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ABSTRACT

Stevenson, Robert Louis. Ph.D., Purdue University, August 1990. Invariant
Reconstruction of Curves and Surfaces with Discontinuities with Applications in
Computer Vision. Major Professor: Edward John Delp.

The reconstruction of curves and surfaces from sparse data is an important task in
many applications. In computer vision problems the reconstructed curves and surfaces
generally represent some physical property of a real object in a scene. For instance, the
sparse data that is collected may represent locations along the boundary between an
object and a background. It may be desirable to reconstruct the complete boundary"
from this sparse data. Since the curves and surfaces represent physical properties, the:
characteristics of the reconstruction process differs from straight forward fitting of
smooth curves and surfaces to a set of data in two important areas. First, since the
collected data is represented in an arbitrarily chosen coordinate system, the
reconstruction process should be invariant to the choice of the coordinate system
(except for the transformation between the two coordinate systems). Secondly, in many
reconstruction applications the curve or surface that is being represented may be
discontinuous. For example in the object recognition problem if the object is a box
there is a discontinuity in the boundary curve at the corner of the box.

The reconstruction problem will be cast as an ill-posed inverse problem which must
be stablized using a priori information relative to the constraint formation. Tikhonov
regularization is used to form a well-posed mathematical problem statement and
conditions for an invariant reconstruction are given. In the case where coordinate
system invariance 1is incorporated into the problem, the resulting functional
minimization problems are shown to be nonconvex. To form a valid convex
approximation to the invariant functional minimization problem a two step algorithm is

proposed. The first step forms an approximation to the curve (surface) which is



XV

piecewise linear (planar). This approximation is used to estimate curve (surface)
characteristics which are then used to form an approximation of the nonconvex
functional with a convex functional. Several example applications in computer vision
for which the invariant property is important are presented to demonstrate the
effectiveness of the algorithms.

To incorporate the fact that the curves and surfaces may have discontinuities the
minimizing functional is modified. An important property of the resulting functional
minimization problems is that convexity is maintained. Therefore, the computational
complexity of the resulting algorithms are not significantly increased. Examples are

provided to demonstrate the characteristics of the algorithm.



CHAPTER 1 - INTRODUCTION

1.1 Problem Addressed

In early computer vision the task is to extract symbolic descriptive information of
objects in a scene from multi-dimensional sensory data. The form of the symbolic
description (or model) will depend on the overall goal of the processing. For example
in tracking problems the goal is to identify moving objects and to estimate their
location and trajectory. In this simple case, the model may consist of just a sequence of
locations which describe the object motion. In navigation problems the goal may be to
identify the current location by matching a three-dimensional model of the terrain with
a database of terrain information. The generation of the symbolic description from the
sensor data is generally not an easy task. Often model parameters can not be measured
directly from the sensor data. For example, in the problem of matching images of
three-dimensional objects with a database of three-dimensional models, the sensor data
is a two-dimensional intensity projection of the three-dimensional surfaces. The
measurement of three-dimensional properties from this two-dimensional data is not
straightforward. To overcome this problem it is often desirable to form an intermediate
representation of the scene. The purpose of this representation is to bridge the gap
between the sensor data and the symbolic description. The representation should be
such that the symbolic description can be formed from the representation and the
representation should be able to be extracted from the sensor data. |

Since in computer vision applications we are dealing with geometric objects in
three-dimensional space a common intermediate representation is either a curve in two-
or three-dimensional space or a surface in three-dimensional space. For example, a
curve in two-dimensional space may represent the boundary of an object or a surface in

three-dimensional space may represent the surfaces of an object. A fundamental



problem in deriving these intermediate representations is extracting information from
the sensor data. Over the years many algorithms have be developed to extract
geometric information relative to the objects in a scene from various two-dimensional
image sensors. A limitation of this type of processing however, is that only a noisy
partial representation can be obtained from the data. That is, only an incomplete and
noisy representation can be formed directly from the sensor data. Therefore another
processing step is required to fill in the gaps in the representation and to remove noise
artifacts in the representation.

In the simplest sense this can be thought of as a curve or surface interpolation or
approximation problem. The first level of processing generates sparse geometric
information describing a curve or surface from which it is desired to form a complete
representation. Since the curves and surfaces represent physical properties, the
characteristics of the reconstruction process differs from straight forward curve and
surface reconstruction in two important areas. First, since the collected data is’
represented in an arbitrarily chosen coordinate system, the reconstruction process
should be invariant to the choice of the coordinate system (except for the
transformation between the two coordinate systems). This is important because a
change in this intermediate representation may cause a change in the symbolic
description that is derived, which in effect changes the knowledge that has been
gathered about the objects in a scene. This obviously should not happen if all that has
occurred is a change in an arbitrarily chosen coordinate system. Secondly, in many
reconstruction applications the curve or surface that is being represented may be
discontinuous. For example, in the boundary representation problem previously
mentioned, if the object is a box there is a discontinuity in the boundary curve at the
corner of the box.

Another concern when reconstructing curves and surfaces is the computational
complexity of the reconstruction algorithms. Generally in computer vision problems
the task that is being performed is in an dynamic environment. The sensors are often
continually providing new data for processing so that decisions about the environment

can be constantly updated. Therefore the processing time of an intermediate step needs



to be as small as possible. This puts a limitation on the type of processing and
algorithms that can realisticly examined for this application.

The problem that is addressed in this research is much more generally applicable
than just in the area of computer vision. The invariant approximation of objects with

discontinuities from sparse data has many applications.

(i) In seismology, the density of the sedimentary layers of the earth’s crust which

have discontinuities between layers of different rock types.

(i) In tomography, the density of an object may have discontinuities due to a change

of material type.

(iii) In meteorology, air temperature has discontinuous derivatives at the boundary

between the troposphere and the stratosphere.

In all of these examples, constraints are only collected at sparse locations and it is
desired to obtain an estimate of some specific geometric parameter(s) everywhere

which is invariant to the chosen coordinate system.
1.2 Previous Work

The problem of interpolating or approximating curves and surfaces has received
much attention in the mathematical and statistical literature. Until recently, most
research has concentrated on algorithms to fit continuous and smoothly varying curves
or surfaces to a set of given data points [24,52,75]. Additional constraints on the
reconstruction algorithm characteristics, such as invariance of the choice of the
coordinate system and curves/surfaces with discontinuities, has become more important
as the approach has been utilized in more complex applications.

In the visual surface reconstruction problem, Grimson [33] first recognized the need
to incorporate discontinuity information into the surface reconstruction process. In the
computer vision field Terzopoulos was the first to suggest a possible modification to
Grimson’s algorithm for including discontinuity information [79,84]. Shiau [76] and

Wahba [101] also proposed several methods for reconstructing curves and surfaces with



discontinuities. These methods were based on either a prior knowledge of the location
of discontinuities or a preprocessing step which essentially performed a discontinuity
(edge) detection to localize the discontinuities. This approach to the problem is limited
because generally there is no a prior knowledge of the discontinuity locations and the
fact that the detection of discontinuities from sparse noisy data will produce noisy and
unreliable estimates of the discontinuity locations.

More recently several algorithms' have been proposed which include the
incorporation of discontinuity information as an integral part of the reconstruction
process. Weiss [102-104], Lee [54,55], and Aloimonos et. al. [3] have all proposed
methods for reconstructing curves with discontinuities. These algorithms work well,
however, it is not clear how they can be extended to the problem of reconstructing
surfaces with discontinuities. For the problem of reconstructing surfaces, several
algorithms based on statistical concepts have been proposed [12,19,61,62]. It is
discussed in Chapter 2 that these methods are generally computationally very
expensive. An algorithm proposed by Sinha and Schunck [77] does not suffer from the
limitations mentioned for the previously discussed algorithms, however, since their
algorithm is based on characteristics which vary with the choice of coordinate system
the reconstruction will not be invariant. In some applications this may be appropriate,
but this will be a limitation for most applications in computer vision.

The property of invariance to the choice of coordinate system has been recognized
as an important issue in computer vision. The computation of invariant curve
reconstructions was reviewed by Malcolm [58]. However, as discussed by the author,
all of these algorithms are instable, and depending on the input data set the algorithms
may diverge. For the invariant surface reconstruction problem an algorithm has been
proposed by Blake and Zisserman [11,12]. Unfortunately experimental results have
never been published, thus it is not possible to evaluate the effectiveness of the
proposed algorithm. In Chapter 4, a adaptation of their algorithm is implemented to
compare with the algorithm that is proposed in this research.

The open research problems that remain in the application of curve and surface

reconstruction to problems in computer vision are:



1. the development of an algorithm which is essentially invariant to choice of

coordinate system,

2. the development of a computationally efficient algorithm which will reconstruct
curves and surfaces with discontinuities.

In this thesis both of these problems are addressed.
1.3 Scope and Organization

In this thesis, the emphasis will be on techniques and algorithms which formulate
the problem as an ill-posed inverse problem which must be stablized. Ad hoc
algorithms are ignored in favor of methods which rely on proven mathematical
concepts. Whenever possible, an attempt is made to keep concepts general so that the
algorithms can be easily adapted to similar problems in other fields. Chapter 2 begins
by discussing the notation and conventions that will be used throughout the
presentation. The nature of the abstract problem is then explored and regularizing‘
techniques that will be used to make the problem well-posed and stable are presented.
Chapter 3 investigates the invariant reconstruction of curves; a new approximately
invariant algorithm is proposed and is shown to always converge to a stable
representation. This algorithm is compared to two other proposed algorithms and is
shown to to be much more robust relative to the choice of the coordinate system. Two
example applications in computer vision are also presented. Chapter 4 examines the
extension of these ideas to the invariant reconstruction of surfaces. A new algorithm is
proposed, analyzed and compared to similar techniques. Chapter 5 examines how a
prior information concerning discontinuities can be incorporated into the problem and
how the algorithms can be modified so that discontinuities are automatically detected
and incorporated. Results are summarized and -possible future research is proposed in
Chapter 6.



CHAPTER 2 - ABSTRACT PROBLEM SOLUTION

In this chapter the problem of curve and surface reconstruction is stated abstractly.
The abstract problem is shown to be a mathematically ill-posed problem in the sense of
Hadamard. Two common techniques for incorporating a prior information into ill-
posed problems are examined and the reasons for using the methods of Tikhonov are
discussed. Methods for approximating the resulting well-posed continuous problem

with a discrete form are also described.
2.1 Definitions and Notations

In the Cartesian coordinate system the simplest way to describe a plane curve or a
surface in three-dimensional space is to use the explicit form. With this form a plane

curve is expressed by
z(x) xeXcR 2.1
and a surface in three-dimensions as
z(xy)  (ny)e Xx¥ cR? 2.2)

This form is only satisfactory when the curve or surface takes on only single values and
has no vertical tangents. This form is unable to represent curves or surfaces in higher
dimensional spaces. For example, a curve is three-dimensional space cannot be
described using the explicit form.

An alternative way of representing curves and surfaces which does not have these
limitations is a parametric form. A concise notation for the parametric description is
obtained by using vector-valued functions defined on vector spaces. If an object has n
degrees-of-freedom (e.g. for a curve n=1 and for a surface n=2) the coordinates of the

object in a m-dimensional space can be expressed as a m-dimensional vector-valued



function, r, of an auxiliary parameter ue U c/R". A convenient notation for a

vector-valued function is as an ordered m-tuple of scalar-valued functions written
U = <Uy,Up,.. Up> 2.3)
r(u) = <xq(),xo),..,x,W)> 2.4)
For instance a curve in three-dimensional space can be written as
rw) = <x),ym),z(u)> ue UcR. : 2.5)
Similarly, a surface in three-dimensional space can be written
u = <u,v> (2.6)
r(u) = <x),y ),z (u)>. (2.7)_

Notice that the explicit form can be thought of as a special case of the parametric form-

if the following parameterization is used

x1(u) = uy
xa2(u) = us
: (2.8)
Xm-1(W) = Up_1

Xm() = z(u)

The function z is the explicit form of the object with m—1 degrees of freedom in an m-
dimensional space.

These representations can be classified into spaces of functions based on the
mathematical characteristics of the functions. The class of functions which are
continuous at every point of the domain X is denoted by ((X). The class of functions
which are continuous and have a continuous derivative at every point of X is denoted by

C'(X). The space of bivariate polynomials with degree < m will be denoted by Hm.

If F(X) is some space of functions over the real domain X, an inner product on F(X)

is a real-valued function (-,*)p:FxF — IR which has the properties



L. (f.e)r = &NHF » for all f,g € F(X).
2. (of1+0f2,8)F = 0(f1,8)F + 0Uf2,8)F, for all fq,f2,4 € F(X),and o € R,
3. (ff)F 20

and (f,/)F =0 < f=0, forall fe F(X),

a norm on F(X) can be defined by

Flr = FHK2, 2.9)

and the norm ||-||r on F (X) defines a metric on F by

”f_g ”F’ forauf’g € F(X) (210)

A function space with a suitably defined metric is referred to as a metric space [57].

The class of spaces most often applied to the problem of object reconstruction is a
subfamily of the Sobolev spaces [2]. Sobolev spaces of partially differentiable
functions are Banach spaces which generalize the well known L, spaces. Of interest
are the Hilbert spaces formed by generalizing L,. The space L, consist of all functions

f:XcR"— IR whose L, norm over X,

12
2
A, = [{, Lr ol d"} : @.11)
is finite. The partial derivatives of f will be denoted by

|| i
axllh axlfz aan

DPf (x) = Jx) (2.12)

where p=<p1,pa, * * * ,P,> is an index vector which indicates the order of the partial
derivative.
The Sobolev spaces, y,,(X), are the completion of the vector space of functions

which have all partial derivatives of order m in L%(X). Thatis, Ym (X)) is the completion



of the vector space
{fe C"(X) : |[DPfl|L, <ee, forall |p| Sm}, (2.13)

with respect to the Sobolev norm defined below. Where |p|=p; +py + - +p, and
C™(X) is the space of continuous functions with m™ order partial derivatives. The

associated Sobolev norm is

Al =

Iplsm

) 1/2
leDpﬂle] , 2.14)

The Sobolev spaces have the properties that yo(X) =L, (X) and
YmX) < Ym-1X), for all m>0. (2.15)

A scalar product can be defined for any f and f; in ¥,,(X) by

(f1.f2)y, = X (DPf1,.DPf2)L,, (2.16)

Iplsm

where (+,*).,, is the scalar product of L,(X). Since the scalar product is the sum of the

scalar products in L,, the Sobolev spaces are Hilbert spaces. A seminorm on %, (X)

can be defined by

172

Y |IDPAP

Ipl=m

Al = 1€ Xm0, @.17)

It is a seminorm because it is zero if fe Hm_l (X). The space of functions formed by

the completion of the vector space
{fe c"X): [IDPfllL, < oo, for all |p| =m} (2.18)

with respect to the seminorm (2.17) is a semi-Hilbert space, which is commonly
referred to as the Beppo Levi space of order m, BL™(X) [65]. Examples of other

plausible classes that may be appropriate for surface reconstruction can be found in
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[14,15].

A functional can be defined on a function space. For the work in this thesis mostly
scalar functionals will be used, that is W:F (X) — IR, where F (X) is some function
space and W is some functional defined on F (X). An important issue is this research is
related to the convexity of the functionals that will be examined. A functional W is

convex on the function space F (X) if

Wlof + (1—o)g] < aW[f]+ (1-)W(gl, f.ge FX),ae [0,1]. (2.19)

If this is not true than a function is referred to as nonconvex. This property will be
important because it is related to the computational efficiency of the algorithms. The
task of minimizing nonconvex functionals usually requires much more computational

complexity than that of minimizing a convex functional.
2.2 Abstract Problem Statement

Let an object with n—degrees-of-freedom in an m-dimensional space have the
parametric representation r(u), where r(u) is in the vector space V" and ue Uc R".
Low-level computational vision processes, which are capable of measuring
characteristics of the object, generate a collection of noise corrupted shape estimates,
S={c;(u) € C;,i=1,...,M}. These shape estimates usually consist of constraints on
location and/or normals at specific points on the surface or curve. However, constraints
may also be along curves in m-dimensional space or over regions of the object. These
types of constraints may represent a prior knowledge about a boundary condition or
knowledge of some characteristic over a limited domain.

The process of constraint formation is modeled by
c;(u) =L;[r(u)] + e;(u), i=1,...M (2.20)

where 1; : V" —=C; denotes measurement functionals of r(u), and e;(u) models the
associated measurement errors. The functional I; may be either scalar- or vector-valued

depending of the particular type of measurement.
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The object reconstruction problem, simply stated, is to form an estimate, r(u), of the
object r(u) for all ue U, given the finite collection of noisy and sparse shape
constraints, S.

If the object estimate is to be useful for modeling purposes it should possess the
following properties. First, the reconstruction algorithm should be consistent with the
collection of constraints. Secondly, if the coordinate system is rotated and/or translated
then the estimate of this new collection of constraints should be identical to the original
surface estimate, r(u), rotated and translated. Finally, depth and orientation
discontinuities should also be made explicit in the representation.

The problem as stated is much more general than that needed for either curve or
surface reconstruction. For the reconstruction of a surface in three-dimensional space,
n=2, and u is represented by u=<u,v>e U c IR?. The parametric representation is

given by
rw) = r(u,v) = <x,v),y W,v),zu,v)>. (2.21)

In computer vision the constraints are generally in the form of information relative to
the surface’s or curve’s location in space or information about the normal to the surface

or curve at a point. Thus, I; will generally have one of the following forms
Li[r@,v)] = ru;,v;), (2.22)

r, (U, vi)xr, (;,v;)

| gy vi )y, (u, v)||

Lir@,v)] = | (2.23)
where <u;,v;> is a constant vector which indicates where on the surface the
measurement is recorded, and r,(u) represents the derivative of the vector with respect
to the parameter u.

Similarity, for a curve, n=1, and u is represented by a scalar u. I; will generally

have one of the following forms

I;[r(u)] = r(w), (2.24)
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<y, WU;),=x, (U;)>
O u)+y2 )2

Lir@)] = (2.25)
Extensions to other objects with more degrees-of-freedom in higher dimensional spaces

can be derived as needed by the application.
2.2.1 Ill-Posed Problems

For the problem to be mathematically well-posed, in the sense of Hadamard [36], on

the pair of metric spaces (F,C), it must meet the following criteria:
(i) for every element ce C there exists a solution fin the space F;
(i) the solution, f, is unique in F;

(iii) the solution, f, depends continuously on c.

If the problem does not meet these conditions, it is known as ill-posed. Condition (iii)
is related to the stability, or robustness, of the solution in the presence of noise.
Continuity is a necessary condition for stability, but not sufficient. If a solution is also
stable the problem is said to be well-conditioned, otherwise the problem is ill-
conditioned.

The reconstruction problem as it is currently stated is ill-posed. The sparse set of
estimates only constrain the shape of the object locally; thus an infinite number of
feasible objects will fit as estimates. In some cases, overlapping and conflicting
estimates locally overdetermine the shape, leading to no solution. Lastly, derivatives
may not depend continuously on the data since small perturbations in the estimated data
may cause the solution to be dramatically affected.

To obtain a unique and stable reconstruction of the object in the scene,
supplemently information must be added so that the problem becomes well-posed. The
basic principle common to all methods is to use a priori knowledge about the constraint
formation process and the shape measurement techniques to resolve conflicts in

estimates, and to restrict the space F so that the constraints, S, uniquely determine a
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stable estimate, r(u), of the surface. Several techniques have been developed to
integrate the a prior information with the experimental information to form a well-

posed mathematical problem statement.
2.3 Solution of Ill-Posed Problems

This section examines two well known techniques for regularizing ill-posed

problems.
2.3.1 Tikhonov Regularization

In the early 1960’s Tikhonov introduced the concept of the regularizing operator
[88] which laid the foundation for a new approach to the solution of ill-posed problems
[87-92,94]. The monograph of Tikhonov and Arsenin [93] consolidates the work done
before that time and established the theory as a standard technique for solving ill-posed”
problems. To make the problem well-posed a continuous operator, known as a
regularizing operator, is defined which approximates the inverse operator.

Let cr,;(u) be the exact left hand member of (2.20) (i.e. ¢7,;(uw) =1;[r(u)]), and let

¢s,;(u) be an element of C; such that

M
3 pc,(er,i(u),c5,;m) < 3, (2.26)

i=1
where pc,(,") is a metric on the space C;. Let the collection of ¢r,;(u) be denoted by Sy
and the collection of ¢g ;(u) be denoted by Ss. Denote the inverse operator (i.e. the
reconstruction algorithm) by 1I"1(*) : C;x---xCy — V™. For the solution to be stable it
is expected that the solution rg(u) obtained from Ss through the inverse operator should

in some sense be close to r(u) and for
rs) =I'1(Ss) - r =Is) as §0 (2.27)

(i.e. py=(rs(u),r(u))—0 as 8—0). To formalize this concept, a regularization operator
was proposed by Tikhonov and Arsenin [93].

Definition 2.1. An operator R (S,A) is known as a regularizing operator of the equation
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c;(u) =1;[r(u)] + e;(u) in a neighborhood of ¢;(u) = cr ;(u) if

1. there exists a positive number §; such that the operator R (5,A) is defined for

every A and every S for which
M
Y pc,(c;i(u),cr,;(w) <8< 64, (2.28)
i=1

and

2. there exists a function A = A(d) such that, for every £>0, there exists a number

d(e) < 8; such that the inclusion S5 and the inequality

M
Y. pc,(cr,i(u),c5,; () < 3(e) (2.29)
i=1

imply
py=(r(u),r) (w)) <, (2.30)

where ) (u) = R (S5,M(0)).

O
The solution ry (u) is an approximate solution of equation (2.20) and is known as the
regularized solution. The solution is a function of A and Sg as well as the form of the
regularizing operator R (,*). Thus in the noise free case (i.e. 5r is known), there exists a
sequence of parameters, {A;}iZp, such that the regularized solution, {rj (u)}iZo,
approaches the true solution, (i.e. ry (u)—r(u) with respect to py=). When noise
corrupts the data, the numerical parameter A can be adjusted to provide a tradeoff
between approximation accuracy and the affects of noise. The parameter A is known as
the regularization parameter and its value must be determined from a priori
information.

Thus to obtain a regularized inverse, a regularizing operator R (-,*) and the value of
the regularization parameter A must be determined. Note that the regularizing operator

for a particular problem is in general not unique; there may exist many operators which
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stabilize the ill-posed problem. The choice of the particular operator and the value of
the regularization parameter A is based on supplementary information pertaining to the
problem.

To construct a regularizing operator, Tikhonov and Arsenin [93] introduce a
stablizing functional, Q[]: V"™ — IR, with the following properties: (i) the functional
stablizing Q[‘] is a continuous nonnegative functional defined on a subset V' of V™
that is everywhere dense in V™, (ii) the solution r(u) belongs to the domain of
definition of €[], and (iii) for every positive number d, the set of elements r'(u) of %4
for which Q[r*(u)]<d is a compact subset of V. This stablizing functional is used to
define the functional

MM ), 8] = QIr* W] +A T pZ, Al W), ¢) (2.31)
CES
Then for certain values of A the minimization of this functional over V7 is a

regularizing operator,
ry(u) = R(S,A), (2.32)
where ry (u) is such that

MMry),s] = _inf M Mr*@),s]. (2.33)
r'(u)eV]
This method is generally known as Tikhonov regularization.

In summary, to find a regularized solution to an ill-posed problem, a metric, pc,, on
each C; and a stablizing functional, €[], must be specified based on a priori
information. Then an appropriate A must be found such that the minimization of
M 7“[1'* (u),S] is a regularizing operator. The choice of A will be based on the choice of
the stablizer, the metrics on the C;’s, and supplementary information pertaining to noise
in the data. Once this information is obtained, the regularized solution, ry (u), to the
ill-posed problem is determined by minimizing the functional M Mr* (u),s] in the space
V1. The hardest task is to find a stablizer which not only yields a unique and stable

solution to the inverse problem, but also accurately measures the consistency of the
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estimate with respect to the true solution.

If it is assumed that the I;’s are linear, the p¢, are quadratic, and Q is quadratic then
it can be shown that the solution space is convex and a unique solution exists [93]. Most
applications of this technique will define V7' to be a Hilbert or semi-Hilbert space and
the stablizer as some norm on that space. When this is not the case then the functional
may be nonconvex. This makes finding the optimal solution more difficult since there

may exist many suboptimal local minimum.
2.3.2 Stochastic Regularization

The stochastic solution to ill-posed problems is a straight forward application of
Bayesian estimation. The Tikhonov method makes the problem well-posed by
restricting the space, V™, of possible solutions to a space, VT (a dense subset of V™), so
that a stable and unique solution can be found. The manner in which this restriction is
made is based on a priori information. In contrast, a stochastic approach uses a priori
information relative to the likelihood of a function, r* (u), being a solution to define a
probability distribution, P, on the space V™. A priori information about the
observation noise process is used to determine a conditional probability distribution,

P 5. Using these distributions, the posterior probability distribution can be obtained

by

rls T T (2.34)

which represents the likelihood of a solution, r , given that the data, S, was observed. If
noise from different measurement techniques are independent, the joint posterior
distribution can easily be computed using

M Pc;lsz

Ps=I1—— (2.35)
i=1 ¢

Thus there is a natural way to integrate information from various sources. An estimate,

r'(u), can then be found with either a MAP estimator or by defining a loss functional on
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V™ and computing a Bayesian estimate. The MAP estimate is found by simply
maximizing the probability distribution (2.35) over the space, V™, to find the function,
r(u), which is the most likely solution given the data, S. To find the Bayes’ estimate, a
loss functional, L : V"—IR, must be defined. This loss functional -may be used to
incorporate more a priori knowledge into the algorithm. The estimate is then the
function, r(u), which minimizes the expected loss with respect to (2.35).

In summary, to make the problem well-posed, a probabilistic model on the space of
possible solutions must be specified based on a priori information. The quality of the
solution will depend largely on the quality of the model chosen; thus it is critical that
the model accurately reflect the true space of surfaces. The estimated solution is then
found by minimizing (or maximizing) a functional. This, however, is often not easy
since even very simple probabilistic models usually result in nonconvex functionals.

For computer vision problems this method was used extensively by Marroquin [61, 62].
2.4 A Well-Posed Reconstruction Problem

To devise a mathematically well-posed problem statement from the currently ill-
posed problem statement given in Section 2.2, either of the techniques described in
Section 2.3 can be used. However, as discussed in Section 2.3.2 when using the
stochastic regularizing techniques the resulting mathematical problem is often the
minimization of a nonconvex functional. Since nonconvex functionals may have many
local minimum this task is computational very expensive. In computer vision problems
the reconstruction of curves and surfaces is generally an intermediate process in a more
complex algorithm. In most computer vision applications it is desirable that the
algorithms run in close to real-time, thus computational complex steps need to avoided.
For this reason this study will concentrate on the Tikhonov regularization approach for
making problems well-posed and convexity issues will be emphasized. Recall that the
functional

MMr* (u), 8] = QIr* )] + A ¥ p& Ar" W, (2.36)

C;G.S
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must be defined based on a prior information.
Defining a functional of this form does not guarantee that this new problem
statement is well-posed. This fact must be proved. The functionals examined in this

thesis all will have the form

MMr(u),s] = %a[l‘(U),r(U)] = flr(w),s] (2.37)

where a(:,"):FXF—IR is a continuous bilinear form and f(-,$):F — IR is a continuous
linear form. Conditions for a well-posed problem are given by the following theorem.
Theorem: [21] There exists a unique solution, r(u) to the minimization of (2.37) if

1. the admissible space F is a Hilbert space (with norm ||*||¢),

2. the bilinear form a(:,) is symmetric, a[r(u),s(u)] = a[s(u),r(u)],

3. a(,)is F—elliptic, i.e. there exists a constant & > 0 such that

afr(u),r(u)] = of|rw)||% (2.38)
O

The proof of this theorem can be found in [21]. In this work, the functionals will be
minimized over second order Sobolev spaces, X2(X), which are Hilbert spaces, so
condition 1 of the theorem is met. Conditions 2 and 3 are met if a(:,") is an inner

product on the space. In this work a(:,*) will have the following form

a[r(u),s(u)] = Z Z (wpq(ll)Dpl‘,qu(ll)DqS)Lz + A Z (r(u;),s(uy)), (2.39)
pP=2 ¢=2 CES

where wyq (u) are constant functions which are determine by the particular problem.

Proposition: For the reconstruction of curves: if the set of constraints, 5, contains
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at least two nonconsequential points, then (2.39) is an inner product on the Sobolev

spaces.

Proof: To prove the propositions it needs to be shown that (2.39) satisfies the three

properties of an inner product.
1. a(,)is symmetric by inspection.
2. a(-,")is bilinear by inspection.

3. To show property three, it is sufficient to show that a[r(u),r(u)] =0 only if
r(u) =0. The first term in (2.39) is the square of a semi-norm on a second order

Beppo Levi space. Therefore, its null space is [] L i.e. all lines. Choose A >0

by definition, then the second term is always positive and is only zero if r(u;) =0
for all data points. If S contains two nonconsequential data points then

a[r(u),r(u)] =0 only if r(u) =0.
Thus a(+,-) is an inner product on X, (X). O

Therefore, the curve reconstruction problem is well posed if a(:,©) has the form of
(2.39). Similarly, for the surface reconstruction problem a proposition can be proved
showing that the minimization problem is well-posed if .§ contains three nonlinear data
points.

It is also important for M * to be convex, so that computationally efficient

minimization algorithms can be developed.

Proposition: If M M is of the form

MMr(u),s] = %G[P(U),F(U)l = flr(w),J] (2.40)

where a(:,*) is a continuous bilinear form and f(:,$) is a continuous linear form. Then
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M™ is convex.

Proof: The parameter u is removed for convenience.

M *[ar+(1—a)s,5] = %a(ar+(1—a)s,ocr+(1—oc)s)— flar+(1-o)s,.S) (2.41)

< -:,lz—a(ocr,ocr) + —;—a((l—a)s,(l—a)s) - flar,$) — f((1-)s,s) (2.42)

since a(,*) is an inner product. Then

S oa(r,n) + 5 (1-0Ya(s,9) - of 5,9 - 1-0f(5,9)  (243)

: ?lz' (rE) ¥ %(1‘“)“(5’5) ~ of(r,8) = (1-)f(s,9) (2.44)

since o € [0, 1]. Therefore

MMor+(1-00)s,8] < oM Mr,S)(1-)MMs, ] (2.45)

hence M* is convex. O

If the reconstruction algorithm is to be invariant then the dense space V{* must be
chosen so that if r € V1 then all rotations and translation of r must also be in V7 (all of
the function spaces from Section 2.1 have this property). Note that if VT has this
property and the functional M * is convex and invariant to rotations and translations of
the constraints then the reconstructed object will also be invariant. This is easily shown
by considering a collection of constraints S and any object r" (u). Let the rotated and
translated constraints be denoted by § and the rotated and translated object by F* (w).

Invariance of the functional M* implies that
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MMFE ),3] = MMr*), s, (2.46)
thus

- * o
MMriw),s] = _inf MMF (u),5]
r (wWevr

= _inf MMr'),sl, = MMri),s). (2.47)
r (wevr

Since the minimization of M is well-posed, r! (u) and r2(u) are unique and by (2.46)
22
ri@) = Fa(u) (2.48)

Thus the reconstruction algorithm will be invariant to rotations and translations. The
invariance of M* can be achieved by finding invariant metrics on the constraint spaces-
and an invariant stablizer. The study of the appropriate forms of the invariant
regularizing functional will be discussed in Chapter 3 for curves and Chapter 4 for
surfaces.

To form piecewise smooth reconstructions the stablizing functional, Q, must be
defined such that it not only measures the smoothness of a particular curve or surface,
but also it allows some discontinuities in the curve or surface so that the curve or
surface better fits the data. The study of the modifications to the stablizing functional to

have this characteristic is detailed in Chapter 5.
2.5 Solution using the Finite Difference Method

Once the form of the functional has been decided, the next step is to determine a
suitable computational method for solving the minimization problem. The discrete
implementation of functional minimization problems has been extensively studied
[21,33,39,63,65,78,80-83] and the application of these techniques to this work is
straight forward. Since the emphasis of this research will be on the form of the
functional minimization problems and not the computational methods used to achieve

the solution, not much time will be spent on the implementation aspects. It will be
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noted the type of techniques that are applicable to a particular problem. It will however
help the reader to understand one of these techniques, therefore in this section the
discrete solution using finite differences to discretize the problem and a steepest descent
type algorithm to minimize the the functional will be described. \

A higher level of mathematical elegance can be achieved by using the finite element
method [21, 63,78, 82] to discretize the continuous problem. When using this method
the convergence of the discrete problem to the continuous problem can be discussed.
The finite element method also allows the problem to be discretized on nonrectangular
grids. The greater power of the finite element method is not needed in this work, thus
the finite difference method was chosen to discretize the problem. Note that a
nonconformal element on a rectangular grid can be defined so that the discrete
problems formed by the finite element method and the finite differences method are
identical [82].

The steepest descent minimization technique is the simplest to understand, however
it is not the most computationally efficient. When applicable the conjugate gradient
method (described in Appendix A) [39] will achieve greater efficiency. In some cases,
it may also be desirable to use multiresolution techniques [35,82] to achieve even
greater efficiency. However, the gain in efficiency will not be as great as others have
reported [82] since, as in [48,49], the algorithms developed in this work first form a
crude estimate of the solution before minimizing the functional. The largest gains with
multiresolution techniques are achieved when the initial estimate is far from the
solution. It this work the algorithms in Chapter 3 and 4 were implemented using the
conjugate gradient method while the algorithms in Chapter 5 were implemented using
the steepest descent method.

To form the discrete problem statement the representation is sampled on a uniform
grid in the parameter space. For simplicity, a sampling interval of 1 is assumed. For

example, a curve will be represented by the collection of sample

{r@i):iinteger,i e U}. (2.49)

Similarly for surface, which has 2 degrees-of-freedom, the collection of samples is
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{r@i,j):i,j integer, (i,j) e U}. (2.50)

The collection of samples can be represented by concatenating the vector elements and
samples into a single vector, r, e.g. for curves in two-dimensional space the 2xN vector

is formed by

r=<-x@-Dy@-1D,x0),y@)x(@+1),y(+D), - -- >, 2.51)
where N is the number of samples in the domain. To discretize the problem it is
necessary to form discrete approximations to first- and second-order derivatives of the

continuous representation using the collection of samples. For curves the following

discrete approximations to the differential operators are used [1]

r'()) = r@+1)—r@), (2.52)
r’@(i) = r@i+1)=2r@) +r@-1). 2.53)

Similarly for surfaces the following approximations are used [1]

r,(i,j) = r@+1,j) —rG.j), (2.54)

ry(i,j) = r@,j+1) - rG,)), (2.55)

ru(j) = ri+1,j) = 2r@,j) + r@-1,)), (2.56)
rw(i,j) = r@i+1,j+1) — ri+1,j), = r@i,j+1) + r@,j), (2.57)
rw () = r(,j+1) = 2r@,j) + r(,j-1). (2.58)

Using these approximations the continuous functional minimization problem can be

approximated by the discrete functional minimization problem
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MX[r(u),s] = A(r,s), (2.59)

where M,); denotes the discrete form of the continuous functional M*.

The steepest descent method is an iterative method for finding the minimum
function. Let r®) denote the estimate after the k" iteration. An initial estimate of the
surface, r(O), is iteratively updated by forming an update vector, g, in the direction of
steepest descent. The steepest descent direction is computed by evaluating the gradient

of the functional at the current function estimate

g® = vAr®,s). (2.60)

The update to the function is

p&+D) (k) 4 gk g, (2.61)

where B(") is some constant. The optimal B(") is found by minimizing A(:,*) with

respect to B(k),, i.e. find B%® such that
—_Ar®p@g®) g = 0. (2.62)

For the functional minimization problems in Chapters 3 and 4 the functional A(,-)

has a quadratic form and can be written using vector matrix notation as

Aw,S) = rlAr—cTr, (2.63)

where A is some matrix, ¢ is some vector and r! denotes the vector transpose. In these

cases, the gradient vector is given by

g® = Ar® _¢ (2.64)

and the optimal B is given by
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g(k)Tg(k)

© =
0T A g®

(2.65)

The actual form of the matrix A and the functional A(:,*) are specific to the particular
functional and the details will be discussed for each of the proposed algorithms. In
general for all of the algorithms discussed in this thesis, the form of A will be sparse
and banded, that is, most of the elements of A are zero except for relatively few
nonzero diagonals. This is very important from a computational perspective because it
will mean that all computations are local in nature leading to very fast implementations

on parallel mesh architectures.
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CHAPTER 3 - INVARIANT CURVE RECONSTRUCTION

In this chapter the reconstruction of smooth curves in two and higher dimensions is
examined. To construct an invariant estimate of a curve it is necessary to find a
stablizer, Q, which not only produces plausible reconstructions but which is also
invariant to rotations and translations of the constraint set. Thus the study of the
problem will begin with an examination of several invariant characteristics of curves
and a discussion of the nature of the reconstructions which are constructed using these
characteristics. From this analysis a mathematical problem statement will be defined
for the reconstruction of curves in m-dimensions. The functional that is deﬁncd,.
however, will be shown to be nonconvex. Thus the actual computation of the solution
will be difficult.

In Section 3.5 two new approximations to the nonconvex function are proposed.
The case of a curve in two-dimensional space is first examined and a new convex
approximation to the nonconvex problem is analyzed. In Section 3.7 popular techniques
for the reconstruction of curves are shown to be very noninvariant to rotation of the
constraints. That is, the reconstructed curve varies dramatically if the coordinate system
is rotated. The reasons behind the new approximation are shown to be valid and it will
be demonstrated that the curves reconstructed with this algorithm are much more
resistant to deformation with rotations of the constraints than previously proposed
methods. In Section 3.5.3 the new reconstruction algorithm is extend to curves in
higher dimensional spaces. Section 3.9 describes two applications of the new

algorithms to some problems in computer vision.
3.1 Invariant Characteristics of Curves

The results in this section can be found in most textbooks on differential geometry

[34]. Also see [6,9] for a discussion of invariant characteristics of curves and surfaces
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in two- and three-dimensions. Let r(x), u € U C IR, be a parametric representation of
the curve in a m-dimensional space. Assume the components of r(#) have continuous
n™ order derivatives respectively. Let r'(x), r”(u) and r% () denote the first, second
and j* derivative of r(u). The following quantities can be defined. The velocity of a

curve is defined as
v(u) = [[r')| (3.1
The arc length of the curve is given by

[ v(u) du. (3.2)
U

The unit tangent vector function t(u) is defined as

r'(u)

f) = L 3.3)
e Gl ==
and the normal unit vector function n(u) is defined as
t'(u)
nu) = -+ . 3.4
W= T =

For planar curves the vector functions t(x) and n(u) define a right-handed coordinate

system on the curve as shown in Figure 3.1. The curvature of the curve is given by

[l
- (3.5)

K(u) =

The problem of determining invariant quantities is addressed by computing the Frent-
Serret equations using vector calculus. For the two-dimensional case these equations

can be written as

) | _ 0 K@)V | |tw)
[ﬂ'(z)} a [—K(u)V(u) uo ! } [n(lzi)}- (3.6)

From this it is known that k(u) and v(u) are invariant. v(u) is known as a first-order

invariant since it depends only on the first derivative of r(u), while k(u) is a second-



n (u)

P t (u)

Y

Figure 3.1. Tangent-Normal coordinate system at a point on the curve
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order invariant since it also depends on r”(u#). Thus in the two dimensional case the

stablizing functional should be based on the quantities v(u) and/or x(u).

In higher dimensions the Frent-Serret equations yield the matrix

[ 0 wm@vw o 0 0 0
—@v@) 0 k@vVe) .. 0 0 0
0 —K@v@m) 0o 0 0 0
0 0 0 - —KpoW)V(u) 0 K -1 (U)V(1)
0 0 0 0 —Kpm-1(U)V(1) 0

3.7

where K;(u) is the j‘h curvature of r(u). The curvatures are invariants and characterize

r(u) up to an Euclidean motion. k;(#) is an j+1-order invariant meaning that x;(u)

depends on r(j“)(u) but x;(u) i =1,2,...j—1 do not. x;(u) is the curvature as defined

by (3.5). So in higher dimensional spaces higher order curvatures can be included in

the stablizing definition.

3.2 Invariant Metrics on C;

For each type of constraint forming process an invariant metric must be determine.

In this section invariant metrics for location and normal constraints will be defined.



29

Recall for location constraints
L;i[r@)] = r(). (3.8)

Since this constraint is on the location of the curve in space a natural measure on the
constraint space in the Euclidean distance of the object at u; to the constraint location.

Thus for this type of constraint a possible metric can be defined as

- 172
pe, (e = | % (xj () = ) (3.9)
]=

where ¢j; denotes the i component of the vector ¢;. This metric is invariant to
rotations and translations since it is the measure of the distance between two points
which is an invariant quantity. If an explicit representation is used for the curve this

metric becomes
2 2 1/2 ’
P (<t Wi, = [ @ca? + (i) (3.10)

This metric is also invariant, however, its practical application often requires that

iy = G (3.11)

’

and the metric reduces to
pc,(<uif W)>,¢) = |fu)—ca,il. (3.12)

This metric, however, is not invariant to rotations.

For a curve in two-dimensional space the normal is given by (2.25). The angle
between the normal and the constraint is invariant to rotations and shifts; thus it can be
used as a basis for the metric defined on C;. Let 6; be the angle between I;[r(z)] and c;,

recall from vector algebra that

(;[r(u)], )

9,’ =
cos(6;) e, leille,

(3.13)

since 1;[r(#)] and ¢; represent unit normals, ||I;[r(x)]|| = ||¢;|| = 1 so (3.13) reduces to
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(<Yu(Ui), =2, (U;)>, <Cx,i5Cy,i>)

Seg = 02w+ y2 )2

Ou(Ui)ex,i — xu(Ui)cy, 1)

= . 3.14
O ;) + ya ()" G
Thus
2
U;)Cy ; — Xy (U;)Cy
sin2(9,-) = 1 —cosz(Bi) - 1 _ (yu( l; X, u2( z) y,z)
Oci(uy) + yu(u)
(U= R YRw) + 265,10y, i )y ) + (1 = €3 )xd (wy) B45)
Cca ) + yau;)) -
Since ¢; is a unit vector (1 — c,%_,-) = ci,-and (1- cii) = c,zc,,- SO
sirlia = C3 V() + 205 iy, iy (UD)yu () + €3 x5 (W)
‘ 2w + ¥ w))
 Ouey,; +x, )y, 1) o
O (ui) + y2 () '

The explicit form of this equation can be found by setting x, = 1 and defining the slope

of the constraint vector as m, (m; =—cy,;/cy,;), yielding

0 () — m;)?

!
sin“(0;) = (3.17)
T+ ey
An invariant metric can be defined on C; by
pc,(Lilr@)l.c;) = [6y]. (3.18)

Invariant metrics defined on normals in higher dimensional spaces can be found
using this method, however, the formulas become very complex. In general, invariant
metrics on other types of constraints can be found if there is some invariant

characteristic that can be computed to measure the closeness of the reconstruction to the
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constraint.
3.3 Invariant Stablizers

A prior knowledge of the type of reconstruction that is desired is used to determine
an appropriate stablizer based on invariant characteristics. It is desirable to reconstruct
curves which are smooth. Recall that the stablizer, Q, is used in the definition of M*

which is then minimized.
3.3.1 A First-Order Stablizer

As a first attempt the stablizer can be based on the first-order invariant v(x). One
idea is to use a measure of the arc length as a stablizer. For this the stablizer can be
defined as

Qlrw)] = j v(u) du
U

= [ lIr'@ll du (3.19)
U

By using the calculus of variations and the Euclidean norm the Euler-Lagrange

differential equation is given by

dvw) d | v | _ -
ox;(u) E[ax,-’(u)] = i=12,..m (3.20)

x;'(u)
172
xj,(u)z] =0 (.21)

=>——d—”‘
du[_z

j=1



32

= x”(u) [ij"(u)z] —xi’(u)[ﬁxj'(u)x,"’(u)] = 0. (3.22)
i m=1

Let (-,-) denote the normal Euclidean inner product, Then (3.22) can be written as the

vector equation.

('), v @)r”(u) — ('), r"w)r'w) = 0. (3.23)

Dot this equation with r”’(¥) to attain

('), @) (@), 1" W) — (@), v W)? = [[Faxe”w| = 0. (3.24)

Therefore, either r”(¥)=0 or r”’(u)=cr’, ¢ is a constant. Assuming the nontrivial

second case, this implies that

ru)=ae +b (3.25)

where a and b are constant vectors. By making the change of parameterization ¢ = e “*

the form of r is found to be

r(¢) = at+b, (3.26)

which is the equation of a straight line. This equation must be satisfied between
constraint points in order that M A be minimized. This implies that between constraints
the reconstructed curve will be a line. This is an expected result since the shortest
distance between two points in a straight line. While this will yield a continuous
solution to the problem, the curve reconstructed with this stablizer will not be smooth.
To obtain a smooth reconstruction higher-order invariants must be used in the stablizer

definition.
3.3.2 A Second-Order Stablizer

For smoothly varying curves a more appropriate technique is to model the curve as

an ideal thin flexible beam of elastic material. The stablizer would then be a measure of
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the strain energy. The reconstructed curve would then have the physical representation
of the minimum energy configuration of a beam with deformations. Daniel Bernoulli
first suggested that the strain energy is proportional to the integral of the square of the
curvature taken along the curve [5]. Thus define the stablizer as

QIr(w)] = | *u) v(u) du. (3.27)

U

In this case the Euler-Lagrange differential equation is nonlinear [58]. The
reconstructed curve, r(u), obtained by the minimization of M M with this stablizer is
referred to as the spline approximate. This stablizer is based on a second-order
invariant whereas the arc length stablizer, Q!, is based on a first-order invariant. Thus it
is expected that a curve reconstructed with, £, would be smoother than the straight-line
approximate obtained with Q!. As will be shown in the examples for smooth invariant”
curves reconstruction (3.27) is an adequate stablizer and will be the stablizer used in
this chapter. In higher-dimensional spaces more smoothness can be obtained by adding

higher-order curvature functions to the stablizer.
3.4 An Invariant Problem Statement

The problem of reconstructing a curve in m-dimensional space given a set of
constraints S is now posed as a functional minimization problem. The estimate of the
curve is formed by minimizing the functional

MMr*w),s) = [ @) v)du + LY |Ie" w)—cil > (3.28)
U CGES

The constant A determines a tradeoff between the smoothness of the curve and
closeness of fit of the surface to the data. To show that this problem is well-posed it
must be shown that the minimization of this functional exists and is unique. In fact, this
functional minimization problem is still not well-posed. Consider the simple example

of the two location constraints
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Iy [r(u)] =r(0) =<0,0> Lr@)]=r()=<1,0> (3:-29)

then the curve

r(u) = <1,0>u (3.30)

minimizes the functional (3.28) (since M b= 0). However so does

r(u) = <1,0>+<-1,0> u. (3.31)

This curve has the same shape but a different parametrization. Similar examples can be
constructed when there are more constraints. The functional minimization problem is
not well-posed since the solution is not unique. However, since all curves which are
global minimums of the functional (3.28) will have the same shape (they will have.
different parametrizations) any r(u) which minimizes (3.28) will be a sufficient
estimate for the curve.

However, the stablizer 2 can also be shown to be nonconvex. To show that Q is

nonconvex, it must be shown that there exist some f(u), g(u) and o € [0, 1] such that

Qlof(u) + (1-a)gu)] > o[f(u)] + (1—a)Q[g(u)] (3.32)

To show this, it will first be shown that

QBr(w)] = |_113|Q['(“)]' (3.33)
Let rp(u) = | B| ry(u), then
va@) = Bl vi(w) () = t ). (3.34)
So
'@l 1 'l 1

(u) (3:33)

Ky(u) =

v Bl viw 1B



thus

Qr] = Qfr].

1
1B
Now to show nonconvexity, let o = 0.5 and let g(u) = (2B—1)f(x). Then

Qlof() + (1-og)] = QIBf] = ﬁﬂm

and

1
12B-1]

QQIfw)] + (1-0Qlgw)] = — [1 +

> Q[f].

Therefore the inequality that needs to proved for some value of B reduces to
1 1 1
—_ > — |1+
Bl 7 2 [ 121 ]

Letting B = 0.1 gives

10 > 1.125

a0

(3.36)

(3.37)

(3.38)

(3:39)

(3.40)

which is of course true. Therefore Q is nonconvex. Note, however, that the the metric

for the location constraints is convex.

3.5 Convex Approximation to the Invariant Problem

In this section, a two-stage algorithm is described which constructs a curve estimate

which is more robust to variations of the coordinate system. In the first stage, a

piecewise linear invariant approximation of the curve is found by minimizing an

invariant functional. This piecewise linear curve is used to form an approximate

constant velocity parameterization of the curve. With this parameterization of the curve

it is possible to obtain a valid approximation to the invariant stablizer, (3.27), which is
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well-posed and convex. The special case of planar curves will be examined first,

followed by the more general case of curves in m-dimensional space.

3.5.1 Stage 1: Continuous Piecewise Linear Approximation of the Curve

A continuous linear curve can be completely specified by the locations of the
endpoints of each linear segment. If we have M location constraints we will form a
piecewise linear curve with M—1 segments. This curve can be specified with the
collection of M locations, {f}. To form the reconstruction the following quantity is

minimized with respect to the collection {4}

A M=l 2 2
MY[6,8]1 = 36— Gallc+M X6 —cill”. (3.41)

i=1 CES

The function (3.41) is convex since each term is quadratic. The function is also-
invariant since each term is based on an invariant quadratic (the distance between two
points). Let the collection of 4 that minimize (3.41) be denoted by G

This function is based on the physical model of finding the minimum energy
configuration of a set of springs. The first term of (3.41) represents the energy of a
collection of M —1 springs, one along each segment of the continuous piecewise linear
curve. The second term represents the energy of a collection of M springs, each one
connecting a constraint location with its corresponding location of the curve. The term
A, controls the ratio of the spring constants for the two sets of springs.

A constant velocity parameterization along the continuous piecewise linear curve is
given by

(G — £)

rdu) = [: + (u—u) ———, u e [u;,u), (3.42)
16 = £l "

where
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u0=0,

wp = wiq + |G =6]l. (3.43)

Note that for this curve the velocity is given by
viw) = ||[rdw)l| = 1. (3.44)
The curve ru) approximates the smooth reconstructed curve r(u) so if the same

parameterization is used for the smooth curve, the approximation that

vw) = [[F@ll = 1. (3.45)

will be valid. By the same parameterization we mean that we use the u; determined for-
the piecewise linear curve to determine where on the curve the constraint should be.

located.
3.5.2 Stage 2: Special Case - Planar Curves

Assuming that the curve is planar (use the notation r(u) = <x (x),y (u)>) and also
that the approximation (3.45) is valid. Then the invariant stablizer, (3.27), can be

approximated by

Qulre] = [@y @ -y @ @) du (3.46
U

This functional has several interesting properties:

Property: For a given x (u) the functional

ply )] = Qil<x @),y @)>]1% (3.47)

is a convex mapping of y (1) (similarly, for a given y (1), (3.46) is a convex mapping of



x(u)).
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Proof: The proof of this property requires proving the convexity condition (2.19).

This is accomplished by first showing that

ply1w)+y,(w)] < ply1(w)] +ply2u)l, y1),y2(u) € Y(U)

and then proving that

p[By )] =Bply@)l, y(w)e Y(U), Be [0,1].
The u parameter will be dropped to ease the notation. Lety;,y, € Y (U) then

PO1+y2R = [WO YD) =07 4y 2P du
U
= [y -y + 073 =y
U

= J‘{ |(xﬂyrl _ y”l-x’) 4 (yllle _ y/2x/)'
U

.7

x|y, = Y1) + 070X = yox)| } du

S J!(xllyll = y”lx,) + (yll2xl e ylle)llxllyll _ ylllxll du
U

+J‘| (x//yll _ }’”1x') + (y//2x1 _ ylzx/)”xnylz _ ynlx/ldu
U

bythe Riez-Holder inequality

(3.48)

(3.49)

(3.50)

(3.51)

(3:52)

(3.53)
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py1+y2)? < J((x"y’l —Y"1X) + (X = yox))? du
U

172

1/2
5z J(x”y’l —y" X du| 4 J(x”y’z —y"2x)? du (3.54)
U U

= pOy1+y2) SpO1)+pB2) (3.55)
For the second property
1/2
pay) = _[(x" oy — o y’x')* du (3.56).
U
12
=aq f(x”y’ =YX du| = apy) (3.57)
U

These two properties show that

ployr +(1-0)y2) = op(y1) + (1-0)p(y2) (3.58)

which proves convexity. [J

Note, however, that M* is not convex with respect to the mapping r(u). To form the
reconstructed curve the functional is minimized twice. First, x"(x¥) and x”(u) are
approximated and the functional is minimized with respect to the y(4) component.
Then, the functional is minimized with respect to x(#) while y(u) is held constant. This
minimization process does not necessarily find a global minimum to the functional,
however, the curves that are reconstructed will be smooth and approximately invariant.

To form approximations to x'(u), x”(u), y’(u), and y”(u) the continuous piecewise
pp p
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linear approximation to the curve is used. Let the components of r u) and [ be given
by <xAu),y {u)> and <x?,y}k>, respectively. For example, when minimizing with

respect to y (u), x"(u) and x”(u) are approximated by

* *
; Xiy1 — X .
x'Ww) = —4/————, ue lu,u.), i=1,.,M-1, (3.59)
”[it+1 - [:”
and
* % % %
Xiv1 — X Xi —Xi-1

") = - Su—w),  i=2,..M—-1, (3.60)
O = AT A T =l

where 8(u) is the Dirac delta function. Define the constants A; and B; such that

x/'w) = A, x(uw) = Bidu-u), ue [u,u). (3.61)

The then stablizer, €2;, reduces to

M—l Ui

Qi [<xu),yw)>] = Y, B} j v (u)du
i=1 u;

Ml p 2 ’ ”
+'3 [Abyw? - 24y @y @) 36
i=2

The functional is minimized with respect to y () using €, as the approximate stablizer
to form the smooth approximation of the y () component of r(x), i.e. y(#). In a similar
fashion, Q3[<x(u),y {u)>] is defined and minimized to form the smooth approximation
x(u).

To summarize, the proposed reconstruction algorithm for curves in two-dimensional

space is outlined below.
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Algorithm: planar case

1. Compute the invariant continuous piecewise linear approximation

ru) = <x [ u),y {u)> by minimizing (3.41) with respect to the collection (64,

2. Compute the smooth reconstruction, F(u), by minimizing the regularizing

functional with the stablizers Q;[<x (u),y (u)>] and Q[<x ),y Au)>].

Examples of curves reconstruction with this algorithm are given in Section 3.7.
3.5.3 Stage 2: General Case - Curves in M-Dimensional Space

Unfortunately the algorithm presented in the previous subsection cannot be easily
extended to higher-dimensional spaces. However, if the constant velocity
approximation is introduced at an earlier stage in the derivation of the stablizer the
computational complexity of the algorithm can be reduced with satisfactory results and
the algorithm can be extended to curves in higher-dimensional spaces. The
approximation is the same, however, it is introduced earlier in the functional definition

to produce a slightly different functional to minimize. Recall that the approximation

used is
v = K@l = 1. (3.63)
Thus
() = WE_% = F(), (3.64)
and
Q) = ”tv'gj;” = @l (3.65)

So the approximate stablizer for (3.27) becomes
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lr] = [l @I du. (3.66)
U

This stablizer is convex since the integrand is just a squared norm. The complete

algorithm is outlined below.

Algorithm: general case

1. Compute the invariant continuous piecewise linear approximation

rdu) = <xu),y {u)> by minimizing (3.41) with respect to the collection (6YH,.

2. Compute the smooth reconstruction, F(u) by minimizing the regularizing

functional with the stablizer Q,[r(u)].
3.6 Implementation

To discretized the continuous functional M* the approach outline in Section 2.5
was used. For both of the algorithms described in the previous section the following

vector-matrix equation is obtained

MA[r,c] = %—rT (Q+AIor—cTr, (3.67)

where the matrix I is a diagonal matrix with a 1 in row i if ¢; € S. The i"® component
of ¢ is ¢; if it exists, else it is zero. The form of Q is dependent on the particular
algorithm implemented.

For the first algorithm described in Section 3.5.2 only one component of r is
minimized at a time. Therefore the problem can be split into two. First, the

minimization is performed with respect to the y component. Let

agy = x'(0) +x"(), (3.68)



Biy = X)) =x"().

Then the Q matrix can be given by

208,  ~H Doy
—4x'(2)0yy 2000 +8X' ()
203B3  —8¥(3)
0 2014 Beay

12x'(3)2+4x" (3)?

2041)
~8x'(2)

—8x(4)?

0 0
202)B2) 0

—8x/(3)? 203)By

12x'(4)2+4x"(4)*  —-8x'(4)

43

(3.69)

Once the minimization is done with respect to y a new Q matrix is constructed with the

x’s replaced with y’s and the functional is minimized with respect to x.

For the algorithms described in Section 3.5.3 the minimization can once again be

split into two separate minimizations done over each of the components. This time the

Q is given by

3.7 Comparison

2 -4 2
-4 10 -8
2 -8 12
0 2 -8
0O 0 O
0 0 O
0O o O

S O O O

SN

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
-8 12 -8 2
2 -8 10 —4
0 2 -4 2|

(3.70)

This section describes two commonly used approximations to the nonconvex

problem which are well-posed. Both of these algorithms use the explicit representation

of a curve and are therefore limited to planar curves. The explicit representation of a

curve can be considered a special parameterization where one coordinate is a function

of the other. We will use the following notation for the explicit form



rix) = <x,y(x)>. 3.7D

When the explicit form of the curve is used, the metric for the location constraints

becomes

p(r(x),¢;) = (xi—c1,1)* + (v (x;)—c2,)%. (3.72)

In order for this equation to be quadratic, we must set x; equal to a constant (usually

c1,;). If this is done, however, the metric is no longer invariant.
3.7.1 Cubic Splines

The most common approximation made is to assume that the curve is approximately
flat (i.e. (14y'(x)*>)2 = b a constant) [18]. The explicit form of the stablizer in (3.27)

then becomes

Qlrw)] = — [¥0? d 3.73)
b’y

This functional is convex and quadratic. The stablizer is a semi-norm on the class of
functions having a square integrable second derivative on U. The null space of the
stablizer is spanned by {1,x}. The Euler-Lagrange differential equation of the stablizer

is

y7(x) = 0. (3.74)
Thus the reconstruction is a natural cubic spline. This stablizer has been widely used
for smoothing data [70].
3.7.2 Weighted Cubic Splines

The stablizer in the previous section can include a positive weighting factor, w (x),
to form a closer approximation to the invariant stablizer. The stablizer is defined as
[52]
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Qulr@)] = [w)y () dx. (3.75)
U

The weighting factor can be used to incorporate discontinuity information (w (x) =0 at
discontinuities). To closer approximate the invariant stablizer in (3.27), Salkauskas

[72] chooses a piecewise constant weight function defined by
_3,

y(xi)-y(xi-1)

2
] x€ [xi_1,x), i=1,..M. (3.76)
Xi —Xi-1

w(x) = 1+[

Examples using €3 and €4 are presented in the next section.
3.8 Examples

To demonstrate the effectiveness of the new algorithms in reconstructing invariant
curves, a symmetric example was constructed so that it is easy to observe the effect of
rotating and translating the data. Figures 3.2 to 3.5 show the curves that were
reconstructed using stablizers Q; to Q4 respgctively. In all examples the regularizing
parameters were set to A;=1.0 and A =0.01. This choice was based on empirical
evidence. The x mark indicate location constraints placed on the reconstruction.

The solid lines in Figures 3.6 to 3.9 were constructed by first rotating the coordinate
system by 45° and then forming the reconstructed curve estimate with stablizers Q; to
Q4, respectively. The dashed lines in Figures 3.6 to 3.9 were formed by rotating
Figures 3.2 to 3.5 by 45° to show how the reconstructions differ with a change in the
coordinate system. Notice that the reconstructions formed by approximating (3.27)
with Q3 or 4 vary greatly with the orientation of the data. The curves reconstructed
with Q; and Q,, however, are much more robust to data orientation.

The four stablizers discussed in this chapter Q; — Q4 are all convex approximations
to the invariant stablizer (3.27). To determine which algorithm which best
approximates the nonconvex invariant functional the value of the functional (3.28) is

computed for each algorithm. The results are listed in Table 3.1 for both the original
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constraints and the rotated constraints.

Table 3.1. Value of M* (L =0.01)

Functional Minimized

Data Set
M? Mh M} M}

Original | 0.091070 | 0.116043 | 0.603425 | 0.369461
Rotated | 0.098802 | 0.113685 | 0.366588 | 0.383489

As is to be expected minimizing M{‘ has the best overall reconstruction for this
example, however, the functional M} achieves good results with lower computational
cost. Since the convex stablizers that were examined are approximations to the
invariant stablizer (3.27) the reconstructions do varying some with a change in the-
coordinate system, this can be seen in the plots. To give a quantitative measure of this
variance the distance between the two reconstructions was computed using the metric

induced by the L? and L norms. The results are listed in Table 3.2 for both metrics.

Table 3.2. Distance between reconstructions

Functional Minimized

M} Mh M} M}

i 7.829494 | 4.045463 | 91.872093 | 66.404761
L™ 1.336573 | 0.671044 | 12.311476 | 10.089072

Figures 3.10 and 3.11 show the algorithms used to reconstruct curve estimates from
noisy data. Figure 3.10 is a collection of noisy constraint data, marked with x’s, of the
dashed curve, and Figure 3.110 is the curve reconstructed with Q,. Figures 3.12 and
3.13 demonstrate that the new algorithms can be used to form invariant curve
reconstructions in higher-dimensional spaces. Figure 3.12 shows location constraints
and their ordering in three-dimensional space, and Figure 3.13 shows the curve

reconstructed with Q5.
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3.9 Applications in Computer Vision

This section describes two curve reconstruction problems which arise in computer

vision problems.
3.9.1 Approximating Endocardial and Epicardial Boundaries

Digital two-dimensional echocardiography is an ultrasonic imaging technique that
is used as an important noninvasive technique in the comprehensive characterization of
the left ventricular structure and function [20, 106]. Quantitative analysis of the cardiac
function often uses shape attributes such as thickness of the heart wall, the enclosed
area, and the measurement of the variation of these shape attributes throughout the
cardiac cycle [28]. These analyses require the complete determination of inner’
(endocardial) and outer (epicardial) boundaries of the heart wall. The echocardiograms,
however, are of poor quality and the wall boundaries can be reliably detected at only
sparse locations along the heart walls. This sparse information must therefore be used
to recover an estimate of the heart wall boundaries.

The image in Figure 3.14 is a typical echocardiographic image of the left vertricle.
The detected edge points are marked in white The edges were detected using a 41x41
V2G operator followed by a radial search to find zero-crossing points [20]. The
detected edge points for the endocardial and epicardial boundaries are also plotted in
Figure 3.15. The smooth and continuous reconstruction in Figure 3.16 was formed
using €, as the stablizer. To form a closed curve reconstruction the assumption that
r(u) is periodic with a period equal to the arc length of the piecewise linear
reconstruction is included. Figure 3.17 shows the approximated boundaries overlaid on

the original image.
3.9.2 Approximating Motion Trajectories

An important problem in machine vision is the detection of a target and estimation

of its motion in a field of view. Several techniques have been developed which form
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Figure 3.4. Curve reconstructed with Q3, (3.73)
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Figure 3.6. Rotated curves, reconstruction done with Q;, (3.46)

Figure 3.7. Rotated curves, reconstruction done with Q, (3.66)
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Figure 3.8. Rotated curves, reconstruction done with Q3, (3.73)

Figure 3.9. Rotated curves, reconstruction done with Qy4, (3.75)



Figure 3.11. Curve reconstructed from noisy data with 5, (3.66)
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Figure 3.12. Constraint data in three-dimensional space
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Figure 3.13. Curve reconstructed with Q,, (3.66), in three-dimensional space
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Figure 3.16. Approximated endocardial and epicardial boundaries

Figure 3. 17. Detected boundaries overlaid on the original image
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noisy measurements of the object trajectory from either a sequence of images
[44,56,86]. or a single image using time-sequential sampling [51]. To estimate the
trajectory from these data points a smooth continuous approximation to the data points
is found.

The image in Figure 3.18 is one time-sequentially sampled image of a moving
target on a background. The image is not sampled in the common lexicographic (or
raster) pattern, rather the sampling is done on a bit-reversed dot-interlaced pattern [51].
Since the object is moving while the single frame is being sampled, the moving object
appears dispersed. In Figure 3.19, the object location data is plotted. The third axis is
the time at which the sample was taken The approximated trajectory is plotted in Figure

3.20 and is overlaid on the original image in Figure 3.21.
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Figure 3.18. One frame of a time-sequentially sampled scene with a moving object

Figure 3.19. Estimated object locations from a time-sequentially sampled image
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Figure 3.20. Approximated object trajectory

Figure 3.21. Approximated object trajectory overlaid on the original image
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L = (r,@n,@) M= -2

= —7 [(ru(),n, @) + (v, (W),n, W))] (4.8)

N = (-ry(u),n,(uw)

is known as the second fundamental form. The coefficients L, M, and N can also be

given by [57]:

L = (ry(u),n(u) M = (ry,(u),n(u)) N = (r,(w),n). (4.9)

These six coefficients in (4.3) and (4.9) can be shown to completely characterize a
surface in three-dimensional space [9]. These fundamental coefficients can be
combined into invariant functions with easily interpretable surface shape
characteristics. The Gaussian curvature function of a surface can be defined from the”

first and second fundamental form matrices as

1
F LN — M?
I’f: G] o Y =0 (4.10)

M
K(u) = det .
W) N EG —F?

L
M

where det() indicates the determinate. The mean curvature function of a surface can be

defined similarly as

-1
1 E F L M EN + GL - 2FM
H T . o . 4.11
where tr() is the trace operator. The matrix
EF| LM
r = F G} MN } 4.12)

is known as the Weingarten mapping, which maps a tangent vector to a tangent vector

in the tangent associated plane with each point [9]. The Gaussian and mean curvatures



(1 (u) + K (u))

H(u) = 5

(4.20)

If the normal curvature at a point is constant for all directions, the Weingarten map will
not have two distinct eigenvectors. In this case, if x,(u) = 0 at this point, then the point
represents a point on a planar surface patch. For this point all directions are considered
principle directions. If |«,(u)| > 0, this point is known as an umbilical point of the
surface. As an example, all the points on the surface of a sphere are umbilical points.
The local characteristics of a surface at a point P on the surface is completely
specified by the surface normal, the principle directions and principle curvatures.
Following the convention of [73, 74] the collection of information (P, n,d;,d,,x;,%;) is

referred to as the augmented Darboux frame at P, D(P).
4.2 Invariant Metrics on the Constraint Spaces

The metrics on the constraint space for the surface reconstruction problem are very
similar to the metrics used in reconstructing curves. For location constraints the

Euclidean distance of the surface at u; to the constraint location is used as the metric,

[i

j=1

Il

12
pci(r(u;),c;) [xj(u;) - Cj,i]2]

|Ir(u;) - cil]. (4.21)
For normal constraints situation is more complex than the curve reconstruction case but
essentially the same. I; is given by (1.12) which is equal to

r,Xr, <(yuzv_yvzu)9(zuxv_zvxu):(xuyv—xvyu)>

“ruxrv” ((}’uz-'v_.)’vzu)2 o5 (Zuxv"zv-xu)2 + (xuyv_xvyu)2

(4.22)

)1/2

and
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based on the total length of the curve in Section 3.3.1. As was the case for the first-
order curve stablizer, the surface reconstructed with this stablizer will not be

sufficiently smooth. In fact, they will be piecewise planar [67].
4.3.2 Second-Order Stablizer

For smoothly varying surfaces, the surface can be modeled as an ideal thin flexible
plate of elastic material [80-82, 84,85]. The stablizer is a measure of the strain energy

of the deformed plate. The potential energy density of a thin plate is given by [23]

A

2 2
[&;‘(2(‘2] + B (u)ko (u), (4.26)

where A and B are constants of the material. This can be written as

- [xl () ; Ky (1)

2
] = (A - B)x(w)xy(u), 4.27)
or in terms of Gaussian and mean curvatures as
2AH (u)? — (A —B)X (). (4.28)

To simplify this equation, let A = 1 and B =0. With this assumption the equation still
models a valid thin plate [80]. An invariant stablizer can be defined by integrating this

energy density over the surface area [80]

Qr(uw)] = J( 2H?(u) — K(u)) dA, (4.29)
U

or in terms of the principle curvatures as

Q[r(u)] = J(:c%(u) + K3 (u)) dA. (4.30)
U
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The reconstructed r obtained by the minimization of M* with this stablizer is referred
to as the spline approximate. For smooth invariant surface reconstruction (4.30) is an

adequate stablizer and will be the stablizer used in this paper.
4.4 An Invariant Problem Statement

The problem of reconstructing a surface given a set of constraints .S is now posed as
a functional minimization problem. The estimate of the surface is formed by

minimizing the functional

MMr@).s] = H[xl W? + ) lIry e, du dy
U

M
+ szci(r(ui)’cl‘)za (431)

i=1

where K;(u) and xy(u) is given by (4.17) and (4.18), respectively and pc,(,°) is

described in Section 4.2. The explicit form of the functional can be written as

°

Mk[z,.s] _ J'J‘{ [(1+z§)zJot — 22,242y + (1+z,%)z},y]2
4 2(1+23+23)"

ZaoxZyy — zl%y L 2
- 22 f drdy + AYpc, iy (4.32)
(1+22+22) =
The constant A determines a tradeoff between the smoothness of the curve and
closeness of fit of the surface to the data. To show that this problem is well-posed it
must be shown that the minimization of this functional exists and is unique. As was the
case with the curve reconstruction problem a simple example can be constructed to
show that this problem is not well-posed.

The stablizer €, (4.30), can be shown to be nonconvex by first showing that
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Figure 4.2. A collection of 500 noisy surface constraints
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approximation. A uniform mesh is placed on this surface, and surface characteristics
are estimated at the nodes of the mesh.

A Thiessen triangulation, 7, of the surface is found using an algorithm which was
adapted from an algorithm proposed by A. K. Cline ez. al. [22,71]. This algorithm is
guaranteed to terminate with a valid Thiessen triangulation of the surface after a finite
number of steps [71]. Definition of a Thiessen triangulation and the algorithm are
outlined in Appendix B. The resulting triangulation of the constraints is shown in
Figure 4.3 (projected into the XY plane). Other triangulation methods such as those
proposed by Cavendish [18] and Lawson [53] can also be applied to form the

triangulation.

Figure 4.3. Thiessen triangulation of the constraint data set

The set of constraint S and the triangulation, 7, define a continuous piecewise planar
surface estimate (i.e. the surface within a triangle is given by the plane which passes
through the three constraint nodes). This surface estimate is first smoothed before the

surface characteristics are estimated. The smoothing is performed by using a weighted



!

least squares smoother. An arc in the triangulation can be described by the indices of
the two end nodes. Let (e;,e;) denote the indices of an arc in the triangulation. The
collection of arcs in the triangulation Tis denoted by E. Let S" be a collection of nodes
{c; € C;,i=1, - -+ ,M} which with T describe an arbitrary planar surface. A smoothed

piecewise planar surface is computed by minimizing the functional

M
M&[s sl = 3 wller —chl? + A, Slief -l (4.34)
(e,8)EE i=1

with respect to the collection s*. The constant weight term is given by

1

. R (4.35)
o ”cel - cq”

w

and is used so that nodes which are spatially far apart (e.g. across jump discontinuities)
have little smoothing effect on each other even if they are adjacent in the triangulation.
The function (4.34) is convex since each term is quadratic. The function (4.34) is also
invariant since each term is based on an invariant quantity (the distance between two
nodes). Let the collection of §"  that minimizes (4.34) be denoted by
5={& e Cyhi=1, -+ ,M).

The function (4.34) is based on the physical model of finding the minimum energy
configuration of a set of springs. The first term represents the energy of a collection of
springs, one along each arc in the triangulation. The weight term, w, , , is related to
the spring coefficient, a larger weight corresponds to a stronger spring. The second
term in (4.34) represents the energy of a collection of M springs, each one connecting a
constraint location with its corresponding location on the surface. The term A, controls
the ratio of the spring constants between the two sets of springs. The continuous
piecewise planar surface estimate resulting from this minimization with, A, = 0.1, for
our example is given in Figure 4.4.

On this continuous planar surface estimate a uniform grid (uniform in the XY plane)
is placed. At the grid nodes surface characteristics for the smooth continuous surface

estimate are estimated. For points which are outside the convex hull of the constraint
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points (i.e. not interior to any triangle) the plane of the nearest triangle is extended to
form a surface estimate. The grid on our example surface is shown in Figure 4.5.

In order to make the desired approximations to (4.31), we need estimates of the
normal, n, and the principle directions, d; and d; at each node on the mesh. While
local least square estimation techniques are usually sufficient to ensure stable estimates
of first-order characteristics (e.g. n), they are rarely adequate for the estimation of
second-order properties (e.g. dy,d;). Our approach, which is similar to [73,74], is to
first form local estimates of the Darboux frame D and then to iteratively refine the
estimates to obtain a stable reconstruction of 9. The algorithm for estimating and
refining the Darboux frame is described in Appendix C. When the difference between
the principle curvatures is small the estimate of the principle directions becomes
unreliable. Therefore, whenever |x;(u)—x;(u)| < 0.2k, where h is the distance
between samples in the XY plane (A=1 in example), it is assumed that the estimate is
not accurate enough to be used. In Figure 4.6 the vector d; is plotted at each grid
location. At points where the estimate of d; is unreliable a dot is plotted in place of the

vector.
4.5.2 Stage 2: A Smooth invariant surface estimate

Using the estimates of 2(P) formed in Stage 1, estimates of r,(u), r,(u), 6, (u),
0,(u) and n(u) can be used to compute approximations to the principle curvatures k;

and x; by

K1) = @1 (W)(ry, (), n(w)) + 012 @)(r, (w),n(w) + 3 @)(r,, (u),n(w)), (4.36)

and

Ko(u) = 1 (W)(r,, (u),n(u)) + oy (u)(r,, (u),n(u)) + wyz (u)(r,, (u),n(w)), (4.37)

where the ®’s are constant functions given by
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cos20;
T o ST i T S (4.38)
(r,,r,)cos“0, + 2(r,,r,)cosO; sinf; + (r,,r,)sin“0;

2 c0s6y sinBy,
O)kz = A P 2;\ A A ~ ~ P A A (4‘39)
(F,,F,)cos20 + 2(F,, T, )cosOy sinby + (F,, T, )sin?6;

sin0, :
Mgy = e = e RN (4.40)
(r,,r,)cos“0; + 2(r,,r,)cosO; sinB; + (r,,T,)sin“6,

and a stablizer can be defined by
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[ 111 00,100+ 012 0) 0 0,0 + 13 ) ) O
U

(0924 () (r, (), NW)) + €025 (W) (I (W), 1(W)) + W6 ()(ryy (W), N(W))]* ducv(4.41)

This functional is convex and leads to efficient computational solutions. However,
when computing the solution using standard techniques a numerical instability can
occur. When using iterative methods for computing the solution two points on the
surface can come close together. Resulting in errors in the following iterations possibly
causing the surface parameterization to have nonsingularities (i.e. overlap) which leads
to further instability.

To overcome this numerical instability after each iteration the surface is resampled
onto a uniform grid, which keeps the surface points from coming close to each other.
The iteration and resampling can be combined into one step, the idea is diagramed in
Figure 4.7. At iteration k an update vector dr®)(i, j) (when using the steepest descent
algorithm described in Section 2.5, r® = p®g®)y is computed for each point r® (i, j)
in the representation. Instead of setting r**1 = r® 4 §r®) yse 5r® to define a planar
approximation to the new surface. The planar surface patch contains the point
r® + 8r® and is orthogonal to the update vector 8r¥). Using this approximation the

change just along the Z-axis is computed by

15r® G, )2

BN = 5B

(4.42)

where 8z®) is the Z-axis component of 5r® (see Figure 4.7). Thus instead of updating

r® with 8r® the update is computed by
ré, ) = 1® + <0,0,52®(, j)>. (4.43)
Since the second-order derivatives of x and y are zero on a uniform grid and since

the update vector 3r® is always in the normal direction the stablizer can be reduced to

the much simplified form



76

Figure 4.7. Updating along the Z axis

Q[r(w)] = J j (0011 2 HO12 2y + @132y I + (01 Zia 02 2y H023 20y ] dhvdy. (4.44)
U

Since both terms are quadric the functional is convex. The surface resulting from the

functional minimization for the example data set is shown in Figure 4.8.
4.6 Implementation

The are many methods by which the minimization of this functional can be
performed. All of the methods used by [15,26, 33, 65,80-82] can be adapted to solve
this minimization problem. For simplicity, the functional was discretized using finite
difference methods and the minimization was performed using the conjugate gradient

method. See Appendix A for details of this method.
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Figure 4.8. Reconstructed invariant surface estimate

The discrete version of the functional can be written as

MA[r,c] = %rT (Qq +Qy +AIr—cTr. (4.45)

This matrix vector equation has the same form as (3.67) for the curve reconstruction

problem, however the Q matrices are very different. The form of the Q matrices is
given in Appendix D.

4.7 Comparison
This section describes two commonly used approximations to the nonconvex

problem which are well-posed. Both of these algorithms use the explicit representation

of a surface and are therefore limited to surfaces in three-dimensional space.
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4.7.1 Quadratic Variation
The most common approximation made is to use the assumption

=0 z,=0. (4.46)

Then the Gaussian and mean curvatures can be approximated by

Zy + 2
Bifeg) 8 === (4.47)
K(x,y) = 252,y — 23, (4.48)
and the stablizer in (4.29) becomes
Q7] = = jz?a + 222, + 22, dudy. (4.49)
U

This stablizer is not invariant to rigid three-dimensional transforms, and the assumption
that z, and z, are small is often invalid. This model is usually referred to as the planar-
plate model.

The planar-plate approximation is used in the work of Grimson [33] and
Terzopoulos [80-82, 84, 85]. The null space of this stablizer is spanned by the set of all
possible planes over the domain. The Euler-Lagrange differential equation of the

stablizer is given by

Zoeex + Zyyyy = O. (4.50)

This equation is referred to as the biharmonic equation [82].
There have been several methods developed to find the surface which minimizes the
functional (4.29) under the planar-plate model assumptions. Grimson [33] uses the

finite difference method to obtain a discrete problem which is then minimized by using
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the conjugate gradient method. Terzopoulos [80] applies the finite-element method to
transform the continuous variational principle into a discrete problem which is then
solved using an efficient multigrid algorithm. The finite element method also has the
advantage over the finite difference method of being able to be defined on
nonrectangular grids. A third method proposed by Boult and Kender [15] uses the fact
that the functional space is a reproducing kernel space. Duchon [26] and Meinguet [65]
provide methods of obtaining the continuous function which minimizes the functional
using this fact. Notice that this method obtains the solution to the continuous problem.
This method is used extensively by Wahba [97, 100, 101] who posed several surface
reconstruction problems in meteorology as functional minimizations of the quadratic
variation (4.49). This method, however, becomes very computationally expensive

when the number of constraints increases.
4.7.2 An Approximation to the Explicit Invariant Stablizer

If the first-order derivatives of z are approximated (i.e. z, and zy) then a closer

approximation to the invariant stablizer (4.32) can be made. Define the new stablizer as

Q121 = [ [{ 204 ()28 )2+ C 0.3y D (1.1 ety ~2) Y ey 4.51)
U

If the approximations to z, and z, are denoted by Z, and Z,, then the constant functions

A, B, C and D are given by

2 2 = 2
Al 1+Zy o Zszy
5Y) =\ T s 220 Rl i =y 7ve
(1-4-z,c+z},)5/4 (1+zx+:/:y)5’4
A2 2
1 Zy 1
Coy) = |—za5;| POy = —g0a— (4.52)
(I4zx+zy) (I4zx+zy)

Using this stablizer (4.51) it can be shown that the problem is well-posed and that the
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functional is convex. Any of the methods used to minimize the functional with the
quadratic variation stablizer (4.49) can be modified to form the a discrete functional
minimization problem with the added weight terms.

To form an estimate of the first-order derivatives, Blake and Zisserman [11, 12]
suggest first fitting an invariant weak membrane to the constraints. Since the
constraints are obtained only at discrete points this forms a piecewise planar
approximation to the surface. However, the functional minimization problem that
arises from fitting the weak membrane to the constraints is nonconvex. For the
examples given in Section 4.8 the piecewise planar surface approximation from the first
stage of the proposed algorithm is used to form estimates of zy and zy.

As will be demonstrated in the examples, the surface estimated using €2, as the
stablizer is much more robust to variations in the viewpoint than the surface estimated
using the quadratic variation, €2,. However, the inaccuracy in estimating z, and z,
when either (or both) are large causes variation in the surface estimates wherever z, or

zy is large. This will also be demonstrated in the examples.
4.8 Examples and Analysis

In this section several examples are given which demonstrate the effectiveness of
the proposed algorithm in reconstructing viewpoint invariant surfaces. For the noise
corrupted constraints in Figure 4.2, the surface estimates reconstructed using the
quadratic variation stablizer (Section 4.7.2) and the stablizer which approximates the
explicit stablizer (Section 4.7.3) are shown in Figures 4.9 and 4.10, respectively.

Since it is hard to demonstrate the invariance property with this constraint set, the
synthetic surface in Figure 4.1 was resampled on a uniform grid. The constraint set for
the following examples is displayed in Figure 4.11. For each of the discussed stablizers
a surface estimate was first reconstructed with the constraint set in Figure 4.11. The
constraint set in Figure 4.11 was then rotated around the x—axes by 30 degrees (the
orientation and rotation are shown in Figure 4.12) to form a new collection of
constraints. A new surface estimate was then formed for the rotated constraints. So

that the surfaces could be compared visually this surface was then rotated back 30
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Figure 4.10. Surface reconstructed for noisy constraints using the approximation to the
explicit invariant stablizer, €23, (4.51)
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Figure 4.13. Surface reconstructed for original constraints with a quadratic variation
stablizer, ,, (4.49)
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Figure 4.14. Surface reconstructed for rotated constraints with a quadratic variation
stablizer, €2,, (4.49)
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Figure 4.15. Surface reconstructed for original constraints using the approximation to
the explicit invariant stablizer, €23, (4.51)
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Figure 4.16. Surface reconstructed for rotated constraints using the approximation to
the explicit invariant stablizer, (3, (4.51)
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Figure 4.17. Surface reconstructed for original constraints with the proposed invariant
algorithm, Q,, (4.44)
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Figure 4.18. Surface reconstructed for rotated constraints with the proposed invariant
algorithm, Q;, (4.44)
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Figure 4.19. Slices of reconstructed surface for 2y, (4.44)

Figure 4.20. Slices of reconstructed surface for €2, (4.49)
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Figure 4.21. Slices of reconstructed surface for Q3, (4.51)

degrees around the x —axes, then resampled onto a uniform grid and plotted.

The surface reconstructed using the non-invariant stablizer, (4.49), is shown in
Figure 4.13 for the original constraint set and in Figure 4.14 for the rotated constraint
set. Notice that also the shape of the surfaces are very different. The reconstructed
surface in Figure 4.13 has more of an over- and under-shoot where the surface height
changes than the surface in Figure 4.14. The surface reconstructed using Qs, (4.51), is
shown in Figure 4.15 for the original constraint set and in Figure 4.16 for the rotated
constraint set. Once again there is noticeable difference between the two
reconstructions. For the original constraints the surface orientation appears to be
discontinuous at the location the surface height changes. This surface characteristic
does not appear in the reconstruction for the rotated constraints.

Figures 4.17 and 4.18 are the surfaces reconstructed with the proposed
reconstruction algorithm for the original and the rotated constraints. Notice that the
reconstructed surfaces have similar shapes even near the point that the surface height

changes.
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Since it is difficult to compare the three-dimensional plots to determine invariant
properties, a "slice" of the reconstructed surfaces for the original and rotated data sets
were extracted and plotted together for each stablizer. In Figures 4.19, 4.20, and 4.21
the extracted slices are plotted for stablizer Q; (4.44), Q, (4.49), and Q3 (4.51),
respectively. The solid line is a slice of the surface reconstructed with the original
constraints and the dashed line is a slice of the surface reconstructed with the rotated
constraints.

To compare the quality of the reconstructions, similar quality measures to the ones

computed for the curve reconstruction problem are tabulated in Tables 4.1 and 4.2.

Table 4.1. Value of M* (A =0.01)

Functional Minimized
Data Set

My | My | M}

Original | 1.123 | 2.385 | 2.340
Rotated | 1.048 | 2.205 | 2.301

Table 4.2. Distance between reconstructions

Functional Minimized

Metric
M} M} M}

L? 14.408 | 24.377 | 20.276
L= 1.167 | 2597 | 2997

Notice that the proposed algorithm performs substantially better by both measures of

quality.
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4.9 Application in Computer Vision: Visual Surface Reconstruction

For humans, retinal images provide sufficient information for the complete
understanding of three-dimensional shapes in a scene. Humans generate complex
representations of what they see quite easily, however, a satisfactory computational
theory of human vision is still an area of active research. The fundamental goal of
current early vision research has been the synthesis of a completely invariant shape
description of a scene from two-dimensional intensity images. By extracting
information about visible surfaces and their contours in scenes object shape information
is obtained. This information includes location and orientation as well as surface
characteristics such as texture and color or intensity. An approach proposed by Marr
[60] is to form two intermediate representations from which important information is
more easily inferred about the scene. These intermediate representations are known as
the primal sketch and the full 2 1/2-dimensional sketch, see Figure 4.22.

The initial data set consists of the raw image data obtained directly from the scene
by photometric sensors. Several modules act in parallel on this data to extract various
features of visual surfaces. The type of information made explicit in this stage depends
on the application and on the image characteristics that are most pertinent and easily
obtained. To obtain this information, many techniques have been developed to extract
depth, orientation, and boundary information from intensity images. Various shape-
from-"X" techniques are capable of estimating visible surfaces depth and/or orientation
at sparse locations in the scene in a viewer oriented coordinate frame. These techniques
include shape from stereopsis [59,64], shape from shading [41,43,47], shape from
texture [25,50, 105], etc. Marr [60] denotes the data obtained by these various
techniques as the primal sketch, or the raw 2 1/2-dimensional sketch, of the observed
scene.

The next step is to integrate and interpolate the information obtained at sparse
locations from various sources into one unified representation. This representation
makes explicit the visible surface depth and orientation at all points in the scene. This
representation corresponds to Marr’s [60] total or full 2 1/2-dimensional sketch, and to

Barrow and Tenenbaum’s intrinsic images [4]. These range maps, as they are



90

Raw
Image Primal Full 2 1/2-D Symbolic
Data Sketches Representation Description

Shape
—| from [
Shading

Shape
— from [
Stereopsis

%,:

Shape
— from
lIX"

'/

Surface [{ Symbolic
Reconstruction| | Description

Figure 4.22. Multi-stage approach to three-dimensional scene representation

sometimes know as, is next transformed into a symbolic 3-dimensional surface, or
volume representation in an object oriented coordinate frame. This representation,
which is the goal in the early vision problem, is then used by higher level recognition or
understanding processes. It is desired that this representation be very general and
applicable to arbitrarily complex scenes; practical considerations, however, have led to
many application specific representations. The techniques used and the representations
formed generally depend upon what the researcher views as the universe of possible
objects in a scene, e.g. see [7,10,16,17,27,29,32,37,38,40,42,66,95,96]. Some
techniques bypass the second stage where the full 2 1/2-dimensional sketch is generated
and form symbolic representations based on the raw 2 1/2-dimensional sketches [69].
As an example of the type of surfaces that are reconstructed in this type of work, a
typical collection of sparse three-dimensional data is shown in Figure 4.23. This
constraint data was produced by a Technical Arts 100X scanner (White scanner) at the

Michigan State University’s Pattern Recognition and Image Processing Lab. The
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reconstruction of the surface with the proposed algorithm is shown in Figure 4.24 as an
intensity image (a range image) and in Figure 4.25 as a three-dimensional plot. In the

image the intensity is linearly related to the estimated dept at a particular point.



Figure 4.23. Original constraints

Figure 4.24. Reconstructed intensity range image
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MMz(x),8] = [ 272 () dx + 3 (2(x) - )%, (5.1)
U

Ci€ES

which leads to the discrete problem

MA[z,8] = 21 (Q + ANz -z, (5.2)

where Q is given by (3.70). For the iterative minimization algorithm it is important to
understand how to compute Qz. When Q has a simple form as in (3.70) this is
relatively straight forward. In more complex cases it is easier to understand how to
compute Qz by providing the computational molecules [85]. Molecules consist of
atoms, indicated by circles, arranged on the spatial lattice and contain coefficients of the
associated nodal variable. Figure 5.1 illustrates the three computational molecules for
the basic cubic spline approximation problem. A double circle indicates the i™ node

central to the nodal equation.

0:0:0

Figure 5.1. Computational molecules for cubic splines



Figure 5.4. Cubic spline reconstruction (A=1.0)
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Figure 5.6. Computational molecules for first-order term
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Figure 5.7. Computational molecules near orientation discontinuity

problem with this idea is that the preprocessing amounts to performing an edge
detection step on sparse data before reconstructing. Edge detection, however, is greatly

effected by noise, causing this step to be very prone to errors, and therefore degrading
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consistency measure. That is, too much importance is placed on locations where there
is a discontinuity. To overcome this a weight term is added where the weights are
chosen such that discontinuities regions are not emphasized as much (i.e. make w(x)
small in discontinuous regions). The problem, as pointed out before, with adding the
weight term is that this term has to be fixed before the minimization is performed. That
is, discontinuous regions must be determined before the reconstruction. Another
method for decreasing the weight on discontinuous regions is to change the form of the

stablizer to

QLz0)] = [olz"(x)] dx (5.7)

where instead of squaring the second derivative of the curve, some yet unspecified
function, o(), is used. This new function should be symmetric since the sign of z”(x)
should not change its importance. It should also be convex so that the functional
minimization problem remains convex and it should weight large values of z”(x) less

than the square function. The desirable properties of 6() can be summarized by:

1. okx) = o(-x), x € IR,
2. olox+(1-a)y] <oo(x) + (1-o)o(y), xy, o€ IR,
3. okx) < x2 ; X 2 some constant 7.

One idea for o(:) is to set some threshold T for which the weight on z”(x) remains

constant for values above the threshold, i.e. define

2
x°, x <T,
o1(x) = 5.8
l( ) { T2, 55 T ( )
This idea, although not derived in this fashion, was used by Blake and Zisserman
[11,12]. Unfortunely, since ©;(+) is nonconvex the resulting functional minimization
problem is nonconvex. They propose a deterministic algorithm for solving this
minimization problem, however like other techniques that minimize nonconvex

functionals, the computation is expensive.
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The function proposed here is to use a 6(+) of the form

Syx) = 4 % % Sy (5.9)
: T242T |x-T|,  x>T. ;

This function varies as a square for values below the threshold and it varies linearity
above the threshold. For comparison, the three discussed ¢ functions are shown in
Figure 5.9. Notice that o; meets conditions 1 and 3 of the desired properties, but does
not meet condition 2. The proposed ¢ meets all of the conditions, and therefore is

investigated further in the next section.

(03] (o

Figure 5.9. Possible ¢ functions

5.3 Reconstruction with Discontinuities

In this section the reconstruction of curves with discontinuities is examined using
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Qz()] = [oa[2"(0)] dx (5.10)

as the stablizing functional. The functional is discretized and a steepest descent
algorithm is used to form the minimization. The discrete form of the functional

minimization problem is

MA[z,5] = 3 0(zi—2z+2i1) + A T (z; — ;)% (5.11)
ieU CiES

Notice that this functional is not quadratic, thus the updating functional must be
derived. The steepest descent direction is given by

B oM Z‘[z,.&‘]

8i o = V2 2zi+2i0) - 292 (i 22+ i)
i

+ Wa(ziva—2zi41+2i) + Mz — el 5(cp), (5.12)
where , (+) is the first derivative of 6, and 7 4(-) is the indicator function. W is plotted
in Figure 5.10. The update is then computed by

2D = 78 4 gk) g k). (5.13)

To find the optimal B%) compute the B which satisfies

oMy[z+Bg,s] g

3B (5.14)

This leads to solving the nonlinear equation



105

V2

Y

A

Figure 5.10. Derivative of G, 3

Y W(zi1—22+2; 11 +Pgi1—2B8i+Bgi-1)(8i+1—28i+8i-1)
ieU

+A Y (zi+Bgi—ci)gi = 0.  (5.15)

C;ES

There are techniques to solve this nonlinear equation, however, since the curve is

initially approximated with a piecewise linear curve the approximation

W(2i 41-22i+2; 41 +PB8i+1-2B8i+Pgi-1) = W(ziy1—2zi+2;41) (5.16)

is valid. Therefore, the optimal [ is approximated by

3 (241224241 )(8i+1—28i+8i-1) + A Y, (zi—ci)gi
ieU Ci€ES

= . 5.17
u AY g s

C,-GS
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The computational molecules for this new stablizer are given in Figure 5.11 and the

curve reconstructed using this stablizer for several values of T is shown in Figure 5.12.

« (O
92020
1 @020

Figure 5.11. Computational molecules for proposed stablizer

5.4 Invariant Reconstruction with Discontinuities

Extending the ideas presented in the previous section to form invariant
reconstructions is very straight forward. Section 5.4.1 and 5.4.2 discuss the changes

needed to reconstruct invariant curves and surfaces with discontinuities, respectively.
5.4.1 Invariant reconstruction of curves with discontinuities

For invariant curve reconstruction instead of the second derivative being used as the
measure of smoothness, the invariant quantity x is used. Therefore, an invariant
stablizer which will allow discontinuities in the reconstruction can be defined by

Qr(w)] = [ o(xw)) ds. (5.18)
U

To approximate this nonconvex functional with a convex functional either of the

approximations discussed in Sections 3.5.2 and 3.5.3 can be used for x(u). If the
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Figure 5.12. Reconstruction using the proposed stablizer (A=1.0, T=0.1,1.0,10.0,)

approximation in Section 3.5.3 is used then the approximate convex stablizer becomes

QIr@)] = [ o(ir"@l)du. (5.19)
U

The curve reconstructed using this stablizer in shown in Figure 5.13.
5.4.2 Invariant reconstruction of surfaces with discontinuities

For invariant surface reconstruction the second order invariant quantities of k; and
Ky were used as the measure of smoothness. An invariant stablizer which incorporates

discontinuities can be defined by

QLr(w)] = [[ ok (u] + o[k (w)] dA. (5.20)
U

Using the same techniques as discussed in Section 4.5 this nonconvex invariant

stablizer can be approximated with the convex stablizer
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Qr(u)] = jj o[w112x + 01225y + W132yy]
U

+ O[W21 2y + W27,y + W32y Jdxdy. 5.21)
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Figure 5.13. Invariant curve reconstruction with discontinuities (A=1.0, T=1.0)
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CHAPTER 6 - CONCLUSIONS

6.1 Summary of Research

The goal of this research was the development of an algorithm(s) for the
reconstruction of curves and surface which would be applicable to problems in
computer vision. The applications in computer vision requires some very interesting
restrictions on the characteristics of the reconstruction algorithms. First, since the
coordinate system is arbitrarily chosen the reconstructions should be invariant to the
choice of a particular coordinate system. Second, since the objects being represented
may have discontinuities, the reconstruction algorithm should produce results which
will retain this information. Finally, since it is usually desired to solve computer vision
problems in real-time, the proposed reconstruction algorithm should be computationally
efficient.

To form a well-posed mathematical problem statement, the method of Tikhonov
regularization was utilized. To obtain the invariance property the reconstruction
algorithm was based on invariant quantities from differential geometry. In Chapter 3,
the invariant reconstruction of curves was examined and two new algorithms were
proposed for the invariant reconstruction of curves. The first algorithm was applicable
to only curves in the plane, but the second algorithm could be used for the
reconstruction of curves in any dimensional space. The invariant reconstruction of
surfaces was examined in Chapter 4. Invariant characteristics of surfaces were
discussed and based on these an invariant reconstruction algorithm was proposed.

The inclusion of discontinuities into the reconstruction process was discussed in
Chapter 5. It was observed that discontinuities could be included by changing the
processing near regions of discontinuities. This can be accomplished by decreasing the

effect of high curvature regions (i.e. discontinuities) in the consistency measure.
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Previously proposed techniques required either that the importance of each region be
computed by a preprocessing step or that the computational complexity of the
reconstruction algorithm to be increased significantly. In Chapter 5 a new concept was
introduced for decreasing the effect of discontinuous regions without fixing the regions
before reconstruction and without significantly increasing the computational
complexity.

Throughout this research examples have been provided to help validate the
hypothesises of the proposed algorithms. These experimental results verify the

usefulness of the proposed algorithms.
6.2 Open Research Problems

There are several application dependent problems which may arise in a particular
computer vision problems. The following is a brief list of the type of problems that can

occur, and for which answers need to be sought.

1. The proposed reconstruction technique is a least squares approach to fitting the
data. It is well known that least squares techniques are only optimal when the
noise that corrupts that data is i.i.d. Gaussian. This is often not true in computer
vision applications (e.g. constraint data from a stereo algorithm [13]). In some
applications it may become important to modify the the functional to obtain an

optimal solution.

2. Many algorithms in computer vision which produce the constraints that are used
as inputs to our algorithm, will form relatively reliable data with the exception of
a few outliers. For these problems it will become important to build into the
algorithms a robustness to outliers in the constraint set. One possible idea for

accomplishing this goal was proposed by Huber [45, 46].

3. In the reconstruction algorithm there are two parameters A and T which control
the tradeoff between the smoothness and the closeness of fit and between the
smoothness and the discontinuities. These parameters are user selected. In this

work the parameters were selected empirically. It would however be
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advantageous if these parameters can be derived from the data set. There have be
several ideas proposed [97-99], in some sense to select "optimal" parameters for
the set of data. However, the computation required to determine these parameters
is prohibitive in computer vision applications. In fact, there is more computation
required to select these parameters then there is to reconstruct the object. It has
been our experience that the reconstructions are relatively insensitive to the
selection of these parameters and an adequate solution is to perform some
experiments with a collection of representative data set and hardwire these
parameters. If however a quick method can be devised for the selection of the

parameters, these algorithms would benefit.

The invariant stablizers (3.27) and (4.30) are not unique. There are many
possible way in which to combine the invariant characteristics of curves and
surfaces to form an invariant consistency measure. For some applications it may

be beneficial to examine the the other possibilities.
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