphological Operators

Binary morphological operators are generic morphological operators that involve
set operations. Morphological operators can be applied to sets of any dimensions. Since
we are investigating the application of mathematical morphology in image processing,
we will restrict our discussion to two dimensions. All the results presented here can be
extended easily to higher dimensions. A binary image can be represented by a function
that is defined on a two dimensional space and assumes only two values: one and zero.
The binary image is considered as a set in mathematical morphology. The foreground of
a binary image is represented by the set: A = {a: f(a) = 1}. The background of a binary

image is the complement of the set A and defined as: A° = {a: f (a) =0]}.

The primary set operation in binary mathematical morphology is set translation. By
using set translation, the structuring element can interact with an image so that various
morphological transformations can be performed. Let A be a set and p a vector in an

Euclidean space. Then the translate of A by p can be expressed by the following:
A,={la+p; acA}. 2.1.1D)

Erosion of a set A by a structuring element K is defined as the locus of centers v of

K, included in the set A. The erosion operation is defined as the following:



ACk=<v: K, CAr= NMA_. 2.1.2)
keK

Erosion is closely related to the classical Minkowski subtraction which is defined as [5]:

AOK = NA,. (2.1.3)
keK

Hence the erosion can be described as a Minkowski subtraction by rotating the structur-
ing element 180 degrees before the subtraction. The geometrical interpretation of the
erosion operation is to extract the centers of the geometrical structures that are
represented by the structuring element and contained in the original image. As a side
effect, the erosion can also be used to shrink an object. An example of the erosion of a

set A by a structuring element K is illustrated in Figure 2.1.

As a dual operation of erosion, dilation has the same geometrical interpretation as
the erosion except that the object of the operation is the background of the image. The
result of dilation is the locus of centers v of K|, contained in the background of A. Dila-
tion is defined by the following expression:

ADK= {v: K, NA ;e@}: UA_, (2.1.4)
keK

Dilation is the classical Minkowski addition obtained by rotating the structuring element

180 degrees. The Minkowski addition is expressed as [5]:

A®PK = {a+k ta€A, keK}= U A, (2.1.5)
keK

From the above algebraic definition, another interpretation of dilation can be
obtained which is more suitable for the implementation of the operation: the dilation is
the locus of centers v of K, which intersects the set A [2]. Figure 2.2 shows an example

of dilation of a set A by a structuring element K.
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Figure 2.1.  An example of the erosion operation: (a) the set A; (b) the erosion of A
by K: A ©K; (c) the structuring element K.
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Figure 2.2.  An example of the dilation operation: (a) the set A; (b) the dilation of A
by K: A @ K; (c) the structuring element K.
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Erosion and dilation can be considered as operations which extract information
relative to the distribution of geometrical structures in the original image that is
represented by the structuring element. They are often used in the pattern recognition
area to detect whether a structure, defined by the structuring element, is contained in the
image.

Erosion and dilation are two nonlinear operations which are generally noninvert-
able. By "noninvertable"”, we mean that the original image is not recoverable from the
results of the dilation and erosion since small details around the objects in the image are
deleted. However, note that the erosion and dilation of an image by a point are just the
translation of the image by the point. And the erosion and dilation of an image by the
origin results in the image itself. Only in these two cases, can the original image be

completely recovered from erosion and dilation.

Erosion and dilation have many interesting properties. The proofs of them can be
found in[2, 12]:
(a) Only the dilation operation is commutative, i.e., for a binary image A and a structur-
ing element K, we have A @ K =K @ A.
(b) Since the erosion is a shrinking operation and the dilation is an expanding operation,
then it can be seen that if the structuring element contains the origin, then the erosion is
anti-extensive and the dilation is extensive, i.e., A ©K cA c A ©® K.
(c) Both dilation and erosion are increasing operations. Let T1x(A) denote the result
when either operation is applied to the image A using structuring element K. Then we

have
A CB=>1IgA) cTlg(B) (2.1.6)

(d) Dilation distributes over set union and erosion distributes over set intersection. In
addition, erosion by the union of two structuring elements is equivalent to the intersec-

tion of the two erosions by two structuring elements, respectively. These properties are
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formulate by the following

(AUB) @K =(A @ K) @B ®K) (2.1.7a)

(AB) OK = (A ©K)~(B OK) (2.1.7b)
A® K UK2)=(A®K)UABK,) (2.1.7¢)
AO KUKy = (A OK1)~A OK») (2.1.7d)

These properties allow the dilation or erosion to be preformed using decomposition
techniques.

(e) Dilation and erosion also have inclusion properties with set union and set intersec-

tion:
ADK1K2) cABK)NNABK,) (2.1.8a)
AO K ~K2) D (A OK DA OK,) (2.1.8b)
(ANB)®K (A ®K)~B ®K) (2.1.8¢)
(AUB)OK > (A OK) (B OK) (2.1.8d)

(f) The last property concerns the serial composition of dilation and erosion operations.

They are defined by the following
ABPK)N)OK,=AD (K, ®PK>) (2.1.9a)
(AGK)OK,=AO K DPK>y) (2.1.9b)

The implication of the above is that it enables the users of morphological operators to
decompose a given structuring element K into several simpler structuring elements K;’s.
Then the morphological operations can be performed in the form of iterations of simpler
operations. This approach is used in many applications. For example, sometimes the
limitations of the computing hardware prohibits the use of large structuring elements,

then an operation can be performed by iteration [32].
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The other two basic morphological operators, opening and closing, are serial com-
positions of dilation and erosion operations. Opening and closing operations can be con-
sidered as a recovery operation from the dilation and erosion. They will not recover all
the contents of the original image, since dilation and erosion are noninvertable opera-

tions, but rather they will recover the most essential parts of the image.

The opening of an image A by a structuring element K is defined as the union of all
translates of K which are completely contained in the image A. The opening operation

consists of an erosion followed by a dilation. The opening operation is defined as
AocK=ACK)®K (2.1.10)

The output of the opening operator consists of all the geometrical structures that are
represented by the structuring element and contained in the image A. Consequently, the
fine details in the original image that are smaller in size than the given structuring ele-
ment are removed by the opening operation. An example of the opening of a set A by

structuring element K is shown in Figure 2.3.

The closing is the dual operation of the opening. Closing is formed by a dilation

followed by an erosion. Closing of an image A by a structuring element K is defined as

AeK=(ADK)OK. 2.1.11)

Closing of an image A by K can be considered as the collection of all translates of
K which hit the image A. Figure 2.4 presents an example of the closing of a set A by a

structuring element K.

The fine detail removal nature of the opening and closing contributes to the use of
the two operators for contour smoothing of objects. However, the two operators perform
smoothing in different ways. If we consider a binary image as a set of islands, then the
opening operator smooths the contour of the islands by cutting narrow isthmuses,

suppressing small islands and sharp capes, whereas the closing operator fills narrow
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Figure 2.3.  An example of the opening operation: (a) the set A; (b) the opening of A
by K: A o K; (¢) the structuring element K.
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Figure 2.4.  An example of the closing operation: (a) the set A; (b) the closing of A
by K: A e K; (c) the structuring element K.
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channels, small lakes, and long thin gulfs. The smoothing effect of the opening and
closing operators is also illustrated in Figures 2.3 and 2.4. Very often the two operators

are applied in series order in order to achieve better smoothing.

One of the salient properties of the opening and closing operators is the idempotent
property. By idempotent, we mean that the invariability of the result is achieved by a
single application of the operator. That is, the result of the first application of the opera-
tor will remain invariant if the operator using the same structuring element is applied to
the result again. The idempotent property of the opening and closing operators can be

expressed as the following:
(AoK)oK=AoK, and (AeK)eK=AeKk. (2.1.12)

Opening and closing operators are used to extract geometrical structures from the origi-
nal image. The outputs of the two operators consists of structures represented by the
structuring element. Therefore, the repeated applications of two operators using the
same structuring element will produce the same structures and the idempotent property

hence holds.

Opening and closing are both increasing operations. Opening is anti-extensive,

whereas closing is extensive. That is
AoK CcAcAeK. (2.1.13)

The extensiveness property of the opening and closing causes a bias effect when they are

applied in series. This will be discussed later.

2.1.2 Gray Scale Morphological Operators

From above, mathematical morphology consists of set operations. Therefore, mor-
phological transformations cannot be directly applied to functions. In order to extend

morphological transformations to functions, it is necessary to define these set operations
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in terms of algebraic operations. This is done by first assigning a special set structure to
functions so that they can be treated as sets. This special set structure serves as a link
between functions and sets. Morphological transformations involving algebraic opera-

tions are known as gray scale morphological transformations.

This special set structure is known as the umbra of the function f denoted by U (f)
[2,9,33]. For every function, there corresponds a unique umbra. The analytical

definition of the umbra U (f ) of a function f1is:

U(f)=<{(x, t):f(x)Zt} xeR? —co<t<oo, (2.1.14)

From the above definition, it is clear that the umbra U (f) of a function f is the space
under the profile of the function. Figure 2.5 illustrates an umbra U (f) of a function f.

The function f can also be uniquely reconstructed from its umbra by the following:

Fx) =sup{t tx, e U(f)}. (2.1.15)

Because of the uniqueness of a function and its umbra, the result of a morphological
operator applied to the umbra of a function can be related to the operator applied to the
image. The following two examples illustrate this: for functions f and k, k being the

gray scale structuring element, we have:
f@k->U[(f@H=U()DU(k), (2.1.16)
Pk >U(CkYy=U{)QU (k). (2.1.17)

Detailed proofs of this can be found in[2,9,33]. It is possible to define gray scale mor-

phological operators as algebraic operations and avoid the umbra [2, 33].

The algebraic expressions for the dilation and erosion of a function f by a function

k, as well as the opening and closing, are defined by the following:

EROSION: (f@k)(x)= mi1r<1 {f (x+z)—k (z)} (2.1.182)
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Figure 2.5.  Anillustration of the umbra.
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where K is the support region of the structuring element k;

DILATION: (f@® k)(x)= ma[)(( {f x-z)+k (z)} ; (2.1.18b)
zZ€

OPENING: fok=(fQk)Dk; (2.1.18c)

CLOSING: fek=(f®@k)Ok. (2.1.184d)

One dimensional examples of the above four operations are illustrated in Figure 2.6.
The solid lines in the figure represent the original function and the dotted lines represent
the results of gray scale morphological operators applied to the function. The structur-
ing element used in these examples is a window of 3 samples. The shrinking and
expanding effects of the erosion and dilation operators are exhibited. The examples of
opening and closing operators also show their edge preservation as well as smoothing
capabilities.

Gray scale morphological operators have properties similar to their binary counter-
parts. They are increasing operations, the results of the four operators have the follow-

ing relationship:
fOkLfok<f<fek<f®k. (2.1.19)

The following four properties describe the distributive properties of the morphological,

max, and min operators.

min {f, g}@k=min{ Ok, g@k} (2.1.20)
max {f, g}@ { Ok, g Gk} (2.1.21)
min {f,g @k <minf Dk, g@k} (2.1.22)

max {f, g}@ k=max<f@k, gD k}. (2.1.23)
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Figure 2.6. Examples of gray scale morphological operators. Solid lines represent the
original functions, dotted lines represent the transformed functions The
structuring element k used is defined as a window of three samples: { <+ }.
(a) erosion of f by the structuring element k: f©k; (b) dilation of f by the

structuring element k: f @ k; (c) opening of f by the structuring element k:
fok; (d) closing of f by the structuring element k: f e k.
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Gray scale opening and closing are also idempotent.
Letg=fok theng=gok. (2.1.24)
Letg =fek, theng =g ok. (2.1.25)

Since they are nonlinear operations, gray scale morphological transformations do not
have a superposition property. However, applying a morphological operation to a sum
of a function and a constant is equivalent to the sum of the result of applying the mor-
phological operation to the function and the constant. This property can be thought of as
weak linearity of morphological operations [33]. Let ¢ denote a constant. Then the pro-

perty can be expressed as
Y +c)=Y({)+c. (2.1.26)

Where W(-) denotes a morphological operator. This property can easily be proved from
the definitions of gray scale morphological operators. We use the gray scale erosion to

illustrate the proof of the weak linearity.

Proof:
[(f+c)Ok]x)= miIr<1 {f (x+z)— k(z)+c}= mi11<1 «{f (x+z2) — k(z)}+ c,

since the constant does not have any effect on the maximum operation.

Although gray scale structuring elements can be used in gray scale morphological
transformations, flat structuring elements are most often used. By "flat structuring ele-
ment", we mean that the structuring element has equal value at every location of its sup-
port region. For opening and closing operators, a flat structuring element can be treated
as a set or a window in which the two morphological operations are applied. A very
interesting property, known as threshold decomposition, holds for gray scale morpholog-
ical transformations when flat structuring elements are used [2,33-35]. Threshold

decomposition states that morphological transformations commute with the thresholding
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operation. That is, thresholding at a gray level ¢ the result of a gray scale morphological
operator applied to an M-valued discrete function f is equivalent to applying the binary
morphological operator to the cross section of the function f obtained by thresholding

the function at the same level . This can be expressed as
LW, ()] = W IL ()] = ¥p(Fy) (2.1.27)

where I1; denotes the thresholding operation at gray level ¢, ¥, and ¥, gray scale and
binary morphological operations, respectively, and F; the cross section of the function f

obtained by thresholding f at gray level ¢.

As a result of threshold decomposition, the output of a gray scale morphological
operator applied to a function can be obtained by summing up all the outputs from the
corresponding binary morphological operators applied to the cross sections of the func-
tion, respectively. This feature of morphological operations provides a very effective

tool for analysis of morphological operations.

2.2 Statistical Analysis of Morphological Operators

In studying the performance of a morphological filter one is interested in two types
of properties: syntactical and statistical. Syntactical properties include the ability of the
morphological filter to preserve, extract, or delete structures in a signal. These include
the root signal structure that results from repeated application of the filter[33, 36]. The
type of statistical properties include the relationship between the output probability dis-
tribution function and the input noise probability distribution function. This is an indi-
cation of the ability of the filter to suppress noise. Other simple measures, such as vari-
ance reduction, have also been investigated [18,36]. There have been some efforts in
the development of the output probability distribution functions of morphological opera-
tors [30,31,37-39]. Indirect approaches, mainly based on the concept of threshold

decomposition, were used. Stevenson and Arce derived the output probability
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distribution function of a special filter consisting of a cascade of opening and closing
operators [30]. Their approach was to examine the binary case first based on the ability
of the filter to preserve structures in the input. They then generalized their results to
gray scale operations. Using methods from the development of stack filters, Koskinen,
et al. analyzed statistical properties of basic morphological operators [31]. This
approach also started by addressing binary operations and then extending the results to

gray scale operations.

Our development in this section will be different in that it is based exactly on the
definition of one dimensional gray scale morphological operators. The output probabil-
ity distribution functions will then be analytically derived. The results of our develop-

ment also reveal some interesting statistical properties of morphological operators.

In this section, we will derive analytic forms for the univariate probability distribu-
tion functions for opening and closing operators using flat (constant) structuring ele-
ments. When a flat structuring element is used, the opening and closing operations are
actually multiple level ordering operations. Hence our derivation will be based on order

statistics.

2.2.1 One Dimensional Morphological Operators

First, an opening operation using a one dimensional structuring element is investi-
gated. For a flat structuring element of width # samples, the opening operation applied

to a sample x; can be expressed as the following[33]:
y=max {min{x; ,41,...,%}, min{x; 40, ..., X,X41} 5.,
min{x;, ..., X 4n-11 }- (2.2.1)

Note that for a structuring element of n pixels long, there are n — 1 pixels at each side of
x; which are involved in the computation. In order to derive the output probability dis-

tribution function of the opening operator, we formulate the opening operation in a
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slightly different way. This is done by removing x; from all the min terms in (2.2.1):

y=min{ x;, z }, (2.2.2)
where
z=max {min{x;_,i1,. .., %1}, 0I0{ X;_ 12, o3 Xj— 1K1} s
min{X; 1, ... Xi4n-11 }- (2.2.3)

We will first derive the probability distribution function for z, and then use (2.2.2) to

obtain the output probability distribution function of the opening operator.

For simplicity, we make a slight change in the indexing scheme in (2.2.3) and
restate the problem. For 2m, m =1, 2, 3,..., independent identically distributed ran-
dom variables {x;, x,...,X2,} with univariate probability distribution function F,(*),
we desire to derive the output probability distribution function of the following opera-
tion:

z=max {min{xy, Xo,...,%,}, min{ X2, X3, ..., %41} »...,

i { Xy 41, Xpma25 - - 5 X2} ) (2.2.4)

Since (2.2.4) consists of ordering operations, the result consists of an element in the
ordered sequence {x(;;1<i<2m} from the samples {x;;1<i<2m}, with
X1y S$Xx@) < <xom. The following proposition describes the possible values of z in

(2.2.4).
Proposition 2.2.1:

The possible values of z in (2.2.4) consist of elements with ranks from 2 to m+1

from the ordered sequence of the 2m elements. Thatis,z=x(), 2<r <m+1.

Proof:
The proof is begun by excluding elements in the order sequence that z cannot take.

First, the smallest element, x 1), in the ordered sequence cannot be the output of the
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operation. Note that no element in the sequence appears in every min term of (2.2.4).
Therefore, while the smallest element will be the result of some min terms, there is at
least one min term whose result is larger than X()-

Next, we show that z cannot take on elements in the order sequence with ranks equal to
or greater than m+2, that is, X (u42) < ** <X (2. This is because every min term con-
sists of m elements. There are only m — 1 of elements in the order sequence with ranks
greater than m + 1. Therefore these elements cannot be the minimum of the elements in
any min term.

Hence z takes elements that have ranks from 2 to m+1 from the ordered sequence of
{x;}.

Assuming that every sample in the ordered sequence is equally likely at sample
positions 1 to 2m, we first derive the probability that z is the rth element in the ordered

sequence.

Proposition 2.2.2:
The probability that z is the rth element, 2 < <m+1, in the ordered sequence of

the 2m samples is:

(m + D!
r=2)!(m-r+ 1)
2m)!

(r—D!2m—r)!

P{ Z=X(r)} = s 2<r<m+l. (2.2.5)

Proof:
The only part in (2.2.5) that needs proof is the numerator. The numerator of (2.2.5) is
actually the number of permutations of the 2m ordered elements with which the element

with rank 7 is z. The proof is quite lengthy and is presented in the Appendix.

Using Proposition 2.2.2, the output probability distribution function of (2.2.4) can

be obtained.
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Proposition 2.2.3:
The probability distribution function of z in (2.2.4) is:
m+1

F,(0)=P{z<v}= 3 Plz=x4}P{xy) Sv) (2.2.6)
r=2

The derivation of the probability distribution function P{x )y <v} for an ordered
sequence of 1.i.d. random variables can be found in [40]. Consequently we have the fol-
lowing proposition.

Proposition 2.2.4:

The output probability distribution function for the opening operator using a one

dimensional structuring element is:

Fy(v)=P{min (x;, z)Sv}i=1-[1-F,][1-F,] 2.2.7)

Table 2.1 shows several output probability distribution functions of a one dimen-

sional opening operator using structuring elements of sizes ranging from 3 to 5 samples.

Given a Gaussian input probability distribution function F,(*) with zero mean and
unit variance, Figure 2.7 illustrates the corresponding probability density functions of
the output. The means and variances of the output z are shown in Table 2.2. We can
conclude from the figure and the table that the opening is a biased operation. The mean
value of the output of an opening operator is always less than the input. The variance
reduction capability of the opening operation is also shown in Table 2.2. Table 2.2 also
shows that the larger the size of the structuring element, the greater the mean shift and

the greater the variance reduction in the output.

The derivation for the closing operation is similar. For a one dimensional, flat

structuring element of n samples, the closing operation can be formulated as:
y =min {max{x;_,11, ... ,X;}, MAX{X; 542, e« s X3 Xig1 ) 5o e v s

max{x;,...,Xj4n-1}) }- (2.2.8)



Table 2.1. Output probability distribution functions of the opening operator

Size of structuring element | Output Probability Distribution Function

3 F,+3F,2—5F 32F 4
4 Fo+6F 2—14F,3+21F *~13F,"
5 F+10F, 2=30F,>+35F *~19F > +4F

Table 2.2. Means and variances of the output distributions shown in Figure 2.7

Size of structuring element || Mean Variance
3 -0.480 0.494
4 -0.629 0.411

5 -0.746 0.358
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Illustration of the output probability density functions of the opening
operator: The solid line is the original input probability density function
of the normal distribution; the dotted line is the output probability density
function using a structuring element of 3 samples; the dashed line with
short lines is the output probability density function using a structuring
element of 4 samples; the dashed line with long lines is the output
probability density function using a structuring element of 5 samples.
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By separating x; from rest of the samples, (2.2.8) can be formulated as:

y =max{x;, z }, (2.2.9)
where
z=min {max{xX;_,41,...>Xi-1}, MAX{ X; 542, c v v s Xis1:Xi41) 5 e~ o s
max{X; 1,... Xjtn-1) }. (2.2.10)

As in the derivation for the opening operator, a change is made of the index of the vari-

ables in (2.2.10).
z=min {max{x1, X2,...,Xpn}, MaX{ X2, X3, ..., Xpn41) >+
maX{xm+1, Xm+2s ¢ v« 9x2m} } (2'-2'11)

Proposition 2.2.5:
For 2m input samples, z can take on elements in the ordered sequence of the 2m

elements with ranks from m to 2m—1. Thatis, z=x¢y, m <r <2m-1.
The proof is similar to Proposition 2.2.1.

Proposition 2.2.6:
The probability of z taking on the rth element, m <r <2m-1, in the ordered

sequence of the 2m samples is:

(m + 1!
r—-D!Cm—-r)!
P{z=2xy) = L mtCm= r(;nlz))!, . m<r<2m-1(2.2.12)

The proof of the proposition is similar to Proposition 2.2.2.

Proposition 2.2.7:
The probability distribution function of z is
2m-1
F,=P{z<v}= % Plz=x4)}P{x(y) Sv}] (2.2.13)

r=m



30

The probability distribution function P{x(y <v} for an ordered sequence of i.i.d.

random variables can be found in [40].

Proposition 2.2.8:

The output probability distribution function of a closing operator is:

Fy(v) =P{max(x;, z) < v} =F,F,. (2.2.14)

Table 2.3 shows the output probability distribution functions of the closing opera-

tor using structuring elements of sizes ranging from 3 to 5 samples.

Given that the input is Gaussian distributed with zero mean and unit variance, Fig-
ure 2.8 illustrates the output probability density functions. The means and variances of
the output distributions are shown in Table 2.4. Note that closing is also a biased opera-
tion. The output mean is always greater than the input mean. Again, the larger the

structuring element, the greater the mean shift and the greater the variance reduction.

2.2.2 Two Dimensional Morphological Operators

The derivation of the output probability distribution functions of the opening and
closing operators using two dimensional structuring elements is more complicated. One
obvious complication is that the number of samples involved in the opening or closing
operation depends not only on the size, but also the shape of the structuring element.
For two structuring elements with the same number of samples but with different shapes,
the number of samples involved in the operations can be very different. This fact is
illustrated in Figure 2.9. It can be seen that for the structuring element k1, eleven sam-
ples are involved in the operation, but only nine samples for the structuring element k.
However, this situation does not mean that the derivation of the output probability distri-
bution function for a two dimensional structuring elements is impossible. This fact can
be demonstrated by the following example taken from[31]. In some cases the derivation

is even easier than in the one dimensional case. The structuring element £, illustrated in



Table 2.3. Output probability distribution functions of the closing operator

Size of structuring element || Output Probability Distribution Function

3 3F> —2F*
4 4F* —3F,’
5 5F, —4F,%

Table 2.4. Means and variances of the output distributions shown in Figure 2.8

Size of structuring element || Mean Variance

3 0.479 0.495
4 0.629 0411
5 0.746 0.358
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Hlustration of the output probability density functions of the closing
operator: The solid line is the original input probability density function;
the dotted line is the output probability density function using a
structuring element of 3 samples; the dashed line with short lines is the
output probability density function using a structuring element of 4
samples; the dashed line with long lines is the output probability density
function using a structuring element of 5 samples.
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Figure 2.9.  Structuring elements with the same number of samples but different
patterns results in different numbers of pixels involved in the opening
operation: (a) the structuring element k; and corresponding pixels
involving in the operation; (b) the structuring element k, and
corresponding pixels involved in the operation.
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Figure 2.10, is defined as: {(-1,0) (0, 0), (0, -1)}. Suppose the opening operator using
this structuring element is applied to the sample x( ¢y in an image consisting of ii.d.

random variables. Then the operation can be expressed as:

¥ = max{min(x _1,0y,X (0,0)»X (0,~1))> MIN(X (0,0),X (1,0)5X (1,—1))» MIN(X (1,1),X(0,1)>X(0,0)) }
=min{x,0),2}.

where z = max{min(x _1,0y,X (0,-1))> Min(x1,0),X(1,-1))> Min(x(-1,1y,X(0,1))}. Note that
the results of the three min terms are still i.i.d. random variables since there is no sample
correlation among them and every min term has two variables. The probability distribu-

tion function of z becomes:
F,(0)=P{z<v}=F> 2-F,)
Then the probability distribution function of y is:
Fy(v) =P{min{x 0,2z} <v}=1-[1-F,][1-F,]

=F, +8F,> —20F,* + 18F,° —7F,% + F,”

Since the results obtained in this section are for the basic morphological operators,
especially the opening and closing, they can be used as the foundation for other types of
statistical analysis of morphological operations, such as the optimal design of the Gen-

eralized Morphological Filter [37, 38] that will be presented later.

2.3 Morphological Filters

A filter is used to extract from a signal those parts that are of interest to the user.
The function of a filter can also be interpretated as a suppressing operation that removes
the irrelevant parts from a signal. For example, a hi-pass filter extracts the high fre-
quency components from a signal, or it can be said that it suppresses the low frequency
components. In image enhancement, with the assumption that the image under study is

contaminated by noise, the filter is used to recover the original image from the corrupted
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Figure 2.10.  An example of a two dimensional structuring element and the pixels

involved in the opening operation.
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data, or remove the noise from the image. With a known mathematical model of the ori-
ginal image, a Wiener filter can be used to suppress the additive noise. Some filters
recover a signal based on a predefined criterion for the minimization of the difference

between the original signal and the output of the filter.

Without exception, the morphological filter is also used to extract structural con-
tents that are of interest to a user. Since mathematical morphology was introduced, mor-
phological filters have gone through a tremendous period of development. During the
early stages of its development, the morphological filter was mainly used in binary
image processing. Later, by developing the relationships between set operations and
algebraic operations, morphological filters were extended to gray scale image processing
[11]. Sternberg used an alternating series of openings and closings of increasing size to
efficiently clean noisy images [10]. Stevenson and Arce combined set operations and
morphological operations to develop the 2D CO morphological filter which can remove
impulsive noise and preserve fine details in an image [30]. In view of the fact that many
kinds of morphological filters have been and will be developed, Serra proposed a formal
definition of a morphological filter [3]. Base on the observation that since "the world
around us is not translucent; on the contrary, it is composed of opaque objects that hide
one another" [3], visual signals are not compounded linearly, hence the inclusion rela-
tionship is used as one prerequisite of morphological filters. Let ¥ denote any morpho-
logical filter. For two gray scale images f and g, a morphological filter y satisfies the

condition:

g =>y({) <Sy@). (2.3.1)

Another prerequisite for a filter to be a morphological filter is that the idempotent pro-

perty must hold [3]. That is

yly(H)Hl=y(). (2.3.2)

All of the above mentioned morphological filters satisfies these two prerequisites. In the
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following, we will discuss these morphological filters in some detail.

2.3.1. Conventional Morphological Filters

Image enhancement is one of the areas that has seen the extensive application of
morphological filters. Opening and closing operators are commonly used for extracting
geometrical structures in an image. They are also used in image enhancement to
suppress impulsive noise, due to their abilities of suppressing details in the image whose
structures do not match the structuring element. Using a binary structuring element with
a smooth boundary, a binary opening operator can smooth the boundary of a binary
image by cutting narrow isthmuses and suppressing sharp caps and small islands. Using
a gray scale structuring element with a smooth profile, a gray scale opening operator can
clip sharp peaks to obtain a smooth profile of the image. A closing operator smooths an
image in a different way, that is, blocking the narrow gulfs around the boundary of a
binary image and filling narrow pits on the profile of a gray scale image. Since opening
and closing operators smooth an image in different ways, they are almost always used
together, usually in the form of a cascade. Applying an opening operator followed by a
closing operator is usually referred to as an open-closing filter and applying a closing
operator followed by an opening operator is referred to as a close-opening filter. A sin-
gle structuring element is used in the conventional morphological filter. Figure 2.11

shows block diagrams of the two morphological filters.

Due to the bias problem discussed in the previous section, there can exist a large
difference between the outputs of the open-closing and close-opening filters. Although
successively applying a closing to the output of an opening operator or an opening
operator to the output of a closing operator reduces the difference to some extent, the
output of the close-opening filter is still larger than that of the open-closing filter. Figure

2.12 shows an example of this bias effect. Serra proved this property in[3]. One way to
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Figure 2.11.  (a) the open-closing filter; (b) the close-opening filter.
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Figure 2.12.

39

Hlustration of the bias problem. The structuring element used in this
example is a line of three samples in length. The solid line represents the
original data, the dotted line represents the result of the open-closing
operation, and the dashed line represents the result of the close-opening

operation.
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reduce the bias effect is to average the outputs of the two filters. Figure 2.13 illustrates

such a scheme.

Morphological filters can also be used to remove noise whose structure is known.
Sternberg constructed a pair of structuring elements to remove the streaks appearing in
gel images [9]. The two structuring elements were horizontal and vertical bars. The ori-
ginal gel image was opened by the two structuring elements, respectively. The results of
the two openings were then subtracted from the original image so that the vertical and
horizontal streaks were removed [9]. Specially designed structuring elements have been
used to suppress impulsive noise and normalize the background level of EKG signals

and to enhance infrared images [15, 17, 18].

When an image consists of large homogeneous regions and is corrupted by impul-
sive noise, a morphological filter can produce fairly good results using a single structur-
ing element with a square or circular support region. If an image contains fine details, a
morphological filter using a single structuring element is likely to suppress these fine
details along with impulsive noise. Geometrical structure suppression can be improved
by using a structuring element of small size, but the noise suppression ability of the filter
is consequently weakened. Because of the idempotent property, an iterative approach
cannot be used to compensate for the poor noise suppression caused by using a small
structuring element. Another limit of the morphological filter is that it is very poor in

suppressing non-impulsive noise.

2.3.2.Relations Between Morphological Filters and Order Statistic Filters

Order statistic filters are a class of nonlinear filters that have in the last decade
achieved popularity in speech and image processing. A order statistic filter forms an
ordered sequence from the input data spanned by a window. The ordering is based on

their magnitudes. The output is selected from the ordered sequence according to a given
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One bias reduction scheme for a conventional morphological filter.
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rank. The median filter is one of the most extensively studied order statistic filters

[13,40,41]. Other order statistic filters include max and min filters [40, 42].

Properties of the order statistic filters that have contributed to their popularity
include effective impulsive noise suppression and geometrical structure preservation
[43,44]. Median filters have an important property known as the root signal of the filter
[45-47]. A root is a signal that is invariant under repeated applications of the filter
[46,47]. It has been shown that any finite signal will converge to a root after finite

number of iterations of the median filter [46, 48].

Morphological filters are very closely related to order statistic filters. From the
definitions of gray scale morphological operators, we can see that dilation and erosion
are just max and min operations when a flat structuring element is used by the two
operators. Serra also hinted about this relationship for 2-D hexagonally sampled signals
between roots of the median and roots of the opening and closing [2]. Maragos did a
quite extensive study of the relationships between order statistic filters and morphologi-

cal filters [14, 49]. The results of his study include [14, 49]:

1) Any order-statistic filter can be exactly represented as a maximum of ero-
sions, or as a minimum of dilations, both of which are given by a closed

form not involving sortings.
2) Medians are bounded below by openings and above by closings.

3) A signal is a median root if and only if it is a root of both the opening and
closing.
4) The open-closing and close-opening produce roots in a single pass.
A recent development in nonlinear filtering technique known as stack filters util-
ized the commutation of order statistic filters with thresholding [34]. This commutation

is referred to as threshold decomposition [50]. It was mentioned in 2.1.2 that gray scale

morphological operations also commute with thresholding. The development of the
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stack filter has suggested a possible implementation of order statistic filtering tech-
niques, that is, performing filtering on cross sections obtained by thresholding the signal
at every gray level. Many of the results obtained for the stack filter may also be utilized

in the study of morphological filters.

The close relationship between the order statistic filter and the morphological filter
weaves the studies and applications of the two techniques together. In the following
chapters, we will pursue the use of two techniques in order to improve the performance

of the morphological filter.
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CHAPTER 3
THE APPLICATION OF MATHEMATICAL MORPHOLOGY
IN AUTOMATIC INSPECTION OF FUEL INJECTION NOZZLES

3.1 Introduction

In this chapter, an application of mathematical morphology in image analysis is
presented. It is a part of the ongoing atomization project in the Engineering Research
Center of Purdue University. The goal of this project is to investigate the characteristics
of the atomization process of fuel injectors. Previous work has shown that the spray
process of the injector is affected by the nozzle geometry of the injector [51]. It is
hoped that by incorporating information relative to the nozzle geometry will increase the

understanding of the spray process of the injector.

We developed an inspection algorithm in which an image of the nozzle orifice is
first captured, digitized, and analyzed using mathematical morphology. The fuel injec-
tor nozzle is located in the tip at one end of the fuel injector cup ( see Figure 3.1). Fuel is
pumped through a constellation of holes located in the nozzle. The shape of the cup as
well as the location and size of the holes make it very hard to capture an image of the
hole in the nozzle. Due to the small size of the nozzle, in the range of ten one thousandth
of an inch, it is impossible to use mechanical means to accurately obtain a geometrical
measurement of the nozzle. A microscope, therefore, has to be used to magnify the hole
image. The magnification factor typically used in the study was 160. With a fixture
built to hold and position the injector, light can be cast from the open end of the injector
causing the hole to be lighted from the bottom as seen in Figure 3.1. Another technique

is to directly light the cup from the top of the nozzle. We call the former back-lit and
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the latter top-lit. The advantage of the back-lit approach is that the image is easier to
process. However, the image of the hole can be distorted by metal chips that remain in
the hole after it was drilled. The top-lit approach produces a hole image whose intensity
distribution is not homogeneous. The lack of the homogeneity makes the processing
task more difficult. The mounting fixture is placed under the microscope and a video
camera is installed at the top of the microscope to capture the image. The output of the
camera is digitized to 512x512 pixels. The image capture mechanism, a fuel injector

cup, and back-lit and top-lit images are shown in Figure 3.1.

The analysis techniques using morphological operators will be presented in the fol-

lowing section along with the test results.

3.2 The Inspection Process

The inspection algorithm involves several stages including filtering, segmentation,
binary image cleaning, area measurement, center location, and the discrepancy measure-
ment. The output of the inspection algorithm can contain various parameters such as the
effective area and the equivalent diameter of the hole under study. The discrepancy
between the shapes of the real and ideal nozzles can also be obtained. A block diagram

of the inspection algorithm is shown in Figure 3.2.

Filtering operations are first applied to the original image for image smoothing and
feature enhancement. Different techniques were used for top-lit and back-lit images.
The back-lit image usually consists of two main intensity values: the intensity value of
the hole and the intensity value of the background. The hole generally has higher inten-
sity values than the background. The goal of the filtering step for a back-lit image is to
remove dubious spots within the hole image while keeping the original shape of the hole
intact. A newly developed morphological filter which will be presented later in this

thesis was used to smooth the back-lit image [52]. This filtering technique can
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Figure 3.1. Upper Left: An injector cup; Upper Right: the fixture and microscope used
for image acquisition; Lower Left: a back-lit hole image; Lower Right: a
top-lit hole image.
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Figure 3.2. The block diagram of the inspection process.
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effectively remove noisy spots and preserve the geometrical structure of the object shape

in the image.

When the nozzle is top-lit, the image obtained is very different from the back-lit
image. The hole of the top-lit image consists of a homogeneous region that has low
intensity values. The background of the image has higher intensity values, but is very
noisy due to the roughness of the magnified metal surface. The background consists of
some regions that have stripe shapes of low intensity values close to the intensity values
of the hole. Some of these stripe regions are also connected to the hole. Thresholding
the image relative to the intensity values of the hole would definitely result in a distorted
hole shape and a very noisy background. The purpose of the filtering step applied to the
top-lit image is to suppress these stripes while preserving the shape of the hole. The
filtering operation uses a closing operator with a round structuring element whose diam-
eter is smaller than the size of the hole but greater than the width of low intensity stripes
in the background. The purpose of such a selection of a structuring element is to remove
dark stripes and retain the homogeneous hole region. The output image then contains a
dark hole region with background having higher intensity values whose distribution is

more homogeneous.

The next step is to extract the hole region from the image. As mentioned above,
the back-lit image mainly consists of two groups of intensity values, and consequently
has a bimodal gray scale histogram: one of the peak values in the histogram
corresponds to the low intensity values of the background and and another one to the
high intensity values of the hole. The thresholding segmentation technique developed in
[53] was used in the segmentation process. In this technique, a median filter is first
applied to the histogram and then the threshold selection algorithm in [42] is used in the
thresholding process. The histogram of the filtered top-lit image does not have a well
-defined bimodal shape. However, since the hole image consists of a region darker than

the background after filtering, the first peak from the left in the histogram should be
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formed by pixels within the hole. The threshold is then selected at the bottom, adjacent

to the right side of the the first peak of the histogram.

In many cases, the thresholded binary image also contains some noisy spots. In
order to obtain an image consisting of only the hole, a binary closing operator is applied
to clean the image using a structuring element whose size is larger than the black spots

scattered in the background.

Using the processed binary hole image, measurements of the outlet effective area,
equivalent diameter, and circularity can be performed. The effective area can be
obtained by counting the number of pixels contained in the hole image. The equivalent

diameter is then obtained

The hole circularity measurement is based on the comparison between an ideal hole
shape, a disk in this case, and the actual hole shape. One way to conduct the proper
comparison is to find the best fit of the ideal hole shape with the actual hole image.
There are a number of ways to find the best fit. In this project, our effort is focused on
locating the center of the ideal hole shape that best fits the actual hole image. Again, a
morphological operator is uséd for locating the center. A binary erosion operator is
applied to the binary image using a structuring element consisting of the standard hole
shape. In order to reduce the computation, the boundary of the disk is used as the struc-
turing element. The boundary shall be referred to as the ring in the following discus-
sion. The location of the center is chosen as the center of the largest ring inscribed in
the hole image. The search for such a ring starts by using a ring the size of the expected
diameter of the hole as the structuring element. If the output of the erosion operator is
empty, the erosion operation is repeated using a ring of smaller size. The search contin-
ues in this manner until the output of the erosion is not empty. The center of the
inscribed ring is then determined. Note that in this case the nonempty output of an ero-

sion operator does not necessarily contain just a single center point due to the
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irregularity of the actual hole shape. When multiple center points are obtained, the

median point is selected as the center of the inscribed ring.

Based on the located center, the best fit disk is found when the "discrepancy”
between the imaged hole and the standard disk is minimum. The discrepancy is defined
as the total area of the nonoverlapped regions of the original hole image and the ideal
hole. The regions can be extracted by using the exclusive OR operation on the two
images.

An example of the entire process is shown in Figures 3.3. The original top-lit
image is shown in Figure 3.3(a). Segments of the processed images containing the hole

are shown in Figure 3.3(b).

This geometrical inspection technique shows that utilization of morphological
operations in image analysis is effective in terms of the implementation and perfor-

mance.
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(continued) (b) Upper Left: the filtered top-lit image; Upper Right: the
histogram of the filtered image; Middle Left: the histogram after the median
filtering; Middle Right: the segmented image; Bottom Left: the overlap of the
hole boundary in the segmented image and the hole in the original image;
Botiom Right: the overlap of the segmented hole boundary and the ideal hole
shape.
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CHAPTER 4
THE GENERALIZED MORPHOLOGICAL FILTER

4.1 Introduction

Image enhancement is usually an initial step for further image analysis such as
image segmentation, motion analysis, etc. Geometrical structures in an image play very
important roles in these processes. For an example, one approach in motion analysis is
to first extract geometrical features and then compute the velocity field of these features.
Therefore, the performance of a filtering algorithm for image enhancement is judged not
only by noise suppression effectiveness, but by the ability to preserve geometrical struc-
ture. It is always difficult for a filtering algorithm to meet both criteria. Many filtering
algorithms used for noisy images assume homogeneity or stationarity. However, for real
images, the homogeneity assumption only holds for small regions. Therefore, some
filters always produce blurring effects, and consequently their performance is degraded
despite their strong noise smoothing properties. Rank order filtering is one of the popu-
lar nonlinear filtering techniques that has been widely recognized to be capable of
preserving geometrical features. The type of noise a rank order filter can effectively
suppress is impulsive noise. For nonimpulsive noise, the performance of a rank order

filter can be quite disappointing [44, 54].

Several approaches have been proposed so that the two above criteria can be prop-
erly balanced. Two techniques are often seen being used in the development of filtering
algorithms to improve their performance. In order to improve geometrical structure
preservation, multiple model approaches have been proposed to deal with the difficulty

posed by inhomogeneity of real images. The basic idea of this approach is to
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incorporate information for multiple geometrical features into the filtering algorithm.
Multiple filters of the same type are usually used in this approach. They are applied to
the input image in parallel and each of them is "sensitive" to one type of structure in the
image. The outputs of the multiple filters are then processed according to a predefined
criteria to better preserve geometrical structures. One of the criteria used is to select the
output which best matches one of the geometrical structures. A typical example is the
Multiple Model Kalman Filter [55, 56]. Five filters were used, one for the isotropic area,
and four for edges. Five Kalman filters using the five models, respectively, were applied
to the input image in parallel. The output of the Multiple Model Kalman Filter is
selected from the outputs of five Kalman filters based on their a priori error variances
[55]. Another example of the multiple model approach is the FIR-median hybrid filter
[57]. In this filter, FIR filters were applied to the pixels located in several geometrical
structures. The final result was selected as the median of the multiple outputs of the FIR
filters. It is obvious that the improvement in geometrical feature preservation reported

for the above two examples is obtained at the expense of increased complexity.

Another approach for performance improvement is the combination of linear and
nonlinear operations. This approach is based on the desire to utilize the geometrical
feature preservation capability of nonlinear filtering and the noise suppression capability
of a linear filter. Although the above two examples can also be thought of as an applica-
tion of this approach, another filter can be better used to illustrate the idea behind this
approach. The example is the combination of ranking and linear operations, known as
the order statistic filter (OSF) [44]. Another name for this filter is the L filter [58]. Rank
order filtering has been recognized as being effective for a large number of applications
[43,59]. A special case of the rank order filter, the median filter has been shown to
preserve geometrical structures such as edges or monotonic changes, while eliminating
impulsive noise [46]. However, it has been noted that the performance of the median

filter in suppressing nonimpulsive noise is not satisfactory [54]. A linear filter, on the
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other hand, provides strong nonimpulsive noise suppression over a homogeneous region,
but also introduces a smearing effect over areas with discontinuities. The OSF was intro-
duced in order to make use of the merits of the rank order filter and the linear filter. The
OSF can be formulated as the following. An input sequence {x;,i=1,2,,....n} is
ordered as {x;} = {x1), X2, -..-X(m)}> such thatxqy Sxy <,..., Sx(y. The output
of the OSF is then the linear combination of the ordered samples, that is,

n
y= Z OtiX(i).
i=1

n
where the o;’s are real valued coefficients constrained by %, o; = 1. By varying the
i=1
values of the coefficients, many version of the OSF can be obtained. For example, the
averaging filter, median filter, timmed mean filter, etc., are all special cases of the OSF
[44]. The optimal coefficients can also be derived based on the minimization of mean

squared error [44].

As mentioned in Chapter 2, a simple morphological filter using a single structuring
element is not suitable in many applications for suppressing noise. The Generalized
Morphological Filter (GMF) introduced in the following section is developed to improve
the performance of morphological filters. The two approaches mentioned above for per-
formance improvement are used in the development. The multiple model idea is
reflected by the use of multiple structuring elements in the GMF which represent dif-
ferent geometrical structures. The idea of combining linear and nonlinear operations is

realized in the linear combination part of the GMF.

4.2. The Generalized Morphological Filter (GMF)
4.2.1 The Structure of the GMF

The Generalized Morphological Filter consists of a cascade of two stages. Each of

the stages uses one type of morphological operator: either an opening or a closing [52].
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The stage using closing operators is known as the CL stage and the stage using opening
operators is known as the OL stage. Multiple structuring elements are used in each
stage. The output of each stage is the linear combination of the ordered outputs of the
multiple morphological operators. Figure 4.1 shows the structure of one configuration of

the GMF.

In the CL stage, multiple closing operators using different structuring elements are
applied to the input image in parallel. The output of the stage is the linear combination
of the ordered outputs of the multiple closing operators. The operation of the CL stage,
shown in Figure 4.2, can be formulated by the following. For an input image f and mul-
tiple structuring elements {k, ko, - * * ,ky}, the output of the stage is expressed as

N

y=23, 0y 4.2.1)
i=1

where y(; are the ordered outputs of fek;. The output sequence is ordered by

Yy Sy S ..., <yw. The o; are real valued constants with the constraint that

N
Y. o; = 1. The constraint is set in order not to introduce a brightness bias. The values
i=1

of coefficients are determined by the application.

The OL stage, shown in Figure 4.3, can be formulated by the following. For an

input image f and multiple structuring elements {ky, ko, - - - ,ky}, the output of the
stage is
N
y=% By (4.2.2)
i=1

where y(; are the ordered outputs of fok;. The output sequence is ordered by

N
YOSY2) S ... Syey. The B; are also real valued constants with ¥ B; = 1.
i=1

With the above two stages, the GMF can be implemented in various ways. Figure

4.1 shows one implementation of the GMF. The order of the OL and CL stages in the
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One implementation of the Generalized Morphological Filter.
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cascade can be altered to obtain other versions of the GMF. The GMF is described by
the selection of the a’s, B’s, N, the set of structuring elements, and the order of the OL
and CL stages.

4.2.2. Some Properties of the GMF

The followings are some interesting properties of the GMF. Some of them will be

used in latter chapters.

Property 1.
The operation of the OL stage is antiextensive and the operation of the CL stage

is extensive. That is, for an image f, we have (see Figure 4.1):

N N
2 Bye sy oz, (4.2.3)

where y ;) are the ordered outputs of fok; and z(; are the ordered outputs of
f Oki.
The above properties can be easily proved by using the antiextensiveness and extensive-

ness properties of single opening and closing operators.

Proof: We first prove the antiextensive property of the OL stage. Let f(p, g) be the
gray level value of the pixel at location (p, ¢). Then when the GMF is applied to
the pixel at location (p, q), from the antiextensive property of the opening opera-

tor (2.1.19), we have

i, )<f(, q) for i=1,2,... ,N.

Then, it is obvious that

N N N
S Byy <X Bifo, ) =1, Y Bi =1, ¢).
i=1 i=1

i=1

The last equality holds because the sum of the B;’s is one.
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The extensive property of the CL stage can be similarly shown.

Because of their nonlinearity, the superposition property does not hold for morpho-
logical operations. However, when a morphological operator is applied to a sum of a
signal and a constant, the output of the operator is equal to the sum of the outputs of the
operator applied to the signal and the constant, respectively. The next property can be

considered as the weak superposition property of the GMF.

Property 2.
Let f=g + ¢ where g is an image and c is a constant. Then for the OL and CL
stages, we have:
N N
y = ElBi yo+c and z= Eloc,- zgy +c, 4.2.4)
where y ;) are the ordered outputs of g o k; and z;) are the ordered outputs of
gek;.
Property 2 can be easily proved using the corresponding weak linearity property of a sin-

gle morphological operator.

Proof: Consider the OL stage. Using (2.1.26) and noting that the constant ¢ does not

affect the ordering process, we obtain
N N
y=XBiunte)=XBiyae+c.
i=1 i=1

From Property 1, it can be seen that the GMF with different ordering of the mor-
phological stages will produce different results. The output of the filter with a CL stage
followed by an OL stage is always "brighter". This phenomenon, known as the bias

effect, can be reduced by averaging the outputs of two filters as shown in Figure 4.4.
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4.2.3. Variations of the GMF

As mentioned above, the values of the coefficients in the linear combination part of
the filter are specified by the application. For example, if the image is corrupted with
impulsive noise, we can obtain the max/min version of the GMF by specifying the
coefficients by the following [30]:

1, i=1, 1, i=N,
oc,~={ ! and [3,—:{ P=N (4.2.5)

0, otherwise; 0, otherwise.

It is more illustrative to formulate the operations of this version of the GMF using max
and min operators. For the CL stage, the output is the minimum of the outputs of the

closing operators, that is,

y=min {feky, feky,..., feky]}. (4.2.6)

The output of the OL stage is the maximum of the opening operators, that is,

y=max {foky, foky,..., foky}. 4.2.7)
Figure 4.5 illustrates the block diagram of this version. The purpose of such an arrange-
ment of the GMF is to preserve any geometrical structure that matches at least one of the
structuring elements. The max/min version of the GMF also has a binary counterpart.
The equivalent binary expressions for the CL and OL stages of the max/min version of
the GMF are:

N N
Y=FeK; and Y=F oK (4.2.8)
i=0 i=0

where Y and F are binary images and K; are binary structuring elements. The max/min
version of the GMF is also known as the 2D CO morphological filter [30]. Lay used the
same concept in designing an algorithm to recognize anerisms in angiographs [60]. The
max/min version has some interesting properties which are presented in the following

chapter. Figure 4.6 shows an example of applying Equation 4.2.8 to a binary image
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Block diagram of one configuration of the GMF to reduce the bias effect.



Figure 4.5.

Block diagram of the max/min version of the GMF.
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using the four line structuring elements shown in Figure 4.7. An original binary image
and a noisy version corrupted by impulsive noise are shown in Figure 4.6. Results of the
max/min version of the GMF and the traditional morphological filter applied to the noisy
image are also shown in Figure 4.6. A 3x3 square structuring element shown in Figure
4.7 is used by the traditional morphological filter. Comparing the output of the GMF
with the traditional morphological filter, the GMF has superiorer geometrical structure

preservation and noise suppression capability.

For an image corrupted by nonimpulsive noise, an averaging version of the GMF
can be used. The averaging version of the filter is obtained by assigning the same value
to all the coefficients [52]. The averaging versions of the OL and CL stages can be
expressed, respectively, as:

1 N 1 N
y= —ﬁiglf.ki; and y= ]—V—Elfo k;. (4.2.9)
Figure 4.8 illustrates one implementation of the averaging version of the GMF. Figure
4.9 shows an example of applying the averaging version of the GMF to an image cor-
rupted by Gaussian noise. Four structuring elements shown in Figure 4.7 are used. In
order to make a comparison, the result of the traditional morphological filter using a 3x3
square structuring element is also shown in Figure 4.9. Again, we can observe the

significant improvement obtained by the GMF.

Later, we will derive an optimal design for the GMF using a set of special structur-

ing elements.

4.3. Discussion of the Performance of the GMF

In order to achieve a better understanding of the GMF and provide some guidance
in the design of the structuring elements, several aspects relevant to the performance of

the filter are discussed in this section.
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Figure 4.6. Upper Left: Original binary image; Upper Right: Impulsive noise corrupted
image; Bottom Left: Output of the max/min version of the GMF using the
structuring elements, k;, i=1,...,4, shown in Figure 4.7; Bottom Right:
Output of a traditional morphological filter using a single 3x3 square
structuring element, k, shown in Figure 4.7.
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Figure 4.7.  Illustration of the structuring elements used to process the images in
Figure 4.6.



Figure 4.8. Block diagram of the averaging version of the GMF.
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Figure 4.9. Upper Left. Original image; Upper Right: Gaussian noise corrupted image;
Bottom Left: Output of the averaging version of the GMF using the
structuring elements shown in Figure 4.7; Bottom Right: Output of a

traditional morphological filter using a single 3x3 square structuring element
shown in Figure 4.7.
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4.3.1. Geometrical Structure Preservation of the GMF

As we discussed before, geometrical structure preservation is one of the most
important criteria in the performance of a filter used in image enhancement. Several
techniques proposed to improve the performance of filters used in image enhancement
have been discussed in previous chapters. Efforts have also been made to use adaptive
approaches in filtering algorithms to detect the presence or absence of edges in an image
[54,61]. The result of the edge detection determines the regions where the smoothing
operation is performed. There are several schemes used in this approach. One scheme is
to use a filter with strong geometrical preservation ability, such as a median filter, at pix-
els near edges, otherwise a filter with effective noise suppression, such as an averaging
operation, is used at pixels in the homogeneous regions [54]. Another scheme is to
select the pixels so that the smoothing operation will only be applied to pixels that
belong to the same homogeneous region [62]. While the adaptive approaches result in a

reduced smearing effect, they also increase computational complexity .

The above adaptation process inherently exists in the GMF. This feature of the
GMF is due to the edge preservation nature of closing and opening operations. When a
closing or opening operator is applied to an edge pixel location, the output of the opera-
tor will be on the same side of the edge pixel location if the region on that side contains
the same geometrical structure as the structuring element. When the GMF is applied to
an edge pixel location, the multiple morphological operators always produce outputs
that are on the same side of the pixel location, provided that the region consists of
geometrical structures represented by the structuring elements. Therefore, the GMFE
applied to an image that consists of homogeneous regions separated by intensity transi-
tions has a reduced smearing effect since the linear operations in the GMF will be per-

formed on pixels on the same side of an edge.
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We know that the max/min version of the GMF has very strong geometrical feature
preservation capability since any geometrical structure in the image that matches any
one of the structuring elements will be preserved {30]. However, if the noise is nonim-
pulsive and linear operation has to be used for noise suppression, this strong preserva-
tion ability can be weakened. The condition mentioned above indicates that the smear-
ing effect can be greatly reduced if the regions on both sides of an edge are composi-
tions of the geometrical structures represented by the structuring elements. This smear-
ing effect reduction does not apply to fine geometrical structures whose regions are too
small to be decomposed into the structuring elements. Using structuring elements of

small spatial support can alleviate this problem.
4.3.2 Noise Suppression Capability of the GMF

One attractive feature of the GMF is that it can be used to smooth noisy images
corrupted by various types of noise. For example, impulsive noise can be effectively
suppressed using the max/min version of the GMF and nonimpulsive noise can be

suppressed using the averaging version of the GMF.

One problem in image enhancement is the existence of outliers which arise from
heavy tailed noise distributions or are simply bad data points in the image acquisition
process. In order to reduce the bias effect caused by the outliers, robust approaches have
been developed to modify existing filtering algorithms so that outliers have much less
influence. Another requirement is that the filter should be able to produce reasonably

good results even when the outliers do not exist [63].

The above two concepts for robust filtering are well met by the GMF due to the use
of morphological operators. In view of the fact that morphological operators, such
opening and closing, eliminate outliers whose structures do not match the structuring
elements, the multiple morphological operators in each stage of the GMF produce rela-

tively outlier-free outputs and hence the linear operations will have reduced influence
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from the outliers. Figure 4.10 shows two noisy images: one contaminated by composite
of Gaussian noise and impulsive noise and one contaminated only by the same Gaussian
noise. The results in the figure show that the performance of the averaging version of the

GMF is not visibly degraded by the presence of impulsive noise.

The noise suppression ability of the Generalized Morphological Filter can also be
evaluated by examining the noise variance reduction. This examination is based on the
concept that a smoothing filter must reduce the variance of the input noise [64]. This
was shown in Chapter 2 to be true for simple morphological operations. The variance
reduction ability was examined by using an averaging version of the GMF with a set of
test data generated by contaminating a constant gray level area with Gaussian noise of
zero mean and various variances. The gray level value of the constant area was 125.
The values of the noise standard deviation ¢ ranged from 10 to 100. The structuring ele-
ments shown in Figure 4.7 are used in this examination. The sample mean and variance

of the output of the filter for each test were obtained using the following:

S I @3.1)
H=—7 yu,J D,
M i=1lj=1
and
MM
= XX 061 (432)
M? 5 j=1

where L is the sample mean, o2 is the sample variance. M 2 is the total number of pixels
in the image. The gray value at pixel location (i, ) of the smoothed image is denoted by
y(i,7). For the sake of comparison, averaging and median filters were also applied to the
test data and the corresponding measurements were obtained. A 3x3 window was used
for both the averaging and median filters. A plot the input standard deviation vs the stan-
dard deviation of the output of the GMF is shown in Figure 4.11. From the plot we can

see that the averaging version of the GMF has better variance reduction capability when
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Figure 4.10.Upper Left: Noisy image contaminated by a composite of Gaussian noise
and impulsive noise; Upper Right: Noisy image contaminated only by
Gaussian noise; Bottom Left: Result of the averaging version of the GMF
applied to the upper left image; Bottom Right: Result of the averaging
version of the GMF applied to the upper right image.
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Figure 4.11.The standard deviation of the output of the GMF vs the standard deviation
of the input. The dotted line represents the output of the GMF, the dashed
line represents the output of the median filter, and the solid line represents
the output of the mean filter.
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the input standard derivation ranges from 10 to 80. However, the GMF performed
poorer when the input variance is large. The intuitive reason for this is that when the
input noise variance becomes large, some false geometrical structures are created and

they may match some of the structuring elements in the GMF.

In order to examine both noise smoothing and feature preservation, another set of
test images were generated. The original noise-free image consists of rings with various
widths, ranging from 1 to 10 pixels. The same type of noise was used to contaminate
the rings image. In this test, instead of estimating the sample variance, the mean squared
error was estimated between the original image and the output of the GMF:

1 M M

dy=—5% Y (€GN -y G (4.3.3)
M? j=1j=1

where g (i,j) is the gray level value at pixel location (i,j) in the original noise-free
image, and y (i,/) is the gray level value at pixel location (,) in the smoothed image. A
plot of the mean square error vs. the input noise standard deviation is shown in Figure
4.12. The plot shows that the GMF has better performance than the other two filters.
The output image has visually sharper edges and better smoothing in the rings and the
background. The limit of the geometrical feature preservation of the GMF is shown in
the smoothed image, that is, the rings of small widths were smeared by the filter. The
images in Figure 4.13 consists of the original noise-free image, one noisy image with

noise variance 50 and the corresponding outputs of the filters.

A final test was performed using the filters on a set of noisy images whose original
noise-free image is shown in Figure 4.14. The image was corrupted using the same
types of noise as above. The mean squared error was also used to evaluate the perfor-
mance of the GMF. Figure 4.15 shows a plot of the mean squared error vs the input
noise standard deviation. Once again, the plot shows that the GMF achieved better per-

formance.
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Figure 4.12.The mean squared error vs the standard deviation of the input noise for the
rings image. The dotted line represents the output of the GMF, the dashed
line represents the output of the median filter and the solid line represents
the output of the mean filter.
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Figure 4.13.Upper Left: Original ring image; Upper Right: Noisy image; Middle Left:
Output of the GMF; Middle Right: Output of a traditional morphological
filter using a single structuring element; Bottom Left: Output of the median
filter; Bottom Right: Output of the averaging filter.
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Figure 4.14.Upper Left: Original girl image; Upper Right: Noisy image; Middle Left:
Output of the GMF; Middle Right: Output of a traditional morphological
filter using a single structuring element; Bottom Left: Output of the median
filter; Bottom Right: Output of the averaging filter.
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4.3.3 Considerations in the selection of the multiple structuring elements

Selecting proper structuring elements is an essential step in designing the GMF
since it greatly affects the noise suppression effectiveness and geometrical feature
preservation. There is not yet a systematic approach for designing structuring elements.
However, from the understanding of the morphological operations, we can obtain some

intuitive ideas about how the structuring elements affect the performance of the GMF.

The parameters of a structuring element include the size and shape of the support-
ing area as well as the gray scale profile of the structuring element. The design of the
gray scale profile of a structuring element is usually based on the application. For exam-
ple, in some applications, images obtained from a known environment includes noise
with a certain structure. The gray scale profile of the structuring element can then be
designed so that it matches the structure of the noise [17, 18]. Flat structuring elements

are commonly used if there is no a prior knowledge about the noise amplitude.

The high fidelity of the GMF is achieved if fine details can be maintained after the
filtering process. Fine detail usually means geometrical structures of small sizes, such as
thin lines, corners, etc. One way to preserve fine details is to use structuring elements of
small sizes. The shapes of these structuring elements are designed so that they can form
fine details in an image. For example, if the structuring elements are defined as four lines
of three pixels long and directions of 0°, 45°, 90°, and 135°, as shown in Figure 4.7,
then they can form lines with the four angles, and curves whose segments consists of the
four lines. However, from a noise suppression point of view, structuring elements of
large sizes are preferred in order to achieve better smoothing effect. So there is a conflict
in choosing structuring elements for noise suppression and geometrical structure preser-
vation. There are two approaches that can be used to alleviate this conflict. One way to
resolve this conflict is to use more structuring elements for the large window size. Since

a large window can be decomposed into more substructures, increasing the number of
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Then for n images, we have

(A oK =[(UA) U A0k 2 [(UA) o K1U (4, 0 K)
i=1 i=1 i=1

S>UA; 0 K),

i=]

The above proposition implies that the distributive property between the opening
and set union does not exist. The geometrical interpretation of Proposition 5.1.1 can be
described as the following: the union of several binary images may result in a larger
image in which some geometrical patterns, that are not contained in the original images,
may be created. Since an opened image is basically the collection of the same patterns,
represented by the structuring element and distributed in the original image [2], we may
obtain a larger collection from the image which is formed by set union. Therefore the
above containment relationship is established. An example of this property is shown in

Figure 5.1.

The following proposition describes the relationship between interchanging the

order of set intersection and opening.

Proposition 5.1.2:
For a finite number of binary images Ay, A,,..., 4,,, the following relation
holds:

(ADoK € A (4;0K), (5.1.2)
i=1 i=1

The proof of this proposition is similar to the proof of Proposition 5.1.1. Proposi-
tion 5.1.2 indicates that the distributive property between the opening and set intersec-
tion does not exist. The geometrical explanation of the proposition is that since the
geometrical patterns extracted from the image formed by the set intersection are also

contained in every opened image obtained from the original images which form the
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Figure 5.1.  (a) image A; (b) opening of A by K: A o K; (c) image B; (d) opening of B
by K: B o K; (e) the union of A o K and B o K: (A oK) U (B o K); (f) the
union of A and B: AUB; (g) opening of AUB by K: (AUB) o K; (h) the
structuring element K.
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intersection, the intersection of the opened images will contain the result of the opening
operator applied to the image formed by the intersection. The example in Figure 5.2

illustrates the above property.

Interchanging the order of the closing and set operations also possesses similar pro-
perties. The next two propositions provide properties for interchanging set operations,
such as set union and intersection, and the closing operation when applied to a finite

number of images using the same structuring element.

Proposition 5.1.3:
For a finite number of binary images A, A, ..., A,, the following relation

holds:

(UA) oK o U (A; oK), (5.1.3)
i=1 i=1

Proof:

The relation is proved using induction. First we prove that the relation holds for

two images. From (2.1.7¢) and (2.1.8d), we can obtain the following result:
(A1 UA)eK=[A; UA)BDKICK=[A1 DK)U (A, @K)|OK
DA PK)OK|IU[A, PK)CK]=(A1eK) U (A, oK),

Assume that the relation holds for n-1 images, that is:

n—1 n—1
(UA)eK 2 U (4; eK).
i=1 i=1

Then for n images, we have

(G4 oK = [(TU4) UA, TeK 21(UA) oK1 U (A, oK)
i=1 i=1 i=1

>U(4; oK),
i=1
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(a) image A; (b) opening of A by K: A o K; (c) image B; (d) opening of B
by K: B o K; (e) the intersection of A oK and B oK: (A oK) M (B oK),
() the intersection of A and B: AMB; (g) opening of AMB by K:
(AMB) o K; (h) the structuring element K.
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As mentioned in Chapter 2, closing is a dual operation to opening. It operates as
the opening on the background of the image. The closed image can also be considered
as the collection of points that are contained in all the translates of the structuring ele-
ment whose intersections with the image are not empty ( that "hit" the image ) [2].
Since the set union produces a larger set, it is true that the new image may be hit by a
greater number of translated structuring elements. Therefore, the result from the closing
of the new ’image contains all the points that results from closing the original images,

respectively. An example of this property is shown in Figure 5.3.

Proposition 5.1.4:
For a finite number of binary images A1, A,,..., A,, interchanging set inter-
section and the closing operation results in the following relation:

(fn\Ai) Kc M (A; o K). (5.1.4)
i=1 i=1

The proof of this bproposition is similar to the proof of Proposition 5.1.3. Since the inter-
section of several images contains the common elements of these images, the translated
structuring elements that hit the intersection will definitely hit the original images.
Therefore, the collection of points contained in all the translated structuring elements
that hit the intersection of the images will be contained in each closed image obtained
from the original images. So the above containment relationship is justified. The exam-

ple in Figure 5.4 illustrates this property.

One of the salient features of the opening operation is the idempotent property.
Since we are dealing with the opening operation using multiple structuring elements, it
is natural to ask whether the idempotent property exists for such an operation and if it
does under what conditions does the property hold. The following proposition states
that the idempotent property does exist for opening operations using multiple structuring

elements, and the property holds for the union of the results of these opening operations.
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Figure 5.3.
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(a) image A; (b) closing of A by K: A ¢K; (c) image B; (d) closing of B
by K: B ¢K; (¢) the union of A @K and B ¢ K: (A ¢ K) \U (B ¢ K); (f) the
union of A and B: A\UB; (g) closing of AUB by K: (AUB) ¢ K; (h) the
structuring element K.
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Figure 5.4.
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(a) image A; (b) closing of A by K: A ¢K; (c) image B; (d) closing of B
by K: B ¢K; (e) the intersection of A ¢K and B ¢K: (A #K) M (B ¢K);
(f) the intersection of A and B: AMB; (g) closing of AMB by K:
(ANMB) o K; (h) the structuring element K.
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This is actually the binary version of the OL stage in the max/min version of the GMF.

Proposition 5.1.5:

For a finite number of binary structuring elements K1, Ko, ..., Ky,

let A,=\J(AoK).

i=1

Then A, = J (A4, 0K}) . (5.1.5)

i=1
Proof:

The relation is obtained by induction. First we prove that the relation holds for two
images.

LetB; =AoK;, By=A oK,. From Proposition 5.1.1, we have the following relation:
(B1 UB2) oK1 2(B1°K1)U(B20Ky)
=(AoK)Ul(AcKjy)o K ];
and
(B1 UB,)oKy2(B10K3) U (B20oK))
=[(AcK1)o K] U(AcK)).

Taking unions on both sides of the above two expressions, we obtain the following con-

tainment relation:
(A0K1) U ([A20K2)D(A0K 1) U(@AoK)y),

since [(AoK )oKl U @A oK )=(AoKy);
and [(AoK2)oK 11U (A oKy)=(AoK>).
Due to the antiextensive property of the opening described from (5.1.1), we obtain the

following two relationships:

By UBy)oK, € (B1UB)y),
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and
(B1UBj)eKy 2 (B UB»).
Taking unions on both sides of the above two expressions, we have
(A20K1) UA20K3) S (A0K ) U AoKy).

So the property for n =2 is proved. Assume that the property holds for n-1 structuring

elements, that is:

n—1
let A,_1=U@AoK;),
i=1

n-1
then A,_1=U@A,1°K)).
i=1

Now for n structuring elements, we can arrange the equation by the following:

n n—-1
U@, oK)= U {[Ap—1 U A oKn)] oK;} U A, UA oK,)oK,].
i=1 i=1

The following relations are derived:

T 1A, U A oK) 0K ) DU { (Ayy oK) U A 0Ky oK}
i=1 i=1

n—1
=A, 1 U { U[AK,)oK;]};
i=1

and
[An—l . (A o Kn)] o Kn = (An——l OKn) o (A © Kn) .

Taking the union of the above two expressions, we obtain:

n
U@A,oK)DA1 UACK,).

i=1

From the antiextensive property of opening, the following relations are obtained:

-1
‘U (A1 U@ oK)I0K: ] CAng UAOK,);

i=1
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and
[An—l o (A oKn)] ©° Kn gAn—l U (A oKn) .

Taking the union of the above two expressions, we obtain:

n
U, 0K) CAp U@ACK,).

i=1
The proposition is proved.

The result of opening an image by one structuring element is the union of the same
geometrical patterns represented by the structuring element and distributed in the origi-
nal image [2]. Similarly, the result of the operation in Proposition 5.1.5 is then the
union of the geometrical patterns, represented by a finite number of the given structuring
elements and distributed in the original image. Therefore, once the patterns are sorted
out of the original image, repeating the same operation will not obtain new information

and the operation is hence idempotent. Figure 5.5 shows an example of this property.

The idempotent property for the binary version of the CL stage follows by duality.
That is, the intersection of results of the closing operation using multiple structuring ele-

ments is idempotent. This property is described by Proposition 5.1.6.

Proposition 5.1.6:

For a finite number of binary structuring elements K, K5, ..., K,

let A, =M (A eK;).
i=1

Then A, =M (4, oK) . (5.1.6)

i=]
The proof of this proposition is similar to the previous proposition.

The result of closing an image by a structuring element is the union of the same
geometrical patterns represented by the structuring element and contained in the back-

ground of the original image [2]. The result of the operation in Proposition 5.1.6 is then
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Figure 5.5. (a) image A; (b) (AoK 1)U (A oK>3); (c) structuring element Kq; (d)
structuring element K 5.
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the union of geometrical patterns represented by a finite number of the given elements
and distributed in the original background. Hence iteration of the same operation will

not change the first result. Figure 5.6 presents an example of the above property.

We have shown that the binary version of the OL and CL stages are idempotent.
Since the GMF consists of cascades of OL and CL stages, the question is whether the
GMEF as a whole possesses the idempotent property. The answer is yes and the follow-
ing two propositions shows the idempotent property of two configurations of the GMF
with OL and CL stages cascaded in different orders. Using Propositions 5 1.5 and 5.1.6,

the proofs of the propositions are quite straightforward.
Proposition 5.1.7:

n K,, n K,,
Let Ag» = U oK;), A" =M(AoK)), and B = (Ag)*" .
i=1 i=1

Then B =Bg-)X . (5.1.7)
Proof:
B =BX" 2 By )X" = {[Ag-)S Ik K 2 [(Ag )1 = Ag)*" =B .

Proposition 5.1.8:

n kn N K"
LetAg» = U@A 0K;), A" = NAcoK;), and B=(A" )g» .
i=1 i=1

Then B =®BX ks . (5.1.8)
Proof:
B =By = (BK g = ([AK i 1K S c [AK YK g = (AKX )gn =B .

Note that, the above properties are different than structuring element decomposi-
tion, in which a structuring element is decomposed into two or more sub-structuring ele-
ments [32]. The purpose of such an arrangement is to reduce computational complexity

or to meet special hardware requirements. The result, using the decomposition
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Figure 5.6.  (a) image A; (b) (A #K 1) M (A eK3); (c) structuring element Ky ; (d)
structuring element K .
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technique, is based only on the one pattern represented by the undecomposed structuring
element. The operations in Propositions 5.1.5, 5.1.6, 5.1.7, and 5.1.8 will extract dif-
ferent patterns from an image or the background of an image. The final result is the col-

lection of at least one of the patterns represented by the structuring elements.

5.2 Properties of Gray Scale Morphological Operators Using

Multiple Structuring Elements

In this section, similar properties of gray scale morphological operators are
derived. With the concept of the umbra of an image, the geometrical interpretation of
the following properties for gray scale morphological operations can be made similar to
the ones in the previous section. Let fand { f1, f2,..., fn } be gray scale images and k

and { kq, ko, ..., k, } be gray scale structuring elements.

Propositions 5.2.1 and 5.2.2 state that the distributive property does not exist
between opening and the max or min. Interchanging the order of the operations of
opening and max or min will produce the results shown in the following:

Proposition 5.2.1:

For a finite number of images f1, f2, . . . , fx, the following relation holds:

max (fiock)< max (fi)ok. (5.2.1)
ie(l,..,n) ie(l,...,n)
Proof:

The proof is obtained by induction. For n=2 the following relationship is

obtained from (12) and (10):
max [(f1 ©k) Dk, (f, Ok) @ k] =max [(f1 Ok), (f, ©k)] Dk
<Smax (f 1, fr)ok.

Assume that the relation holds for n-1 images, that is
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max (fiok)< max (f, )o k.
ie(l,..,n-1) ie(d,..

Then for n images, we have

max =max|[ max (ﬁOk) fno k]
ie(1,..., n) ie(l,...,

<max [ max (f,)Ok fnokl

ie(l,...,

ie,..., n)
Proposition 5.2.2:
For a finite number of images f1, f2, . . . » fn, the following relation holds:
mm (f, ok)2 mm (ﬂ)Ok (5.2.2)
ie(l,.. ie(l,..

The proof is similar to the previous one.

Analogous to Propositions 5.2.3 and 5.2.4, the following two propositions state
properties that results from the closing and the "max" or the closing and the min opera-

tions.

Proposition 5.2.3:

For a finite number of images f1, f2, . - - » [, the following relation holds:

max (f;ek)< max (f;)ek. (5.2.3)
ie(l,...,n) ie(l,...n)

Proof:
For n = 2 the following relationship is obtained from (12) and (10):
max [(f1 @ k) Ok, (f2 @ k) k] <max [(f1 D k), (2 @k)]Ck
=max (f 1, fr) ek.
Assume that the relation holds for n-1 images, that is

max -ek)<  max ek,
ie(l,...,n—l)(fl ) ie(l,..,.n-1) (fl)
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Then for n images, we have

max =max[ max (f;ek), f,ek]
ied,..., n-1)

<max|[ max (f;)ek, f,ek]
ie(1,..., n-1)

ie(d,..., n)
Proposition 5.2.4:
For a finite number of images f1, f2, - - . , [, the following relation holds:
min (f;ek)= min (f;)ek. (5.2.4)
ie(l,...n) ie(l,..,n)

The proof is similar to the previous proposition.

The following proposition describes the idempotent property relative to the opera-
tion which selects the maximum of the results of opening operations using multiple
structuring elements. This is the operation that consists of the OL stage of the max/min

version of the GMF.

Proposition 5.2.5:

For a finite number of structuring elements,

letfn=i {nax (fok;).

ed,..., n)

Then f,= max (f,ok). (5.2.5)
1

e(l,..., n)

Proof:

First the case for n =2 is considered: Let g1 =(foky) and g, =(fok,). From

Proposition 9, we obtain the following two inequalities:

max (g1, g2) ok 2max(goky, go0ky),

and
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max (g1, g2) ©ko 2max(g 0ky, g2 °k2),
From these two inequalities, we can easily obtain the following relationship:
max (max (g1, g2) k1, max (g1, 82)°k2)
> max [max (g1 0kq, g2 ©k1), max (g1 ©kz, g20k2)]
=max [foky, (foky)oky, (foky)oksy, fokal]
=max (foky, foky).
Due to the antiextensive property of the opening from (8), we have the following two
inequalities:
max (g1, g2)° k1 Smax (g1, g2)
and
max (g1, §2) © k2 Smax (g1, 82)-
From the above two inequalities, the following relationship can be established:
max (max (g1, §2) °k1, max (g1, §2) °k2)
<max(gy, g2) =max(foky, foky).

Assume that the relation holds for n-1 structuring elements, that is

Then f,_1 =  max y (fu_1 0 k) .

iedl,...,n—

Now for the n structuring elements, we have
1 (fn ° ki), fn ° kn]

=max{ max 1)[max(fn_1 , fokyok], max (fu—1, fokn)okyt .

ie(l,..., n

The following relations are derived:
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Proposition 5.2.6:

For a finite number of structuring elements,

Then f, = ie(lrnin (f, ®k;) . (5.2.6)

The proof is similar to the previous proposition.

This operation can also be visualized in the following way: the structuring ele-
ments are floating freely above the surface of the function f, and any downward part of
the surface will be filled in if none of these structuring elements fits above the surface.
So at least one of the given structuring element will fit above the resulting surface. Con-
sequently, the repeated application of the operation on the resulting surface will not

change.

The next two properties state the idempotent property for the max/min version of
the GMF consisting of cascades of OL and CL stages in different orders. In other
words, the consecutive applications of operations in Propositions 5.2.5 and 5.2.6 are

idempotent.

Proposition 5.2.7:

Then g = (ge)* . (5.2.7)
Proof:
8 =gk’l 2 (gk")k’I = {[(fk")kn]k"}kn 2 [(fkn)kn]kn = (fkn )k'l =g.

Proposition 5.2.8:

ie(l,..., n

Let fr = max (fok), f'= min (fok), and g=( ).
1 ) ie(l n)

.....

Then g = (g% ) . (5.2.8)
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max 1)[max(fn—1, foky)ok]=z  max ){max [fa1 0k, (fokn) o kil};
e

ie(1,...,n— 1,...,n-1

and

max (f,,—1, f© ky) o k,, =2 max [(fr—1 © kn), (fokul.

Combining the above two expressions, we obtain:

max )(fn o k;) 2 max [fn-1, (fo ku)1.

ied,...,n
From the antiextensive property of opening, the following relations are obtained:

max )[max(fn—1, foky) okl <max [fp1 0k, (Fokn)okil;

ie(l,...,n-1

and

max (f,—1, foky)o k, < max [fr-1> (fokyl.

Combining the above two expressions, we obtain:

max )(fn o k;) < max [fn-1, (fo ku)] .

ie(1,...,n
The property is proved.

The operation in the proposition can be visualized in the following way: given that
the structuring elements are floating freely under the surface of an image, after the
operation, any part of the surface will be removed if none of these structuring elements
fits under the surface. The resulting surface underneath will then consists of geometrical
structures represented by the given structuring elements. That is, at least one of the
structuring elements will fit under the resulting surface. Therefore, the resulting surface
will be invariant under repeated application of the operation.

The idempotent property of the CL stage of the max/min version of the GMF is
described in Proposition 5.2.6. That is, selecting the minimum of the results of closing

operations using multiple structuring elements is an idempotent operation.
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Proof:
g =g <@ = {1 T hr < LE WK N = D =2

So we have proved that the max/min version of the GMF has the idempotent pro-

perty.

5.3. Root Signal Structures of the GMF

One of the important features of the median filter is its root signal structure. The
appealing characteristic of this root signal structure is its invariability against repeated
application of the filter [46]. Opening and closing operators have an even stronger
invariant property. The idempotent properties of the opening and closing operators indi-
cates that the root structure of the two operators can be obtained through one application
of the operators. The relationship between root structures of the median filter and mor-
phological operators using flat structuring elements were discussed in [14]. Maragos, et
al., established upper and lower bounds on the root signal of the median filter relative to
the opening and closing, respectively [14]. In the above two subsections, we showed
that the idempotent property exists for the max/min version of the GMF. In this section,

we will investigate the root signal structure of the GMF.

As a morphological filter, a root signal structure also exists for the GMF. But since
the linear operation is involved, the idempotent property does not hold in general for the
GMF. The root signal structure of the GMF depends on the set of structuring elements
and can be described as the composition of structures represented by the structuring ele-
ments. From the descriptions of the two stages of the GMF, it is noted that invariability
holds if the outputs of the multiple morphological operators in each stage have the same
value as the input at every pixel location since the sum of the coefficients in the linear
operation part of the GMF is one. This situation exists when the input consists of

geometrical structures from which the substructures represented by the structuring
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elements exists at every pixel location.

The root signal structure can be better illustrated using the threshold decomposition
concept [50]. We will only consider flat structuring elements here. The result can easily
be extended to gray level structuring elements. Suppose the gray level values of the pix-
els in the image range from 0 to M. Let ‘¥ denotes the morpﬁological operation and I,
thresholding at gray level t. Then the threshold decomposition concept can be expressed
as:

M
Y(f) =Y YIL{)I (5.3.1)

t=0

For the sake of simplicity, the averaging version of the OL stage will be used. The

corresponding expression for the averaging version of the OL stage is

yx) = -I\_IE‘fo ki(x) = —N-IZ‘,U%Ht(f) ki (x).
M 1 N
= ZZ_V—Z IT(f) © ki(x). (5.3.2)
t=1 i=0

A similar expression can be derived for the general case as well as the CL stage. It can
be seen from the above expression that if, at each cross-section and each pixel location,
the multiple opening operators produce the same outputs as the input, then the output of
the stage at each cross-section will not differ from the input. This condition requires that
at a pixel location there exist geometrical structures represented by the structuring ele-
ments. If a region consists of all such pixels, then the region is invariant under repeated
applications of the GMF. Consequently an image consisting of such regions will be

invariant to the applications of the GMF.

We will use an example to illustrate a binary root signal structure. The structuring
elements in Figure 4.7 are used which consist of four lines, each three pixels long. The

corresponding root signal structure, shown in Figure 5.7, is a hexagon each side of
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which is three pixels long. Note that at every pixel location, there are four connecting
lines lying within the hexagon. In order to further illustrate the situation, the hexagon is
shown in Figure 5.8 with some pixel locations within the hexagon being marked with an
" and at each location the four lines are shown. It is apparent then that the four open-
ing operators using the four line structuring elements at every pixel location in the hexa-
gon will produce outputs with the same value as the input signal. Correspondingly the
hexagon remains unchanged under repeated application of the GMF. The structure
shown in Figure 5.7 can be considered as the minimal or base root signal structure with
respect to the structuring elements. It is obvious that any collection of such base struc-

tures is still a root signal structure.

We can conclude that an image is the root signal of the GMF if all its cross-
sections are the root signals of the GMF. Such an image can be referred to as the root
image. More specifically, an root image contains plateaus that have the same shapes as
their cross-sections. The transient regions connecting these plateaus have cross-sections
that are the collection of the base root signal structures. Figure 5.9 shows a segment of

an image which is the root signal of the averaging version of the GMF.

It should be noted that the above argument shows that a root signal exists for the
GMTF but we have not addressed the issue whether the GMF will reach this root signal in

a finite number of iterations.
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0 0 0 1 1 1 0 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
0 0 1 1 1 1 1 0 0
0 0 0 1 1 1 0 0 0

Figure 5.7.  Anexample of a binary root signal structure of the GMF.
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0 0
0 0
0 0
0 0
0 0
0 0
0 0

Figure 5.8.  The structuring elements and binary root signal structure combined.
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Figure 5.9.  An example of a gray scale root signal structure of the averaging version
of the GMF and cross-sections of the signal at various gray scale levels.
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CHAPTER 6
COMPUTATION OF OPTIMAL COEFFICIENTS OF THE GMF

We showed in Chapter 3 that by assigning different values to the coefficients in the
linear operation part of the GMF results in different versions of the GMF that can be
used to deal with different types of noise. The design of the max/min version of the
GMF is based on the characteristics of impulsive noise. The averaging version of the

GMEF is used for smoothing noise with an unknown input probability distribution.

Because of the nonlinearity of the morphological operations as well as the the high
correlation in the pixels caused by the morphological operations and the multiple struc-
turing elements, it is very difficult to derive at each stage a general closed form for the
output pixel probability distribution function in terms of the input probability distribu-
tion function. In this chapter, we will derive a optimal set of coefficients for the GMF
using a set of special structuring elements. Although these structuring elements are spe-
cially constructed, they can be used in many practical applications. They are line struc-
turing elements that intersect at only one pixel location. Figure 6.1 illustrates four such

structuring elements of 5 pixels in length.

6.1 Mean-Squared Error Minimization

In this subsection, optimal coefficients are obtained using mean squared error mini-
zation for the OL stage. This can similarly be derived for the CL stage. We first assume
that the input image can be modeled as a constant region contaminated by zero-mean

noise. Each pixel f;  in the input image to an OL stage then has the following form:

fij=c¢+xj, (6.1.1)
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Figure 6.1.  The illustration of four line structuring elements.
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where x; ; are zero-mean independent, identically distributed random variables and ¢ is a

constant. The mean-squared error can be formed by the following:
e? = E[(y—c)?); (6.1.2)
where y is the output of the OL stage.

The above expression for the mean squared error can be simplified by applying

Property 2 in Chapter 5:
4 4
y—c=3 Bioupte)—c=3% Biya, (6.1.3)
i=1 i=1
4
where y ;) is the ordered sequence of y; =x o ki and ¥ B; =1  Now the mean squared
i=1
error can be expressed as:
2 & 2
e* =E[(X Biyu) ] (6.1.4)
i=1
Expanding the above equation, we obtain:
) 4
e = Z ZBiBjRi,j’ (615)

i=1j=1
where R; ; = E[y )y (j]. Equation (6.1.5) can be expressed in matrix form:
e?=P'RB, (6.1.6)
where the constant column vector B = {B1, B2, B3.Bs}’, and R is the 4x4 correlation

matrix with elements R; ; which are the cross correlations of y;y and y ;.

4
The problem of minimizing e? subject to the constraint ¥ Bi =1 can be addressed
i=1

using a Lagrange multiplier. The Lagrangian function is given by

1 Note: The notation has changed slightly. ¥; is the output of the ith opening operation when the
noise only is the input.
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FB, ) =PRB+A1-I'B), (6.1.7)
where I is the column unit vector whose elements are 1’s and A is the Lagrange multi-
plier.

Taking the derivative with respect to B and setting it equal to zero result in:
2RB—AI=0. (6.1.8)
Using the constraint that I'B = 1 we obtain
A=2/I'R7'11. (6.1.9)
The optimal coefficients are obtained after substituting A into (6.1.8), that is,

B=RU/NI'R'I. (6.1.10)

In order to obtain the optimal coefficients, it is necessary to compute (or estimate)
the elements of the correlation matrix R. The difficulty of doing such a computation
comes from the fact that y;’s are correlated so that it is difficult to derive the joint proba-
bility distribution function of yy and y . However, for the special case of the GMF
using the structuring elements shown in Figure 6.1, the joint probability distribution

function can be derived.

6.2. Computation of the Correlation Matrix R

Note that the structuring elements in Figure 6.1 intersect at one pixel which is
denoted as x; ;. The opening operation using one structuring element in Figure 6.1 can
be arranged so that x; ; is separated from the rest of the pixels involved in the operation.
Such a separation allows the derivation of the joint probability distribution function of

¥y and y (). In order to simplify the notation, we change x; j to X;.

For one line structuring element &, (1 <r <4) of m pixels long, the output of the

opening operator can be expressed in the following form:
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y, = max {min{X;_pmii». - X} MIN{X; 2 v« s XisXit1 ) e e s
min{x,-, e ,x,-+m_1} } (621)

Note that since x; appears in every min term, it can be separated from the rest of the

terms in the following manner:

¥y =min{ x;, 2 }, (6.2.2)
where
z, =max {min{xX;_pm41, ..+ >Xi-1} MAN{ X g2y« + » 9 Xicl>Xid1 5 v oo
min{X; 41, ... »Xigm—1) }. (6.2.3)

The probability distribution functions of z, (1 £r <£4) can be obtained in terms of the
probability distribution function of x. The derivation for the probability distribution
functions of z, is presented in Appendix. Let F,(v) denote the probability distribution

function of z,, that is,
F,(v)=Pr{z,<v }. (6.2.4)

From the above, it is obvious that x; is independent of z,. Then based on (6.2.2), the
probability distribution function of y, can be derived. Let Fy(v) denote the probability

distribution function of y,.

Fy(v)="Pr{ min{x;, z,} < v)}=1-[1—-F,][1-F,]. (6.2.5)
The above derivations for the probability distribution functions of z, and y, are applica-
ble to every one of the four line structuring elements because they have the same length.

Since there is no pixel correlation among the z,’s, they are still 1.i.d. random vari-
ables. The probability distribution functions of the rth order statistic z¢) (1 <r <4) can

then obtained as in [40]:

4 . .
F,, 0)=Pr{zpysv)=3 [L}]Fz‘(v)[l - F,w)]*, 1<r<4. (6.2.6)

i=r |}
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The joint probability distribution function Fy ; (v, w) of z¢y and z¢) (1S7 <s < 4)
for v < wis [40]:

4—i 41

4
Fz(r)zcs) v, w)=23 >

i=r j:max(O,s—i)m
« F A WIF,w) = Fy0)VI1 = F,w)* . (6.2.7)

For v = w the inequality z ;) <w implies z() =V, 80 that
Foyprey (Vs W)= Fay, 09). (6.2.8)

The joint probability density function of z ¢y and zs) for 1 <r <s <4is[40]:

_ 41
Fr20 ™ W= TG D ld—s)!

Frl(w)f,0)
[F,(w) = F,0F 71 f,)[1 = F,(w)]*. (6.2.9)

Since x; is the common variable in every yr, the rth ordered statistic y () can be

expressed as a function of x; and the rth order statistic z -y
¥ ¢y = min{x;, z¢ (6.2.10)
The probability distribution function of y () is then obtained:
Fy,)=Pr {(y(ry $v} =Pr{min(x;, Z¢y) SV}
=1-[1-F,WI[1 ~F,,, W] (6.2.11)
The probability density function of y ) is obtained by taking derivative of Fy :

fy(,) (V) =fx(v)[1 - Fz(,) (V)]+[1 - Fx(v)]fz(,) (V) (6212)

The joint probability distribution function of ypy and y) (I1sr<s< 4) can be

obtained as the following:
Fy(,)y(s) v, w)= Pr{y ) sv, Ys) <Sw}

= Pr{ min(x;, z () < v, min(x;, z)) < wl. (6.2.13)
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For v = w, the joint probability distribution function is just a function of w, that is,

F

VoY W, w)=Pr{yy sw, ¥y v} =Pr{ min(x;, z(;)) Sw}. (6.2.14)

In the derivation of the joint probability distribution function for v <w, the law of total

probability is used in order to separate x; from the z(’s.

Fyove (v,w) = Pr{ min(x;, z¢y) £ v, min(x;, 2(5)) < w}

= Pr{ min(x;, z¢)) < v, min(x;, Z¢sy)) Swl x; <v) Pr{x; <v}

+ Pr{ min(x;, z(y) £V, min(x;, ) Swlv<x <Sw)Pr{v<x; sw}

+ Pr{ min(x;, z()) £ v, min(x;, Zg) Swl x> w} Pr{ x; > w} (6.2.15)
or
Fy e (v, w)=Pr{ min(x;, z()) £ v, min(x;, Z(s)) Sw)

=Pr{ x; Sv}+Pr{z¢)) Sv}Pr{v<x Sw}+Pr{zp) <v, z¢y Sw} Pr{x; > w}
= x(V) +Fz(,) (V)[Fx(w) _Fx(v)]"i'Fz(,)z(s) (V, W)[l ""Fx(w)]~ (6216)

The joint probability density function can be obtained by taking partial derivatives with

respect to v and w:

f}’(r)}’(s) v, w) :fz(,) W)fx(w) +fz(,)z(s) v, w1 =F,(w)]
~ ) [ fapyzy, @ DL, (6.2.17)

With the marginal and joint probability density functions (6.2.12) and (6.2.17) of y ()

and y () , the elements of the correlation matrix can easily be obtained by the following:
R, = [vify, 0)dv. (6.2.18)
and

Rys = [[vwfy e (v w)dvaw (6.2.19)
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Since the closing is the dual operation of opening, a similar derivation can be made
for the correlation matrix of the CL stage. We will omit the detailed derivation and
present the probability distribution and density functions for the CL stage. Using the
line structuring element &, of m samples long, the closing operation applied to the pixel

x; can be expressed by the following:
yr =max {x;, z,}, (6.2.20)
where
z, =min {max{ Xj_p+1, .- - »Xi-1}> MaX{Xj_m42, .. - JXic1oXig1 ) oo v e
max{ Xj41, -« »Xim-1 } J- (6.2.21)

The derivation of the probability distribution function F, of z, is similar to the Appen-

dix. The probability distribution function of y, is obtained as:
Fy(v) = Pr{max(x;, z,) v} =F,W)F,(v). (6.2.22)
Consequently, the probability distribution function for the ordered statistics y () is:
Fy, )= Pr{y () <v}="Pr{ max(x;, z2¢y) SV )} =Fy(WF (). (6.2.23)
The probability density function of y -y is obtained by taking derivative of Fy, , (v):
Fyoy @) = HOF 2y () + Fx(W)fz ) (V). (6.2.24)
The joint probability distribution function for y(y and y ) for r <s and v<w is
given by:

F

Y (v’ W) = Pr{max(xi, Z(r)) < v, maX(xl‘, Z(S)) < W}

=Pr{zyy)) <V, z2(5) S wiPr{x; v} +Pr{z() Sv}Pr{v <x; < w}
=Fz(,)z(s) v, w)Fx(v) +Fz(x) W[Fx(W) = Fx(v)]. (6.2.25)

The corresponding joint density function for y(,y and y ) 18
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Fyyes @ W)= Foosay (s WIFS()+ Fx) [ Frppsgy (s WAL = Fe0)fy, O0). (6.2.26)

Next section is devoted to experiments in obtaining the optimal coefficients for
various distribution functions. The coefficients obtained are then used in the GMF

applied to various test images.

6.3 Example of Optimal Coefficients of the GMF

In this section, we will obtain optimal coefficients for various noise distributions
and structuring elements of lengths ranging from 3 to 5 samples. Due to the complexity
of the probability distribution and density functions, the computations of the optimal
coefficients are performed numerically. Several input distribution functions are used;
they include normal, uniform, and Laplacian distributions. Tables 6.1 and 6.2 show the
optimal coefficients of the OL and CL stages for the three distribution functions. The
optimal coefficients for the normal distribution using structuring elements of various

sizes are shown in Tables 6.3 and 6.4.

From these coefficients, we can make several interesting observations. First, note
that the values of the coefficients clearly shows the tendency for better geometrical
preservation. The values of the coefficients agree with the nature of the opening and
closing operators in this regard. Opening operators always locate the structures beneath
and closest to the profile of the image. In order to preserve geometrical structures in an
image, it is necessary to choose the opening operator outputs that have higher magni-
tudes. The values of the optimal coefficients for the OL stage meets this requirement:
the higher ranked outputs of the opening operators have larger weights. Since a closing
operator locates the structures above and closest to the profile of the image, it is desir-
able to choose the closing operator outputs with lower magnitudes. This requirement is

also met by noting that the optimal coefficients for the CL stage have larger values for
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Table 6.1. Optimal Coefficients for the OL Stage for Different Input Distributions

Using A Structuring Element of 3 Samples

Distribution | Optimal Coefficients (B, B2, B3, B4)
Normal (0.1128, 0.2818, 0.2931, 0.3123)
Laplacian (0.1259, 0.2793, 0.2934, 0.3015)
Uniform (0.1061, 0.2822, 0.2895, 0.3221)

Table 6.2. Optimal Coefficients for the CL Stage for Different Input Distributions

Using A Structuring Element of 3 Samples

Distribution

Optimal Coefficients (a1, o, 03, 04)

Normal
Laplacian

Uniform

(0.3445, 0.3714, 0.2988, -0.0147)
(0.3316, 0.3532, 0.2876, 0.0276)
(0.3509, 0.3810, 0.3124, -0.0444)




Table 6.3. Optimal Coefficients for the OL Stage for the Normal Distribution

Using Different Size Structuring Elements

Size of Structuring Element

Optimal Coefficients (By, B2, B3, Ba)

(0.1128, 0.2818, 0.2931, 0.3123)
(-0.0395, 0.3081, 0.3195, 0.4119)
(-0.1857, 0.3555, 0.3288, 0.5014)

Table 6.4. Optimal Coefficients for the CL Stage for the Normal Distribution

Using Different Size Structuring Elements

Size of Structuring Element

Optimal Coefficients (¢iy, 0, O3, 0l4)

(0.3445, 0.3714, 0.2988, -0.0147)
(0.5059, 0.3610, 0.2373, -0.1041)
(0.5547, 0.3940, 0.2188, -0.1675)
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the lower ranked outputs of the closing operators. The max/min version of the GMF is

actually the extreme case.

The second interesting observation is that the values of the optimal coefficients
suggest a majority rule in choosing the outputs of the morphological operators. Three
coefficients of the OL stage for the three largest outputs of the opening operators have
large values; the coefficient for the smallest output of the opening operator has either a
much smaller value or even a negative value. That means that the smallest output of the
opening operators has very little influence on the output of the OL stage. The optimal
coefficients of the CL stage show the same characteristics except in the opposite direc-
tion. The majority rule enhances the geometrical structure preservation ability of the
GMF. Note that although the averaging version of the GMF can preserve edges, it tends
to blur sharp corners using the four line structuring elements since cornérs usually con-
sists of three lines instead of four [67]. By using optimal coefficients, the geometrical

preservation ability of the GMF can be extended to sharp corners.

For structuring elements of different lengths, the values of the coefficients also
show the emphasis on geometrical structure preservation. When a larger structuring ele-
ment is used, the opening operator is likely to produce a result whose value is less than
the result produced by the opening operator using a smaller structuring element. This
actually implies the deletion of small geometrical structures in the original image. More
weight is then assigned to the highest output of the operators to enhance the geometrical
structure preservation in this situation. A similar observation can be made for the closing

operators except that more weight is assigned to the smallest output.

We applied various filters to a test image in order to make some comparisons. The
filters we used include median, averaging, the traditional morphological filter, and the
optimal GMF. The test image is corrupted by a composite of impulsive and Gaussian

noise. For the median, averaging, and traditional morphological filters, a 3x3 window is
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used. For the optimal GMF, four line structuring elements of 3 samples shown in Figure
4.7 are used. The images are shown in Figure 6.2. It is clearly shown that the optimal
GMTF has superior performance. Comparing with the averaging filter, the GMF is more
robust with respect to impulsive noise, and has better geometrical structure preservation.
Comparing with the median filter, the GMF is more effective in suppressing nonimpul-

sive noise with strong geometrical structure preservation.
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Figure 6.2. Upper Left: Original image; Upper Right: noisy image corrupted by a
composite of impulsive and Gaussian noise; Middle Left: Output of the
averaging operation; Middle Right: Output of the median filter; Bottom Left:
Output of the traditional morphological filter using a single structuring
element shown in Figure 4.7; Bottom Right: Output of the optimal GMF
using four line structuring elements shown in Figure 4.7.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

In this thesis, we developed a new morphological filter structure known as the Gen-
eral Morphological Filter (GMF). The GMF utilizes multiple structuring elements
which can be used to represent various geometrical structures contained in an image.
The substantial improvement in the performance of this type of filter when compared
with traditional filters was shown. The new filter enhances the geometrical structure

preservation and noise suppression abilities of morphological filters.

In addition to the development of the syntactical properties, we developed an
optimal design of the GMF based on the minimum mean square error criterion. In this
design, the optimal coefficients of the GMF are obtained for a set of special structuring
elements. This design has practical applications in that the results of the optimal design
provide valuable insight into the general design of the GMF. The strong geometrical
structure preservation capability of the GMF is demonstrated by the resulting optimal
coefficient values. The distribution of the values of the resulting optimal coefficients
also suggests a majority rule in processing the sorted outputs of the multiple morpholog-
ical operators. In this thesis, we also derived output probability distribution functions of

gray scale opening and closing operators.

Further work on the GMF should include a systematic study of the properties of the
GMF root signals. In particular the convergence rate of the root signal needs to be
investigated. A statistical analysis of morphological operations for correlated signals
could greatly advance the further understanding of morphological operations and the

design of the GMF. Extension of these results to two dimensional is greatly needed.
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Another open research problem is the systematic design of the structuring elements.

Finally, the use of the GMF for multispectral data is being investigated.
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APPENDIX

The proof of the numerator of (2.2.5) is presented in this appendix. To be com-

plete, the problem is restated. We have an operation involving an ordering process and

2m samples:
z=max {min{xy, X2, ...,%,}, min{ X2, X3, ..., X1} 5.0
min{x,+1, Xm42s - - s X2m} }- (A.1D)
The number of permutations of the ordered sequence
xySxg S, s SX) S < X(2m)} such that z =x is:
m+DV o _pyrem -, (A2)

r=-2tm-r+1!
The range of r is determined in Proposition 1 of Section IIL
Proof:

The 2m elements of the ordered sequence can be divided into three groups: Group
1 contains only one element, x(,y; Group 2 contains the r — 1 elements whose ranks are
less than r; and Group 3 consists of the rest of the elements in the ordered sequence that
have ranks greater than r. Assume that x .y is located at position i, that is x; =x (. Itis
obvious that when the location of x . is fixed and the positions for the other two groups
are set, then there are (r —1)! permutations for the r —1 elements in Group 2 and
(2m — r)! permutations for the 2m — r elements in Group 3. We need to find how many

possible ways for Groups 2 and 3 such that z =x .

There are two necessary conditions for z = x .
Condition 1: x4y =min{x;_j, ..., X, ..., X4}, Jj+k=m—1, and 0<j,k<m—1.

In other words, X ) must be the minimum of its m—1 neighbors. This situation implies

that there is at least one neighborhood of x, that has m — 1 elements with ranks greater
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than r.
Condition 2: Xy 2 min{x;, ..., Xjm-1} ¥ jell, m+1].

This condition suggests that in the sequence {x;; 1 i <2m} there exists no neighbor-
hoods consisting of 7 elements the rank of whose minimum element is greater than .

Our analysis will be based on the above two conditions.

We separate this problem into 3 different cases. Let us consider the first case in
which 7 = 2. There is only one element whose rank is less than 2, that is, x(;y. We have
assumed that x () is located at position i. The range of i is now restricted in the interval
[1, m]. Itis easy to see that the result for i in the interval [m+1, 2m] is the same as in

the interval [1, m 1.

Suppose X 1y is located at the position £. In order for z =x(y), it is necessary that
m+1<kand k—i<m. Sowehave m+ 1<k <m+i with 1<i<m. This situation

is illustrated in Figure A.1.

Figure A.1. Illustration of the situation when r=2.

Then the number of possibilities such that z = x () in the range of 1 <i <m is the sum of
the k’s for all possible i’s. By noting the relationship between i and k, we can have the

following:

m
3 k= (m+1)m .
k=1 2
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The total number for both ranges of i is m(m + 1).

The next case is that 7 is greater than 3 and x ¢ is not located at positions 1 and 2m,
that is, 3 <r and 2 <i <2m — 1. Suppose X () and X, are located at positions j—1 and
k+1 with s, t <rand 2<j <i <k <2m. And all the elements in the infervals [j, i-1]

and [i+1, k] have ranks greater than r. This situation is illustrated in Figure A.2.

X(s) X(r) 0]

1 j-1 i k+1 2m

Figure A.2.  Ilustration of the situation when 2<randl <j<i<k<2m.

We obtain the following conditions for z = x(,):
0<i—-j<m-1; k—=i<m-1, m—-1<k—-j<2m-—-r
In this case the range of j is 2 £ j <m. The range of & is determined by:
m+j—1<k <min@m —r +j, 2m - 1).
The number of possible intervals [j, k] is 2m—(k—j+1). There are

{2’% _’(,k_—:,)] + 3)J ways to arrange the r — 3 elements whose ranks are less than 7. So

the total numbers of the combinations for z = x ) in this case is:

m min(2m—r+j,2m~1) b
2 mintin (Zm_k+j_1)[2m (*=j+3)
j=2 k=m+j-1

The above summation can be divided into the following two cases:
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r—-1 2m-r+j .
, 2m -k +j -3
=y 'y (2m—k+]—1)[m kg )]
j=2 k=m+j-1
and
mo 2ml . 2m—k+j-3
12=Z Yy Cm-—-k+j-1) ,_3
j=r k=m+j-1
Letting d =2m — k + j — 3, we have
r-1 m-2 m-=2 d
=Y ¥ @+2)|—= = X (r-2)d+2) o3|
j=2 d=r-3 d=r-3
and

m m—2
L=Y 3 (d+2)[r 3]

j=2d=j-2
From d > j-2, we have j < d+2. Exchanging the two summations, we obtain:
m—2 d+2 m—2 d
=¥ Y@+2|,2 3 = ¥ @-r+3)@d+2)|.%
d=r-2j=r d=r-2

Note that changing the lower limit 7 — 2 of d to r — 3 will not change the summation I,.
Thus combining I; and I, results in

m—2 [d]
L+L= % @+2)d+1) 3

d=r-3

1
(r—3) d§3(d+2)(d+1) ‘k—r+4).

Letting j =d —r + 4, we have
m—r+2
L+L= % jg+D(G+r—-2)
Jj=1

Noting that:
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noooo 1 (ntk+D)

j=1

(A.3)

Using this, the final result is

1 1 (m+1)!

L+ = — .
L2723 (m—r+ 1)

The last case is similar to the previous one except that it has two instances regard-
ing the location of the interval [j, £]. In the first instance, the interval is located at the
left end of the interval [1, 2m], that is, j=1. The second instance is that [, k] 1is
located at the right end of [1, 2m], that is, k =2m. It is easy to see that the result for
j=11is the same as k =2m. So we will just consider the case in which k = 1. Suppose
that all the neighboring elements of x,y in the interval [1, k] are in Group 3. An element

X (5) in Group 2 is located at k + 1, thatis, s < r. This is illustrated in Figure A.3.

X(r) 0]

j=1 i m k+1 2m

Figure A.3.  Illustration of the situation when 2 < rand j = 1.

Then we have r —2<2m — (k+ 1) and m <k in order for z =x. Using the same

analysis as in the case 2, we obtain the number of combinations:
2m—-r+1
_ o 2m—k=1
L= Y @m k)[ ,on }

k=m

Letting d =2m — k — 1, we obtain
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m—1
L= 3 (d+1)[r‘_12]

d=r-2
Letting j = d —r + 3 and using the result in (A.3):

_ 1 m—r+2. . vy _ _ 1 1 (m+1)'
L= —— ]E JG+DG+r=2)= r—2'r (m—-r+1D!"

(r—2)!
The final result for this case is

1 1 (m+1)
r—=2'r (m—r+ 1!

Iy =2

Now we can obtain the total number of combinations in which z=x¢,,

3 <r <m + 1, by combining the results from the last two cases. That is:

1 1 (m+D! ) 1 1 (m+D!
r-=3r m-r+1)! (r=2)!'r (m—r+1)!

_ 1 1 m+Dt |, 2
T -3 r m—-r+ D! (r-2)

3 (m + 1)
T =2 m—r+ 1!

Il +12+I3=

(A4)

Note that the result obtained for r =2 is just a special case of the result in (A.4). Hence,
the result in (A.4) can be used for all the cases. Then it is very easy to obtain the total

number of permutations in which z = x ¢y, 2<r<m+1:

(m+ 1!
r—=2)!m—r+ 1!

r—=DIC2m —r)!

The derivation of the numerator in (5) is complete.



VITA



137

VITA

Jisheng Song received the Bachelor of Science in Electrical Engineering from He
Hai University in Nanjing, China, in 1982. In 1985, he received the Master of Science in
Electrical Engineering from Purdue University in West Lafayette, Indiana. He worked
at He Hai University as an assistant lecturer for a year involved in supervising the Sys-
tem and Control Laboratory and tutoring students in control and computer engineering
courses. Mr. Song’s research interests include image processing, computer vision, com-

puter graphics, and artificial intelligence.



