PURDUE UNIVERSITY

Graduate School

This is to certify that the thesis prepared

By Hin Leong Tan

Entitled
Edge Detection By Cost Minimization

Complies with University regulations and meets the standards of the Graduate School for
originality and quahty

For the degree of Ph.D.

Signed by the final exammmg commttee:

, chair

Nléowwww—xé Mo
T =

L £ O, [

Approved by the@ead of school or department:

[Z Prsiber 1098 ﬁ;M%#Qcﬁ%/r,wﬁ

] is
This thesis ﬂ is not to be regarded as confidential

Major professor/ U - -7 vy

Grad. School
Form No. 9
Revised 9-85

EDGE DETECTION BY COST MINIMIZATION

A Thesis

Submitted to the Faculty
of
Purdue University
by
Hin Leong Tan

In Partial Fulfillment of the

Requirements for the Degree
of
Doctor of Philosophy

December 1988

ii

to Sandy

Proverbs 31:29

iii

ACKNOWLEDGMENTS

I would like to express my thanks and appreciation to my thesis advisor
Prof. E. J. Delp for his advice and guidance during the course of my studies at
Purdue. It was at his suggestion that this cost minimization approach to edge
detection was initiated.

I would also like to thank my Ph.D. committee members, Professors J. P.
Allebach, S. B. Gelfand, T. L. Casavant, and L. G. Brown for their sugges-
tions and comments. '

Finally, my deepest appreciation goes to my wife Sandy; without her wil-
ling sacrifice and encouragement, this work would not have been undertaken.

iv

TABLE OF CONTENTS

Page
LIST OF TABLES «ouueeittiiiiitteeteereeeeeeeneee e eeeeeeenesssessesssssessnseeeseesesessn e vii
LIST OF FIGURES.....couuttitteeerrreteneeeetteeneteeeeeeeeesesseeessees s e eeeees oo viii
ABSTRACT ettt et teeesaes e e e es s s e et xiii
CHAPTER 1 - INTRODUCTIONcuvtuieutieeeeeeeeeereeeeeeeeeeeee e
1.1 Overview of Edge DetectioN..uuuuvieeeeueeeeeerereeereeeeeeeeseeeeeseeeseeesseesson 1
1.2 Some Recent Techniques in Edge Detection...eeueenreeeenreoemeeeeoesoeesonn, 4
1.3 Edge Detection by Cost Minimization.....eeeeeeeeeeeseeeeeeeseeoeeeeeoeessseessnnn 7
CHAPTER 2 - A COMPARATIVE COST FUNCTION APPROACH
TO EDGE DETECTION....ccotteteerieeeceeeeeeeeesssesssesssessesssssseons 9
2.1 IntrodUetiOn .ueeeuiieiiceereenitenienrete ettt eeeeeaee e eeaeeseeenresss st 9
2.2 Concept of AN Edge..cccueevrerrrereeriirtreereeeeeeeeeeeeeeeeeessseseeesee e 9
2.3 A Comparative Cost FUDCEON vevuvevuriverieirereeeeeeseeereeseeeseeseeeeeeessesn. 12
2.3.1 Valid Edge Structlires..coueereevreeeeeeeeereseeessessesssnessssssssssssssssnn 13
2.3.2 Region DisSIMIIATIEY cvueeerveeirveeriineeeeeeeseresseessaeessseosssssssssssnsssn 13
2.3.3 The Comparative Cost FUDCEION cveeeeereeeereeeereeeeereseeseseeessseas. 19
2.3.4 The Cost Factors...cccieeareereerrueeneeeseerenreeeseeeseeessessssssessssssenns 24
2.4 A Heuristic Search Algorithm..cueceeeeeeeeeeeseeeeeeeeeeeeeeereeseseese oo, 32
2.4.1 Selecting the Welghts icccveereevvieeeeneeeeeeesreeeseeesneeeeesssssssesnns 33
2.5 Computing the Cost.cceemmrenniiereiirieiieeeeeeeeeeeseeeseeessssseessesssessesen. 34
2.6 Relaxation Techniquesccccveereeennnnen. eeerretaeteeereererresasebteenaesneenaen 39
2.7 An Absolute Cost FURCHON .eevevvereeieeeeeieeeeeteeeteeseeeseseseesseseeeeseesa 41
2.8 SUMIMATY ..eerrerriitiiiieiieteeerenraressseersneesseesessesssssssesssssssnssssssssssssmsss e s 43
CHAPTER 3 - AN ABSOLUTE COST FUNCTION APPROACH
TO EDGE DETECTION......uuuiviteereeeeieeneeeeeeesessessessresssessnes 44
3.1 INtroQUCHION ceevuiertieiiieeeeteeteeirerecttet et reeeeeseeeseesesssesssesneesnnesnesses 44

Page

3.2 A Mathematical Description of EdGes c..eeeeeeereereereeereeresseereessssrssnen 45
3.2.1 Preliminary Definitions...ccuveerruveeereeeeeesreeeerersessessrreesssnesssssesssas 47
3.2.2 Definition and Properties of Edges ...ccveevreveeereererreeereessneesennn 49

3.3 A Cost Function for Evaluating Edges.....oeeveeeveeeesreeeervessneerressessseesnn 59
3.3.1 Determining Region Dissimilarityoovveveeeerveeeevrereeessnesossonnesns 64
3.3.2 Defining the Cost Factors..cccuueiiveeeeierreeeeeeeereeesrseeeessresssssssens 68
3.3.3 Computing the Cost cuccvrrrerererreeeieriereeieeiieeeeeeesinareeseessseesessns 73

3.4 Analysis of Minimum Cost Configurationse.eeeeeeeeeevvessreerrreerneervonns 80
3.4.1 Formation of Thin Edges ..ccccoeveeveiiiviiviiiiseeeeesrreeeeserseessssressans 82
3.4.2 Minimum Length of Edges cueuuuuviiieiiiiiiiieeieeeeesieeeeesereeseeensons 85
3.4.3 Dissimilarity Values at the Endpoints ..ceeeeveeeeevveeeeesnesssrnnesnnns 89
3.4.4 General Considerations in Selecting the Weights......eccceeuunn.n.. 91
3.4.4.1 Thresholding....cccervruieerrrriureeererrrereeeiirrereesesssssssseesesssnns 93

3.4.4.2 Edge LIiDKINE «eeevrervireeeiniiririeieiiineeeeeesieeeeesesesrsesessessnns 96

3.5 SUMIMATY cevvtiiitiiiiiiireteennteenreerreenreesessesteeesseesssessssesssnssessssnsssssssess 100
CHAPTER 4 - SIMULATED ANNEALINGoovtteteevteeeereseeeeeeersessssssesaenn 101
4.1 Introduction weceeiiiiuiicceeeeneeeieeentrecereeteeeee et eeseeessaeeeenseesreessessses 101
4.1.1 MarkoV CRaiDis ceoceeeeevvneeeireeeesinrenineeenseeeeeneeeessssessessssssssssnsssns 102
4.1.2 The Metropolis AIZOTIthIN cevveveeeierieiireerereeeeeerieeeesreeeeseressnns 104

4.2 Temperature Variation and Simulated Annealing.....ccoeeueeveevennn... 108
4.3 Edge Detection Using Simulated Annealing.....occeeeeeveeeveevvereververnennen 111
4.3.1 Method of Generating Next States...ccecveeeereeeeereeresrrvessssnerssns 112
4.3.2 Temperature VAriation ...uuueeeeeeecreueeeiieeieeereseessssseesessnsssssnnons 120
4.3.2.1 An Additional Cost Factor........... IRCTTTR 123

4.3.2.2 Estimating An Upper Bound on deeeeeeervveeeeeennnennn, 127

4.3.2.3 Temperature Schedulecccevvevvvueeeeeeierereiereeesseerrnnnnenns 136

4.3.3 Parallel Implementationccuueeeeueeeeireeeiesreeeeesseesessseesesnneens 137
4.3.4 State Space RedUctioncceeeeeeeeieiieeeereeieereeeresssssnseeesssssnessons 138

4.4 SUININATY crtirirriiiieieissrrresierraseesseesssnsesssuessssssssesssssessssssssnsssssssssssssnses 140
CHAPTER 5 - EXPERIMENTAL RESULTS.ccooeeeteerteeeeeeseesreeseessessssoens 141
5.1 INTrodUCHION wiveeieiuiiiiiereeeenieeeteectrenttceeeeetesesaeeesnsesanseessssesnnnessnssas 141
5.2 Experiments with Artificial IMages.....ccceereeereeeerverereeessreessnsessseessnnas 143
5.2.1 Vertical Step IMAEE ccvvererrreeerrrerernriiiirereesreeeesseeessssessssseessnes 148
5.2.2 RiINgs IMAage...ccuviuieiireririterenneerenireeenirreenseneeesssscosssnseessnseessnnes 153
5.2.3 Temperature Variation and Parallel Implementation 157

5.3 Experiments with Real IMagescccveeiiuireireereesreeeessseesssssneessnessssnns 164
5.4 Other Dissimilarity Measures....ccoeeeeeeerererscereesrveeessreessoseeesssesssssnnn 164
5.5 Computation Time and Final Costsccceerveeeereerreerreeereroreeessveeessonns 175

vi

Page

5.6 Use 0f 5 CoSt FACLOTS cuvvrreiirerirreeiiiiieeeiicirieeeinirereeseseeeeeaessssssnseess 178
5.7 SUININATY cevvieiitiiiiirniirerrrriiereeeeeesssssssnsrressesessessssssssssesesssssssssssesnsnnnses 187
CHAPTER 6 - SUMMARY AND CONCLUSIONS....covcttrevvteeereerrerereeeesanns 188
6.1 Summary of ReSUltS c.cueeuurereiiieeiiiriierriieeeeeicieinieeeeeeeeseeseeesennsnenneenes 188
6.2 Suggestions for Further Workcoccvveeeeeiiiiniiniinneeieeeereeeeeeevveseesenneeens 189
REFERENCES ..ciitietiiitiiiinteteisennreeenesseeeeeessssreesesessssesssesssnsessesssssnsessrsssns 191

vii

LIST OF TABLES

Table

Page
3.1. Curvature cost at PIXE] Lu..ceevueeiueeereieiiieeeeeeeeeeee e eee et 71
5.1. Detection performance of various detection techniques.oevereenenn... 150
5.2. Computation time for minimizing the ACF using
Simulated ANNEaling. ..cccveeevuvriiveiieereeeeesereeeeeeeees e eeaesns reeeeseeeseranens 177

5.3. Cost of the final state in the annealing Process. «eoeeeeevveereevevevseonoonn, 179

viii

LIST OF FIGURES

Figure Page
1.1. Examples of intensity edges....ccouurmruiviereereeeeeereereeeseeereesressssosesseeees s 2
2.1. Valid 2-neighbor edge Structures. coueeeeeeeeeesreeseeeeeeenresneeeeeeeesoeeseeeennns 14
2.2. An invalid edge SETUCLUTE. ouveveeeeeeeereeeeeeeeeeeeeeeeeeeeseseens teseseseersnnenaeas 14
2.3. The 8 valid 3-neighbor StTUCEUTES. ..veevveereeereereeeereeeeeeeeee oo 15
2.4. Examples of edge Structures. ueveueevueeevueeeeeeereeeeeeeeeeeeeeseeeeeooeseeeesessnsa 16
2.5. An example of a poorly defined ideal edge for a SQUATE. ceeveernuereenrennennns 17
2.6. Edges resulting from the definition of the ideal edge

IN FIGUE 2.5, weiiiiiiiiciieettecteeie ettt ceeeeseeese e e s ee e e esn s e 18
2.7. Ideal edges for a square and a heXagOn. .ueeueeueereereerereeeeeeeeeeeeeoeoeesns 20
2.8. Edges resulting from the definition of the ideal edge

I FIGUTE 2.7 ceniiiniiiiiiiteeitentee et eseeeteceeseeesassssessesess oo e 21
2.9. The 12 valid 2-neighbor edge structures, the (circled) edge pixel

which they are centered around, and their associated regions of

interest on each side Of the €dge. .uuuevreereeereeeeerreeeereeeresneeeeeeeeseessensns 22
2.10. Extended regions of interest on each side of the edge. covvveverercrrrrnnnnne. 23
2.11. A monotonic Mapping fUNCEION. ceevveereeriereeenreeeereeereeeeeeeeseeeeseeseeseeens 26
2.12. bA strictly monotonic mapping function.....cueeerseeeeveermeeeseeeeeseeeesseessnns 26
2.13. Shifting edge positions for non-maximal suppression.ovseeee..... 29

ix

Figure | Page
2.14. Thick €dges. iiieiireirrrireiieeeririririnreeereeeeeniesriirrreeeseeeeessessoessesesssessessasns 30
2.15. Cost assignment for edge continuity. ..ccooevvvvveveeerrrrreiiieeeeieieeeeeeeeeeressnnns 31
2.16. Computation of cost factors using a decision tree. ...ccccevevveveveeereennnnnn. 35
2.17. Direct computation of ACk(Si,Sj) using a decision tree.......cceeeevvenenn. 38
2.18. Continuity cost for different edge configurations.....ccceeevuvveveeeeeerennnnne. 42
3.1. An edge with its corresponding planar graph representation. 46
3.2. An edge configuration on a 10X10 lattice which

contains 4 COMPONENTS..ciiererieiiiiiiiiiiieiirrreeereerieieireeeeeereeeeeeeeeesesenenreesseees 50
3.3. An edge which contains a unique path between pixels A and B............ 50
3.4. An example of an edge which contains multiple links....ccouvveeeeerereeennenn. 52
3.5. A cycle of length three. uuuueiiieieeeeeeeecceeeeeeeeete e eeeeeeererreeeesaeaaaes 52
3.6. Thick and thin €dges. cc.coeeveeeeieieeieririeeeiseeiiriiireesreee e e eeeseeseeeeeennes 54
3.7. The 16 thin edge structures in a 3X3 1attice. .cuuuerreeuueeeeeeeneeeesenennnennenns 56
3.8. The 8 thin edge structures in a 3X3 lattice..vevrvrrrrerrerrrerrereeereesreeeeenenenns 57
3.9. The only thin edge structure on a 3X3 lattice which contains

five edge PIXES..ciiiiiiirrieeieriiieeiiecirnreeeeeeeesersarereeeeseeesessssssnnssssssssssnssnns 57
3.10. A block diagram of the cost minimization approach to

edge deteCtion. uuuiiiieiriiiiieeee iireteeeeece e ees e saearaeeeeeeseeseseennan 63
3.11. The angle of turn at a Point. ceveeeeieiieeeeriirriiieeeeeeeererreeeeeeeeeeeecseneees 70
3.12. An edge pixel that is the connection point of 3 pairs of

straight edge SEEMEntS. ..ceeeeruurureerereeieeeeerererrrrrrerrrerrereeeeeeeeeeaetessssemsenseses 70
3.13. Computation of point cost C(Sy,!) using a decision tree. 76
3.14. Computation of ACq werrerrerrerereraessessssisesosssessssssssessssessssseesessnseessessenns 84

7

Figure Page
3.15. Computation of ACH. ..cuireieerieirinreniererentenresreeteseeseeeseesresseeesseesses 84
3.16. A cycle of 4 distinct edge PIXels. vevevuveerueereveeeeeereeereeesseeessoesesoeesssns 90
3.17. Two examples of extended edge SegmMeEnts. coeueeeevervvveeesreeerreesseessesesenns 90
3.18. A minimum cost configuration containing a single thin edge. coceeernnnnnns 95
3.19. An example of edge HnKINg. eeervreieniiiiiieeeiieeeereereesreeeesereeesosesesnessns 95
3.20. An example of edge linking across a region where the

dissimilarity values are equal t0 O....ovevveeueeveeeeeeereeerreeeeeseeeseeeeoseesnon, 97
3.21. An example of edge linking across a region where the

dissimilarity values are NON-Zero........vovuieveeerverereereereesreeesressseeeseessnens 99
4.1. The fourteen edge structures in W, (Sp) and their corresponding

transformations in W;(S,) using strategy Ma...cooeeuevrevriveeeneeneereenennnne. 114
4.2. The ten edge structures in W, (S,) and their corresponding

transformations in W;(S,) using strategy My....cceeeeveveiieneeeevreenereennnns 116
4.3. Examples of possible transitions using the five different

strategies of generating next states. ...oocceveevveeereeiiceeeeeeeerereesssreneresesnns 118
4.4. Decision tree for computing the six different cost factors........omn........ 125
4.5. An edge configuration that contains no edge pixelS....ceeveereevueerveennnn. 129
4.6. An edge configuration that contains two short false edges................... 129
4.7. An edge that spans only a portion of the optimal edge position. 131
4.8. An edge that is just slightly displaced from the optimal

€dEE POSIEION. tuetiiiitreeirerrtirrteeteeeteeetreeeeereeeeaeessseesaeessnesssessseesnssas 131
4.9. Displaced €dZe. .cocceererurieeniureiireiiieeeeereeeereeeesereeeeseesseneeesneeesnesesnn 133
4.10. A sequence of states of JOWer COSt. .eccverreerrivrrivieeeiseeeeeeereesreereeaenne 134
4.11. Example of partitioning L into disjoint subsets......coeceeerveeererrerseeereee 139

xi

Figure Page
5.1, SEEP IMAZES. cuiiiiiiiiieeeiirrereerirteeeee e cereeeeessessseseessssasssesesesssssnnssssns 145
5.2. Edges of noisy step image detected using the thresholded VG -

operator without non-maxima SUPPTression. weeeuveeireeeeeeeeeeereeereeeeennenn, 146
5.3. Improvement in detection performance by preprocessing noisy raw

image with Gaussian smoothing prior to edge detection. 147
5.4. Comparison of edge detector performance using vertical step edge

With SINRI=0.25. ciereieiieeeieeeieeccreeecerteeeseeeessseseessssssseseessessessssons 149
5.5. Comparison of edge characteristics for noisy vertical step image. 151
5.6. Edges detected using only C4 and C, of the ACF.covvereeceveeeerennnnn, 152
5.7. Effect of changing the weights for curvature and fragmentation. 152
5.8. Cost minimization process for vertical step image using

Simulated ANDEAlING...uieerveeeirerrerreeiieenteeeereeeeeeeeeeeeereseesnersessens 154

. 5.9. Examples of state space reduction.ooveeeeeeeeeueeeeeeevirrereeeseeseeeesesoennn 155

5.10. Comparison of edge detection performance using noisy rings image

With SNNRI=1.0.uueieicieierineeeireeeeeieesreeeeeeeeesneeesessessesssssessnnssssssnssessss 156
5.11. Comparison of edge detection performance using noisy rings image

With SINR==0.574. ceeiiiiiiirieiiitieeeeciereeeneieeteeeeeeveeseesessnsesssssssnnssssssns 158
5.12. Rapid cooling in Simulated Annealing. ...cceceeeevvveeeevnveeeerveeessrnessnnns 159
5.13. Intermediate edge configurations in annealing process.eeeeun....... 161
5.14. Comparison of parallel and sequential implementations. 162
5.15. Edges obtained using three different methods of implementing

Simulated ADDEAlING. .iccvvvvierrirreeriirirreeeiitteeeeeeareeeseessseeressssneeessans 163
5.16. HOUSE IMAGE. tiieiirirerrunerertieiieiererereeerreeenseecreseessaesssssssssnsesssssssssssnnnns 165
5.17. Comparison of various detection techniques on house image.............. 166
5.18. AITPOTt IMAGE. eierireeiiiernrtttieritereeniteteeiseeeeesesesaesessessnnsessssssssnesssssns 168

Figure Page
5.19. Airplanes HNAage.....coceeveevenenereenierieiereeeeseeseeeeeess oo 170 -
5.20. Piecewise linear function g(/) used in the definition of m(d,H)........... 173
5.21. Edges of airplanes image detected using a priori information about

the features of INTErest. vevvevreeerieuieeirteceeeeeeeeee oo 174
5.22. Texture edge detection. ..cecevuevrereieeeiriieeeeeeeereeeeeeeeeeeee oo 176
5.23. Detected edges and annealing process of vertical step image

using 5 cost factors of the ACF. ...oovveveeeeeeveeeeeeeeeeeeeeeeeeeeeeeeoeeeeeoo 180
5.24. Detected edges and annealing process of rings image (SNR=1.0)

using 5 cost factors of the ACTF. ...c.cc.ovueeeemeeeeeeeeeeeeeeeeeeeeeeeeeoe 181
5.25. Detected edges and annealing process of rings image (SNR—O 574)

using 5 cost factors of the ACTE.oveiveeeoeeeeeereeeeeeeeeeeeeoeeeeeseeeen 182
5.26. Detected edges and annealing process of house image

using 5 cost factors of the ACTE.c.ovievueeeeeveeereeeeeeeeeeeeeeeeeoeeeeeeeesenns 183
9.27. Detected edges and annealing process of airport image

using 5 cost factors of the ACTE.c.ovvueveeeeeveeereeeeeeeeeeeeeeeeeeeeeeeeeesen 184
5.28. Detected edges and annealing process of airplanes image

using 5 cost factors of the ACTE.o.covuvveeveeneeereeeeeeeeeeeeeeeeeeeeeeoeessoen 185
5.29. Detected edges and annealing process of texture box i image

xii

using 5 cost factors of the ACTF. c.uvuveiveiveeesieeeeeeereeeese oo 186

xiii

ABSTRACT

Hin Leong Tan. Ph.D., Purdue University. December 1988. Edge Detection
by Cost Minimization. Major Professor: Edward J. Delp.

Edge detection is cast as a problem in cost minimization. This is achieved
by the formulation of two cost functions which evaluate the quality of edge
configurations. The first is a comparative cost function (CCF), which is a
linear sum of weighted cost factors. It is heuristic in nature and can be applied
only to pairs of similar edge configurations. It measures the relative quality
between the configurations. The detection of edges is accomplished by a
heuristic iterative search algorithm which uses the CCF to evaluate edge qual-
ity.

The second cost function is the absolute cost function (ACF), which is
also a linear sum of weighted cost factors. The cost factors capture desirable
characteristics of edges such as accuracy in localization, thinness, and con-
tinuity. Edges are detected by finding the edge configurations that minimize
the ACF. We have analyzed the function in terms of the characteristics of the
edges in minimum cost configurations. These characteristics are directly
dependent of the associated weight of each cost factor. Through the analysis
of the ACF, we provide guidelines on the choice of weights to achieve certain

characteristics of the detected edges.

xiv

Minimizing the ACF is accomplished by the use of Simulated Annealing.
We have developed a set of strategies for generating next states for the anneal-
ing process. The method of generating next states allows the annealing process

to be executed largely in parallel.

Experimental results are shown which verify the usefulness of the CCF
and ACF techniques for edge detection. In comparison, the ACF technique

produces better edges than the CCF or other current detection techniques.

CHAPTER 1
INTRODUCTION

1.1 Overview of Edge Detection

The detection of edges in an image is an important task in image
processing. Its importance cannot be over-emphasized as it is often the front
end processing stage in object reconstruction and image understanding systems
[1,2]; the accuracy in which this task can be performed is a crucial factor in
determining the overall system performance. Edge detection is sometimes
viewed as the dual of image segmentation; edges are boundaries between
regions that have significantly different characteristics. The measure of
difference in characteristics may be based on texture involving statistical [3] or
structural properties in the gray levels, or they may be based on changes in the
image intensity profile of the scene. A great deal of literature has been written
on edge detection (see [4-6] for an overview) and the majority of these have
concentrated on detecting edges that are caused by changes in the image
intensity profile. They have defined edges to be located at points of intensity
discontinuity in the image and have traditionally defined three categories of
ideal edges; these are the step, ramp and roof edges as shown in Figure 1.1.
Detection algorithms based on intensity discontinuity usually result in
estimating the degree of slope in the intensity profile at each point in the
image.

The classical edge detectors emphasize the use of difference operators
which are the digital approximations to the derivative operators in the
continuous domain. A major difficulty with differentiation is that it is not
robust with respect to noise and the end result of applying difference operators
to real images inevitably produce a high degree of false and fragmented edges.
Torre and Poggio [7,8] showed that differentiation is an ill-posed problem (in
the sense of Hadmard) and that it can be transformed to a well-posed problem
by applying regularizing filters to the image prior to differentiation. The
regularizing filters are essentially low pass filters that minimize a given
stabilizing functional. There is a2 good intuitive basis for this since low pass

(S

Figure 1.1. Examples of intensity edges. (2) Step edge. (b) Ramp edge. (c)
Roof edge.

filtering essentially suppresses high frequency noise in images, and will tend to

produce better edges at the differentiation stage.

Optimal filtering techniques have been used in the design of filters for
edge detection. Dickey and Shanmugam [9] defined an edge to be a step
discontinuity and showed that the ideal bandlimited filter to optimally localize
its response about the edge is given by a prolate spheroidal wave function.
Canny [10] approached the problem of detecting edges by designing one
dimensional optimal filters that satisfy a set of performance criteria. The
optimal filter was then approximated by the first derivative of a Gaussian
function. It was implemented by convolving the image with a Gaussian
operator and then finding the gradient of the smoothed image. Instead of the
gradient, Marr and Hildreth [11] used a rotationally invariant second derivative
operator, the Laplacian, on Gaussian smoothed images. The edges were found
by locating the zero crossings in the output of the V2G operator. A detailed
discussion of the motivation for using the V2G operator is given by Marr [12].

Other approaches have used surface fitting techniques to find changes in
the image intensity profile. These techniques are based on the use of various
sets of basis functions to describe the shape of the intensity surface. Each
basis function has an associated weight and the goal of surface fitting is to
estimate the weight values such that the sum of the weighted basis functions
produce a minimal error analytic description of the intensity surface of the
image. The presence of edges is based on the obtained description. Some of the
classical digital derivative operators are based on derivatives of best surface fit
models [13]. Hueckel [14] fitted ideal step edges to the image intensity and
minimized the error of fitting by using a set of 8 basis functions defined on a
circular disk. Haralick [15-17] used a model in which he fitted polynomial
surfaces over small neighborhoods of each pixel, and derived expressions for the
directional second derivative based on the polynomial coefficients. The pixel at
the center of the fitted neighborhood was declared to be an edge if a negatively
sloped zero crossing of the second derivative (taken in the direction of the
gradient from the pixel center) is found within the pixel area. Nalwa and
Binford [18] looked for significant step edges by fitting one dimensional
hyperbolic tangent functions over every possible fixed square neighborhood in
the image.

Other approaches to edge detection include the use of moment operators
[19, 20]. However, these were shown to be essentially equivalent to the standard
gradient operators. Sequential techniques for contour tracing or edge
linking[21-23] have been used. Such techniques usually involve tracing along a

path in an image in search of thin continuous edges. They have been shown to _
be fairly insensitive to noise. Nevatia and Babu [24] extracted linear features
in an image by convolving the image with masks corresponding to ideal step
edges in different directions. The output was then thresholded and thinned and
approximated by piecewise linear segments.

1.2 Some Recent Techniques in Edge Detection

We now describe in more detail four of the more recent approaches to
edge detection. They are samples from the optimal filtering, surface fitting
and sequential edge detection techniques mentioned above.

Derivative of Gaussian

The derivative of Gaussian operator [10], denoted by VG, has been
proposed as an approximation to the optimal filter for detecting ideal step
edges. The optimality is based on a set of three performance criteria: (1) good
detection, (2) good localization, and (3) single response to an edge. This
method of detecting edges involve smoothing the image with a Gaussian
function
_x2 1y

20°

where k is a normalization constant usually chosen so that all the nonzero

G(x,y) =k exp , (1.1)

values of G sum to one.

After smoothing, the gradient at each point in the image is computed by
taking the partial derivatives in the x and y directions;

D=V(G*I).

where * denotes convolution, I is the original image, and D is the gradient of
the smoothed image. An edge pixel is defined to be a local maximum of the
magnitude of D in the direction of the gradient. The magnitude of D represents
the edge strength at any edge point. Thresholding the edge strength is required
to reduce false edge points. The smoothing parameter o is application
dependent. Larger values of o results in better noise insensitivity at the expense
of reduced image resolution.

Laplacian of Gaussian

The Laplacian of Gaussian is a rotationally invariant operator for the
detection of intensity edges. The operator is of the form

2 2 2 2
V2G=k _X__l__y___lex 5_‘*_‘_}’_ 1.2'
207 P15 (1:2)

where k is a scaling constant.

The edges in an image are detected by convolving the image with the V2G
operator, and then finding the zero crossings at the output. To reduce false
detection , the edge points are often detected by thresholding the slope at the
Zero crossings.

Facet model approach

The fact model [17] approach to edge detection uses surface fitting
techniques to find ideal step edges in an image. It assumes that in each
neighborhood of the image, the underlying intensity function [takes on the
parametric form of a cubic polynomial in the row and column coordinates;

f(rs¢) = kg +kor + kge + kyr? + kgre + kge? +

kor® + kgr?e 4 kqre? + kyqcd. (1.3)

A pixel is marked as an edge if, based on f, in the pixel’s immediate
neighborhood there is a zero crossing of the second directional derivative taken
in the direction of the gradient. The coefficients k; of Equation (1.3) are
estimated by fitting the intensity data values with discrete orthogonal
polynomials. The second directional derivative at point (r,c) on the line in the
direction « is given by

f?" = 6[kysin® o + kgsin? acos o + kgsin acos® o + kygcos® olp +

2[k,sin? o + kgsin ocos o + kgcos® o, (1.4)

where
p=Vr? 4+

If for some p, where the magnitude of p is less than the length of the side
of a pixel, f’’’(p)<0, '/(p)=0 and f’(0)0, then there is a negatively sloped
zero crossing, and the center pixel of the neighborhood is marked as an edge
pixel. To reduce false detection, the edge pixels are detected only if the slope
exceeds a certain threshold.

Sequential Edge Linking

Eichel and Delp [23] proposed a sequential edge detection scheme called
Sequential Edge Linking to find intensity edges in an image. The algorithm
constructs a sequence of nodes (pixels) m called a path, where

m = My, ml,...., mn .

This path is a candidate edge path in the image. The path is assumed to be
modeled as a Kth order Markov chain. That is, if we let

Sj = My MYy_pyeeeerMj_(K—1) »
then assuming m, is given,

Pr(m) = Pr(m;, m,,...., m,)

=Pr(sy/s;_1)Pr(s,_y / Sp—2)-+-Pr(s; /50)-

The image is modeled as a two-dimensional random field. ‘At each node X,
the conditional probability under the hypothesis that it corresponds to an edge
pixel is

pi(fy =¥) =Pr(f, = y/x is an edge node).
Similarly, the conditional probability under the null hypothesis is
Po(fy =¥) =Pr(fy, = y/x is a random node).

The algorithm searches for the paths that correspond to edges in the
image based on a derived path metric of the form

o Pl(fm-)
T = n :
(m’f) izjl ! Po(fm;)

+ In Pr(s;/54) | - (1.5)

The first component of the path metric is a function of the image data. It
is usually estimated from the output of gradient operators on the original
image. The second component is a measure of the a-priori probability that the
edge path proceeds in the given path direction. Using a sequential tree
searching algorithm, the edges are detected by finding the paths that have high
path metrics.

Despite the tremendous amount of research that has been done in edge
detection, finding the edges in an image that correspond to true physical
boundaries remain a difficult problem. Part of the reason lies in the fact that

we really do not know explicitly what we are looking for in searching for edges.
Although an edge has often been modeled as a unit step, it is a simple fact that
ideal step edges hardly ever occur in real images. Furthermore, such a narrow
concept of an edge ultimately restricts the applicability of the detection
algorithm. For instance a detection algorithm which assumes that edges are
ideal steps are invariably ineffective in finding roof edges or texture edges.

A second difficulty in many detection techniques is that the decision on
the presence {or absence) of an edge is made without considering the local edge
structure in the neighborhood of the pixel. This is particularly true of non-
sequential detection algorithms. This is a drawback since there is definitely
some information from the neighborhood edges that can be exploited in the
decision process. For instance, noise in an image causes many detection
algorithms to produce fragmented edges; an algorithm that exploits local edge
continuity information will be able to use this to reduce the amount of
fragmentation. Two other problems often encounted are the detection of thick
edges and the detection of false sporadic edges caused by noise. Here again,
local edge information can be used to reduce false detection and find only thin
edges.

Sequential techniques have been effective in 'countering the problem of
fragmentation and thick edges. However, computation time may be an
inhibiting factor because of the sequential nature of the processing.
Furthermore, they are applicable mostly in contour tracing tasks where the
scene does not contain an excessive number of edges. Since they are usually
based on the output of feature enhancement operators, their performance is
very much dependent on the operator used.

1.3 Edge Detection by Cost Minimization

We cast edge detection as a problem in cost minimization. We define a
cost function over the domain of all possible edge configurations on a square
lattice. The edges are detected by finding the configuration that minimizes this
function. While most of the other detection techniques previously mentioned
can also be viewed as some form of cost minimization, this approach is unique
in the way the cost function is defined. The function not only uses information
from image data, but it also exploits information from local edge structure. It
takes the form of a linear combination of weighted cost factors. These cost
factors capture the desirable characteristics of good edges such as edge
thinness, continuity and well localization. By appropriately adjusting the
weights of the cost factors, we can selectively emphasize the relative

importance of the different edge characteristics in the detection process.

There has been little attempt to formulate the problem of edge detection
as one of cost minimization where the function is dependent on edge structure.
By this we mean that the function takes into account not only the pointwise
presence of edges in an image, but also the local shape and continuity aspects
of the edge. Two major difficulties arise in such an approach to edge detection.
The first is in the difficulty of defining a suitable cost function for edges. The
second is that the minimization of such a function inevitably results in one
that belongs to the class of non-deterministic polynomial time complete (NP-
complete) problems. The search space for the minimum cost solution is
extremely large as the number of possible solutions is equal to 2K, where K is
the number of pixels in the image.

There are a number of advantages of using the cost minimization
approach described in this report. The first is that it assumes no preconceived
concept of an edge except that it is a boundary separating dissimilar regions.
Hence the approach is flexible in terms of being able to detect various types of
edges. Second, it uses edge structure information such as edge continuity and
thinness, and consequently the algorithm is more capable of detecting edges
that are well localized, continuous and thin. Also, it will be seen that the
algorithm has edge linking capabilities. Third, unlike sequential techniques, the
detection algorithm can be implemented largely in parallel.

In Chapter 2, we present the first cost minimization approach to detect
edges based on a comparative cost function. This function is a heuristic cost
function for evaluating edges. In Chapter 3, we present a second approach
based on an absolute cost function. This a well defined function over the set of
all possible edge configurations for an image. We will present a mathematical
description of edges and analyze the characteristics of edges that will be
produced by minimizing this function. In Chapter 4, we will describe
Simulated Annealing and show how it can be used to find low cost edge
configurations for an image. In Chapter 5, we present experimental results of
the application of both the comparative cost function and absolute cost
function approaches to edge detection. Finally, in Chapter 6, we conclude by
listing several potential areas of further research.

CHAPTER 2
A COMPARATIVE COST FUNCTION APPROACH
TO EDGE DETECTION

2.1 Introduction

The main objective of this work is to formulate edge detection as a
problem in cost minimization. We will present two approaches to the
formulation. The first approach uses a comparative cost function to evaluate
the relative quality of pairs of similar edge configurations. It is heuristic in
nature and the function can only be applied to edge configurations that are
almost identical. In contrast to this, the second approach uses an absolute cost
function which can evaluate the relative quality of any pair of different edge
configurations. In this chapter, we will present the comparative cost approach
and describe an iterative algorithm to find edges in an image. We will also
discuss the similarities and dissimilarities of this algorithm with relaxation
techniques.

Central to both approaches is the formulation of a cost function to
evaluate edges. In order to accomplish this, we first have to specify what we
mean by an edge. Unfortunately, the concept of an edge is a difficult one to
define precisely; in the next section, we will present our concept of an edge in
order to establish common ground for discussing edge detection.

2.2 Con(;ept of An Edge

A precise notion of an edge is crucial to the formulation of a cost function
for evaluating edges. However, it is a difficult task to explicitly define what
constitutes an edge in an image. The perception of edges by the human visual
system is an extremely complex process that is strongly influenced by prior
knowledge. There are a number of visual paradoxes in which an edge is clearly
perceived when none physically exists (see for instance [12] p. 51). Every
individual has an intuitive notion of what edges are, but this notion varies
from person to person. Indeed, if two individuals are given identical images
and asked to find the edges, they may well produce similar looking but non-

10

identical edges. Consequently, no absolute definition of an edge exists, and the
performance of edge detection algorithms are only as good as their inherent
assumption of what edges are.

Edges in an image can generally be divided into two categories; intensity
edges and texture edges. Intensity edges are those edges that arise from abrupt
changes in the intensity profile of the image. Examples of these are the step,
roof and ramp edges as shown in Figure 1.1. Texture edges are boundaries of
texture regions that are invariant to lighting conditions. A number of texture
edges are usually defined relative to image models [25]. A number of detection
algorithms adopt a narrow concept of edges and are devoted to finding only
specific kinds of edges in an image. A weakness of such algorithms is that they
are invariably ineffective in detecting edges outside of their scope.

For our purpose, we will define an edge in a general sense so as to include
a wide variety of edge types. However, we will restrict our attention to those
edges that are evident from the image data itself and not from higher level
human cognitive processes. With this in mind, we define an edge to be 2
boundary in an image that separates two regions that have significantly
dissimilar characteristics; the regions are assumed to lie on either sides of the
edge. The cause of the dissimilarity may be due to a combination of several
factors, such as the geometry of the object, surface reflectance characteristics,
viewpoint and illumination. The term ‘dissimilarity’’ is used in its broadest
sense to include any form of difference in the structure of the intensity values
that is evident in the image. Clearly, this definition includes both intensity
and texture edges. For instance, the well known step edge is a boundary
separating two regions that are dissimilar in the sense that they have different
constant intensity values. In the same vein, texture edges are boundaries
separating regions having different textural properties.

In addition to the fundamental property that édges separate
nonhomogeneous regions, our concept of edges is also governed by certain
structural characteristics that edges should possess. These characteristics
determine the shape and position of the edges in an image. We list four
desirable characteristics that edges should have.

(1) Accurate localization

It is desirable that an edge should lie in a spatially accurate position,
partitioning the dissimilar regions in the best possible ‘way. In many real
images, the position of an edge may be ambiguous. This is often the case when

11

a collection of closely adjacent boundaries will separate the same pair of

dissimilar regions. Since each boundary in the collection has a unique spatial
location, the degree of dissimilarity between the regions on either sides of the
boundary will vary for each boundary in consideration. We say that an edge is
accurately localized when it coincides with the boundary that results in the
maximum degree of dissimilarity.

(2) Thiness

Since edges are boundaries, it is desirable that they form thin lines in the
image. Ideally, they should be only one pixel wide in the direction that is
perpendicular to the edge direction.

(3) Continuity

Edges should exhibit a continuity that reflects the nature of the boundary
in the physical environment. Most physical boundaries of interest are
continuous in nature. It is desirable that correct edges should also possess this
property. However, we do not constrain edges to form closed boundaries in an
image. We will use the term fragmentation to describe edges that are
sporadically discontinuous.

(4) Length

Noise and fine texture may cause the appearance of short scattered edges
of one or two pixels in length. We will omit from our consideration such short
edges and restrict our concept of edges to those that are at least 3 pixels long.

In practice, there is often a tradeoff between the different desirable
characteristics of an edge. Due to conflicting edge requirements, there are many
situations where it is not possible to simultaneously achieve two or more
characteristics. For instance, requiring every edge in an image to be long
and continuous may result in poor localization and the appearance of false
boundaries. Hence, it is appropriate to associate a measure of importance with
each desirable edge characteristic so that situations involving conflicting edge
requirements may be resolved. It will be seen in the formulation of the
comparative cost function that the importance of each characteristic is
emphasized by attaching a weight to its associated cost factor.

12

2.3 A COMPARATIVE COST FUNCTION

The goal of edge detection is to find the pixels in an image that satisfy the
concept of an edge as described in the previous section. The edges should be
detected with minimum error, where the error corresponds either to missing
edge pixels, or edge pixels that do not satisfy the edge criteria. To find the
edges, it is of crucial importance to use information from both local and global
edge structure in the detection process. The reason for this is that the criteria
for an edge includes characteristics such as thinness, continuity and length
which are based solely on the structural nature of the edge. These structural
properties are not evident from the image data itself; they have to be
determined by examining the structure of the edge configuration. Hence, an
important key to good detection is to incorporate edge structure information in
the detection process. As an example, consider the case of a fragmented edge
that is the result of noise in the image. A detection algorithm that uses
information from local edge structure will be able to improve the edge
continuity by linking together locally disconnected edge segments. Similarly,
thick edges can be made thin by the removal of excess edge pixels. It will be
seen that the comparative cost function approach to edge detection uses edge
structure information in the detection process.

The comparative cost function approach to edge detection is essentially an
iterative algorithm that makes pointwise (pixel by pixel) decisions on the
presence of edges in the image. The heart of the decision making process is the
comparative cost function. The function mathematically captures the intuitive
concept of an edge. It compares two edge configurations by considering their
edge structure and the image data. The decision process consists of choosing
the better edge configuration and iterating the procedure.

We now introduce some notation which will be used in the definition of
the comparative cost function. An image G is a two-dimensional array of
pixels g(m,n), 1 <= m < m_ ., 1 < n < n_,, where each pixel g(m,n) has
gray level in the range 1 < g(m,n) < 255. For simplicity, we will assume that
the images are square with m,, =n_, = N. Similarly, we define an edge
configuration S; to be a two dimensional array of pixels s;(m,n),1 < myu < N,
where each pixel takes on a binary value 0 or 1. If s;(myn) = 1, the pixel
s;(m,n) is called an edge pixel; otherwise it is a non-edge pixel. We denote as S,
the set of all possible edge configurations on an N x N square lattice. Since
every site in the lattice can have one of two possible edge labelings, the number
of elements in S is equal to 2™’ Even for extremely small images, this number

13

is so large that it is impossible to implement any exhaustive search algorithm .

to find the best edge configuration. The comparative cost function and search
procedure is a heuristic technique for finding edge configurations according to
the edge criteria.

2.3.1 Valid Edge Structures

In order to define the cost function, we have to first specify what is meant
by valid edge structures. Using an 8-neighbor representation, every edge pixel
has a maximum of 8 neighboring edge pixels in a 3x3 neighborhood. Valid
edge structures are defined as follows. An edge pixel that has 0 or 1 other
neighboring edge pixel is a valid edge structure. An edge pixel that has 2 other
neighboring edge pixels is a valid edge structure if the pixels are arranged such
that the resulting edge structure is continuous and does not turn by more than
45 degrees. We call this a valid 2—neighbor edge structure. Figure 2.1 shows 4
valid 2-neighbor edge structures. Figure 2.2 is an invalid edge structure since
the edge makes a 90 degree turn to the right. Taking into account rotations of
the edges in Figure 2.1, there is a total of 12 possible valid 2-neighbor edge
structures. An edge pixel that has 3 other neighboring edge pixels is a valid (3-
neighbor) edge structure if the edge pixels form one of the 8 structures shown
in Figure 2.3. Although there are 56 different structures involving an edge
pixel with 3 neighbors, only the 8 in Figure 2.3 allow for the possibility that
each of the neighboring edge pixels can form valid edge structures with other
pixels in its neighborhood. An example of this is shown in Figure 2.4. Edges
with 4 or more neighboring edge pixels are defined to be invalid structures.

2.3.2 Region Dissimilarity

In order to find edges (or boundaries) that separate regions that are
dissimilar, we need to specify the régions of interest on either sides of an edge.
This is done by first defining the position of an ideal edge with respect to a
given object. The position of this edge must be correctly defined so as to
accurately reflect the geometry and size of the object. This is important when
high precision measurements are required. Figure 2.5 shows a square object
with a corresponding ideal edge. In this case, the position of the ideal edge is
poorly defined as it does not accurately depict the relative size of an object. We
illustrate this fact by looking at the image of a pair of embedded boxes as
shown in Figure 2.6(a). Consider the spacing between the vertical portions of
the edges; this figure indicates that the distance between the edges
corresponding to the vertical sides of the smaller square is 5 units, while the

14

Figure 2.1. Valid 2-neighbor edge structures.

Figure 2.2. An invalid edge structure.

15

X X X X
X X X X
X X X X X X
X X X X
X XX X X

X X X X X

Figure 2.3. The 8 valid 3-neighbor edge structures.

16

F==="""=-==-1 D |

r---

Figure 2.4. Examples of edge structures. (a) An example of a valid 3-
neighbor edge structure. Notice that pixel l; is part of a valid 3-
neighbor structure in a 3x3 window neighborhood indicated by
the dotted lines. Pixel I, which is a neighbor of I, also forms a
valid edge structure with its neighbors. (b) An example of an
invalid 3-neighbor edge structure. Notice in this structure that it
is not possible for the pixel at / 1 or the pixel at I/, to form a valid
edge structure with its neighboring edge pixels because of the
invalid 2-neighbor structure in its neighborhood.

17

XIXIX X X [X B
_— oundary of square

Ideal edge
/ g

XX XX x|

><><><>i><

Figure 2.5. An example of a poorly defined ideal edge for a square.

18

(a)

XIXIX XX XX XXX XXX X TXTXTX
X X
X X
X X
X X
X XXX X (X (X IX X
X X X X
X X X X
X X X X
X X X X
X X X X
X X{X[X[X]X]X]X X
X X
X X.
X X
X X
X X

X
X
X
X
X
X
x
X
X
X
pad
X
b Y
X
X

(b)

XXX XX Ix I

X << << <
X[><|><]><|>< <[>
x| x<I><|>< > [><]<

Figure 2.6. Edges resulting from the definition of the ideal edge in Figure
2.5. (2) Edges of a pair of embedded boxes. (b) Edges of a pair of
adjacent squares. Notice that the edge positions are either
ambiguous or the relative distance between the edges is incorrect.

19

distance from the edge on one side of the smaller square to the corresponding
edge of the larger square is only 4 units. This is of course incorrect as both the
measurements should be 5 units. Figure 2.6(b) illustrates another difficulty
with the above definition of the ideal edge for a square. Although the dividing
line between the adjacent squares is clearly defined in the image, the position
of the ideal edge is ambiguous for the vertical edge in the center. Besides these
difficulties, the defined edge is also undesirable because it contains invalid edge
structures at the corner regions of the square.

A better definition of the ideal edges for a square and hexagon is shown in
Figure 2.7. These are thin edges that satisfy our concept of an edge. Figure
2.8 shows the corresponding edges for the embedded boxes and the pair of
adjacent boxes of Figure 2.6. Notice that these edges do not suffer from the
difficulties of the previous example in Figure 2.6. Based on Figure 2.7, we
define for each valid 2-neighbor edge structure, a pair of regions on either sides
of the edge. The regions are chosen with the intuitive notion that edges
separate regions which are non-intersecting, and that these regions lie in a close
vicinity to the edge. These regions, which shall be labeled R1 and R2 for each
edge structure, are the regions of interest on which a dissimilarity measure will
be applied. The 12 valid 2-neighbor edge structures, the (circled) edge pixel
which they are centered around, and their associated regions are shown in
Figure 2.9. Depending on the application and the specific measure of
dissimilarity used, larger (or smaller) regions for R1 and R2 could be defined.
For example, the regions of interest could be extended as shown in Figure 2.10.

2.3.3 The Comparative Cost Function

Given a pair of nearly identical candidate edge configurations S; and S;
that differ only at one pixel location ! =(m,n), we define the comparative cost
function C(S;,S;) as:

O(8,8) = S [euls,1) - Culsi)] 1)
— SWACS;S,) (2.2)
k=1

where wi = 0 and 0=< C, < 1.

The function is a weighted sum of the difference of 5 cost factors. Each of
the weight values are given by wy. It should be noted that [is any location
within the square array of pixels. For ease of notation, we will write C(Si,Sj) as

20

Boundary of hexagon

Ideal edge
Boundary of square XX X A X
/ Ideal edge X X X X
X X
XX X X X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
X X X X
XX XXX X X
X X
X X
X X
XXX IX

Figure 2.7. Ideal edges for a square and a hexagon.

(@)

Figure 2.8.

21

X X
X X
X X
X X
X XX XX X
X X X X
X X X X
X X X X
X X X X
X XX {X|X X
X X
X X
X Xl
X X

(0) X IXIXIX] IXIXIXIX

X XXX
X XXX
XX X|X

Edges resulting from the definition of the ideal edge in Figure
2.7. (2) Edges of a pair of embedded boxes. (b) Edges of a pair of
adjacent squares. Notice that the edges do not suffer from the
difficulties of the previous example in Figure 2.6.

22

R2
[R1
7. 07 RS X
Rt —a A 4a—R2 UG, SN\ PN
xV X |&f x X \\}\ ¥ }N
? R2 R1/
R1
N NN SN X
AN NN LR 2
®§ X RN AN ®\\:
N ®)| X X LS NNAN
AN INN NN NN
®\\\\§ RN N x X|®] N
X \\N X ® X %

Figure 2.9. The 12 valid 2-neighbor edge structures, the (circled) edge pixel
which they are centered around, and their associated regions of
interest on each side of the edge.

23

x ; i M V//lx ;
EINNN N NWNEE
RIAN NN B RINRN NWNNE
WANNN NN NNWN
N
. NINNNEN
NEIBE 17 NN
NINCHE NN)
INNNNNNE % \
NNNAN N
NN
N

YA

//1/ '/,/

LA,

///// NN
NNONNEN
WANSN
NHNNS
NNWNNN
NANNN
NNNNN
SRANININ
NNNNN
WANAN

Figure 2.10. Extended regions of interest on each side of the edge.

24

C;; or, when no confusion occurs, simply as C. Also, we shall refer to the pixel
at location /, simply as pixel I. Now, we specify that

= 0 => S is a better configuration
Cij { ! g (2‘3)

< 0 => 8, is a better configuration

This implies that we try to minimize the sum of the weighted cost factors Cy.

The motivation for making C;; a weighted sum of cost factors Cy is that
each of the factors should, in some way, capture a desirable characteristic of
edges. Ideally, each cost factor should affect one and only one characteristic so
that the relative importance of each can be appropriately emphasized by its
corresponding weight wy. In practice, this is difficult to achieve as the different
characteristics often exhibit some form of dependency on each other. For
instance, minimizing fragmentation may well result in poor localization and
the appearance of false boundaries.

2.3.4 The Cost Factors

The square grid of an edge configuration is visualized as an overlay on the
image; the cost factors are computed by examining the local structure of the
edge configuration about pixel I, and the underlying image data. In the
following paragraphs, we define the value of each cost factor Cy which is used
in Equation (2.1).

1) C4: Cost for region dissimilarity.

The cost for region dissimilarity is based on a function f(R1,R2) that
measures how different region R1 is from R2. Large values of f.(R1,R2)
correspond to large dissimilarity. This measure could be a simple difference of
gray level averages in R1 and R2, or it could be a more complicated measure
based on other properties of the grdy levels. Depending on the application and
the features of interest in an image, there are numerous possibilities for the
definition of f,(R1,R2). As previously mentioned, to find the ideal step edges in
an image, we could define the dissimilarity measure to be the difference of
constant gray levels in the regions R1 and R2. For detecting texture edges, we
could define f.(R1,R2) based on statistical or structural properties of the gray
levels in the different regions. It is clear that there is great flexibility in such an
approach to edge detection as we do not restrict the nature of the dissimilarity
between the nonhomogeneous regions. This is in contrast to many detection
algorithms that assume some specific nature of edges and are devoted to

25

finding only such edges.

Non-maximal suppression is important in ensuring the accurate
localization of an edge point in an image. In practically all real images, the
dissimilarity measure has the tendency to enhance the points in the vicinity of
the true boundary in addition to enhancing the boundary itself. This is
undesirable as a large number of false boundary points are enhanced. One
approach to mitigate this tendency is to employ non-maximal suppression
when computing the dissimilarity. However, an undesirable side effect that
results from using non-maximal suppression is that some true boundary points
may also be suppressed together with the false points. This may increase the
amount of fragmentation in the boundary. It will be seen that the cost factor
for continuity will compensate for this effect by linking together locally
disconnected edges.

In our implementation, fc(Rl,RZ). is computed as follows. Let d be the
magnitude of the difference of gray level averages in R1 and R2, ie.,

1 1
d= 70— by g(i’j) ~ ool X g(i:j) (2'4)
IR1[(jiems IR2| ; jems
where |R1|, |R2 | denotes the number of pixels in R1 and R2 respectively.
Note that 0 < d < 255. Let m(d) be a piecewise linear function that maps d
onto the unit interval [0,1]. We use m(d) as our measure of region
dissimilarity, i.e.,

f.(R1,R2) = m(d).

Suppose
4 o=d=a2
m(d) =] 2%
1, otherwise . (2.5)

This is a piecewise linear monotonic function that is comprised of a ramp
followed by a flat region of constant value equal to one, as shown in Figure
2.11. The parameter t,, which we shall call the threshold, is application
dependent. It determines the slope of the ramp. The flat region causes
undesirable effects when non-maximal suppression is applied to the value of
f.(R1,R2). Since values of d greater than 2t, are mapped to the same value,
rank order information that is useful in the suppression process is lost. To
avoid this, we choose the strictly monotonic mapping function shown in Figure

26

0.5 |--=---

S R,

!

-

-
N
0

Figure 2.11. A monotonic mapping function.

0.5 f--=----

e — =

—]

255

-t
-

Figure 2.12. A strictly monotonic mapping function.

27

2.12. It is formed by the concatenation of 2 ramps; the first ramp rises to a

maximum value of 0.9 while the second rises from 0.9 to 1. The function is
specified by the following equation:

4 0<d= 18t
2t,
m(d) = - : (2-6)
0.1
0.9 + (d —1.8t,) “—"——255_1.8,% » otherwise.

The cost for region dissimilarity Cy4(S;,!) penalizes non-edge pixels by
assigning to them a cost value that is proportional to the dissimilarity at the
pixel location. If / is an edge pixel, no penalty for dissimilarity is made; this is
achieved by assigning to edge points a dissimilarity cost value of zero. The
cost for region dissimilarity is computed by first examining the edge structure
of §; in a local 3 x 3 window neighborhood centered at pixel I..If the pixel at [
is an edge pixel, we set C4(S;,!) =0. If the pixel at [is not an edge pixel, we
proceed as follows. Observe that there are 12 possible valid 2-neighbor edge
structures that could fit in a 3 x 3 window region centered at I. The best
fitting edge structure is chosen according to the following cases:

Case 1: There are exactly 2 neighboring edge pixels which will form a valid
2-neighbor edge structure with an edge pixel at I. This valid structure
is the best fitting edge structure.

Case 2: There are more than 2 neighboring edge pixels, one or more pairs of
which will form valid 2-neighbor edge structures with an edge pixel
at I. Amongst these valid edge structures, the one which results in the
maximum value of f(R1,R2) is chosen as the best fitting edge
structure.

Case 3: If the local edge structure does not satisfy cases 1 or 2 above, then
amongst the 12 possible valid 2-neighbor edge structures that could fit
in a 3 X 3 window region centered at I/, the one which results in the
maximum value of f(R1,R2) is chosen as the best fitting edge
structure.

Next, we perform non-maximal suppression by shifting the location of the
best fitting edge structure in a direction determined by the edge structure. For
straight vertical, horizontal and diagonal edge structures, the shifting is
performed by moving the edge location by one pixel in each of the opposite
directions perpendicular to the edge. For all other edge structures, the shifting

28

is done by moving the edge one location in each of the four directions: up,
down, left and right. Figure 2.13 shows how the edges are shifted for three
edge types. If the maximum value of f.(R1,R2) over the shifted edge structures
is greater than the value of f.(R1,R2) for the unshifted edge structure, we set
Cq(8;,1)=0; otherwise C4(S;,!)=f,(R1,R2) for the unshifted edge structure.

2) Cy: Cost for edge thickness.

Using an 8-neighbor representation of the edge, we define a thick edge to
be an edge structure that has multiple links between 2 or more of its edge
pixels. A thin edge is an edge that is not thick. A thick edge pixel is defined to
be an edge pixel whose presence causes multiple links between its neighboring
pixels. The cost for edge thickness is determined by considering pixel ! in edge
configuration S;. If ! is a thick edge pixel, then Cy(S;,!) = 1; otherwise
Cy(S;,1) = 0. Examples of thick edges are shown in Figure 2.14. The edge in
Figure 2.14(a) is thick because there are multiple links between several of the
edge pixels. For instance, pixel X; is connected to pixel X5 by two links; the
first is through pixels X, and X,, and the second is through pixel X;. The edge
in Figure 2.14(b) is also a thick edge because there two links between pixels X,
and Xj3; the first is a direct link between the two, and the second is through
pixel X,.

3) C.: Cost for edge continuity.

This cost factor reduces the occurrence of single missing edge pixels that
result in a disconnected edge. C(S;,/) is computed by examining S; in a local
5 X 5 window neighborhood centered at pixel I. If pixel ! is not an edge pixel,
and there are 2 short edges less than 3 pixels each that could be connected by
pixel ! to form a thin edge that is at least 4 pixels long, we set C(S;,!) =1;
otherwise C,(S;,/) =0. Examples of cost assignment for edge continuity is
shown in Figure 2.15.

4) C;: Cost for edge length.

This cost factor reduces the occurrence of short edge pixels that are less
than 3 pixels long. If pixel ! is part of an edge that is less than 3 pixels long,
we set C)(S;,/) = 1; otherwise C(S;,!) = 0.

29

X X X
-t X -] X X
X X X
(a) (b) (c)
X
X X
X X X
X X
X
(d) (e) ()
X X X
X X X
X X X
@ - (h) (i
X
X
X X
X
X
)] (k)

Figure 2.13. Shifting edge positions for non-maximal suppression. (a) Vertical
edge and shifting directions. (b) and (c) are the shifted edge
positions of the edge in (a). (d) Diagonal edge and shifting
directions. (e) and (f) are the shifted edge positions of the edge in
(d). (g) An edge that turns by 45 degrees. (h) to (k) are the four
shifted edge positions.

30

()
4 X5
X2 3
X1
(b)
X,1Xq

Figure 2.14. Thick edges. (a) Thick edge of 5 pixels. (b) Thick edge of 3 pixels.

31

location /
X X X
X 1 IX XX
(a) (b) © [[X
Xl I\ X ’
N | A4
N /
location / location /

Figure 2.15. Cost assignment for edge continuity. (a) C(S;,/)=1. (b)
C(8;,1)=0. (c) Ce(S;,1)=0.

32

5) Cg: Cost for number of edge pixels.

The cost factor Cy for region dissimilarity will favor the placement of edge
pixels at all points where the measure of dissimilarity f,(R1,R2) is non-zero.
This causes an excessive number of edges to be detected. To suppress this, we
assign a cost for each additional edge pixel detected. If pixel I is an edge pixel,
we set C(S;,!) = 1; otherwise C,(S;,!) = 0.

The comparative cost function is a weighted sum of the above cost
factors. It should be noted that the cost factor C4 uses both image data and
edge structure information, while C, C,, C; and C; uses only edge structure
information. The utilization of this function to detect edges is based on a
heuristic search procedure which is the subject of the following section.

2.4 A HEURISTIC SEARCH ALGORITHM

In this section, we describe an iterative algorithm that uses the
comparative cost function to find a good edge configuration for the image. As
previously described in Section 2.3.3, the cost function compares two very
similar edge configurations and produces a value that indicates which of the
configurations is better. To use this function, we will need some means of
generating new configurations. The method of generating a new configuration
is to take the previous best configuration and complement the edge label of one
of its N x N pixels. Clearly, there are a possible of N2 new configurations that
can be generated from the previous best configuration. Basically, the
algorithm begins by selecting any arbitrary edge configuration and calling it
the best. It then recursively generates new configurations that are compared
with the previous best by means of the cost function. The algorithm is as
follows:

1) Begin by selecting any arbitrary edge configuration S; and any location [
1
=(m,n), where 1 < m;n < N.

(2) Define a new edge configuration Sj such that it is identical to S; except at
pixel | (where it is the complement).

(3) Compute C;; and select the better of the two configurations according to:

p = 0 => §;is a better configuration
bl <o => S; is a better configuration

Label the selected configuration S;.

33

(4) Pick a new location ! =(m,n), where 1 < m,n < N
(5) If stopping criterion is not satisfied, Repeat from step (2).

The algorithm terminates either when no better configuration can be
found after every possible new configuration has been tried, or when a suitable
stopping criterion is satisfied. A simple stopping criterion is based on the
number of better configurations found after K iterations. If this number does
not exceed a certain minimum, the algorithm stops. Each new location / may
be selected either in a deterministic or random manner; comparisons have been
made and experimentally it has been found to have little effect on the final
result. However, it is essential that every possible pixel location be selected at
least once. Consequently, it has been found to be computationally more
efficient to choose new values of ! by sequentially stepping through the image
in a raster scan fashion. When this is done, typically 3 to 5 iterations through
the image is sufficient for the algorithm to converge according to the stopping
criterion.

The algorithm described above begins with a random edge configuration
and attempts to change the edge labeling at every pixel in a sequential manner.
The comparative cost function is used to decide if the change is successful.
When viewed in this way, the algorithm is a sequential pointwise edge
detection process that uses information from image data, information from
local edge structure, and information from past decisions at neighboring pixels.

2.4.1 Selecting the weights

Many edge detection algorithms do not use local edge structure
information in the detection process. Those that do can usually be classified as
some type of curve or boundary tracing technique. The comparative cost
function approach to finding edges is unique in the way it attempts to
incorporate edge structure information in the detection process; the edge
information is captured in the cost factors. By altering the weights wy
associated with the cost factors, we can change the amount of emphasis placed
on each factor. Consider the situation where all the weights are zero except for
wg and w, The edge detection process then becomes similar to the
straightforward thresholding approach to edge detection; information about
local edge structure, such as thinness, continuity and length is not used. It
should be noted that scaling all the weights by a constant will produce the
same results as using the unscaled weights.

34

For our implementation, we used the values wy = 2.0, w; = 1.1, w, = 1.1,

Wwe =1.0, and w; = 1.1. First, let us just consider the cost factors for region>
dissimilarity and number of edge pixels. When we use the weight values of 2.0
and 1.0 for wy and w, respectively, edge pixels will be detected at all points
where C4 = 0.5. However, when we take into consideration all 5 cost factors
and their associated weights, the interaction of the different factors will result
in several constraints on the detection process. First, thick edges will be
disallowed; even if Cy4=1 for a thick edge pixel at location I , the weight values
of 1.1 and 1.0 for w, and w,, respectively, will always favor the removal of the
edge pixel. Similarly, fragmentation will be reduced as edges that are separated
by only one pixel will be connected together by the weight value of 1.1 for w,.
Since the cost factor C) removes short edges, the weight value of 1.1 for wy will
ensure that edges that are less than 3 pixels long will not be detected. When
large values (greater than 0.5 approximately) for w; are used, it is necessary to
set w) initially to zero for the first several iterations, and then to its correct
value for the remaining iterations. This is to avoid certain undesirable local
minimum states that are possible. For instance, if the initial state contains no
edge pixels, then a weight combination of 2.0, 1.0, 1.1 for wy, w,, W
respectively, will produce no edges regardless of how many iterations are made.
This is because the combined value of W, and w; exceeds that of wy, preventing
transition to any other state from the initial state.

2.5 COMPUTING THE COST

Since the comparative cost function is used repetitively in the detection
algorithm, most of the computation is in determining the value of C;;. From a
computational standpoint, it is of major importance that this value can be
determined in an efficient way. One approach to determine C;; would be to
compute each cost factor independently, and then sum the difference as
specified in Equation (2.1). However, this is a naive approach that does not
take into account the interdependence of the cost factors. For instance, an edge
that is a valid 2-neighbor structure is thin, continuous and at least 3 pixels
long; the fact that it is a valid structure allows us to determine 3 of the 5 cost
factors immediately. A great deal of reduction in computation time can be
achieved by pooling together information affecting each of the different factors
and organizing it in a form that will allow for efficient computation. This is
achieved by a decision tree structure as shown in Figure.2.16. The structure
allows for the simultaneous computation of several cost factors by traversing

35

pixel /

E E

Figure 2.16. Computation of cost factors using a decision tree.

36

the tree from root to leaf following the relevant path. The tree is 5 levels deep.
At each node, the decision as to which branch to take is governed by
conditions that are assigned to each branch. These conditions are exhaustive
and mutually exclusive; traversal to the next node is made by following the
branch where the condition is satisfied. The conditions, which are abbreviated
by labels, are summarized as follows:

LABEL DESCRIPTION

E
E

T=n

V2

EV2

EV2

L3
L3
CT

The pixel at ! is an edge pixel.
The pixel at ! is not an edge pixel.

The total number of edge pixels T, in a 3 x 3 neighborhood about I
is equal to n. This total does not include the pixel at I.

The two neighboring edge pixels will form a valid 2—ne1ghbor edge
structure with an an edge pixel at [.

The two neighboring edge pixels will not form a valid 2-neighbor edge
structure with an an edge pixel at I.

The three neighboring edge pixels will form a valid 3-neighbor edge
structure with an an edge pixel at [.

The three neighboring edge pixels will not form a valid 3-neighbor
edge structure with an an edge pixel at [.

Some pairs of neighboring edge pixels will form a valid 2-neighbor
edge structure with an edge pixel at /.

No pair of neighboring edge pixels will form a valid 2-neighbor edge
structure with an edge pixel at I.

An edge pixel at ! will link 2 short segments, each less than 3 pixels,
to form a thin continuous edge segment that is at least 4 pixels long.

An edge pixel at ! will not link 2 short segments to form a thin
continuous edge segment that is at least 4 pixels long.

The edge pixel at ! is part of an edge that is at least 3 pixels long.
The edge pixel at ! is not part of an edge that is at least 3 pixels long.

The 3 neighboring edge pixels are either clustered together forming an
“L” shaped region in one corner of the 3x3 window, or lined up

37

straight along one of the 4 straight borders of the window.

CT The 3 neighboring edge pixels are neither clustered together forming
an “L” shaped region in one corner of the 3x3 window, nor lined up
straight along one of the 4 straight borders of the window.

f, This is the non-maximal suppressed value of f,(R1,R2); the edge
structure used to compute f.(R1,R2) is the one obtained by using case
“n’” of the best fitting edge rule (discussed in Section 2.3.4).

A further reduction in computation time '(by approximately half) is
achieved by observing that configurations S; and S; differ only at pixel location
!, and consequently that C;; can be determined simply by considering S;. We
need not compute Cy(S;,/) and subtract it from Cy(S;,!); we can compute
AC,(8S;,8;) directly by considering S; or S; in the neighborhood of I The
decision tree for this is shown in Figure 2.17. This tree is similar to that shown
in Figure 2.16; traversal from one node to the next is governed by the
conditions assigned to each branch. The value of C;; is determined by
appropriately traversing the tree from root to leaf following the relevant path.
This tree assumes that configuration S; does not have an edge at ! while S;
does. If the opposite is true, then C;; is determined by first computing Ci;
using this tree, and then negating the result. The cost function has the

property that C;; = —C;;.

It has been previously mentioned in Section 2.4 that the heuristic search
algorithm can be viewed as a procedure where we sequentially try to
complement the edge labeling at every pixel location in the image. It is
important to note that each cost factor Cy(S;,!) is only dependent on the value
of the pixels in a neighborhood that is no larger than a 5 x 5 window about
location I Consequently, the decision of the edge labeling at pixel l; can be
made independently of the labeling at [,, if /; and l, are 2 or more pixels
apart. Hence, although the algorithm is sequential, the processing can be
implemented to a large extent in parallel if the pixel locations are chosen such
that any pair are at a distance of at least 2 pixels apart. We could, for
instance, attempt to change the pixel labeling of every third pixel in a row at
every third row. For an N x N image, there are approximately N2 /9 such
locations. The processing at each location can be done in parallel and the
decisions on the edge labeling can be made simultaneously. This is significant
as it results in a reduction of the number of sequential processing steps by a

factor of N2 /9.

38

ACq =1

AC,=0 AC,=1 AC,=0 4C,=1 AC,=0 AC =1
AC,=0 AC,=0 AC, =
AC =1, ACy=-1; ACy=-1,

CE CE L3 L3 cT cT

AC,=-1 AC,=0 AC,=0 AC;=1 ACy=-i3 4G =0
ACy=-1,

L3 L3

ACI =0 AC, =1

Figure 2.17. Direct computation of AC,(S;,S;) using a decision tree.

39

2.6 Relaxation Techniques

Relaxation [4,26-28] is an iterative approach to segmentation that makes
“‘probabilistic decisions” at every point in parallel at each iteration. These
decisions are then adjusted at successive iterations based on the decisions made
at past iterations. In this section, we will discuss some similarities as well as
dissimilarities of the heuristic search algorithm with relaxation techniques.

Consider the task of classifying a set of n objects Ajy,.....A into m classes
CyyeeeeeCpp. The basic approach of probabilistic relaxation is to assign to each
object A;, a vector of probabilities Pij 1 = j = m where each element of the
vector is indicative of the likelihood that object A; belongs to class C;. The
elements of the vector are assumed to sum to one:

EPU =1,
J

For each pair of class assignments, A,€ C; and A€ Cy, there is a quantitative
measure of the compatibility of the pair, denoted by ¢(i,j; h,k). We assume
that c(i,j; h,k) lies in the range [-1,1] with larger values indicating good
compatibility and low values indicating poor compatibility; zero represents the
“don’t care” situation. Based on this compatibility function, the probability
vectors are altered in parallel using an iterative scheme. There are no fixed
rules as to how the vectors are altered; numerous heuristic methods exist.
Intuitively, we would like to increase the probability pi; if the class assignment
A;€ C; is highly compatible with A € C,, and Pri is large. Conversely, we
would like to decrease it if the assignments are incompatible, and py, is large.
If pyy is low, we do not want to alter p;; very much regardless of the value of
the compatibility function. One possible method of updating the vector based
on this intuition is to use the product

¢(i,j; hk) . ppy -
The updating process at the (r+1) iteration is given by:

pij(1 + a)
pitt = ——— (2.7)
>pij(1 + qff)
j=1

where

40

Notice that qiﬁ is simply the average over the sum of all increments due to
the product of c(i,j; h,k) and pyy. The denominator in the equation of Pi§+1 is
just a normalizing constant ensuring that the elements of the vector sum to
one. ldeally, the goal is to iterate until every vector converges to the state
where only one of its elements is non-zero. Practically, however, this is difficult
to achieve and the process is terminated typically after a number of iterations.

Comparing, we see that there is some resemblance of the heuristic search
technique with probabilistic relaxation. Both techniques are heuristic iterative
processes; at each iteration, new decisions are made based on past decisions.
Both are for object classification. Specifically, in the case of edge detection,
there are two classes; edge or no edge. However, there are also several distinct
differences in the two techniques. First, the heuristic search algorithm is
essentially a sequential technique where new decisions are made one object
(pixel) at a time. Although it can be implemented to a large extent in parallel,
the technique is essentially a sequential process. In contrast, the relaxation
technique is a parallel process where all the probability vectors are altered
simultaneously at each iteration. Second, the classification process of the
heuristic search technique is not probabilistic in nature. At each iteration, firm
decisions are made as to whether a pixel is, or is not, an edge. This again is in
contrast to relaxation which, for each pixel, assigns a vector of probabilities
that is incrementally adjusted at successive iterations. Third, the comparative
cost function is not equivalent to the compatibility function. In a sense, the
heuristic search algorithm can be viewed as a degenerate form of relaxation
where there are only two classification classes, and the elements of the
probability vectors are binary valued, 0 or 1. The comparative cost function is
then analogous to a complex ‘“‘compatibility function” of the form

c(1,J; hysky; hy,Koseers hpgkoy),
where each of the 24 objects are the neighboring pixels in a 5 x 5 window
about the object (pixel) A;. A closer examination will reveal that this function
is different not only in form, but also in usage from the usual compatibility
functions in relaxation.

We conclude that the heuristic search algorithm is not a relaxation process
because of the fundamental differences listed above. It is an iterative process

1 [i‘ c(i,j; hk) . pik] - (2.8)

41

which can be appropriately viewed as a heuristic cost minimization approach

to detect edges. This view will be further justified by the formulation of an
absolute cost function which will be described in the next chapter.

2.7 An Absolute Cost Function

The comparative cost function given in Equation (2.1) is defined only for
pairs of similar edge configurations; it measures the relative quaity between the
configurations. This function can be modified to yield an absolute cost
function which is applicable to individual edge configurations. The resulting
cost of each configuration is indicative of its quality. One possible definition of
an absolute cost function is

5

c(s) =3 [3w Cy(8;,0) J : (2.9)
all 1] k=1

where the cost factors Cy's are the same as those of the comparative cost

function. In this case, two configurations S; and S; can be compared by

computing the difference in the cost values. This is given by the difference

function

AC/(8,,8;) = C'(8;) — ©'(S) (2.10)

=2

all 1§ k=1

iwk[ck(sj,l) — C(Si,!)] } .

Notice that AC’ (S5,8;) <0 if and only if S; is a lower cost configuration that
S;- The difference function AC’(S;,S;) is similar in form to C(S;,S;) of Equation
(2.1).

When used in accordance with Equation (2.1) of the comparative cost
function, the cost factors together define a function that mathematically
captures the intuitive idea of an edge. However, when the same cost factors
are used in Equation (2.9) to define an absolute cost function, the result is a
function that is not consistent with our concept of an edge. In other words,
lower cost configurations may result in poorer edges. This is particularly
evident in the case of edge continuity. An example of this is illustrated in
Figure 2.18. The figure shows five hypothetical edge configurations Sp to S4. Sy
contains a fragmented edge; there are three missing edge pixels which, if
present, would make the edge continuous. Based on Equation (2.9), the total
continuity cost for an arbitrary edge configuration S, is given by:

42

XXX X X X X1 XXX
X1 X1X XX X X | XX
XXX X XX XXX

Figure 2.18. Continuity cost for different edge configurations. C(8g) = 3w,.

Ce(81) = CS)) = Ce(S83) = CS,) =0. Although
configurations S, to S, have a lower value for continuity cost
than Sy, it is clearly noticeable that they have a higher degree of
fragmentation.

43

CulSm) = 33 | weCulSmi) |
all !
According to the definition of the cost for edge continuity in Section 2.3.4, this

implies that
CC(SO) = 3WC .

The continuous version of S; is S;. Clearly, this edge configuration has an
associated continuity cost C(S;) =0. An examination of the edge structures in
configurations Sy, S; and S, reveals that they also have zero continuity cost;
ie, CySy) = C,S3) = C,(S,) =0. However, it is clearly noticeable that
configurations S, to S; have a higher degree of fragmentation than So-
Consequently, we see that the cost for continuity may not reduce
fragmentation when used in the manner specified by Equation (2.9). In fact, as
seen in the above example, it has a greater tendency to increase than to
decrease fragmentation. '

A better definition of an absolute cost function will be given in the next
chapter. It takes the form of Equation (2.9); the cost factors are appropriately
redefined to capture desirable edge characteristics.

2.8 Summary

In this chapter, we have shown how edge detection can be cast as a
problem in cost minimization. We first described our concept of an edge which
is based on criteria such as accurate localization, thinness, continuity and
length. Based on this description, we formulated a comparative cost function
that mathematically captures the intuitive ideas of an edge. The function uses
information from both image data and local edge structure in evaluating the
relative quality of pairs of edge configurations. Computation of the
comparative cost function is performed efficiently by organizing the
information in the from of a decision tree. Edges are detected using a heuristic
search algorithm based on the comparative cost function. The detection
process can be implemented largely in parallel. An extension of this approach
to detect edges would be to formulate an absolute cost function that assigns an
absolute cost value to any given edge configuration. The best edge
configuration would be the one that achieves the global minimum of this cost
function. The formulation of the absolute cost function is presented in Chapter
3.

44

CHAPTER 3
AN ABSOLUTE COST FUNCTION APPROACH
TO EDGE DETECTION

3.1 Introduction

In the previous chapter, we have presented a comparative cost function
that evaluates the relative quality of pairs of very similar edge configurations.
Although fairly good results have been achieved using this function, two
difficulties arise in its use.

First, the comparative function measures only relative quality.
Furthermore, the pairs of configurations that it compares are constrained to be
almost identical, differing at only one pixel site. This is rather restrictive
because for any given edge configuration, only a relatively small subset of all
possible configurations can be used for comparison. A practical consequence of
this is that the heuristic search algorithm is sometimes trapped in undesirable
local minimum states.

Second, the heuristic iterative search algorithm based on the comparative
cost function is difficult to analyze. The goal of analysis is to determine
specific properties or characteristics of the edges in the output of the
algorithm. For instance, we would like to know if there are any thick edges in
the output, the minimum length of each edge, and how well the edges are
connected. Except for superficial analysis, it is difficult to track and analyze
these characteristics in the comparative cost function approach to edge
detection.

A solution to the difficulties mentioned above is to modify the
comparative cost function approach to one that uses an absolute cost function
which is mathematically well grounded. As the terminology suggests, it is a
function that measures absolute instead of relative quality. The function is
applicable to individual edge configurations and the resulting cost of each
configuration is indicative of its quality; lower cost implies better edges. This
chapter deals with the formulation and analysis of the absolute cost function.
From here on, we will use the term cost function to refer to the absolute cost

45

function. Three things are required in formulation of a cost function for
evaluating edge quality: ‘

(1) A precise concept of an edge.
(2) A mathematical description of edges and their related properties.

(3) A suitable cost function which captures the above concept of an edge.

The concept of an edge has already been described in detail in Section 2.2
of the previous chapter; we use the same concept as that of the comparative
cost function. We draw attention to the fact that it is not the concept of an
edge but the approach to edge detection that is different when comparing the
absolute and comparative cost function techniques. A mathematical
description of edges is essential as it enables us to state a precise description of
the intuitive concept of an edge. Its primary purpose is to provide a basis for
unambiguous definition and analysis of the cost function. The goal of the
formulation is to find a suitable cost function which, when minimized, will
yield edges that are consistent with the above concept of an edge. The ultimate
test of its validity is in its performance in finding good edges in an image.

3.2 A Mathematical Description of Edges

The intuitive concept of an edge has been deseribed in Section 2.2 of the
previous chapter. We now describe in mathematical terms the ideas presented
in the concept. Based on this description, we will be able to state the precise
definition of a cost function and perform a detailed analysis of edge structures.

We will describe edges in terms similar to graph theoretic terms because
of the close analogy between edges and planar graphs [29]. In fact, any edge
structure can be considered to be a planar graph where each vertex in the
graph corresponds to an edge pixel, and each arc in the graph corresponds to
adjacent pixels in the edge structure. An example of this is shown in Figure
3.1. One approach to describe edges using graph terminology is to first
transform the edges into their corresponding planar graphs. However, because
of the need to keep track of the one to one correspondence between the edge
pixels and the vertices, it seems unnecessarily cumbersome to describe edges in
terms of planar graphs. In view of the analysis in the following sections, there
seemns to be no specific advantage in using a description based entirely on
graphs. Instead, we will describe edges in their own context, using a number of
terms that are similar to those in graph theéry. The definition of these terms
follow closely to their graph theoretic counterparts, but they apply directly to
edge pixels and their corresponding edge structures.

Figure 3.1.

46

b s

(a) (b)

X

X} X X| X

An edge with its corresponding planar graph representation. (2)
An edge. (b) Planar graph representation of the edge.

47

3.2.1 Preliminary Definitions

In this section, we begin with some preliminary definitions of images and
edge configurations. We will also define some basic terminology that will be
frequently used, such as neighborhood, window, connection, path and cycle.
Based on these definitions, we will state a proposition about the pixels in an
image.

An image G is a two-dimensional array of pixels
G={g(Li); 1 <i=inul=<j=<imn/’,

where each pixel g(i,j) is assumed to have gray level in the range
0 < g(i, j) =< 255. For simplicity, we will also assume that the images are
square with i,, =j,. = N. That is, the pixels occupy the sites of an N x N
uniform square lattice.

An edge configuration S, is also a two-dimensional array of pixkels
So={spm(hi); 1=4j < N},

where each pixel takes on a binary value 0 or 1. If s(i, j) = 1, the pixel
Sm(i; j) is called an edge pizel; otherwise it is a non-edge pizel.

An edge configuration can be considered to be a binary image where the
gray levels take on values of either 0 or 1. As seen in the definitions, we will
always denote images by uppercase letters and their pixels by the
corresponding lowercase letters. We shall denote as S, the set of all possible
edge configurations on an N x N square lattice. Since each pixel in the lattice
can have one of two possible edge labelings, and since there are N2 pixels in a
configuration, the number of elements in S is equal to oN’, Sometimes, we will
refer to an edge configuration S, simply as S, with the understanding that we
are referring to any arbitrary edge'conﬁguration. The pixels of S are denoted
by the corresponding lowercase letters s(i, j)-

As observed in the definition, each pixel in an image or edge configuration
is uniquely specified by the pair of indices (i, j) representing the location of its
site in the lattice. We shall denote as L, the set of all pairs of indices for an
N x N lattice of sites:

L={(,j); 1<5,j=<N}.

Definition 3.1: The neighborhood of a pixel s(i, j) €S is the set of 8 pixels

48

specified by:

N;;(8) = {s(m,n) : l m—il <1, I n—j | =<1, and (m,n) # (i, j) } ,

where denotes the absolute value. This is the typical “‘8-neighborhood

representation of connectivity in images. Notice that s(i, j) ¢ N; ;(8); a pixel is
not a member of its own neighborhood. If s(m,n) € N; ;(S), then s(m,n) is a
neighbor of s(i,j), and s(m,n) is said to be adjacent to s(i,j).

It is straightforward to observe that adjacency is a symmetric relation;
s(i, j) is adjacent to s(m,n) implies that s(m,n) is adjacent to s(i, j). However,
it is not reflexive since a pixel is not a neighbor of itself and hence cannot be
adjacent to itself. When the exact location of the edge pixel s(i, j) is not of
importance, for ease of notation, we will sometimes denote s(i, j) simply as ey,
for some integer value of k.

Definition 3.2 The window W;;(8) is the set of 9 pixels contained in a 3 x 3
region centered at pixel s(i, j):
n—jl = 1} .

W;;(S) = {s(m,n) : l m—il =< 1 and

Fact 3.1: WI,J(S) = NI,J(S) U S(i, j)
This is easily seen from the definition of window and neighborhood, and it is
always true that N;;(8) C W ;(S).

A walk is a non-null sequence of edge pixels W = ey, e,, ez € such that ¢ is
adjacent to ¢,y foralll1 < i =< k—1. The ends of the walk are e; and e, and
W is a (e; ey)—walk. The origin of the walk is e, the terminus is ey, and the

internal pizels are ey,.., e,_;. The length of the walk is equal to k.

A path is a walk in which every edge pixel is distinct. Intuitively, a path is a
walk that does not intersect or merge with itself.

Two edge pixels ey, e, are connected if there is a (en, ex)—path.

Fact 3.2: Connection is an equivalence relation.

49

1) ey is connected to e, implies that e, is connected to ey.
h k k h
(2) ey is connected to e;.

(3) ey is connected to e which is connected to e implies that e, is connected

to e.

A collection of edge pixels M = {e,, ey, ey} is connected if for any ey,
ey € M, there is a (e}, e,)—path in M.

Let S, € S be the set of all the edge pixels of edge configuration S. There
is a partition of S, into non-empty subsets S, 82, S¥ such that ey and ey
are connected if and only if they belong to the same subset. The subsets Sg,
1 =1i= w, are the components of S (or S,). Clearly, the components are
connected. In Figure 3.2, we show an example of an edge configuration on a
10 x 10 lattice that contains 4 components. Notice that one of the components
contains only one isolated pixel.

Proposition 3.1: In any connected set M, such that || M || > 1, every edge
pixel has at least one other edge pixel in its neighborhood.

Proof: Consider any pixel e, € M; it is always connected to some other pixel
e, € M by an (e,, ep)—path. If the path has a length that is greater than 2, its
first internal pixel is in the neighborhood of e,. If the length is equal to 2, then
ey, is in the neighborhood of e,.

[}
A cycle C is a walk such that:

1) the origin and internal pixels are distinct,
2) the origin and terminus are the same,
3) there is at least 1 internal pixel.

The length of a cycle is the length of the corresponding walk minus 1.

Let A be any collection of pixels. The size of A is the number of distinct edge
pixels in A, and is denoted by Il A Il.

3.2.2 Definition and Properties of Edges

Most of the definitions in the previous section involve edge pixels and their
associated structures. Up to this point, we have not yet specified what edges
are, and how they relate to edge pixels. In this section, we will specify what is
meant by an edge (of S), and a segment of an edge. The term “thick” edges

50

XXX

XX XX
XX

XX X

X

X XXX

X|X X

X X X

X

Figure 3.2. An edge configuration on a 10x10 lattice which contains 4
components.

A/®

Figure 3.3. An edge which contains a unique path between pixels A and B.

51

has often been used without clearly defining the meaning of the term thick. We

will give explicit definitions of thick and thin edges, and state several
propositions concerning the structure of thin edges.

Definition 3.3: An edge E is a component of S.

Definition 3.4: A segment of an edge E is a subset of E that is connected.

Again referring to the example in Figure 3.2, based on Definition 3.3,
there are 4 edges in the configuration. It should be clear from this that when
we refer to an edge, we are always referring to a maximal collection of
connected edge pixels. However, this collection may be just a single pixel as in
the case when a component is comprised of only one isolated edge pixel.

According to the edge concept, the edges in an image should be thin.
Intuitively, we know what thinness means, but mathematically, it is a term
that is difficult to describe. As in the case of the cost factor for-thickness in the
comparative cost function, we will use the idea of multiple links to describe
edge thickness. Consider an edge E that joins pixel A to pixel B in an image; E
contains a path from A to B. We will say that the edge is thin when this path
is unique. This is shown in Figure 3.3. However, when the path is not unique,
we say that the edge is thick. A path that is not unique implies that there
could be a collection of closely adjacent paths in E that would join the same
pixels A and B. This collection of closely adjacent paths form what we call
multiple links between A and B. An illustration of an edge containing multiple
links is shown in Figure 3.4. As multiple adjacent lines form a thick line, so
multiple links form a thick edge. We therefore choose to describe thin edges as
edges that contain no multiple links between any of its edge pixels.

Based on an 8-neighbor representation of edges, an examination of edge
structures reveals that the cycle of length three can be considered to be the
basic building block of multiple links. An example of this can be seen in Figure
3.1. Notice that in the planar graph representation of the edge shown in the
figure, the middle left portion of the edge contains a triangular region which is
a cycle of length three. This cycle is the source of multiple links in the edge.
Consequently, in the following definitions, thin edges are those that contain
none of these cycles. Figure 3.5 shows a cycle of length three; notice that each
pixel of the cycle is multiply linked by 2 paths to the other pixels within the
same cycle. For instance, if we represent the cycle as {e1, s, €, e}, the first
path between e; and e; is ejeze;, and the second path is ejez. All cycles of

52

X
a—|®

X X X

® ® ®

Figure 3.4. An example of an edge which contains multiple links. (a) An
edge E joining pixels A and B. (b), (c) and (d) are three possible
paths contained in E that join the same pixels.

Figure 3.5. A cycle of length three.

53

length three have a characteristic L shape, differing only in orientation and
position.

Definition 3.5: An edge pixel that is not contained in any cyecle which has a
length equal to three is called a thin edge pizel; otherwise, it is called a thick
edge pizel.

Definition 3.6: An edge that contains only thin edge pixels is called a thin
edge; otherwise, it is called a thick edge.

It is clear that edge pixels are either thick or thin. Since an edge is thick if
and only if it contains one or more thick edge pixels, a thick edge can be
transformed into a thin edge by the removal of the thick edge pixels. In Figure
3.6, we show several examples of thick edges, and the possible transformations
of these edges into thin ones. The definition of thick and thin edges also apply
to edge segments; an edge segment is thin if and only if it contains only thin
edge pixels.

We now state several facts and propositions concerning cycles and the
structure of thin edges which will be frequently used in the analysis of later
sections.

Fact 3.3: If e, €E is contained in any cycle C of length three, then C is
contained in E. :
This is a simple yet important observation from the fact that all the pixels in a
cycle are connected and must belong to the same component.

Proposition 3.2: E is a thick edge if and only if E contains a eyele of length
three.

Proof: If E is a thick edge, then from the definition, it must contain a thick
edge pixel which is contained in some cycle of length three. By Fact 3.3, this
cycle is contained in E. Conversely, if E contains a cyele of length three, then
each pixel of the cycle is a thick edge pixel, and hence by definition, E is a
thick edge.

O

Proposition 3.3 If C is a cycle of length three that contains the edge pixel

Sm(i, j) € S, , then C is completely contained in the window W; i(Sp)-

54

X X
(a) |X (e)| X
X X
X[X X
X X
X X
X|x|x X
o) [x] [x @ {x] Ix
X| |x x| |x
X| |x x| |x
x| |x x| [x
X X
© [X (@ [X
X[x[x]x]x X[x]x]x
X X
X X
X X X X
@ | |x X [x)| [x X
x| [x]x x| [x]x
X |x X
X X
X X
X X

Figure 3.6. Thick and thin edges. The edges on the left, (a) to (d), are thick
edges. Those on the right, () to (h) are thin edges obtained by
the removal of several thick edge pixels from the corresponding
edges on the left.

55

Proof: Let the cycle be represented by C = sy(i, j), ey, €5, s(i, j). Sinee C is
a walk, the edge pixels e; and e, musty be adjacent to Sm(i, j), and
consequently, they must be contained in N;;(S,). Since N;j(Sm) C W, ;(8,)
(by Fact 3.1), we conclude that C C W, i(Sm)-

O

From Proposition 3.2, we conclude that one way to determine if E is a
thin edge is to look for a cycle of length three in E. If one cannot be found,
then E is a thin edge, otherwise it is a thick edge. Proposition 3.3 tells us that
if we wish to determine whether a pixel e, is thick or thin, we only have to
consider the pixels in the window centered about ey. That is, the pixels outside
of the window do not affect the thickness or thinness property of the center
pixel.

The following 5 propositions relate to the structure of thin edges in a
3 X 3 square lattice. They list the different kinds of thin edge structures that
can exist in the lattice.

Proposition 3.4: Any edge E such that || E || < 2 is a thin edge.

Proof: The proof is trivial since for E to be a thick edge, it has to contain a
cycle of at least 3 distinct edge pixels. This is impossible since E has at most 2
pixels.

O

Proposition 3.5: The only possible thin edge E contained in a 3 x 3 square
lattice such that the center is an edge pixel and || E || = 3, is one of the 16
structures shown in Figure 3.7.

Proof: By construction and use of Proposition 3.2. Of the 28 structures

satisfying the above condition, only these 16 contain no cycle of length three.
O

Proposition 3.8: The only possible thin edge E contained in a 3 x 3 square
lattice such that the center is an edge pixel and || E || = 4, is one of the 8
structures shown in Figure 3.8.

Proof: By construction and use of Proposition 3.2. Of the 56 structures
satisfying the above condition, only these 8 contain no cycle of length three.

56

X X
XXX X X
X X
X X
X XX X | X
X X X
X X X
X|X X XX
X X
X X X X
X X X X
X X X X

Figure 3.7. The 16 thin edge structures in a 3x3 lattice. Each of the
structures has 3 edge pixels.

57

X X X X X X
X X X X
X X X X X X
X X X X
X | X XX
X X X X

Figure 3.8. The 8 thin edge structures in a 3x3 lattice. Each of the structures
has 4 edge pixels.

Figure 3.9. The only thin edge structure on a 3x3 lattice which contains five
edge pixels.

58

D .

Proposition 3.7: The only thin edge E contained in 2 3 x 3 square lattice
such that the center is an edge pixel and || E || = 5, is the structure shown in
Figure 3.9.

Proof: By construction and use of Proposition 3.2. Of the 70 structures

satisfying the above condition, only this contains no cycle of length three.
0

Proposition 38.8: Any edge E contained in a 3 x 3 square lattice such that
the center is an edge pixel and || E || > 5 is a thick edge.

Proof: By construction and use of Proposition 3.2. Each of the 98 edge
structures satisfying the above condition contains at least one cycle of length
three.

0

The above propositions hold only for small lattices of size 3 x 3, and may
seem irrelevant as they cannot be directly applied to real images of larger size.
However, their importance is seen when they are used in conjunction with
Proposition 3.3 and the next proposition. These propositions together provide
the basis for an alternative method of determining whether an edge pixel is
thick or thin.

Proposition 3.9: Let E be an edge contained in the window Wi,j(S) such that
the center pixel s(i, j) is an edge pixel. Then E is a thick edge if and only if

s(i, j) is a thick edge pixel. Similarly, E is a thin edge if and only if s(i, j) is a
thin edge pixel.

Proof: If E is a thick edge, then by Proposition 3.2 it must contain a cycle of
length three. By construction, every cycle of length three contained in a 3 x 3
lattice must include the center pixel. Hence, the center pixel must be a thick
edge pixel. Conversely, if the center pixel is a thick edge pixel, then it must
belong to E. Thus by definition E is a thick edge. The proof of the second
statement follows trivially from the first.

O

To determine if s(i, j) is a thin/thick edge pixel, by Proposition 3.3, we
simply have to consider the pixels in the window W, ;(S). But by Proposition

59

3.9, this is the same as determining if the edge E in Wi i(S) is a thin/thick

edge. All the possible thin edges in a 3 x 3 square lattice are given in
Propositions 3.4 through 3.8. Hence an alternative method of determining if
s(i, j) is a thin/thick edge pixel is to see if the edge structure in W, i(8) is
identical to any one of the thin edge structures listed in Propositions 3.4 to 3.8.
If it is, then s(i, j) is a thin edge pixel; otherwise, it is a thick edge pixel. We
will make use of this fact in Section 3.3.3 to reduce the amount of computation
required to determine the value of the cost function.

3.3 A Cost Function for Evaluating Edges.

Having established the necessary mathematical preliminaries and
definition of edges in the previous sections, we now turn our attention to the
formulation of a cost function for evaluating edges. As mentioned in the
introduction to this chapter, we seek to use an absolute cost function that
measures absolute quality of edges instead of relative quality. The function
should be applicable to individual edge configurations by assigning a cost value
to each configuration. The configuration with the lowest cost corresponds to
the best configuration in the sense that it is most consistent with our concept
of an edge.

The motivation and approach to the formulation of the absolute cost
function is very similar to that of the comparative cost function. In fact, we
will employ essentially the same form of the cost function, using a linear
combination of weighted cost factors. As in the comparative cost function, each
cost factor captures a desirable characteristic of edges. However, it will be seen
that the definition of the absolute and comparative and cost functions differ in
several important aspects. First, the absolute cost function is defined using
only one single edge configuration as its argument, while the comparative cost
function uses two configurations. Second, although they have the same form,
the definition of four out of five of the cost factors are different for the two
functions.

We will first describe the general form of the absolute cost function, and
then describe the cost factors. We will also state a number of propositions that
will aid us in the computation of the cost.

Again, let S;; € S be an edge configuration and L be the set of all pairs of
indices for an N x N lattice of sites: L ={(i,j);1 <1,j< N}.

Definition 3.7: The point cost of S at site | = (i, j) €L is defined as the

60

following linear sum of weighted cost factors:

ColSm 1) = | WeClSims 1) + WaCulS 1) + W,CifSu 1)

+ w;Cy(Sm, 1) + wiCy(Sp, 1)]

= % WCi(Sm 1) (3.1)
k=1

where wy = 0 and 0 < C, < 1.

Definition 3.8: The total cost of edge configuration S, is the sum of the
point cost at every point in the image:

F(Sm) = ch(sm’ l) d (3'2)
leL
or equivalently,
5
F(Sp) =3 [> WkCx(Smy 1)] ~ (3.3)
€L | k=1

This total cost is the absolute cost function for evaluating edges. We will
often omit the term absolute and refer to this simply as the cost function when
there is no confusion with that of the comparative cost function. Notice that
the cost function is the sum of the point cost at every site in the image, and
also takes the form of a linear sum of weighted cost factors.

Deﬁnit.ion 3.9: For any pair of edge configurations S, S, €S, the
incremental cost from S, to S, is given by

AF(Smysn) = F(Sn) - F(Sm) (3'4)
= Ecp(sm l) - ch(sm’ l)_
leL leL
= 5[Gyl 1 = Cyf5m 1] (3.5)

leL

61

=3 [55:’ Wi C(Sp,1) — 55] Wka(SmJ):l
leL {k=1 k=1
AF(S,8,) = 33 wk{ 5 [0u(81 1) = Gyl)] } (3.6

Alternatively, we can write the incremental cost given in Equation (3.6) as a
sum of five incremental cost factors, AC,.

5
AF(Sy,8,) = 3 wiAC(L ; Sp, Sp) (3.7)
k=1

where ACy(L;8,,S8,)=7% [Ck(Sn, 1) — Cy(Sp, l)}
leL

For notational simplicity, we will often write AF(Sy,S,) simply as AFy ,.
Notice that while Equation (3.4) is the basic definition of the incremental cost,
Equation (3.5) expresses it in terms of the point cost, and Equation (3.7)
expresses it in terms of the incremental cost factors. A comparison of Equation
(3.7) with Equation (2.2) shows that the two equations are very similar in form.
However, because of the difference in the definition of the cost factors, the
results produced using the two equations are significantly different. The
incremental cost AF,, , gives the cost difference between configurations S,, and
Sp. If it is negative, then S, has a lower cost than S_, and is consequently a

better configuration. Conversely, if it is positive, then S, is better.

Proposition 3.10: Let {S;, S,, Sm} CS be any collection of edge
configurations. The incremental cost from S, to S, can be written as the sum

’ m—1
AFl,m =3 AFi,i+1
i=1
Proof:

m-1
2 AF‘i,i-I—l =AF1,2 +AF2’3+AF3,4 ceee +AFm_1,m

1=1

=F(S;) — F(S;) + F(S;3) — F(Sy)

62

+ F(S;) —F(S;) ... + F(Sp)—F(S,_,)

=F(Sm) — F(S)

I,m
0

This proposition provides an indirect method of computing the
incremental cost from S; to S;,. This indirect method is very useful, especially
when it is difficult or computationally inefficient to determine the incremental
cost value directly. In most of our applications, this method of computing the
incremental cost will be used. This proposition is also useful in analysis; in
Section 3.4, we will use this property of the incremental cost in the proof of a
number of other propositions.

Figure 3.10 shows a block diagram of our cost minimization approach to
edge detection. The fundamental property of edges is that they separate
regions that are dissimilar. The first step in the detection process is to enhance
those points in an image that satisfy this fundamental property of edges. These
points serve as good candidates for edge points. The enhancement is based on a
given dissimilarity measure and a enhancement scale factor. We refer to this
processing stage as dissimilarity enhancement. In this stage, we also attempt to
ensure that the enhanced points satisfy the desirable edge property of accurate
localization. It will be seen that this property will be achieved by using non-
maximal suppression for the dissimilarity values.

Instead of using the original image directly, the cost function is defined in
terms of the enhanced image. Desirable characteristics of edges such as thinness
and continuity that are difficult to capture in the dissimilarity enhancement
stage are embedded into the cost function. The edges are detected by finding a
suitably low cost solution to the cost function. Simulated Annealing will be
employed as a technique of finding low cost solutions. As seen in Equation
(3.3), the cost function is a weighted sum of five cost factors. The choice of
weights for the cost factors is application dependent, and it determines the
nature of the edges which will be detected.

In the following sections, we will elaborate on dissimilarity enhancement
and the definition of the cost function. We will also analyze the cost function
and provide guidelines on the choice of weights to achieve specific
characteristics in the detected edges.

63

Dissimilarity |Enhanced | Cost Function Low cost

' - A — edge
Enhancement [0D | Minimization configuration

image G —

dissimilarity measure, f(R1 ,R2) weights, o ;
enhancement scale factor, o

Figure 3.10. A block diagram of the cost minimization approach to edge
detection.

64

3.3.1 Determining Region Dissimilarity

We have mentioned in Section 2.2 that an edge is a boundary in an image
that separates regions that are dissimilar. In this section, we focus on the task
of enhancing the points in an image that are good candidates for edge points.
The enhancement procedure is very much dependent on how dissimilarity is
defined in an image. For instance, we could model an edge as an ideal step and
define dissimilarity to mean that the region on each side of the edge has
different constant gray levels. In this case, a possible method of enhancement
is to convolve the image with a gradient operator to obtain the enhanced
image.

Dissimilarity based on the ideal step is only one of a myriad of possible
region dissimilarities that could exist in an image. Instead of focusing on one
specific kind of dissimilarity, we will give a general definition of region
dissimilarity in the form of a dissimilarity function. We will describe a
procedure that uses this function to enhance the points in an image that have a
high degree of dissimilarity in its neighboring regions. These points are good
candidates for edge points based on the criterion that edge points separate
dissimilar regions. However, for reasons to be stated in the following
paragraphs, we emphasize that region dissimilarity itself provides insufficient
information for good edge detection.

Referring again to Figure 3.10, the first step in the detection process is to
obtain an enhanced image from the original image. The edges are then
detected by finding the edge configurations that minimize the cost function.
Thresholding the enhanced image can be considered to be the simplest form of
cost minimization where the cost function does not take into account edge
structure information. The required complexity of the cost function and the
subsequent minimization procedure is very much dependent on the
performance of the dissimilarity enhancement stage. For instance, if we could
have perfect performance at the enhancement stage in the sense that the
dominant features in the enhanced image follow closely to our concept of an
edge, then the edges could be detected by a simple thresholding operation.

However, in practice, it is impossible to have perfect performance in
dissimilarity enhancement so that high quality edges can be obtained by simple
thresholding. This is because of two main reasons. First, region dissimilarity
based on the original image data often provides insufficient information for
edge detection. Good edges are those that exhibit the desirable characteristics
of accurate localization, thinness, continuity, and sufficient length. Some of

65

these characteristics, particularly the last three, are structural characteristics of _
edges that are difficult to determine directly from the image data. They are
embedded in the structure of the edge configuration. Second, dissimilarity
enhancement is a process that is usually sensitive to noise. Noise processes will
cause many points to be incorrectly enhanced as potential edge points. Except
for artificial images, noise is always present in an image.

The above discussion leads us to conclude that it is necessary to exploit
information from local or global edge structure to aid in the detection process.
Our approach to detect edges is to attempt to achieve the best we can at the
enhancement stage. Desirable edge characteristics that are not captured in the
enhanced images are embedded into the cost function. The cost minimization
procedure will then find the edges which exhibit the characteristics that are
consistent with our concept of an edge.

The fundamental property of edges is that they separate dissimilar
regions. In dissimilarity enhancement, we concentrate on the following two
goals that relate to our concept of an edge.

(1) To signify those points in an image that possess the fundamental property
of edges.

(2) To ensure that those enhanced points are accurately localized.

The enhanced image
D={d(ij);1<1ij=< N}

is a collection of pixels where each pixel value is proportional to the degree of
region dissimilarity that exists at that pixel site. The pixel values lie in the
range 0 < d(i, j) = 1. Pixels with large values close to 1 are good candidates
for edge points in an image. Three things are required in order to enhance an
image according to the set goals:

(1) Well defined regions of interest on either sides of an edge.
(2) A function that measures dissimilarity between the regions of interest.
(3) Non-maximal suppression as a method of ensuring accurate localization.

The regions of interest are defined with reference to a set of selected edge
structures. We call this set of edge structures the basis set. Within the scope of
this report, the basis set is constrained to be 3-pixel edge structures contained
in a 3 x 3 window region. In line with our concept of an edge, we also require
these structures to be thin. The basis set is thus selected from the 16 edge
structures given in Proposition 3.5. In most of our applications, we selected as

66

our basis set the first 12 of the 16 structures shown in Figure 3.7. The regions
of interest on ether sides of each edge of the basis set are defined in the same
way as those for the comparative cost function in Section 2.3.2. These regions
are again labeled as R1 and R2 for each edge structure in the basis set.
Figures 2.9 and 2.10 show an examples of the basis set and the corresponding
regions of interest for each edge structure.

The function that measures the dissimilarity between regions R1 and R2 is
denoted by f,(R1,R2). This measure could be a simple difference of gray level
averages in R1 and R2, or it could be more complicated measures based on
statistical or structural properties in the gray levels. Depending on the
application and the features of interest in an image, there are numerous
possibilities for the definition of f,(R1,R2). As previously mentioned, to find
step edges in an image, we could define the dissimilarity measure to be the
difference of constant gray levels in the regions R1 and R2. It is clear that
there is extreme flexibility in such an approach to dissimilarity,enhancement as
we do not restrict the nature of the dissimilarity. This is in contrast to many
detection algorithms that assume some specific nature of edges and are devoted
to finding only those edges. At this point, we do not need to know the explicit
definition of the dissimilarity measure f,(R1,R2) which will be used; we simply
assume that one exists.

Non-maximal suppression is important in ensuring the accurate
localization of an edge point in an image. In practically all real images, the
dissimilarity measure has the tendency to enhance the points in the vicinity of
the true boundary in addition to enhancing the boundary itself. This is
undesirable as a large number of false boundary points are enhanced. One
approach to mitigate this tendency is to employ non-maximal suppression in
dissimilarity enhancement. However, an undesirable side effect that results in
using non-maximal suppression is that some true boundary points may also be
suppressed together with the false points. This may increase the amount of
fragmentation in the boundary. It will be seen that the cost factor for
fragmentation will compensate for this effect by linking together locally
disconnected edges.

We now describe a procedure to obtain an enhanced image D from the
original image G. It performs non-maximal suppression by shifting the edge
structure in a direction perpendicular to the edge direction. The procedure is
as follows:

67

(1) Initially, all the pixels d(j, j) are set equal to zero.

(2) At each pixel site (i,j), we perform steps A and B.

A.

Each of the edge structures of the basis set is fitted onto the site by
centering it on the location (i,j) in G. The corresponding paired
regions R1 and R2 in G are determined for each structure, and the
value of f (R1,R2) is computed. The structure that results in the
maximum value of f,(R1,R2) is chosen as the best fitted edge
structure.

Note that each edge structure of the basis set contains exactly three
edge pixels; we will denote the sites of the three edge pixels of the best
fitted edge structure in G as (i, j), (iy, j1), and (is, js)-

Next, we perform non-maximal suppression by shifting the location of
the chosen best fitted edge in a direction determined by the edge
structure. For vertical, horizontal and diagonal edge structures, the
shifting is performed by moving the edge location by one pixel in each
of the opposite directions perpendicular to the edge. For all other
edge structures, the shifting is done by moving the edge one location
in each of the the four directions: up, down, left and right. Figure
2.13 shows how the edges are shifted for three edge types. For each
shifted edge, we determine the new regions for R1 and R2, and
compute the corresponding value of f,(R1,R2).

One of the following two cases results:

(i) If no larger value of f,(R1,R2) results from shifting the best fitted
edge structure, we set
f.(R1,R2)
T
where f,(R1,R2) is determined using the best fitted edge. The

factor « is called the enhancement scale factor. We then
increment the value of each of the pixels

d(i’ J)’ d(il’ jl)a and d(i2’ 32) by 0.
(ii) If there is a larger value of f,(R1,R2) from one of the shifted edge
structures, we do not alter any pixel value.

0=«

(3) Finally, the values of the pixels d(j, j) at all sites are truncated to a
maximum of 1.

Step (3) is performed essentially to ensure that the dissimilarity values lie
in the assumed range 0 < d(i, j) < 1. The value of the enhancement scale

68

factor o is application dependent. It serves as a selection parameter in
determining the number of edge points that will be detected. Section 3.4.3
gives guidelines to selecting the value of o

3.3.2 Defining the Cost Factors

The general form of the cost function has been given in Equation (3.3); it
is a linear combination of five weighted cost factors. Specifically, the five
factors are as follows.

(1) Cost for curvature

(2) Cost for region dissimilarity
(3) Cost for number of edge points
(4) Cost for fragmentation

(5) Cost for edge thickness

In this section, we will define each of these cost factors and discuss their
relevance to edge evaluation. Each of these factors affect a desirable
characteristic of edges. It will be seen that the cost for region dissimilarity is
the only one that is based on information from the image data; the others are
based on information from local edge structure. Ideally, each cost factor
should affect one and only one desirable characteristic so that the relative
importance of each characteristic can be appropriately emphasized by their
corresponding weight. In practice however, this is difficult to achieve as the
different characteristics often exhibit some form of dependeney on each other.

The cost factors together give an objective measure of how well a given
edge configuration fits our concept of an edge. These factors are defined based
on the assumption that lower cost configurations are better edges.
Consequently, the best configuration is the one that achieves the global
minimum of the cost function. The ultimate test of the validity of the cost
function is in its performance in detecting edges. In Chapter 5, we will show
experimental results of detecting edges using this cost function.

In order to define the cost factors, we have to first specify what is meant
by a straight edge and an endpoint. These are given in the following two
definitions.

“Definition 3.10: An edge E (or segment of an edge) is straight if all its edge
pixels lie on a single horizontal, vertical or diagonal line of the lattice on which
it is defined.

69

Definition 3.11: An endpoint is an edge pixel that has at most one other _
edge pixel in its neighborhood.

Using the definition of straight edges and endpoints, we will now specify
what is meant by the angle of turn at a point. If e, is an edge pixel that is not
an endpoint, then it can be considered to be the connection point (or common
point) of at least one pair of straight edge segments. The direction of each
straight edge segment is uniquely specified by the straight line joining the site
of e, with the site of any other pixel of the segment. This is illustrated in
Figure 3.11. Let n be the maximum number of different pairs of straight edge
segments connected at ey, each pair being denoted by the label Ppl =1=<n.
Let ¢; be the larger of the two angles between the edge segments of p;. The
angle of turn between the pair of edge segments in p; is given by

Qi = ¢i - 180.

In Figure 3.12, we show an example of an edge pixel that is.the connection
point of 3 pairs of straight edge segments.

Definition 3.12: The curvature 6(l) at any site | €L of configuration S is
defined as follows:

(1) I s(l) is a non-edge pixel or an endpoint, then the curvature is equal to
zZ€ero.

(2) If s(I) is an edge pixel that is not an endpoint, then the curvature is the
maximum angle of turn at that point:

6(1) = mfx {@(z)} .

Assuming that the image lattice is uniformly spaced, the curvature at any
site can take on one of four possible values; § € { 0, 45, 90, 135 } In the case of
the example in Figure 3.12, the curvature is 135 degrees.

Cost for curvature

The cost for curvature assigns a cost to each point in the edge
configuration according to the value of the curvature at that point. As
previously mentioned, the curvature at any point can take on any one of the
possible values of 0, 45, 90, or 135 degrees. At site ! of configuration Sp, the
curvature cost C(Sp,, {) is given in Table 3.1.

70

pixel ek\ X pixel Bk

X

x

Figure 3.11. The angle of turn at a point. (a) The pixel e, is a connection
point of a pair of straight edge segments. (b) The pair of straight
edge segments and the resulting angle of turn. In this case, the
angle of turn is 45 degrees.

(a) (b) (c) (4)

X
pixel e X '
k\(] ‘
X

X
X X ¢ b

X

Figure 3.12. An edge pixel that is the connection point of 3 pairs of straight
edge segments. (a) The pixel e, as part of the edge. (b) A pair of
segments with 6=0. (c) A pair of segments with 6=45degrees.
(d) A pair of segments with /=135 degrees.

71

Table 3.1. Curvature cost at pixel !

Curvature 0(I) | Cost C,(Sp, {)
0 0
45 0.5
90 1.0
135 1.0

The above assignment causes edges that have many turns to have a higher
curvature cost than those with relatively few turns. By appropriately choosing
the weight of the curvature cost, we can avoid excessive meandering and
turning of edges. This is particularly useful when, for instance, we know a
priori that the edges of interest are straight. Such edges often occur when we
are dealing with polygonal objects. This factor is also useful in the suppression
of noise effects. Noise in an image often stimulates the formation of jagged
edges which have high curvature cost. A sufficiently large weight for curvature
will tend to smooth out such edges.

Cost for region dissimilarity

This cost factor is based on the enhanced image D. It assigns a cost to
non-edge pixels that is proportional to the degree of dissimilarity at that point.
In other words, a site that contains a non-edge pixel but has a high degree of
dissimilarity will have a high cost. On the other hand, if it has a low degree of
dissimilarity, then the cost is low. This factor is intended to be used in
conjunction with the cost for number of edge points. It will favor the
placement of edge pixels at points of high region dissimilarity. The definition
of the cost factor is as follows:

0, if sy(l)=1
CaSms 1) = {d(l), i s (1) =0.

Cost for number of edge points

When used by itself, the cost for region dissimilarity will favor the
placement of edge pixels at all points in an image that have non-zero
dissimilarity values. This will result in an excessive number of edge pixels being
detected. To compensate for this, we assign a cost to each additional edge pixel
as follows:

72

0, if sp(l)=0
Ce(Smy l) - {1 , if Sm(l) = 1.

Cost for fragmentation

This cost factor reduces fragmentation by assigning a cost to the
endpoints of an edge. It is based on the intuition that fragmentation causes the
formation of surplus endpoints. For example, a straight continuous edge
contains two endpoints; the same edge fragmented in two places will contain
six endpoints.

There are two kinds of endpoints. The first is an endpoint that is the
terminus of some segment or path. The second is an isolated endpoint. An
isolated endpoint can be considered to be a path that has shrunk in length to a
single point. In the process, the former two endpoints of the path are merged
into one single point. Hence, as will be seen in the definition, the cost of an
isolated endpoint is twice that of a path endpoint. By assigning a cost to
endpoints, fragmentation will be reduced. This is because adjacent endpoints
which represents locally disconnected edges will be removed by linking the
edges together. The cost is defined in the following way:

Let T be the number of edge pixels in the neighborhood of pixel sy (I) in
configuration S, .

0, if s(1) is not an endpoint
Ci(Sm, 1) =1 0.5, ifsy(!)is an endpoint and T =1
1.0, ifsy(!)is an endpoint and T = 0.

Our concept of an edge includes the property of minimum length; edges
should be at least 3 pixels long. Although it is not obvious in the definition, it
will be seen later that the cost for fragmentation will guarantee that detected
edges are of a certain minimum length. Hence, unlike the comparative cost
approach, we do not need a separate cost factor for edge length to ensure that
edges are of a given minimum length. The minimum length property is
inherently embedded in the cost factor for fragmentation.

73

Cost for edge thickness

Since thinness is a desirable edge property, we foster the formation of
thin edges by assigning a cost to thick edge pixels. This is achieved by the
following cost factor for edge thickness.

CS 1) = 0, ifsy(!)is not a thick edge pixel
8w 1) = 1, ifsy(l)is a thick edge pixel.

In Section 3.4, the practical consequence of the above definitions of the
cost factors will be examined. We will also consider the choice of weights to
achieve specific characteristics in the detected edges. In the next section, we
concern ourselves with the question of how to compute the cost factors
efficiently.

3.3.3 Computing the Cost

The cost function is used to evaluate the quality of an edge configuration.
It will be seen in the minimization procedure that this function will be used
repeatedly in the search for low cost configurations. Hence, from a
computational standpoint, it is of major importance that this function can be
computed in an efficient way. By taking into account the interdependence of
the cost factors, a great deal of computation time can saved. We will now state
the first of several propositions that will aid us in finding an efficient procedure
to compute the cost.

Proposition 3.11: The point cost Cp(Sm, l) is dependent only on the
dissimilarity value d(/) and on the pixels in the window W;(S_).

Proof: Since the point cost is the sum of 5 cost factors,
; .
Cp(sm’ l) = chk(sm7 l)
k=1

it suffices to show that each of the 5 factors is dependent only on W,(S,) and

d().

(1) CelSms 1)
Case 1: sy (1) is not an edge pixel. It follows trivially from the definition
that C; is dependent only on s, (!) € W,;(Sy)-

74

Case 2: sy (!) is an edge pixel that is an endpoint. Since an endpoint is

determined by considering a pixel and its neighborhood, it is seen easily for
this case that C, is dependent only on s,,(1) U N;(Sy) = W,(S).

Case 3: s(!) is an edge pixel that is not an endpoint; it is the connection
point of n pairs of straight edge segments. Since the direction of each straight
edge segment is uniquely determined by the straight line connecting sm(!) with
any other pixel of the segment, we can choose the other pixel to be the one in
its neighborhood, N;(S,). This is always possible by Proposition 3.1. Hence,
the direction of each segment is uniquely determined by the pixels in N 1(Sm)-
The curvature at I/, the endpoint property (see Case 2), and consequently C,,
are dependent only on the pixels in N;(S,) U sy(I) = W;(S).

(2) Ca(Sm) 1)
From the definition, it is trivially seen that C; is dependent only on
sm(!) € W(Sy) and d(7).)

(3) CelSm» 1)
Again, from the definition, it is trivially seen that C, is dependent only on
Sm(l) € Wl(sm)'

(4) Ce(Sp, 1)

This factor assigns a cost to endpoints. Whether a pixel is an endpoint is
determined solely by the pixel itself and its neighborhood N 1(Sp)- Hence, this
factor depends only on W;(S,).

(5) Ci(Sms 1)

This factor assigns a non-zero cost to thick edge edge pixels. An edge pixel
is thick if and omly if it is contained in a cycle of length 3. According to
Proposition 3.3, this cycle, if it exists, is completely contained in Wi(Sp)-
Hence the factor is dependent only on the pixels in W,(S_).

Since each of the 5 factors are dependent only on W;(S,) and d(l), so the

linear combination of them is also dependent only on these pixels.
O

75

Computing the point cost

From the above proposition, we only have to consider the pixels in the
3 X3 window about a site to compute the point cost at that site. A
straightforward method of computing the point cost is to determine the values
of each of the cost factors independently. However, this is computationally
inefficient as we do not take into account the inter-dependence of the cost
factors. Our method of computing the cost function is based on the decision
tree show in Figure 3.13. This tree is obtained by pooling together all the
information affecting the different cost factors. It represents a compact
description of the cost factors, and it allows for the simultaneous computation
of several cost factors by traversing the tree from root to leaf.

As mentioned in Section 3.2.2, Proposition 3.9 gives an alternative method
of determining if a given pixel s(j, j) is a thin/thick edge pixel. All that is
needed is to see if the edge structure contained in W, i(S) is identical to any of
the thin edge structures in Propositions 3.4 through 3.8. If it is; then s(i, j)isa
thin edge pixel; otherwise it is a thick edge pixel. By using this method, we
avoid the need to trace an edge pixel to see if it belongs to a cycle of length
three. Contour tracing is time consuming compared to the alternative method
we have just described.

It is important to note that the decision tree in F igure 3.13 gives an
equivalent definition for each of the cost factors we have defined in the
previous section. The validity of this tree in representing the cost factors is
hinged on Propositions 3.3 to 3.9, and the following two propositions.

Proposition 3.12: Every thick edge pixel has a corresponding curvature
greater than or equal to 90 degrees.

Proof: Every cycle of length three has a characteristic L shape. Hence at each
pixel of the cycle, there is a pair of straight edge segments that form either a
90 or 135 degree angle of turn. Since a thick edge pixel belongs to a cycle of
length three, it must have a curvature of at least 90 degrees.

0

Proposition 3.13: Every edge pixel with three or more neighboring edge
pixels has a corresponding curvature greater than or equal to 90 degrees.

Proof: It is sufficient to show that the above is true for the case of three

76

site /

thin/ \thick thin /- \ thick

Ct=0 Cc= Ct=0 Ct=1

n = I N;(Sy) |l
thin: The edge contained in W(S,) is a thin edge.
thick: The edge contained in W;(S,) is a thick edge.

Figure 3.13. Computation of point cost C,(Sy,!) using a decision tree.

77

neighboring pixels. The simplest proof is by construction; each of the 56 edge
structures which has 3 neighbors in a 3 x 3 window has a curvature of at least
90 degrees.

|

Computing the incremental cost
According to Equation (3.5), the incremental cost from S, to S, is
AFm,n =3 [Cp(sn’ l) - Cp(Sm’ l)]
leL

Since there are N? sites in L, this represents a total of 2N? times the point cost
has to be computed. This is a tremendous amount of computation, and even
for small images of size 128 x 128, the value of 2N? is equal to 32,768. We will
show that by appropriately restricting the choice of S,, the incremental cost
can be reduced to a summation over a small subset of L, i.e.

APy, = 3| €48, 1) = CyfSw]
IeR

where R is a small subset of L, containing only 9 sites. We essentially reduce
the summation of N? terms to that of 9 terms. This is given in Proposition
3.14. Before stating it, we give several preliminary definitions and lemmas.

Definition 3.13: Let W,(S) be the set of pixels of S whose windows contain
the pixel s(!). That is, for I, q € L,

Wi(S) = {s(a) : s(1) € W(8) }

Lemma 3.1: Forany l,q €L,
s(q) € W;(8) if and only if s(I) € W,(S) .

Proof: Let I = (i,j) and q = (m,n). Then, from the definition of a window, the
pixel s(q) is a member of W,(S) implies that |i-m| < 1 and |j—n| < 1.
Since i is interchangeable with m, and j is interchangeable with n within the
absolute value signs, we conclude that s(q) € W,(S) implies that s(I) € W(S).
In the same way, a simple change of variables will show that s(l) € W(S)
implies that s(q) € W,(S).

]

78

Lemma 3.2: For any | €L, W(S) = W,(S).

Proof: We will show that the following holds for any ! € L; W,(8) C W,(S)
and W,(S) C W(S). Let s(q) € Wi(S), q €L. By Lemma 3.1, we have
s(1) € Wy(8). From the definition of W,(S), we see that s(q) € W,(S), which is
true for every s(q) € W(S). Hence W;(S) C W,(8))
Now, let s(q) € W;(S), then from the definition of W, we know that
s(I) € Wy(S). Again, by Lemma 3.1, we have s(q) € W,(S), which is true for
every s(q) € W,(S). Hence W;(S) C W,(S).

O

Definition 3.14: The index set of A, I(A) is the collection of the pairs of
indices of the pixels in A. For example, if

A= { s(ilijl)’ S(i27j2)’ S(im’jm) } ’
then the index set of A is given by:

IA)={(,J): s(,j) €A}

= { (ilajl)’ (i21j2)’ (imfjm) } :

Note that I(S) is the set of all possible indices of the edge configuration S, and
is equal to L. For notational purposes, we will write I(W;;(8)) as W; ;. That is,
when the window is used without specifying its argument, we are referring to
the indices of the pixels in the window.

Proposition 3.14: If S, S, €S are edge configurations that have identical
edge labelings at every pixel site, except at site x=(y,z) € L, where they are
complementary, then

AF,, = 3 [cp(sn,) — Cy(Smy 1)] . (3.8)
leW,

Proof: From the definition of incremental cost in Equation (3.5), we essentially
have to show that

53| ©4lS)= Oyl D] = 53 [Gyl 1) = €5 1]

leL leW,
Let W, = I (W,(S)), and partition L into disjoint sets:

79

L=(L-W,) UW, .

We can write the incremental cost according to the definition in Equation (3.5)
as

AFun= 51 [CyfSe D) = Gyl 1]

Ie(L-W,)
+ E [Cp(sn’ l) - Cp(Sm’ 1)]
lew,
For each | € (L——WX), it is easy to deduce that x ¢ W,. Since all the pixels of
Sp are identical to those in S, except only at site x, therefore, the

corresponding pixels in the windows W;(S,) and W;(S,) have identical edge
labelings. Using this fact and Proposition 3.11, we conclude that

Cy(Spy 1) = Cy(Sp, 1) forall I € (L—W,) .

Hence, the partial sum

| Culsn = Cylsm] =0 -
le(L-Wy)

By Lemma 3.2,
WX=I(WX(S))=I(WX(S))=WX .

Thus, the expression for the incremental cost becomes

AF,, = % [cp(sn, 1) = C,(Sumy 1)}
IEW,

O

Fact 3.4: An equivalent expression for Equation (3.8) using incremental cost
factors is

5
AFm,n =3 WkACk(Wx 5 Sty Sn) ’ (3.9)
k=1

where ACL(W,; S §,) = 3 [Ck(sn,) — Cy(Su, z)].
1EW,

80

From the above proposition, we see that by restricting S, to be an edge
configuration that differs from S, at only one site x, the incremental cost can
be reduced to the form shown in Equation (3.8). This proposition in itself is
not very useful because of the restriction on S,. However, it can be used in
conjunction with Proposition 3.10 to provide a very efficient method of
computing the incremental cost between any pair of configurations Sm and S,.
For example, let S, and S, be configurations that differ at K sites. It is possible
to find a sequence of configurations {Sy, 8y,.... S} such that Sy =S, Sk = Sp»
and any consecutive pair of configurations differ at only one site. Then
Proposition 3.10 can be used to express AFm)n in terms of consecutive pairs of
configurations, and Proposition 3.14 can be applied directly to each of these
pairs. This is the indirect method of computing the incremental cost. It is
particularly efficient for values of K much less than N2 We will be using this
method of computing the incremental cost in our search of low cost
configurations.

3.4 Analysis of Minimum Cost Configurations

In Sections 3.1 to 3.3, we have provided the necessary mathematical
preliminaries and presented a cost function for evaluating edges. This cost
function is a linear sum of weighted cost factors which mathematically
captures our intuitive concept of an edge. The validity of this cost function for
evaluating edges is ultimately determined by its performance in detecting edges
that fit our edge concept.

The cost function has been formulated with the inherent assumption that
lower cost configurations are better configurations according to our concept of
an edge. The best configuration is the one that achieves the global minimum of
the cost function. Two important issues have to be addressed in using the cost
function for edge detection. First, we need to address the issue of how to find
low cost edge configurations. Second, we need to know the nature of the edges
in the low cost configurations. The method of finding low cost configurations
will be discussed in chapter 4. We will use a stochastic optimization technique
known as Simulated Annealing to find suitably low cost configurations.

In this section, we focus on the second issue mentioned above, which is
analyzing the nature of edges in low cost configurations. The goal of analysis is
to determine specific properties or characteristics of the edges that will be
produced. For instance, we are interested in knowing whether there are any
thick edges in the low cost configurations, the minimum length of each edge,

81

and how well the edges are connected. Some of the results obtained from this
analysis will be used in the next chapter to prove certain bounds on the depth
of the cost function.

The nature of the edges in low cost configurations is necessarily related to
the set of weights chosen for the cost factors. For instance, if we set the weight
for thick edges to be very large, then low cost configurations will probably not
contain any thick edges. However, large values for the weights will tend to
cause the cost function to have many deep local minimums which are highly
undesirable. Deep local minimums are potential hazardous points which will
trap many algorithms in search of the global minimum. Hence, a judicious
choice of weights is essential in ensuring good performance for the cost
function. Our choice of weights will be based on several propositions which
will be presented in this section.

We will begin by formally stating the definitions of local minimum, global
minimum and neighborhood of a configuration. Based on this; we will state a
proposition which gives a sufficient condition on the choice of weights to ensure
that the detected edges will be thin. Also, we will analyze edges for other
properties such as their minimum length and certain characteristics of the
endpoints. Hypothetical examples will be given in the later part to provide a
better understanding of the nature of the edges in low cost configurations.

The cost minimization procedure which will be described in the next
chapter is based on Markov chains. Each state in the chain corresponds to a
possible solution to the minimization problem. For this reason, an edge
configuration is considered to be a state in the chain. In the following sections,
we will use the terms "state” and "edge configuration" interchangeably to mean
the same thing.

Again, let S represent the collection of all possible edge configurations on
an N x N square lattice.

Definition 3.15: The neighborhood of a state S, is a subset of S defined by
a neighborhood function H(S). If S, € H(Sy,), then S, is a neighbor of S,

Definition 3.16: A state Sg is a global minimum if it has the following
property:

F(Sg) = F(Sy) forallS, €8S .

Notice that the global minimum may not be unique; there may exist a set of

82

different states with the same minimum cost value.

Definition 3.17: A state Sy, is a local minimum if it has the following
property:

F(SL) =< F(Sk) fOl‘ all Sk E H(SL) N

Definition 3.18: The neighborhood function H;(S) is the subset of S such
that for each state S, € H,(S), the edge labeling at every site is identical to
that of S, except at a single site I, € L, where it is the complement. That is,

g — s(l) : s (1) =s(l) foralll #1,,1€L
k se(l) =35(1) forl =1 ’

where 5(!) denotes the complement of s(i).

Since there are N? different sites that could be specified by Iy, “so there are N2
different states in H,(S).

3.4.1 Formation of thin edges

An important aspect of our edge concept is that edges should be thin. By
a proper choice of weights, we can ensure that all the edges in any local or
global minimum state are thin. We do this essentially by placing a sufficiently
large weight for the cost of thick edge pixels. The following is a sufficient
condition for the formation of thin edges.

Proposition 3.15: Assume that the neighborhood function is H,(S).
If w; > (2w; +wq — W, — W), then there are no thick edges in any local or
global minimum state.

Proof: It is necessary and sufficient to show that there are no thick edge pixels
in any minimum state. Let S, be any state that contains a thick edge pixel. If
the condition holds, we will show that we can always find a lower cost
neighboring state that has at least one less thick edge pixel than Se-

Since S, has a thick edge, it contains a cycle of length 3;
C = s,(I11)so(l2)s0(13)80(11). Let S, be the edge configuration that has identical
edge labelings as S, except only at site /;, where it is a non-edge pixel. Notice
that this state is a neighbor of S, and has one less thick edge pixel. From
Proposition 3.14 and Fact 3.4 the incremental cost can be written as

83

5
AFo,n = kE WkACk(wx 5 Sos Sn)
—1

= W, AC, + wgACy + WAC, + wAC; + wAC, .

By taking into consideration the various edge structures in a 5 x 5 region
about site /;, we obtain bounds for each of the above incremental cost factors.
The incremental cost for curvature lies in the range —7 < AC, < —1. An
example of the edge structure for each of the limiting cases is shown in Figure
3.14. The incremental cost for region dissimilarity lies in the range
0 = ACy =< 1. The incremental cost for the number of edge points,
AC, = —1. The incremental cost for fragmentation lies in the range
0 = AC; < 2. Two examples of the edge structure for the upper limit is
shown in Figure 3.15. Similar to curvature, the incremental cost for edge
thickness lies in the range —7 < AC, < —1. From the above equation, we
have

8
5
&
A
M «»
b2
o

max [ACy]]
= wo(—1) + wy(1) + we(—1) + wi(2) + wy(—1)

=2W; +Wg — W, — W, — W,

Assuming the condition of the proposition holds,
2Wf +Wd —Wc—We—"Wt <0 y
we conclude that

max [AF, ,] <o.

This implies that S is a lower cost state than S,. Hence, we have shown that
for any state which contains a thick edge pixel, we can always find a
neighboring lower cost state by relabeling that pixel as non-edge. Therefore, in
any minimum state, there cannot be any thick edge pixels.

&

84

(a) site / (b) site /
x| x{x A1 x[x] 147
x4 X | x4
x| x]x

Figure 3.14. Computation of AC_. (2) Removal of edge pixel at /; results in
AC.=—7. (b) Removal of edge pixel at I/, results in AC,=—1.

(a) . (b) .
site / site/
x[x| 1471 x|x| 141
X‘/ X‘/
XX X X

Figure 3.15. Computation of AC;. Removal of edge pixel at I, of either (a) or
(b) results in AC;=2.

85

3.4.2 Minimum length of edges

The cost for fragmentation increases the continuity of edges by assigning a
cost to the endpoints of an edge. Although it is not obvious from the definition,
this cost also guarantees that the detected edges are of a certain minimum
length. This length is dependent on the choice of the weights Wi, wq and w,. By
appropriately selecting the weights, we can ensure that the detected edges are
of an arbitrary minimum length.

Before stating the proposition relating the minimum length of edges to the
weights, we first state two lemmas and a related proposition.

Lemma 3.3: Let s,,(/) be any edge pixel of configuration S, and let S, be
the configuration that has identical edge labelings as S_, at every site, except at
| where it is a non-edge pixel. Then, the incremental cost factor for curvature
AC(L ; S,,S,) is always less than or equal to zero.

Proof: By using Proposition 3.14 and Fact 3.4, and setting all the weights to
zero except w, it is straightforward to see that

AC(L ; 8,,8,) = AC(W; 5 Spm,S,) -
Using Fact 3.1, we can rewrite the incremental cost as
AC(W, ;58,,8) = AC(;84,8,) + AC(N; ; Spm,Sy) -
It is sufficient to show that AC,([;8,,5,) = 0 and AC(N;; Sp,S,) < 0
From the definition of the curvature cost, it is easily deduced that the first

inequality is always true. For the second inequality, we observe that for each
x€ NI ’

I NS I =11 Ne(S) Il = 1.

Consequently, from the decision tree for computing the point cost shown in
Figure 3.13, we see that for each of the cases of the number of edge pixels in
the neighborhood of x,

Ce(Spx) = C(SpyX) -

Hence, the sum

xé?u-, [Cc(Sn,x) — Cc(Sm,x)] <.

86

Lemma 3.4: Let s (/) be any edge pixel of configuration S, and let S, be,
the configuration that has identical edge labelings as S, at every site, except at
I where it is a non-edge pixel. Then, the incremental cost factor for thick
edges ACy(L; S,,,,S,) is always less than or equal to zero.

Proof: Let A, be the union of the pixels in all possible cycles of length 3 in
Sm, and similarly, let A, be the union for the cycles in S;. The cost for edge
thickness assigns a cost value of one to each dlstlnct edge pixel belonging to a
cycle of length 3, and hence,

SCSy, =11 A, |, and Cy(Sp,) =1l Ayl .
lel leL

Since S, is identical to S, except that it has 1 less edge pixel, then every cycle
C =s;(I1)sn(l9)su(l3)s,(!;) contained in S, must have a corresponding cycle
C" =sy(l)sm(la)sm(ls)sm(l1) in Sp. Consequently, the size ofA must be less
than or equal to that of A_, and so
5080 1) = S CSm)=l Ayl =l A | < 0 .
leL leL
O

Using the above lemmas, we now state a proposition that relates how the
cost for edge thickness and the cost for curvature change when edge pixels are
removed. '

Proposition 3.16: Let M be any collection of edge pixels in S, and let S, be
the edge configuration that has identical edge labelings as S at every site,
except at the sites of the pixels in M, where they are labeled as non-edge pixels.
Then, the incremental cost factors for curvature and thick edges,
AC(L; S1,S,) and AC(L; Sm»Sp),” are always less than or equal to zero.
Conversely, the factors AC(L; S,,S,) and ACyL; S,,8,) are always greater
than or equal to zero.

Proof: Consider any collection of edge configurations {Sl Soy .. Sk} Using
Proposition 3.10 and Equation (3.7), and setting all the weights except w, equal
to zero, we see that

k-1
AC (L ; S1,8¢) = TAC(L; S;,8,,1)

i=1

By letting k = || M || +1, we can construct a sequence of configurations

87

beginning with the initial configuration §; = Smy and ending with S, =S,
such that each consecutive configuration contains one less edge pixel of M.
That is, S, is identical to S; except at a single site of M, where it is non-edge.
By Lemma 3.3, each of the terms AC(L ; S;,S; +1) is less than or equal to zZero,
and hence

k-1
AC(L 5 8,,8,) = AC,(L; Si,Si41) =< 0.
i=0
From Equation (3.7),

ACc(L 5 Smy Sn) =3 (Cc(sn? 1) - Cc(Sm’ Z)- ’
lel - |

IA
o

it is easily concluded that
- -

AC(L; S,, Sp) = 3 {CulSm, 1) — C(S,, Hi= o.
el - -

The proof for the incremental cost for thick edges follows the same procedure
as for curvature, except that Lemma 3.4 is used instead of Lemma 3.3 above.
O

Intuitively, the proposition tells us that when edge pixels are removed
from a configuration, the cost for curvature and the cost for thickness never
increase. Conversely, when edge pixels are added, the two cost factors never
decrease. This proposition is important as it gives us an intuitive idea of how
the cost factors affect the edges.

We now state an important proposition which gives the minimum length
of any edge in a global minimum state.

Proposition 3.17: Assume that there are no thick edges in the global
minimum states. In a global minimum state, any edge E that contains at least

two endpoints has size
Wi
IEll = |——| ,
Wqg — We

where [X.I denotes the smallest integer greater than or equal to x.

If E contains less than two endpoints, then || E | = 4.

Proof: Let E be an edge in a global minimum state Sq, and let S_ be the state
that has identical edge labelings as Sg at every site except at the sites of E

88

where they are labeled as non edge pixels. Using Equation (3.7), the-
incremental cost can be written as

5
AF, ¢ = S wiAC(L ;5 S, Sq)
k=1

= wAC, + wgACy + w AC, + w;AC; + w,AC,

The incremental cost factors have the following values:

ACy=0, AC,=||E]l, and ACy = 3> —d{l) .
I€I(E)

Hence,

AF, ¢ =W AC, — 3 wad(l) + wl| E || 4+ w;AC;
I€(E)

= WCACC + E [We — de(l)] + WfACf .
IE1(E)
Since 0 < d(I) = 1,

AF, ¢ = wAC, + T [we — Wd] + w; AC;
IE1(E)

=wAC. + || E || (w, —wq) + W AG; .

From the fact that Sg is a global minimum state, we have AF, ¢ = 0, which
implies that
“ E H (Wd _We) = WcACc +WfACf .

If E contains at least 2 endpoints, AC; = 1. Using Proposition 3.16 we have
AC, = 0. Therefore, taking the minimum of the factors to the right of the

above inequality,

Wi

IE| =
Wqg — We

The size of E is an integer, and using the ceiling notation, we have

W
NE| = {——f—] .
Wy — W

If E contains less than 2 endpoints, it must contain a cycle. Again, by
Proposition 3.15, the cycle must be thin. By construction, the smallest cycle

89

that is thin must have at least 4 distinct edge pixels as shown in Figure 3.16.
O
3.4.3 Dissimilarity values at the endpoints

Dissimilarity enhancement signifies with large values those pixels which
are good candidates for edge points. The following proposition gives a lower
bound on the value of region dissimilarity at the endpoints of an edge. It is
useful in estimating the value of the enhancement scale factor ¢ used in
dissimilarity enhancement.

Proposition 3.18: Assume that the neighborhood function is H|(S). Let E be
a thin edge that is a path in a local or global minimum state, such that
| E|| = 2. Then, the dissimilarity value at each endpoint of E located at
site I € {I;, 15} must satisfy

iy = — . (3.10)

Proof: Let S, be a minimum state, and let S, be a member of H(S,) such that
S, and S, differ only at site Ij; pixel s (/;) is a non-edge pixel. From
Proposition 3.14 and Fact 3.4 the incremental cost can be written as

5
AFn,o = EWkACk(Wx 5 Sps So)
k=1

= WCACc + WdACd + WeACe + WfACf + WtACt .

Since E is thin and s (/,) is an endpoint of 2 path, the incremental cost factors
must take on the values: :

ACfr—-O, ACt=0, ACe=1, and ACd=—d(ll) .
Hence,
AF, , = wAC, — wad(ly) +w, .

Since S, is 2 minimum state, AF, , = 0. This implies that

By Proposition 3.16, AC, = 0, and hence

90

Figure 3.16. A cycle of 4 distinct edge pixels.

E1
y atl A N
X IX X X IX TX TX TX TX TX X TX [X TX X
L. _J
Y
E‘l
|
~ X
E, v
x |x | % o Ix
X X [x IxIx Ix IxTx
X - v J
E
X 1
X

Figure 3.17. Two examples of extended edge segments.

91

O

Since d(!) is linearly dependent on the enhancement scale factor o (up to
a maximum of 1.0), the above proposition provides a guideline to selecting the
value of . Essentially, edges can be extended by increasing o so that more
points satisfly Equation (3.10). The above weight ratio will be given a special
term called dissimilarity threshold which will be discussed in the next section.

3.4.4 General Considerations in Selecting the Weights

Selection of weights is of major importance as it determines the nature of
the edges and the number of edge points detected. In the previous sections, we
have given a sufficient condition for the weights to ensure that only thin edges
will be detected. Also, we have analyzed the minimum length of edges in terms
of the weights, and gave a lower bound on the values of the enhanced image at
the endpoints of an edge. Further insight is gained into the choice of weights
by considering the minimization of the cost function from the standpoint of
thresholding and edge linking. To do so, we have to first state an important
property of thin edges in a global minimum state. This property is given in the
following proposition. Several hypothetical edge structures will be used as
examples to provide additional insight into the weight selection process.

If E is a thin edge in any state S, we can partition E into non-empty
m

disjoint segments E; E, E; such that E = UE;. We define the extended
3 » i=1

segments Ei as the set of edge pixels of E contained in the union of the
windows of the pixels in E;. Two examples of extended segments are shown in
Figure 3.17. Note thatif m =1,E; =E =E;, and if m = 2, E; CE..

Proposition 3.19: Let E be a thin edge that is a path or cycle in a global

minimum state Sg. If Eq, Ey, E, are non-empty disjoint edge segments such
m ~

that E = UE;,, and E; are the corresponding extended segments, then for each
i=1

segment, the following inequality holds:

” Ei H We+Wc Z CC(SG! l) — Wy 2 d(l) < We . (3.11)
i) 1€1(E)

Furthermore, if m=1, or if E; contains an endpoint of E, then

92

HE;i |l we+w, 3 CoSq) —wgq 3 d(I) < 0. (3.12) -
1EI(E) 1EI(E;)

Proof:
Case 1: m = 2.

Let S, be the state that has identical edge labelings as S at every site,
except at the sites of E;, where they are labeled as non-edge pixels. The
incremental cost from S, to Sg is

5
AFD,G = ZWkACk(L H Sn’ SG)
k=1

= WCACC + WdACd + WeACe + WfACf + WtACt .

Since E is a thin edge, AC; =0, and AC, = || E; ||. Therefore, -

AFn,G =wAC, —wg 3 d(1) + w.l| Eill +w;AC; .
1€1(E)

The state S is a global minimum, and so AF, ¢ = 0. This implies that

wAC, —wg 3 d(l) +w || Bl = —w;AC; .
IEI(E)
The incremental cost for curvature is AC, = Y C(Sg, !).
lel(E)

We will refer to the segments containing the endpoints of a path as the end
segments. Segments that do not contain any end point are referred to as
interior segments. The incremental cost factor for fragmentation takes on one
of two possible values.

0, ifE isa path and E; is an end segment
AC; =1 —1, ifE isa path and E; is an interior segment
—1, ifE is a cycle

Substituting these into the above equation and taking the upper bound of the
factor to the right of the inequality,

W 3 ClSqr D) —wq 3 d(l) + Wl Byl = w .
1€l(E) IEI(E) :

It is easily seen that if E; is an end segment, then AC;=0, and the inequality
becomes

93

we 3 CSq, 1) —wqg N d(D)+wl Bl =< 0.
1€I(E) lEI(E;)

Case 2: m = 1.

We have E; =E = E,. Again, let S, be the state that has identical edge
labelings as Sg except with the corresponding pixels in E; labeled as non-edge
pixels. Following the same procedure as in case 1, we have

We 3} CelBa 1) —wa 3 d() +wll By | = —wAC .
1el(E,) 1€l(E,)

The incremental cost factor for fragmentation takes on one of the 2 values:

_ 10, ifEisa cycle
AC = {+1, if E is a path

Substituting this into the above equation and taking the upper bound of the
factor on the right of the inequality,

w, 3 CfSey 1) —wg 2 d(D)+w)IE|] < 0.
lel(B) l€(E)

3.4.4.1 Thresholding

Thresholding is the simplest form of edge detection based on an enhanced
image. It can also be considered to be a trivial form of cost minimization
where the cost function does not take into account edge structure information.
For the cost function which we defined, the edge structure information is
contained in the cost factors for curvature, fragmentation and thickness. By
setting their respective weights to zero, the cost minimization procedure
becomes a simple thresholding operation. From Equation (3.12) of Proposition
3.19, any edge E must satisfy

wa > d(l) = Il Ellwe+w, 33 CofSq 1) - (3.13)
IEI(E) I€1(E)
If E is a single edge pixel at I, then the following must hold:
We

= —.
=

We call the above ratio the dissimilarity threshold, and denote it by

94

¢ = _ (3.14)

Using a thresholding approach, in the minimum cost state, dissimilarity
values that are greater than or equal to ¢ will be labeled as edge pixels, while
those that are less than ¢ will be non-edge pixels. The dissimilarity values are
linearly dependent on the enhancement scale factor ¢, up to a maximum value
of one. Hence, the number of edge pixels that are detected can be adjusted by
varying the value of c. It is seen that a cost function comprising only of the
cost factors for dissimilarity and number of edge points, C4 and C,, represents
the general class of edge detection by pointwise thresholding algorithms.
However, for reasons that we have already mentioned in Section 3.3.1,
pointwise thresholding algorithms do not perform well in finding edges that
suit our edge concept.

Consider a hypothetical minimum cost configuration S, containing a single
thin edge E as shown in Figure 3.18. Let S, be the edge coﬂﬁguration that
contains no edge pixels. If the cost function uses only the cost factors C4q and
Ce, then by considering AF;,, S, is a lower cost state if and only if the
following inequality holds:

wa 3 d(1) = || E liw, - (3.15)
IEI(E)
However, when the cost factors for fragmentation and curvature, Cs and C,,
are included, the inequality becomes:
wg S d(l) = || E |lw, +wp +w, . (3.16)
IEI(E) :

A comparison of Equation (3.15) with Equation (3.16) shows that the sum
of the dissimilarity values for the latter equation has to be larger than that of
the former. In this case, when the cost factors C; and C, are included into the
cost function, the lower bound of the sum of the dissimilarity values is
increased by w; + w.. Consequently, the edges that are detected for the case
using Equation (3.15) may not be detected for the case using Equation (3.16).
This is an example where we observe the influence of C; and C, in suppressing

short edges.

95

X{XIX|X
X X
X X
Figure 3.18. A minimum cost configuration containing a single thin
edge.
E0 E1 E2
4 A N A N - N
(a) XX XX
X
XIXIXIX]|X|X
X
X
X{X|X]|X
(b) "
X X
X
X

Figure 3.19. An example of edge linking. (a) Configuration S; which contains
an edge E comprised of the segments E, E,, and E,. (b)
Configuration S, which contains fragmented version of edge E by
the removal of segment E,.

96

3.4.4.2 Edge linking

We will now consider how the cost for fragmentation promotes edge
linking. Consider a minimum cost configuration S; that contains a single thin
edge E as shown in Figure 3.19(a). Let E be partitioned into 3 disjoint
segments Eg, E; and E,. Now let S, be the configuration that contains E but
with the edge pixels of the center segment E; relabeled as non-edge. This is
shown in Figure 3.19(b). Notice that the edges in S, is actually a fragmented
version of edge E. The size of the fragmentation, or the fragmentation length,
is equal to || E; ||. By considering AF,, 8 is a lower cost state if and only if
the following relationship holds:

wg 3 d(l) +wp = || Ey{lwe +w, . (3.17)
I€l(Ey)

Notice in this case that if
Wy = ” El ”We+wc ’

then S; will have a lower cost than S, regardless of d(1); the continuous edge E
has a lower cost than the fragmented version of the edge. Assuming that the
weight for curvature w, is comparatively small, we can approximate the above
inequality by

wy = || By |lw, . (3.18)
If we let

K= IEJ , (3.19)

We

where [J is the floor function, we see that thin edges with a fragmentation

length of less than or equal to x pixels will have a lower cost when they are
linked together. Stated in another way, endpoints which are less than or equal
to K pixels apart have a lower cost when they are linked together. For this
reason, we will call k the fragmentation linkage length.

In arriving at the value of x given in Equation (3.19), we have not taken
into consideration the dissimilarity values; they were assumed to be zero. When
these values are taken into account, edges that have fragmentation lengths
larger than k can also be linked together. This is illustrated in the following
two examples. '

In the first example shown in Figure 3.20, we show a straight edge and the
dissimilarity values along the edge. Assume that the dissimilarity values are

97

Eq

—*
(a) XXXXXXXXXXXXXXX

¢ -t--4--F-}-4-- I S 1 1 We

Figure 3.20. An example of edge linking across a region where the
dissimilarity values are equal to 0. (a) A straight edge. (b) The
dissimilarity values along the edge.

98

zero at all other points. Notice that the edge contains a segment E, where all
the sites have dissimilarity values equal to 0. If the cost for fragmentation is
not included, only those points with dissimilarity greater than the dissimilarity
threshold ¢ will be detected. This will result in a fragmented edge as the center
portion E, has dissimilarity values equal to 0. However, with the inclusion of
the fragmentation cost, fragmentation will occur if and only if the length of 0s
in the dissimilarity values exceeds the fragmentation length k. That is,

ELl > &.

In the second example shown in Figure 3.21, we show another straight
edge and the dissimilarity values along the edge. Here again, fragmentation will
occur in the center region if the fragmentation cost is not included. In this case
however, since the dissimilarity values at the sites of E, are non-zero,
fragmentation may not occur even if the size of E, exceeds k. In fact,

fragmentation will occur if and only if the following relation based on Equation
(3.17) holds:

wg 3 d(l) +w <|| By |lw, -
1EI(E))

If we let

R=|—

e

Wi+ wg 3 d(l)] , (3.20)
Iel(E,)

then fragmentation will occur if and only if

Bl > & .

[asn|= [a]+]s].

Wy

Using the property

it can be deduced that

K= K +

3 d(l) j : (3.21)
We 1cI(B)

Note that K is always greater than or equal to k. Hence edges with
fragmentation length greater than x can be linked together. However, this
value of K only holds for straight edges. For. general paths or other thin edge
structures, Equation (3.11) will have to be used to account for curvature costs.
From the above two examples, we can view the effect of the fragmentation cost
from another standpoint; for some regions that have dissimilarity values below

99

'd i Y
(a) XXXXXXXXXXXXXXX
A
(b) 'y ¢
1. Tq

Y

Eq

Figure 3.21. An example of edge linking across a region where the
dissimilarity values are non-zero. (a) A straight edge. (b) The
dissimilarity values along the edge.

100

the threshold ¢, the fragmentation cost lifts them above the threshold.

3.6 Summary

In this chapter, we have given a mathematical definition of edges using
terms that are similar to those in graph theory. Based on this definition, we
accomplished two things. First, we analyzed certain properties of edges and
stated several propositions governing the structure of edges in a 3 x 3 lattice.
Second, we formulated an absolute cost function that measures edge quality.
As the term suggests, this cost function is different from the comparative cost
function of the previous chapter in that it measures the absolute quality of an
edge configuration instead of the relative quality between configurations.

The absolute cost function is a linear sum of five weighted cost factors.
The cost factors are curvature, dissimilarity, fragmentation, thickness and the
number of edge points. Each of the cost factors captures a desirable
characteristic of edges. We have provided efficient methods of computing both
the cost of a configuration, and the incremental cost between configurations.
We have analyzed the cost function in terms of the nature of the edges that
will be detected. Based on this analysis, we have stated a number of
propositions which provide guidelines on the choice of weights to achieve
certain desirable characteristics in the detected edges.

101

CHAPTER 4
SIMULATED ANNEALING

4.1 Introduction

The general problem of combinatorial optimization which we are
concerned with can be briefly stated as follows. Given a large but finite set of
states S, each state S; €S having an associated cost defined by the cost
function C(S;), it is required to find the state with the minimum cost.
Depending on the specific nature of the problem, a variety of techniques [30]
exist for minimizing the cost. In this chapter, we focus on the use of Simulated
Annealing as a method of combinatorial optimization. In particular, we will
show how it can be applied to edge detection by minimizing the cost function
for edges which has been described in the previous chapter.

Simulated annealing is a stochastic optimization algorithm derived from
Monte Carlo methods [31] in statistical mechanics. Metroplois et al. [32]
originally proposed the algorithm as a simulation method for investigating the
behavior of substances consisting of interacting molecules. One of its many
later applications is in the study of properties of magnetic materials based on
the Ising model [33-35]. The Metropolis algorithm has been used extensively to
simulate the behavior of substances in thermal equilibrium as the temperature
was slowly decreased to the point of crystallization; hence the term ““‘Simulated
Annealing”. The goal of the annealing process is to find the ground states of a
substance which corresponds to the configurations of low energy in its
molecular structure.

Kirkpatrick et al. [36] and Cerny [37] independently observed that the
search for the low energy configurations in the annealing process could be
likened to the search for the low cost solutions in a combinatorial optimization
problem. The many different states that a system can exist in corresponds to
the many possible solutions of the optimization problem. The energy of a
particular state corresponds to the cost of a particular solution, and the ground
state corresponds to the lowest cost solution. A direct correspondence between
statistical mechanics and combinatorial optimization was thus drawn in the

102

following way.

Statistical Mechanics Combinatorial Optimization
1) States (of system) Solutions (to problem)

2) Energy (of state) Cost (of solution)

3) Ground State Optimal Solution

Based on the above correspondence, the annealing algorithm of Metropolis
et al. was first applied to the optimization of wire routing in integrated circuits
[36], and the traveling salesman problem [37]. Good results comparable to
present heuristic algorithms were reported. Since then, the algorithm has been
successfully applied to a number of diverse optimization problems such as the
traveling salesman problem[38], wire routing[39], coding[40], speech
recognition[41], image processing([42, 43|, and logic optimization[44].

4.1.1 Markov Chains

The Metropolis algorithm is based on stationary Markov chains. The
definition and theory of such chains can be found extensively in the literature
on stochastic processes, such as [45-48]. We will give a brief description of
Markov chains concentrating only on those aspects that are relevant to
Simulated Annealing. We will state several properties and a theorem
concerning the limiting behavior of such chains.

Let {) be a sample space and P be a probability measure on it. Let
X = {Xn; n€E N} be a stochastic process with a countable state space E. That
is, for each n € N = {0,1,...} and w € {), X (w) is an element of the countable
set E. We will say that “the process is in state j at time n”’ to mean X, = j.

Definition 4.1: The stochastic process X = {X; n € N} is called a Markov
chain provided that
P{Xn+1=j/Xo» cee Xn} = P{Xn+1=j/Xn}
forallj €EE and n € N.
A Markov chain is thus a sequence of random variables such that for any

n, X,y is conditionally independent of Xy, ..., X,_; given X,. That is, the
next state X, is independent of the past states X;, ..., X

L

_1 provided that
the present state X is known. If the conditional probability

P{Xn+1 =j/}(n = i} = P(i’ J)

is independent of n, the process is a time-homogeneous or stationary Markov

103

chain; otherwise, if it is dependent on n, it is a time-inhomogeneous oOr
nonstationary chain. The probabilities P (i, j) are called the transition
probabilities. They can be arranged in a square array resulting in a transition
matrix of the form:

[p(0.0) PO) P(02) - |

P(1,0) P(1,1) P(L,2) -
P(2,0) P(2,1) P(2,2) -

L . . . S

If P(i, j) is not equal to zero, we say that state j is reachable from state i.
A set of states is closed if no state outside of it can be reached from any state
in it. A Markov chain is irreducible if its only closed set is the set of all states.
A criterion for irreducibility is that a Markov chain is irreducible if and only if
all states can be reached from each other. The proof for this can be found in
[45]. ‘

A state j is said to be recurrent if and only if starting at j, the probability
of returning to j is one. Beginning from a recurrent state j at time n=0, let
n=R be the time of the first return to state j. Assuming that § = 2 is the
largest integer for which the probability that R is some integer multiple of dis
equal to one, then state j is said to be periodic with period 6. If no such 0 °
exists, then j is aperiodic. It can be shown [45] that for irreducible chains,
either all states are aperiodic, or all states are periodic with the same period o.
It follows from this that if the chain is irreducible and if there exists some state
i for which P(i, i) # 0, then the chain is aperiodic.

Limiting distribution
We now state a well know property of Markov chains relating to the
limiting distribution of a chain.

Theorem 4.1: If X is an irreducible aperiodic Markov chain with finitely
many states, then the system of linear equations

(i) = $HOPG, 3, 1€ (1)
i€cE

104

Ya(j)=1 (4.2)

JEE

has a unique solution that is strictly positive.

Proof: Refer to the text by Cinlar [45].

The probability distribution 7 which satisfies Equations (4.1) and (4.2) is
called the invariant distribution of the Markov chain X. For simplicity in
notation, we will write 7(j) simply as M.

4.1.2 The Metropolis Algorithm

The Metropolis algorithm, first proposed in 1953, was a method of
simulating the behavior of substances at thermal equilibrium. The description
and analysis of the algorithm given here follows closely to that given by
Hammersley and Handscomb [31]. Let S = {Ss, Sg;....Sk } be the finite set of all
possible states of a physical system. Each state S; has a corresponding positive
energy denoted by E(S;). In statistical mechanics, it is often desirable to
simulate the behavior of the system at thermal equilibrium at temperature T.
To do so, it is necessary to be able to sample the states with the following
probability density:

~E(S))]

€xp [aT
P(s;) = Zn

, 1<isK, (4.3)
where o is a positive scalar constant, and

Ty = e [—E(s)]

T = — 7
S€s aT

is 2 normalization factor which ensures that the sum of P(S;) over all possible

states is equal to one.

The denominator Zr of Equation (4.3) is unknown and cannot be
computed because the number of states, although finite, is very large. Hence,
although E(S;) is known, the probability P(S;) of Equation (4.3) cannot be
determined. As a result, it is not possible to generate the states according to
the given distribution using direct sampling methods. The Metropolis
algorithm achieves the above sampling requirement by constructing a finite
stationary Markov chain that has an invariant distribution which is identical
to that of Equation (4.3). That is, the chain has the set of all possible states of

105

the system as its state space, and its invariant distribution is given by:
7(5) = P(S;) . (4.4)

The method of generating the Markov chain is as follows. Consider any
arbitrary chain with a symmetric matrix P* of transition probabilities; the
elements of this matrix must satisfy

*

* * *
pj = 0, >p;=l, pjj=pj - (4.5)
]
We now define a new set of transition probabilities p;; using the known
(1)
7(3)

If i # j we define

quantities

(4.6)

If i = j we define
pii = Pii + 3Pyl — /™) (4.7)
i

where Y7 is taken over all values of j such that 7; Jm < 1.

We will next prove that these p;; are elements of a stochastic matrix and
that the Markov chain defined by these transition probabilities has 7 as its
invariant distribution.

Proof:
We will denote as ¥}/ the summation over all values of j such that j#1and

71"'/71'l = 1.

(1) From Equation (4.3), each 7; = 0, and hence by Equations (4.5), (4.6) and
(4.7), all the p;; satisfy

pij = 0. (4.8)

(2) The summation over all j of the quantities p;; can be written as

106

* * * *
Yy =pii + 3'py(1—m/m) + X'y /m + 3 by
j j j j

* * *
=Dy T+ Z'Pij + Z”Pij
j j

* *
=Ppii T 2P
j#

*
= Zpij =1. (4.9)
i
Thus by Equations (4.8) and (4.9), the p;; are elements of a stochastic matrix.

(3) To show that the chain has an invariant distribution equal to 7, we
essentially have to show according to Equation (4.1) that

Ty = Y TiPyj -
1

First we observe that for any pair i and j such that = =T, we have by
Equations (4.5) and (4.6)

* *

Pij = Pi; = Pji = Pji »
and therefore, since m; = T,
TiPij = TDji - (4.10)
Next, if m; < 7;, we have
* *
Pij = pyj7;/m = Py /T = Pjiﬂj/ﬂi)
which again gives Equation (4.10). Similarly, it can be shown that the same

equation still holds for m; < 7;. Consequently, it holds for all values of i and j.
Finally, we see that ‘

DMiPij = DIiPsi = MY Pji = 7 5
1 1 1

which completes the proof that the invariant distribution is 7.
0

Notice that by Equations (4.3) and (4.4), and the assumption that the
energy is finite, m; > 0 for all j. Consequently the matrix P = [Pij] represents an
irreducible aperiodic Markov chain whenever P’ = [pi}f] does. Hence by

Theorem 4.1, a unique solution exists and is of the form defined in Equation
(4.3).

107

We now consider the implementation of Equations (4.6) and (4.7), which
essentially is the Metropolis algorithm. The algorithm begins by defining an
arbitrary transition matrix P over the state space. The restriction on P is that
it must be symmetric, aperiodic and irreducible, which are the assumptions
made in Equation (4.5). For a fixed temperature T, the algorithm proceeds as
follows.

Algorithm (Metropolis):
(1) Pick a random initial state, and set k=0.
(2) Call this the present state S,,.
(3) Based on transition matrix P, randomly select another state S,.
(4) If (E(S,) <E(S,)) then
transition to state S,

else

»

_[E(Sn)_E(Sp)]
aT)

transition to state S, with probability exp [

(5) Increment k, then go to step (2).

The algorithm loops from steps (2) through (5), and as the number of
repetitions k becomes very large, the process approaches it invariant
distribution. We have shown that the invariant distribution takes on the form
given in Equation (4.3). Similar results relating to the invariant distribution
are given in [49-51].

By making a simple substitution of the energy of a state E(S;) with the
cost C(8;) of a solution, the above algorithm generates a Markov chain with an
invariant distribution of the same form as that of Equation (4.3):

—C(8;)
aT
Ly

exp

n(S;) = , 1<i<K, (4.11)
where K is the total number of all possible solutions, and « is a positive scalar
constant. Zp is again a normalization constant. Assuming that C(S;) is non-
negative for all i, Equation (4.11) specifies that lower cost solutions will have
higher probability of occurrence. Notice that if T is small, the distribution will
be concentrated about the low cost solutions. That is, when the Markov chain
achieves its invariant distribution at low temperatures, there is a high

108

probability that it is in a state corresponding to a low cost solution. As T
tends to zero, the distribution will be concentrated at the minimum cost states.
Hence the algorithm can be used in combinatorial optimization to find the
minimum cost solutions.

It is of interest to note that the Metropolis algorithm presented above
allows for uphill state transitions so that it does not get stuck in a local
minimum of the cost function. The temperature T can be interpreted as a
control parameter, and if it is set equal to zero, the algorithm is similar to the
steepest descent search method and will usually terminate in a local minimum.

4.2 Temperature Variation and Simulated Annealing

In using the Metroplois algorithm for optimization, two related issues have
to be resolved. The first is in estimating the number of repetitions or
transitions sufficient for the Markov chain to reach its invariant distribution.
The second is in the devise of a sequence of temperature decrements to bring
the system to the states of minimal cost. This is known as the temperature
schedule. The schedule has to be efficient in the sense that it ensures that the
lowest cost states are reached rapidly.

In order to ensure convergence to the global minimum states, temperature
variation has been incorporated into the Metropolis algorithm by changing the
temperature parameter T in step (4) so that it becomes time dependent. The
process generated by such such an algorithm is a non-stationary Markov chain.
A number of researchers [52-58] have proved the asymptotic convergence
properties of the chain and estimated various rates of convergence. The
general form of the Simulated Annealing algorithm for cost minimization is as
follows.

Algorithm (Simulated Annealing):
(1) Pick a random initial state, and set k=0.
(2) Call this the present state S,.
(3) Based on a transition matrix, randomly select another state S,.
(4) If(C(8,) <C(Sp)) then
transition to state S,
else

—[C(8,)—C(S,)]
Ty

.

transition to state S, with probability exp [

109

(6) Increment k, then go to step (2).

In devising a temperature schedule, we will focus our attention on the
work of Hajek [58] where he states a theorem which gives a necessary and
sufficient condition on the temperature schedule for the convergence of the
annealing algorithm to the set of global minimum states. We will also present
some related results of Geman and Geman [52], and Mitra et al. [54] in this
area.

Before stating Hajek’s theorem, some preliminary definitions are in order.
The problem is to minimize a function C defined on some finite set S. The set
of states in S at which C attains the minimum is denoted by S*. Assume that
for each state S; in S there is a neighborhood set H(S;) contained in S. In
addition, there is a transition probability matrix R over S such that
R(S;,8;) > 0 if and only if §; is in H(S;). A state i is reachable from state j if
there is a sequence of states j=ig, iy, ..., i,=i such that Rfiy, i) >0 for
0 < k <p. (8, H) is irreducible when for any pair of states i and j, i is
reachable from j.

A state i is reachable at height E from state j if there is a sequence of

states j=iy, iy, . . ., i,=i such that

R(ik, ik+l) >0 fOI‘ 0 < k <p
and
Cliyx) =E for 0<k<p .

Property 4.1 (Weak reversibility): For any real number E and any two states
iand j, i is reachable at height E from j if and only if j is reachable at height E
from i.

A state i is said to be a local minimum if no state j with C(j) < C(i) is
reachable from i at height C(i). The depth of a local minimum i is plus infinity
if i is a global minimum. Otherwise, the depth of i is the smallest number E,
E > 0, such that some state j with C(j) < C(i) can be reached from i at height

C(i) +E.
Let the temperature schedule T, T,.... be a sequence of strictly positively
numbers such that

T,= T, = ... 4.12
1 2

and

110

lim Tk =0 . (4.13) .

k—o0

Suppose that a discrete time non-stationary Markov chain X, Xj,.... on the
state space S is generated using the Simulated Annealing algorithm described
above. The convergence in probability of the chain to the set of globally
minimum cost states is given by the following theorem.

Theorem (Hajek): Assume that the Simulated Annealing based on (S, H, C) is
irreducible and satisfies weak reversibility, and that the temperature schedule
satisfles Equations (4.12) and (4.13). Then

Jlim P[X; € sl =1 (4.14)
if and only if
Sexp |——| =40, (4.15)
k=1 Ty

where d" is the maximum of the depths of all states which are local but not
global minima.

Proof: Refer to the paper by Hajek [58].

Remark: If Ty takes on the parametric form

c
Ty = —— |
k log(k+1)
then Equation (4.15) and hence Equation (4.14) holds if and only if ¢ = d".

(4.16)

Mitra et al. [54] showed that convergence can be achieved by a
temperature schedule of the form

Tk = 1
log(k + ko +1) ’

(4.17)

where k, is any parameter satisfying 0 < k; < oo, and

Y= rp,

where r and p are defined below. Let S be the set of all local minima, then the
~radius r is defined as

111

= m d(i, 4.18) .
r !E(Slrg)rgsx () (4.18)

where d(i, j) is the minimum number of transitions from i to j. The parameter
p is the maximum change in cost across any transition, and is defined by

= max max C(H) —Cc@)| . 4.19

o =max max | @1 (4.19)

Geman and Geman [52] applied the annealing algorithm to Markov

random fields and image restoration, and proved its convergence based on a
temperature schedule of the form

MA
Ty=—"7"".
log(1 + k)
The parameter A corresponds to the maximum difference in the cost for any
pair of states in S, and M is the number of pixels in the image. However, the
above schedule is not useful because the number of iterations k required to
reach a typical temperature of Ty =0.5 is far too large for any practical
implementation. For example, if M=20,000 and A=1, it would take
k = exp(40,000) iterations to reach a temperature of 0.5. In their
implementation, Geman and Geman concluded that the bound MA is far from
optimal and used an empirical value of 3.0 in place of the value MA.

To summarize, three things are required in the use of Simulated
Annealing for general problem solving:

(1) a cost function defined over the state space of all possible solutions,
(2) 2 method of generating next states (i.e. a suitable transition matrix), and

(3) an efficient temperature schedule.

4.3 Edge Detection Using Simulated Annealing

In Chapter 3 we have presented a cost function that evaluates the quality
of an edge configuration. This function mathematically captures the intuitive
ideas of an edge and serves as an objective measure of how well an edge
configuration fits a given image. It has been shown that when this function is
minimized, a number of desirable characteristics of good edges are achieved.
The goal is to find the configurations that achieve the global minimum of the
cost function. Since there are 2N possible edge configurations, it is not possible
to implement any exhaustive search approach because of the large number of
configurations to be considered.

112

We will use Simulated Annealing as a tool to find relatively low cost
solutions to the cost function. Although asymptotic convergence to the global
minima is guaranteed with the use of a suitable temperature schedule, the
finite time behavior of the annealing algorithm will often yield solutions that
are not global minima. However, they are local minimum of relatively low cost.
In the context of edge detection, we find that it is not necessary to achieve the
global minimum states; very satisfactory results are obtained from these
relatively low cost solutions. This is particularly evident from the fact that
many of the desirable characteristics of edges are achieved in low cost locally
minimum states which may not correspond to global minima.

Since we have already formulated a suitable cost function for the
annealing process, we proceed to discuss the remaining two requirements of
Simulated Annealing mentioned in the previous section. These are the method
of generating next states and the temperature schedule.

4.3.1 Method of Generating Next States ’

The state space of the annealing process is S which is the set of all
possible edge configurations on an N x N square lattice. For each
configuration S € S, the cost of the configuration is given by F(S). Each
configuration corresponds to a state in the Markov chain generated by the
annealing algorithm; the terms ‘‘configuration” and “state” will be used
interchangeably to mean the same thing. At any state S, the potential next
state S, is generated according to a transition matrix. Conceptually, the next
state is selected according to the probability distribution defined by the matrix.
Practically however, it is unnecessary to explicitly define a transition matrix
for the selection of potential new states; all that is needed is a method of
generating next states such that certain conditions on irreducibility and
reversibility are satisfied.

Our method of generating the next state is based on a combination of five
possible strategies. The first strategy generates the next state by
complementing a single pixel labeling in the present state. The second strategy
complements two pixel labelings in the present state. The third and fourth
strategies generate next states by shifting or perturbating the location of the
edges in the present state. The fifth strategy involves changing an arbitrary
number of pixel labelings in a window region. We now give the details of each
of these strategies and the method of combining them together. Again, we let L
denote the set of all pairs of indices of the pixels in a configuration. In each

113

case, we assume that ! €L is a given parameter; the method of selecting ! will

be discussed later.

Strategy 1: Single pixel change
SD = M]_(Sp, l) -

In this strategy we generate the next state S, by complementing the edge
labeling at ! of the present state Sp That is, for every pixel s;(x) € S,, and
sp(x) € S, such that x I,

82(%) = sp(x) ,

and for x =,

Sn(l) = gp(l) ’

where the bar notation denotes the usual binary complementatipn.

Strategy 2: Double pixel change
Sp = MZ(SP, l).

This is the same as the strategy M; except that we change the labeling of
two pixels in the window W,(Sp). We first randomly select a neighboring pixel
of I, sp(r) € N;(S,). Then the new configuration is the state that is specified by

5. (x) = {sp(x), x €L, x¢ {I,1}
: sp(x), xe€{l,r}.

Strategy 3: Single pixel shift
Sn = M;(Sp, 1) .

This strategy of generating a new state is based on locally perturbating
the edge structure in the window W;(S,). The next state S, has identical edge
labeling as S, at every site except for the pixels in W;(S,). The pixels in W,(S,)
are labeled according to the transformation of the edge structure in Wi (S,)
shown in Figure 4.1. If the edge structure in W, (S,) is one of the fourteen edge
structures shown in the figure, the edge structure in W,(S,) is the
corresponding structure shown on the right. Where there are two structures
possible for the transformation on the right, either of them are selected on an
equally likely basis. If the edge structure in W,(Sp) does not correspond to one

114

W, (Sp) W, (Sn)

X
XIX{X] —» [X] IX OR X] X
X
X
X — X OR |[X
X X
W/ (Sp) W/ (Sn) W/ (Sp) WI (Sn)
X X X XX
X — X XIX]| —a X
X X
X X X XX
X — X XX —_— X
X X
X XX XXX
X — X X —
X X
X X
X b XX — |X
X X X XX
X X
X —_— X XIX] —— X
X X X XX
X X
X — X X —
X X X| X XiX|X

Figure 4.1. The fourteen edge structures in W;(S;) and their corresponding
transformations in W,(S,) using strategy M;.

115

of the structures shown in the figure, then the structure in W;(S,) is made

identical to that in W;(S,). In doing so, we are actually setting S, = Sp.

Strategy 4: Multiple pixel shift
Sn = M4(Sp, l) .

This strategy of generating a new state is again based on locally
perturbating the edge structure in the window Wl(Sp)' It is very similar to the
strategy of M; except that the perturbation is more significant. The next state
S, has identical edge labeling as Sp at every site except for the pixels in WI(Sp).
The pixels of W;(S,) are labeled according to the transformation of the edge
structure in W;(S;) shown in Figure 4.2. If the edge structure in W, (S;) is one
of the ten edge structures shown in the figure, the edge structure in W, (S,) is
one of the two corresponding structures shown on the right; either of the two
are selected on an equally likely basis. If the edge structure in ,WI(SP) does not
correspond to one of the structures shown in the figure, then the structure in
W,(S,) is made identical to that in W;(S,). In doing so, we are again setting
Sy = 8, as in the case of Strategy 3.

Strategy 5: Window region change
Sn = M5(Sp, l) .

In this strategy, the next state is generated by arbitrarily changing all the
pixel labelings in the window W;(S,). That is, for all s,(x) €S, such that
sa(x) € W;(S,), sp(x) = s,(x), and for each s, € W;(S,), the pixels are labeled
randomly; each pixel in the window has equal likelihood of being an edge or
non-edge pixel. This strategy allows for as many as nine changes in the edge
labelings of S, when generating the new state S,. In fact, the edge labeling of
S, and S, are identical at every site except for a random number of K sites in
W;, where 0 < K < 9. When K=0, S, and Sp are identical.

The method of selecting the next state is a combination of the five
strategies mentioned above. Given /, we randomly choose from one of the five
strategies to generate the next state. Mathematically, the selection process can
be expressed in the form

S, = Mx(S,, 1) , (4.20)

where X is a discrete random variable taking on values in the set {1,2,...,5}.

116

W, (Sp) W, (Spy)

X XX X
X | — X] OR ([X
X X XiX
X X X|X
X| | = X] OR |[X
X XX X
X XX
X] | —a X] OR (X
X X X
X
X[X] | —{X OR [X] IX
X X X
X X ,
X| | ——|X OR X
X XX
X X X
XIX] X] OR [X| IX
X
X XX
X |—»]|X OR X
X X
X X X
XIX}] | ——X OR [X] IX
X
X X X
X | — X] OR X
X XX
X
XX X|] OR ([X] X
X X X

Figure 4.2. The ten edge structures in W(S,) and their corresponding
transformations in W,(S,) using strategy M,.

117

The probability distribution of X is given by _
PX =i)=p;, i=12..5 (4.21)

where

5

.E p; =1

1=1

The specific values of p; are application dependent; they determine the

frequency that each strategy will be used. Notice that given ! and Sy, each
new state that can be generated using M; or Mj can also be generated using
M,. That is, the set of states that can be generated using M; and M; is a subset
of the states that can be generated using M,. Similarly, the set of states that
can be generated using M;, M,, M3 and M, is a subset of the states that can be
generated using M;. Consequently, the total collection of states that can be
generated from a given state using the five different strategies is determined by
M;. Given ! and Sy there are 256 possibilities of generating‘“’ the next state.
Given S, only, there are approximately 256N? /9 different possibilities for the
next state. Figure 4.3 shows two examples of the various possible transitions
using the five different strategies.

The strategies M; and M; have a reversible property in the sense that
given [, if S, can be generated from Sy, then S, can also be generated from S,.
Since My will generate all states possible with the other four strategies, it can
be deduced that the method of generating new states using Equation (4.20)
also has this reversible property, provided that ps is non-zero. This property
will be useful in the proof of the weak reversibility (Property 4.1) of the
annealing process.

At each iteration through the annealing algorithm, the value of ! can be
chosen either in a random or deterministic manner. An example of a random
approach would be to select the ! on an equally likely basis from the set L. An
example of a deterministic approach of selecting ! is to to sequentially step
through each pixel site in the image in a raster scan manner. One guideline
that is used for the selection of { is that at low temperatures, every site should
be selected at least once before the termination of the annealing process. When
this is achieved, we have found experimentally that the results of cost
minimization obtained by both approaches are fairly similar. It should be
noted that using the above criterion that each pixel site should be selected at
least once, a random approach in selecting the value of ! would require a

118

XX M4 XXX M2°rM3 XXX M4 XIXIXIX
X X X X
X - X et X -y X
X My X MyorM; [X My X
Mg

X X
;<(My X My X
X - X . X
X _ X
X "—_Ms X M, X
X X X
X X X

Figure 4.3. Examples of possible transitions using the five different strategies
of generating next states.

119

significantly larger number of iterations through the image than the
deterministic approach. For example, if the sites are selected on an equally
likely and independent basis, after K iterations, the probability that a given
site has not been selected,
K
N2 —1]
’

P(a given site has not been selected) = D

where N? is the number of pixels in the image.
Consequently, the probability that it has been selected at least once,

NZ—1
N2

P(a given site has been selected) =1 —

Hence, the probability that every site has been selected after K iterations is
K 7 N2
|] . (422)

For a 128 x 128 image, a value of K = 10N? iterations would yield a
probability of 0.475 that every site has been visited at least once; a value of
K = 13N? would yield a probability of 0.964. For a 256 x 256 image, it would
require K = 14N? iterations to yield a probability of 0.947 that every site has
been visited at least once. A deterministic raster scan method of selecting !
requires only one iteration through the image to ensure that every site has been
selected. Hence, from a computational standpoint, it is far more efficient to use
a deterministic approach rather than a random approach in selecting 1.

NZ—1
N2

P(every site has been selected) = [1-

We will now show that the method of selecting the next state involving
the use of the five different strategies as given in Equation (4.20) results in a
Markov chain that is irreducible and has the property of weak reversibility. It
does not matter whether the above mentioned random or deterministic
approach in selecting / is used; both will result in irreducible and reversible
chains. We will assume that the value of p; in Equation (4.21) is non-zero.

First we observe that using either the random or deterministic methods of
selecting ! described above, if state S;, can be generated from S,, then S, can
be generated from S_. Consequently, for any sequence of mnext states
Sgy Syy ey Sy, there is a non-zero probability of generating another sequence of
states by backtracking the original sequence, which yields the sequence
Sms Sm—1y +-+y Sg. Hence the process has the property of weak reversibility as
given in Property 4.1.

120

Let S, and S, be any pair of states that have different edge labelings at k
sites contained in the set M={l,..., L) 0<k < N%. Assume that the
method of selecting [is the deterministic raster scan approach described above.
That is, I is selected by sequentially iterating through each site in the image.
Beginning from S, there is a non-zero probability of generating a sequence of
next states such that

(1) if I € M, then the next state is the same as the present state, and
(2) if I €M, then the next state is generated using M;.

Each next state generated using M; has one less different edge labeling from S,.
At most k intermediate next states are needed to arrive at state S,. Hence
every state is reachable from any other state, and the chain is irreducible.

If the method of selecting ! is random and equally likely in L, then it is
straightforward to observe that there is a non-zero probability that every
member of M will be selected. Hence, as in the previous deterministic case, it is
possible to generate a sequence of next states from S_, to S,. This again results
in an irreducible chain.

4.3.2 Temperature Variation

The selection of a suitable temperature schedule is important in the
annealing process because it governs in part the rate of convergence to the set
of global minimum states. The other governing factor in convergence is the
method of generating next states; we could conceively have a very “intelligent”’
method of generating next states so that the minimums states would be
approached rapidly along a path of least cost. We will now focus on the use of
Hajek’s theorem in the device of a temperature schedule. In particular, we will
use a schedule of the form given in Equation (4.16). For practical purposes, the
parameter ¢ in the equation has to be kept as small as possible so that the
number of iterations can be held within a reasonable limit. For instance, if
c =10, then to decrease the temperature to a typical value of 0.3 using
Equation (4.16) would require k = 300 %102 iterations. However, if ¢ = 5, then
it would require only k = 17.3 x 10° iterations. Since convergence is guaranteed
if and only if ¢ = d*, it is crucial to be able to find a relatively tight upper
bound on d'. The remainder of this section deals with the analysis and
estimation of an upper bound on the value of d.

We will estimate the upper bound of d by first stating a theorem on the
maximum cost ascent necessary to reach the global minimum from a given
state S,. Based on this theorem, we will then give an estimate of the maximum

121

cost ascent necessary to reach the global minimum from any state. The
theorem is as follows.

Theorem 4.2: Let E =sg(l;)sg(ly).... sg(lx) be any thin edge that is a path
or cycle in a global minimum state S;. Let M be the sites of the pixels
contained in the union of all the windows of each pixel site in E;

M = U WI .
s(l)EE
Define a sequence of states Sy, S;, . . ., Sk such that

(1) Sg = {sg: ! €L } is any state with so(!) =0 for alll €M,

s =851 £
(2)Si—{si)=1;51=1,

fori=12,.K.
Then forall0 < m <n < K,

w; if Eisa path
<Z
Ay, = {2Wf if E is a cycle ’

and

AFgx < 0.

Notice that the construction of the sequence of states is such that each
consecutive state S; differ from the previous state S;_; in that it contains one
additional edge pixel of E. The proof of the theorem follows.

Proof: ,

(A) Assume that E is s thin path. We will first show that AFg, =< w; for
0 <n = K. Next we will show that AF,,, = w; for all 1 = m<n < K.
Based on these we can conclude that AF, , < w;forall0 < m <n < K.

(1) AFy, = w;, 0 <n = K.

Let Ey = {sg(l1)-+» sg(!a)} be a segment of E, and E, be the corresponding
extended edge segment. From the construction of S, it can be deduced that for
any state S;, 0 <n =< K, the incremental cost between S, and S, can be
written as

122

AFg, =W IE)l +w, 3 CSql) —wq 3 d(I) + w; + wAC, .
IEI(En) IGI(En)

Since E is thin ACy = 0. For each edge segment, E, C En. Using Proposition
3.19 and the fact that E; contains an endpoint of E, it is straightforward to
conclude that

AFO,D =< Wf.

(2) AF,, = w, 1 = m<n = K
Let Ep, = {sg(lmt1)s-r Sa(ln)} be a segment of E, and E_, be the
corresponding extended edge segment. Let

E,mn = Emn U SG(lm) .

For any state S, 1 = m <n =< K, the incremental cost between S, and S, be
written as

AFm,n = 'WeHEmn” -+ W E CC(SG’I) — Wy z d(l) -4 WtACt .
1EIE 1) IEW(E)

Again, since E is thin ACy =0. For each edge segment E’_, CE_.. Using
Proposition 3.19, we again conclude that

AFm,n = Wi .
Combining the results of steps (1) and (2) above, we see that
AF,, = w for 0 =m<n =K.

(B) Now assume that E is a cycle. Following the same procedure as in (A)
above, we can conclude that

(1) AFp, = 2w;; 0<n <K, and
(2) AFp, = w;; 1=m<n=<K.
Hence,

AF,,=2w; 0=m<n=<K.

(C) We will now show that AFyx =< 0. Let S, be the state that is identical to
S¢ except with the edge E removed; that is,

123

S = {Sn(’) =sg(!) sg(l)¢ E
" sp(1) =0 sq(l) EE.

By the construction of S;, Sy, and the use of Proposition 3.11, it can be
deduced that the incremental cost between S; to Sk is the same as that from
Sn to SG;

AFO,K = AFD.G .
Since Sg is the global minimum, AF, g= 0, and hence

AFyx < 0.

4.3.2.1 An Additional Cost Factor

For the purpose of estimating a tight upper bound on d*, we define an
additional cost factor in order to restrict the edges of ‘minimum cost
configurations to be either paths or closed cycles; edge pixels that connect three
or more edge segments are disallowed. This is necessary to limit the numerous
possible edge structures that need to be taken into consideration. It is achieved
simply by assigning a cost to edge pixels that have three or more neighboring
edge pixels. For typical images, this restriction affects the final output of the
edges only in a very minor way. In most images of interest, the number of
points where three or more edge points are connected are few. Furthermore, it
will be seen that at such points, the use of the additional cost factor will result
in a local discontinuity of usually only one or two pixels; if necessary, this can
be easily corrected by a post detection process.

The cost factor is labeled as C, and is called the cost for number of
neighboring edge pixels. It has the following definition: '

0, sy(l)=0
ColSmy 1) =10, [IN)(Sp)ll < 3 and sy(l)=1 (4.23)
1, |INSul = 3 and sy(l)=1.

The cost function is now a linear combination of six cost factors instead of
the previous five. That is,

124

F(Sp) = b)) [263 Wi Cy(Smy 1)

el | k=1

= WcCc + WdCd + WeCe + Wfo + Wtct + WnCn ’

where each of the other five cost factors have been previously defined in
Chapter 3. By a trivial modification of the cost tree of Figure 3.16, we obtain
the new cost tree shown in Figure 4.4 which includes the cost factor Cy- It is
clear that the factor C, also depends only on the pixels in W(S), and
consequently, Proposition 3.11 also holds for the new cost function. By simple
modification of the proofs to include C,, it can be shown that Propositions
3.14, 3,16, 3.17, 3.18, 3.19 and Theorem 4.2 also holds for the cost function
with 6 cost factors. The two functions are essentially the same except that in
the new cost function, we place a cost which tends to disallow edge pixels from
having more that two neighbors. We will now state two propositions relating to
this new cost function which governs how the weights w, and w, are to be
chosen to achieve certain characteristics in the detected edges.

Proposition 4.1 Assume that the neighborhood function is H,. If
Wy > 2W; + Wq — W, then in any local or global minimum state, every edge
pixel has at most two other neighboring edge pixels.

Proof: The proof is by contradiction. We will assume that there exists a local
or global minimum state S, that has three or more neighboring edge pixels.
Assuming that the condition of the proposition holds, we will then show that
there exists a neighboring state that has a lower cost; this contradicts the
assumption that the initial state is a local minimum.

Assume that S; is a local or global minimum with sy(I)=1 for some I, and
that | 'NI(SO)” =k, where k is greater than or equal to three. Let S, be the
state that is identical to Sy at every site except at ! where it is the complement.
Clearly, 8, € H;(Sy). The incremental cost can be written as

6
AFO,II = ZWkACk(WX ’ So, Sn)
k=1

(4.24)

125

site /

C =0 C.=0 C(=0 C,=1
Cy=1 C{=05 C,=0 C{=0
Cn' Cn= Cn=1
C, =0 C,=0 thi |
‘ ‘ thin VK thin /" \ thick
C,=0 C,=1

n = lIN;(S;) Ii
thin: The edge contained in W;(S,) is a thin edge.
thick: The edge contained in W,(S,) is a thick edge.

Figure 4.4. Decision tree for computing the six different cost factors.

126

= wAC, + wgACy + wAC, + w;AC; + wAC, + w,AC, .

The factor AC,=—1, and AC4 = d(!). Hence,
AFg, = wAC, + wad(l) — w, + w;AC; + w,AC, + w,AC, .
Using the fact that the removal of a single edge point can result in at most

four additional endpoints we have AC; < 2. By Proposition 3.16, AC_, < 0,
and AC; < 0. Since d(!) < 1, we can conclude that

AFg, = wq — W, + 2w; + W, AC, .
It is clear from the definition of C, that AC, < —1. Therefore
AFg, = Wg —We + 2w; — Wy .
Assuming that the condition of the proposition holds,
Wy > Wq — W + 2wg,

it is straightforward to conclude that AFg , < 0. This implies that S, is a state
of lower cost; we have a contradiction of the assumption that S, is a local or
global minimum state. Hence, if the condition holds and Sg is a minimum
state, every edge pixel in S, can have at most two other neighboring edge

pixels.
O

Proposition 4.2: Assume the neighborhood function is H, and
Wy > Wgq — W, + 2w;. Let Sp, be a local or global minimum state. If E is a thick
edge, then ||E|| = 3.

Furthermore, if wy > %[Wf + wg — W, — 3w,], then there are no thick edge

pixels in S;.

Proof:

(1) We will prove by contradiction that ||E|| =3. Assume that E is thick and
lIE|]l = 4. Since E is thick, there must exist a cycle of length three comprising
of the pixels C = {e;, ey, e5} CE. Since | |E|]| = 4, there exists a pixel
e; €E such that ;& C, and e, is adjacent to one of the pixels in C. Refer to
this pixel in C as e;. Now e; has three neighbors; ey €3 and e,. This
contradicts the fact that any edge pixel has at most two other neighboring edge
pixels according to Proposition 4.1. Hence [|E|| < 4. Clearly, every thick edge

127

must have at least three distinct edge pixels and so ||E|| = 3.

(2) We will show that if the conditions hold and S, contains a thick edge pixel,
we can always find a neighboring state S, which does not contain that edge
pixel and F(S,;) < F(S,). Consequently, any local or global minimum state
cannot contain a thick edge pixel.

Assume w; > -;—[Wf + wg — W, — 3w,], and S, contains a cycle of length three

comprising of the pixels C = {s,(1,), s,(l5), so(/3)}- Let S, be the configuration
that is identical to S, at every site except at I =1[; where it is non-edge.
Clearly 8, is a neighbor of S, based on the H; neighborhood function. From
part (1), we know that C must be an isolated cycle of length three.
Consequently the pair of edge pixels {s,({,), s,(I5)} must also be isolated. The
incremental cost can be written as

6
AF,, = 3 wAC (W, 5 S, Syp)
k=1

= WAC, + WaAC, + WAC, + wACs + wAC, + w,AC, .
It is easily deduced that AC,=-3, ACy=d(l;), AC,=—-1, AC;=1,

AC, = —3, and AC, = 0. This implies that
AF, , = =3w, + wad(l;) — W, + w; — 3w, .

o,n

Since w; > %'{Wf + wq — w, — 3w, we have

AFo,n < Wd[d(ll) - 1] ’
and since d(I) < 1, the incremental cost
AF,, <O0.

Therefore, S, is a state of lower cost than S,.

4.3.2.2 Estimating the Upper Bound of d’.

The parameter d* in Equation (4.15) is by definition the maximum cup
depth of all states which are local but not global minima. We will now discuss
a method of estimating an upper bound on the value of this parameter. It is
important that this estimate should be fairly tight as it governs the rate at

128

which we can decrease the the temperature of the annealing process. This
ultimately affects the rate of convergence to the set of globally minimum
states. Our approach in estimating the upper bound of d* is to show by
construction that we can transition from one local minimum to another local
minimum of lower cost without having to encounter a maximum cost accent
greater than . Except for the global minimum, the maximum depth of each
local minimum is thus bounded to a maximum value of § and hence

ad=<s.

Because of the complex nature of the interaction between the different
cost factors, and because of the large number of possible edge structures that
have to be taken into consideration, we are unable at this time to give a precise
theoretical upper bound on d" which is tight. Instead, we estimate the value of
6 based on Proposition 3.19, Theorem 4.2, and an heuristic argument on edge
formation. Our approach is to first estimate § for simple edge structures and
their resulting local minimum states that are not global "minimum. We
progressively move from trivial to more complex forms of local minimum
states. We will show heuristically by construction that even in extreme cases, it
is possible to transition from one local minimum to another local minimum of
lower cost without having to undergo a maximum cost climb exceeding 9,
where 6 = 2w; + Wy —w,.

In the following paragraphs, we will discuss six different cases of edge
structures and the corresponding estimates of § for each case. We will denote §
for each case as § where i denotes the case number. In each case, the
corresponding figures depict an edge as a thin continuous line. The position of
the edge that corresponds to the global minimum state is represented by a
dotted line. We will refer to an edge that exists in the global minimum state
as an “‘optimal” edge. We will assume for each of the cases that the weights of
the cost factors are chosen such that in any local minimum there are no thick
edges, and every edge pixel has at most two other neighboring edge pixels.

Case 1

The edge corresponding to the global minimum state is a path extending
from the top right to the bottom left region of the square lattice, as shown by
the dotted line of Figure 4.5. This is the ‘‘optimal’ edge position. In this case,
the local minimum shown is a configuration that contains no edge pixel. We
estimate the value of §; using Theorem 4.2; we can construct a sequence of
states where each consecutive state contains one additional pixel of the optimal

Figure 4.5.

Figure 4.6.

129

An edge configuration that contains no edge plxels
line indicates the optimum edge position.

The dotted

An edge configuration that contains two short false edges.

130

edge, with the final state corresponding to the global minimum. The theorem

specifies that the maximum cost ascent is no larger than 2w;, and hence

5 < 2w;. (4.25)

Case 2

The local minimum in this case is a configuration that contains two edges
E; and E, that are displaced a distance away from the optimal edge position.
This situation is shown in Figure 4.6. Since neither E; nor any segment of it
exists in the global minimum, it is straightforward to deduce that for any
segment E.CFE,,

Wq D) d(l) — WollEgl] — We), CC(SL’ l) = wg.
I€E, I€E,
The same can be said for segments of E,. Consequently, beginning from an
endpoint, we can sequentially remove each pixel of E; or E, without exceeding
a cost climb greater than w; and arrive at lower cost states. Hence

8 < w;. (4.26)

Case 3

The local minimum in this case contains an edge that spans only a portion
of the optimum edge, as shown in Figure 4.7. We can construct a sequence of
states by extending the edge in this local minimum one pixel at a time along
the position of the optimal edge. Using Proposition 3.19, it can be concluded
that the maximum total cost ascent will not exceed w;. Hence for this case

8 = wp. (4.27)

Case 4

In Figure 4.8, we show a continuous edge of a local minimum in which
part of the edge is just slightly displaced from the position of the optimal edge.
This is possibly the most common local minimum that will be encounted in the
minimization process. It is possible to generate a sequence of states in which
the edge pixels are sequentially locally shifted into the position of the optimal
edge without breaking the continuity of the edge structure. Consequentially, if
there are cost ascents, they will be dominated by curvature costs caused by
perturbation of the the edge position. The ascent will not exceed 2w, as the

131

Figure 4.7. An edge that spans only a portion of the optimal edge position.

Figure 4.8. An edge that is just slightly displaced from the optimal edge
position.

132

pixels are shifted into the positions of the optimal edge. Thus
by = 2w . (4.28)

Typically, the value of w, is small compared to the other weights.

Case b

In Figure 4.9, we show a continuous edge of a local minimum S, in which
part of the edge is displaced some distance away from the position of the
optimal edge. We denote the sites of the missing edge pixels of the optimal
edge as R, and the sites of the displaced edge as Ry. It is possible to generate a
sequence of states in the following way. First we generate S; by introducing a
local discontinuity in the edge as shown in the same figure. The resulting
incremental cost is bounded by

AFL,I =< Wf + Wd - We . (4.29)

Next, we generate a sequence of states from S; to S, by sequentially
adding edge pixels in the positions of the optimal edge. By Proposition 3.19,
the maximum cost ascent required for the transitions given by this sequence is
no greater than w;. In addition, since we are constructing the optimal edge in
Sy, it is safe to assume that F(S,) <F(S,). As a result, the maximum cost
ascent so far from Sy is still given by Equation (4.29). From the results Case 2,
we deduce that it is possible to transition from S, to the global minimum S
without encountering a maximum cost ascent greater than w;. This is done by
sequentially removing the edge pixels in Ry. An estimate for an extreme case
of the total cost ascent is given by taking the sum of the maximum ascents of

AFL,]. and AF‘2,3 M
65 = 2Wf + Wq — W . (4.30)

Case 6

The example shown in Figure 4.10 shows a local minimum S, that is a
combination of several of the five cases discussed above. Each consecutive
state, 8;, Sy, S5 is a lower cost state with S; corresponding to the global
minimum. The maximum cost ascent required to reach the global minimum
from 8, is the maximum of the § for the five cases above, and is given by

0p < 2wp +wy —w, . (4.31)

Figure 4.9.

133

(
Y

Displaced edge. S, is a continuous edge that has a portion that is
displaced some distance away from the position of the optimal
edge. Each consecutive state can be reached by a sequence of
transitions from the previous state. S; corresponds to the global
minimum state.

134

Figure 4.10. A sequence of states of lower cost. S, is a local minimum. Each
consecutive state has a lower cost and S; corresponds to the
global minimum state.

135

General case

In the preceding discussion, we have estimated by construction that for
minimum cost configurations containing a solitary edge, the maximum depth
of any local minimum is given by Equation (4.31). It should be noted that the
estimate is quite conservative as the method of constructing a sequence of low
cost transitions is based on assumptions corresponding to fairly extreme cases
of edge structure. It is conceivable that for typical images, the maximum
depth is much smaller than the given bound. Given a specific image and a
local minimum state, it is very likely that one could construct a sequence of
transitions to the global minimum with a total maximum cost ascent much less
than the bound of Equation (4.31). However, when the specific image is not
known, we are unable to devise a general method of constructing a sequence of
low cost transitions that has a lower maximum cost ascent. This is due mainly
to the complexity of the interaction of the cost factors, the vast number of
possible transitions, and the uncertainty in the values of the pixels of interest
in the enhanced image.

As mentioned before, we have assumed that the weights of the cost factors
are chosen so that in a local or global minimum state, there are no thick edges
and every edge pixel had at most two other neighboring edge pixels.
Consequently, for a general image, the corresponding global minimum cost
configuration is simply a collection of non-intersecting edges which are isolated
paths or cycles. Each of these edges corresponds to an optimum edge. In cases
1 to 6 discussed above, we have dealt only with images that have one single
optimum edge. The estimation of ¢ for images containing more than one
optimum edge is similar to that for images with only one edge. The intuitive
notion is that using the techniques described in the different cases above, we
can sequentially construct one edge at a time by appropriately chosen
transitions. This is repeated until we arrive at the global minimum
configuration containing all the desired edges. Based on this notion, we
anticipate that the maximum depth of any local minimum is again no larger
that that given in Equation (4.31). That is,

5 =< 2Wf + Wgq — W, . (4.32)

136

4.3.2.3 Temperature schedule

The method of generating next states in the annealing algorithm is given
by Equation (4.20). The image is assumed to be of size Nx N. The
temperature schedule used is the the following:

C

Ty=———"™— 4.33
k log(nk, + 2) ’ (4.33)

where k; is a scaling constant, and n is defined using the floor function:

Note that the temperature is monotone decreasing and is changed only
after every N? iterations through the annealing algorithm. It can be easily
verified that for any finite and strictly positive value of k, greater than or equal
to 2, the temperature schedule satisfies Equation (4.15) if ¢ = d". This implies
that convergence to the set of global minimum states is guaranteed if ¢ = a.
Our estimate of the upper bound on d" is based on Equation (4.32). Hence, in
our implementation, we set ¢ =98 = 2w; +wy —w, for the temperature
schedule given in Equation (4.33). Hence, to ensure that the process will
converge asymptotically, the value of ¢ must be no less than é. That is,

c= 2w;+wy—W,. (4.34)

It is interesting to note that if we attempt to use the temperature schedule
of Mitra et al. given in Equation (4.17), the value of r is approximately N? /9,
and a very conservative lower bound of p is 1. This implies that the value of -y
which is analogous to ¢ in the above equation is given by

v= N2/9.
The schedule is impractical from an implementation standpoint because it
would take far too many iterations to span even a small range of low
temperatures. As an example, consider a 128 x 128 image. Assume that k is

small. For the temperature to be in the proximity of 0.3, the value of k, will
“have to be set approximately to

ko = exp(6000) .
From an implementation standpoint, this number is far too large for computer

representation. Even if representation is possible, the temperature schedule
according to Equation (4.17) would then remain constant for any practical

137

range of the values of k.

4.3.3 Parallel Implementation

The Simulated Annealing algorithm described in Section 4.2 is essentially
a sequential algorithm. We will now discuss a method of generating next states
which will allow the algorithm to be to be implemented to a large extent in
parallel. In fact, we will show that the number of sequential computations can
be reduced by a factor of N /9. That is, up to N? /9 computations can be made
simultaneously in parallel. We will assume that given a present state Sp and a
site | € L, the method of generating the next state is given by Equation (4.20);

Sn = Mx(sp,l) .

Up to this point we have interpreted the above equation as a method of
generating next states, and the Simulated Annealing algorithm as a method of
transitioning from one state to another. We now present another interpretation
of Equation (4.20) and the annealing process in the context of detecting edges
by cost minimization. The above equation can be viewed as a method of
altering the local edge structure in a window region centered at site /. The
transition rules of the annealing algorithm correspond to a method of deciding
if the alteration is to be accepted based on the change in cost caused by the
alteration. The annealing process is thus a procedure where we repeatedly
attempt to alter the local edge structure at each site in an image according to
the rules of annealing. Since the annealing process is guaranteed to converge,
the eventual result of the repeated changes is that the edges will take the form
of a minimum cost edge configuration.

As mentioned in Section 4.3.1, the value of [/ can be selected either in a
random or deterministic manner. We will now present a deterministic method
of selecting ! which allows for parallel computation. If the raster scan approach
mentioned in Section 4.3.1 is used, the annealing process can be viewed as a
procedure where we sequentially attempt to change the edge structure in a
window region as the window is shifted through each pixel in the image.
Clearly, this is a strictly sequential process as each decision on accepting a
change is dependent on the immediate past decisions. Such a method of
selecting ! does not allow for parallel execution.

By using Proposition 3.11, it is easy to deduce that if an edge structure is
altered at a single site ! according to Equation (4.20), then the resulting change
in cost is dependent at most on the pixels in a 5 x 5 window region about [.

138

Consequently, if /; and [, are two sites that are at least two pixels horizontally
or vertically apart (i.e. two pixels between them), the decisions to accept any
alterations of the edge structure in W; and W;, can be made independently.

In fact, for any set of sites {l;, ..., ly} in which every pair is at least two
pixels apart, the decisions to accept alterations in the edge structure can be
made independently of each other.

The set of all sites in the lattice denoted by L can be partitioned into k
disjoint subsets where any pair of sites in the same subset are at least two
pixels apart;

L=L, UL, U ... L. (4.35)

It is easy to deduce that at most 9 subsets are required to partition L in this
manner. This holds for images of any size. An example of this is shown in
Figure 4.11. If alterations in the local edge structure are made at any number
of sites belonging to the same subset, the decisions to accept each of the
alterations can be made independently. Consequently, it is always possible to
make 1 iteration through each pixel in the image in 9 sequential processing
steps, where each step requires approximately N2/9 parallel computations.
Instead of making N? sequential decisions in altering the local edge structure at
each site in the image, the same can be achieved by simultaneous decisions in 9
sequential steps. This of course is significantly more efficient in terms of the
total required computation time.

Assuming that the method of selecting the sites is such that every site will
be repeatedly selected in the annealing algorithm, it can be shown that the
corresponding annealing process which allows for parallel computation has the
property of irreducibility and weak reversibility. Hence this method of selecting
l will result in asymptotic convergence to the global minimum.

4.3.4 State Space Reduction

Simulated Annealing is a computationally intensive algorithm suitable for
minimizing complex optimization problems. In the context of edge detection,
the amount of computation time can be significantly decreased by reducing the
state space of the annealing process. This is achieved by introducing a
preliminary processing stage which we call “low resolution detection”. The
output of low resolution detection is a binary image indicating where edge
pixels can and cannot lie; ones indicate the possible positions of edge pixels,
and zeros indicate the positions where edge pixels cannot lie. By using this, we
effectively reduce the set of all possible edge configurations by placing a

139

13 | 14 | 15 [[16 | 17 | 18
19 | 20 | 21 ||22 | 23 | 24
25 | 26 | 27 |[28 | 29 | 30
31 | 32 | 33 |[34 | 35 | 36

L=L1UL2U"'L9

L, = {1, 4, 19, 22}
L, = {2, 5, 20, 23}
Ly = {3, 6, 21, 24}

Ly = {15, 18, 33, 36}

Figure 4.11

Example of partitioning L into disjoint subsets. Any pair of pixels
in the same subset is at least 2 pixels apart. The pixels of the
above 6x6 image are labeled 1 through 36. The image is first
divided into blocks of 3x3 pixels. Partitioning is then achieved by
selecting corresponding pixels of different blocks.

140

constraint on the configurations that are taken into account. In other words,
the cost function is minimized subject to the constraint that the edge
configurations can contain edge pixels only in the regions specified by the low
resolution output.

There are a number of ways of performing low resolution detection. We
chose to first threshold the enhanced image. Next we performed the
morphological operation [59] ‘‘dilation”” on the thresholded image using a
square 3 X 3 or 5 x 5 structuring element. Examples of the output of low
resolution detection for state space reduction is shown in Chapter 5, Section
5.2.1.

4.4 Summary

In this chapter, we have presented Simulated Annealing as a technique in
cost minimization. It has been shown that the annealing algorithm is a
stochastic optimization technique based on non-stationary Markov chains; the
chain will converge in probability to the set of global minimum states of the
cost function. We have described the asymptotic convergence properties of the
algorithm and discussed the use of various temperature schedules suitable for
convergence.

We used the Simulated Annealing algorithm to find low cost solutions to
the cost function for edges described in Chapter 3. First, we showed how to
generate next states in the annealing process based on a set of five strategies
for changing the edge structure in a given configuration. Second, we devised a
suitable temperature schedule by estimating a relatively tight upper bound on
the maximum depth of all local minimum states which do not correspond to
the global minimum. Third, we showed that although the annealing process is
sequential in nature, it can be implemented largely in parallel by a proper
choice of next states. Finally, we proposed the use of state space reduction to
reduce the computation time for the annealing process.

141

CHAPTER b
EXPERIMENTAL RESULTS

5.1 Introduction

In this chapter we present experimental results of detecting edges using
the comparative cost function (CCF) and absolute cost function (ACF)
techniques described in the previous chapters. The ultimate test of any
detection technique is in its ability to find edges that correspond to true
boundaries in an image. Comparison of the detection performance is made with
four other recent techniques mentioned in Section 1.2; derivative of Gaussian
(VG), Laplacian of Gaussian (V2G), facet model approach, and Sequential
Edge Linking (SEL). It should be noted that the VG and facet model are
techniques which are optimized for the detection of step edges. Non-maximal
suppression for the VG technique was performed by quantizing the edge
direction of the VG operator output into one of eight possible directions and
suppressing the non-maximum magnitude values in a direction perpendicular
to the edge direction. The SEL technique used the VG operator (without non-
maximal suppression) as the edge enhancement operator.

As described in Section 2.4.1, the CCF used the weight values w,=1.0,
w4=2.0, wy=1.1, w;=1.1 and w_=1.1. For the ACF, we first assigned values for
the weights w., wg, W, and w; according to the desired emphasis on each cost
factor. Then, to avoid the detection of thick edges, w, and w; were chosen
based on Propositions 4.1 and 4.2. In all examples using Simulated Annealing,
the value of d’ (in Hajek’s Theorem) was estimated using Equation (4.32).
Except for the examples in Section 5.4 and parts of Section 5.6, the measures
of dissimilarity, {,(R1,R2) and f,(R1,R2), were based on the difference of gray
level averages in R1 and R2. That is, f,=m(d) as specified in Equation (2.6),
and f,=d where d is as defined in Equation (2.4).

For both the heuristic search technique and Simulated Annealing, it is
necessary to generate new edge configurations by iterating through each pixel
location in the image. Assuming that the image is of size N x N, a single
iteration through the image represents the generation of N? new edge

142

configurations. Typically, the CCF approach required 3 to 5 iterations through
an image. The ACF approach required between 50 to 200 iterations. In all
examples, the probabilities p; in Equation (4.21) were:

200

P17 004
300

P2 004
200

P3= 1094
~-200 and

P4= 024
124

P5= 1004

The temperature schedule for the annealing process was based on Equation
(4.33):
c
Ty=—"7F7"—
k log(nk, +2) ’

where

k

| N

n =

The value of k, was selected based on the criterion that T, should be

approximately 0.3 at the final iterations through the image. This value of 0.3

was chosen empirically based on the observation that as the temperature
decreased toward 0.3, the processes approached a point of ‘“‘freezing’ where
very few uphill climbs were made. In the final 2 iterations, the process was
quickly “frozen” by dropping the temperature suddenly towards zero. This was
achieved by setting the temperature to a value of 0.01, and allowing for
transitions based only on strategies M; and M; (described in Section 4.3.1).

A thorough experimental analysis and comparison of different edge
detection techniques would require taking into account a number of different
factors. Some of these are: (1) the test images used, (2) the characteristics of
the detected edges (in terms of continuity, thinness, and well localization), (3)
the operator size, (5) computation time, (6) the difficulty of implementation,
and (7) the flexibility of the detection algorithm in detecting various edge

143

types. There is a trade-off between the different factors; for instance, one
usually has to sacrifice computation time for improvement in the
characteristics of the detected edges. We will examine the performance of the
detection algorithms with respect to several of these factors.

5.2 Experiments with Artificial Images

We compare the performance of the different techniques by first showing
examples of the detected edges for artificial images. Evaluation of the
detection performance is based on the accuracy in localization of the detected
edges, and the form of the edges in terms of thinness and continuity. However,
it is difficult to define a performance measure that correctly evaluates the
detection performance for all cases of the detected edges. A method of
evaluating edge detection performance is the Pratt figure of merit [60] which is
denoted by the symbol P:

Ip
P=2> $—1— 100
v 514 o

where
Iy = max (Ip,Ij),
I; = number of ideal edge points,
Ip = number of detected edge points,
I, = displacement of the ith detected edge point from the ideal edge, and

« = scaling factor.

The value of P ranges from 0 to 100 with higher values indicating better
detection performance. The value of 0.1 was used for o which is
approximately the same as that used in [61]. This figure of merit is usually
applied to artificial images where the ideal edge positions are known. It
penalizes edge pixels which are displaced from the ideal edge position according
to the displacement distance and the value of a. It also penalizes missing edge
pixels or an excessive number of detected edges. However, it does not take into
account local edge coherence information such as continuity and edge
thickness. A discussion of the shortcomings of this figure of merit is given
in[62]. When using this figure of merit, it is important to bear in mind its
inherent inadequacy in using local edge coherence information. We use the
Pratt figure of merit as a rough indicator of the performance of the different

144

detection techniques. Two ideal step images which are shown in Figure 5.1

were used; they were the vertical step image and the rings image. The vertical
step image had a size of 256 x 256 pixels and was comprised of two tones of
constant gray levels of values 110 and 140. The rings image had a size of
128 x 128 and was made up of concentric circles of gray levels 115 and 140,
constructed in the manner described in [62]. The step heights of the ideal
vertical edge and the rings image were consequently 30 and 25 respectively.
The images were corrupted with additive zero mean independent identically
distributed (i.i.d.) Gaussian noise. The signal to noise ratio of the corrupted
images is defined as

On

SNR = [i]z, (5.1)

where h is the ideal step height and o, is the standard deviation of the
Gaussian noise. The noise corrupted images are also shown in Figure 5.1.

The Pratt figure of merit is often applied to the vertical step image shown
in Figure 5.1. In Figure 5.2, we show an example of the difficulties that could
arise in the use of this figure of merit. The VG operator without the use of
non-maximal suppression was applied to the noisy vertical step image. The
detected edges obtained by thresholding the output of the VG operator at 53
and 35 have corresponding performance values P=78.2 and P=52.3
respectively. It can be seen that if edge continuity and recovery of the complete
boundary is of importance, the edge which corresponds to thresholding at 35 is
better. Hence, when using this figure of merit, it is important to bear in mind
its inherent inadequacy in using local edge coherence information.

Noise smoothing

It is advantageous to preprocess a noise corrupted image by filtering prior
to edge detection [7]. We used a Gaussian function to smooth the noise
corrupted images. The function is the same as that in Equation (1.1). This
smoothing prior to detection was performed only for the facet model,
comparative cost function, and absolute cost function techniques; the VG and
V2G operators have Gaussian smoothing inherently incorporated in them.
Except for the case of the house image, the standard deviation (og) of each
Gaussian function was independently chosen for the different cases so as to
optimize the performance of the various detection techniques. The value of og
was constrained to be some integer multiple of 0.5. Figure 5.3 shows
experimental results of the improvement in detection performance of the

Figure 5.1.

145

Step images. Top left: Vertical step edge. Top right: Noisy step
edge with SNR = 0.25. Middle left: Rings image. Middle right:
Noisy rings image with SNR=1.0. Bottom: Noisy rings image

with SNR=0.574.

146

Figure 5.2.

Edges of noisy step image detected using the thresholded VG
operator without non-maximal suppression. Left: Threshold at 53
resulting in P==78.2. Right: Threshold at 35 resulting in P=52.3.

147

4
100 |
SNR=2.25
SNR=1.0
= * SNR=0.25
(3] :
£ E
S
2
=2
=y
=
g
& 30f
20
10 |
0 1 — 1 1 3 1 L L o
0 1 2 3 4 5 6 7 8

Standard deviation of Gaussian smoothing function

Figure 5.3 Improvement in detection performance by preprocessing noisy
raw image with Gaussian smoothing prior to edge detection. The
CCF technique was used on vertical step images with different

SNR values.

148

comparative cost function technique by preprocessing the image with Gaussian

smoothing prior to edge detection. The detection algorithm was the CCF
technique, and the test image used was the vertical step image at various signal

to noise ratios. Using this test image, the results indicate that detection

performance increases with the standard deviation of the smoothing function.

However, it should be noted that this image contains a single isolated edge; if

the image contains several adjacent edges, then large values for the standard

deviation could cause the edges to be merged together resulting in degraded

performance.

5.2.1 Vertical Step Image

The noisy vertical step edge with SNR=0.25 was used to compare the
output of different edge detector techniques. The results are shown in Figure
5.4. The figure shows the best edges (based on performance measure P)
detected under the constraint that approximately 90% of the ideal edge should
be detected. The VG technique used a value of 5.5 for the standard deviation
of the Gaussian function. The V2G operator used a standard deviation of 10.0.
SEL was based on the output of the VG operator with a standard deviation of
4.0. For the CCF and facet model techniques, we preprocessed the image with
a Gaussian smoothing operator with standard deviation 5.0. For the ACF
approach, the image was pre-filtered with a Gaussian function of standard
deviation of 5.5. The weights of the cost factors of the ACF were: w,=0.75,
w4=2.0, w,=1.0, w;=3.0, w,=7.01, and w;=0.583. A total of 200 iterations
through the image were made. State space reduction was used to reduce
computation time. The ACF implementation as described above required 1.28
hours of CPU computation time on the VAX 11/780. Table 5.1 shows the
corresponding performance of the various detection algorithms.

Figure 5.4

149

Comparison of edge detector performance using vertical step edge
with SNR=0.25. Top left: VG, P=73.1. Top right: V3G,
P=44.5. Middle left: Facet model technique, P=71.1. Middle
right: SEL, P=65.4. Bottom left: CCF approach, P=73.7.
Bottom right: ACF approach, P=78.4.

150

Table 5.1. Detection performance of various detection techniques.

Detection technique | Pratt figure of merit P
VG 73.1
ViG 44.5
Facet model 71.1
SEL 65.4
CCF 73.7
ACF 78.4

A comparison of the performance based on P shows that except for V3G,
the different techniques yield approximately the same performance. We
extracted the detected edges and placed them alongside each other for more
detailed comparison. This is shown in Figure 5.5. A visual examination shows
that the VG and the facet model techniques produced edges which are thick
along many portions of the edge. The CCF and ACF techniques produced
edges which are thin. The best performance in terms of continuity and edge
thinness is achieved by the ACF technique.

In Figure 5.6, we show the effect of using only the cost factors C4 and C,
of the ACF; the other cost factors were discarded by setting their
corresponding weights equal to zero. This method corresponds to a simple
thresholding approach to detect the edges. By altering the value of the
dissimilarity threshold % (see Section 3.4.4.1), we can arbitrarily select the

d .

total number of edge points to be detected. Several important observations can
be made from comparing the detected edges shown in Figure 5.4 and Figure
5.6 using the ACF approach. First,-based on a cost function that uses only Cy4
and C,, it is not possible to detect a thin continuous edge for the noisy step
image. Second, there are no thick edge pixels when the cost factor C; was
included, and the corresponding weight w; was appropriately chosen according
to Proposition 4.2. Third, the inclusion of the fragmentation cost C; forces
adjacent edges to be continuous. At the same time, C; also suppresses short
sporadic edges which are visible in Figure 5.6, but not in Figure 5.4.

In Figure 5.7, we demonstrate the effect of changing the weights of the

curvature and fragmentation costs in the absolute cost function. For the
detected edge in Figure 5.7(a), the weights of the cost factors were w,=0.2,

Figure 5.5

151

Comparison of edge characteristics for noisy vert-ical step image.
Extreme left: VG. Center left: Facet model approach. Center
right: CCF. Extreme right: ACF.

Figure 5.6

152

S S W Y
.

Edges detected using only C4 and C, of the ACF. Left: Low
dissimilarity threshold. Right: High dissimilarity threshold.

Figure 5.7

(2) (b) (c) (4)

Effect of changing the weights for curvature and fragmentation.
(a) we=0.2, w;=2.0. (b) w,=0.5, w;=2.0. (c) w,=0.75, w;=0. (d)
w,=0.75, w;=3.0.

153

wq=2.0, w.=1.0, w;=2.0, w,=5.01, and w;=0.81. For the detected edge in
Figure 5.7(b), the weight for curvature was altered so that w,=0.5. The
remaining weights were kept the same, except for w;, and w; which were
altered according to Proposition 4.2 to ensure that all edges remained thin.
The resulting weight values were: w,=0.5, wq=2.0, w,=1.0, w;=2.0, w,=5.01,
and w;=0.51. Notice that because of the increase in the weight of the curvature
cost, the detected edge has a smoother boundary than in the previous case.
This is particularly evident when comparing the portions of the edges slightly
below the mid-section. For the edge in Figure 5.7(c), the cost for fragmentation
was removed by setting w; = 0; the weight values were: w,=0.75, w;=2.0,
w.=1.0, w;=0.0, w,=1.01, and w;=0.01. Fragmentation is clearly visible in this
case. In Figure 5.7(d), the cost for fragmentation was increased to 3.0. The
weights were: w.=0.75, w4=2.0, w,=1.0, w;=3.0, w,=7.01, and w;=0.583.
Notice that because of the increase in w;, the fragmented edge in the upper
region has been made continuous. In Figure 5.8, we .show the cost
minimization process using Simulated Annealing for the case of the detected
edges shown in Figure 5.7(d). The plot was obtained by sampling the
annealing process after every 10 iterations through the image. Assuming the
the image has size N x N, each iteration represents N? attempts in
transitioning to new states based on the annealing algorithm.

In Figure 5.9, we show examples of the use of state space reduction (SSR)
which has been described in Section 4.3.4. Edges were constrained to lie only
in the bright regions. The regions were obtained by thresholding the
dissimilarity values and dilating the image with square 3 x3 and 5x5
structuring elements using mathematical morphology [59].

5.2.2 Rings Image

We show examples of the detected edges for the rings image shown in
Figure 5.1. The image was corrupted with additive zero mean i.i.d. Gaussian
noise with signal to noise ratio as defined in Equation (5.1). Figure 5.10 shows
the detected edges for the noisy rings image with SNR=1.0. For the VG, V2G
and SEL techniques, the standard deviation of the Gaussian function was 4.0,
4.5 and 3.0 respectively. For the facet model, CCF and ACF techniques, the
image was pre-filtered using a Gaussian smoothing function with a standard
deviation of 3.5. The ACF technique used state space reduction and the
following set of weights: w.=0.5, wy=2.0, w,=1.0, w;=3.0, w,=7.01, and
w;=0.833. A total of 200 iterations through the image was performed.

CoST

Figure 5.8

154

3512.5 1

3393.8 4

3273.0

3156.3 -

037.5 4

£916.8 4

mo -o L] L] L] L] L) L L] T8
0.000 25.060 S0.00 ?5.00 100.0 125.0 150.0 175.0 £00.0

Number of iterations

Cost minimization .process for vertical step image using
Simulated Annealing. Plot obtained by sampling annealing
process at every 10 iterations through image.

Figure 5.9

155

Examples of state space reduction. The bright regions were
obtained by thresholding the enhanced images and performing
the morphological operation ‘‘dilation’” on each binary image.
Edges were restricted to lie only in the bright regions. Left: State
space reduction for noisy vertical step image. Right: State space
reduction for noisy rings image (SNR=1.0).

156

Figure 5.10 Comparison of edge detection performance using noisy rings
image with SNR=1.0. Top left: VG. Top right: V2G. Middle

left: Facet model approach. Middle right: SEL. Bottom left:
CCF. Bottom right: ACF.

157

Computation required 1.24 hours of CPU time on the VAX 11/780
minicomputer. A subjective evaluation of the different detection techniques
shows that in terms of edge continuity, the ACF, the facet model, and the VG
techniques produced the best results. In terms of edge thinness, the ACF, CCF
and SEL techniques produced the best results. It is observed that the contour
tracing nature of SEL produces some false boundaries. Figure 5.11 shows the
edges detected for a slightly noiser image with SNR=0.574. For the VG, VG
and SEL techniques, the standard deviation of the Gaussian function was 4.0,
5.0 and 3.5 respectively. For the facet model, CCF and ACF techniques, the
image was pre-filtered using a Gaussian smoothing function with a standard
deviation of 4.0. The ACF technique used the same set of weights as in the
previous case of the noisy image with SNR=1.0. The subjective evaluation of
the detected edges is similar to the previous case, except that there is a slight
increase in false boundaries.

5.2.3 Temperature Variation and Parallel Implemianta.tion

Simulated Annealing is a minimization algorithm that allows for uphill
cost climbs while searching for the minimum cost states. The amount of ‘“hill
climbing” activity is controlled by the temperature T,, where k denotes the
kth iteration through the algorithm. If the temperature is set equal to zero, no
hill climbing is allowed and the algorithm corresponds to a steepest descent
search algorithm. This approach usually causes the algorithm to terminate in
an undesirable local minimum that is of relatively high cost. A physical
analogy of such an annealing process is the rapid cooling of a system, causing it
to freeze in a meta-stable state. In Figure 5.12, we show an example of the use
of rapid cooling in Simulated Annealing. The test image used was the rings
image with SNR=1.0. The lower curve shows the cost minimization process
using the logarithmic temperature schedule given in Equation (4.33). The
upper curve shows the results for a temperature schedule which remains
constant at a value of 0.01 throughout the annealing process. For both
temperature schedules, the ACF technique used state space reduction and an
identical set of weights: w.=0.5, w;4=2.0, w,=1.0, w;=3.0, w,=7.01, and
w;=0.833. In each case, 200 iterations through the image was performed.
These parameters are exactly the same as those of the rings image example in
Section 5.2.2. Two important observations can be made. First the process
based on the logarithmic schedule converges to the set of low cost states much
more quickly than that based on the constant temperature schedule. Second,
the final state for the logarithmic schedule has a much lower cost than the final

158

Figure 5.11

Comparison of edge detection performance using noisy rings
image with SNR==0.574. Top left: VG. Top right: V2G. Middle
left: Facet model approach. Middle right: SEL. Bottom left:
CCF. Bottom right: ACF.

159

3703.0 4

3575.0 -

3438.0 -

3323.0 4

3200.0 -

cosT

3075.0 4

£550.0 1

£2625.0 4

mo .o L) L] ¥ ¥ L 1 L] S
0.000 25.00 30.00 7500 100.0 125.0 150.0 17%.0 200.0

Number of iterations

Figure 5.12 Rapid cooling in Simulated Annealing. Squares denote the data
points for the annealing process which uses a logarithmic
temperature decrement schedule. Circles denote the data points
for the annealing process which uses a constant temperature

schedule, with T=0.01 for all k.

160

state based on rapid cooling. In this case, the cost of the final states for the
logarithmic and constant temperature schedules were 2815 and 2859
respectively.

Figure 5.13 shows the intermediate edge configurations of the annealing
process which used the logarithmic temperature schedule. The test image was
the noisy rings image (SNR=1.0), and 200 iterations through the image were
made. No SSR was used. As mentioned in the introduction, in the last 2
iterations, the process was ‘‘frozen”’ by dropping the temperature to zero.
Iterations 198 and 200 in the figure correspond to the states of the system just
before and after freezing. It can be seen that after approximately 50 to 100
iterations, comparatively good edges were obtained. For most applications, it
has been found that about 100 iterations are sufficient to produce edges which
are thin and well localized. For the purpose of standardization and comparison,
we used 200 iterations in all except one of the examples contained in this
chapter. '

In Section 4.3.1, we mentioned that in minimizing the ACF, there are a
number of methods of generating next states. One method is based on selecting
! by sequentially stepping through each pixel location in a raster scan manner.
This method does not allow the annealing process to be implemented in
parallel. However, in Section 4.3.3, we have shown there is a method of
selecting [that would allow the Simulated Annealing algorithm to be
implemented largely in parallel. Using the same test image and the exact same
parameters for the ACF as in the example of Figure 5.10, we implemented the
algorithm using the method that would allow for parallel execution. The
results are shown in Figure 5.14. In this figure, we both the the cost curves for
the annealing process that can be implemented only sequentially, and the
process that can be implemented in parallel. The curves are very close to each
other and intersect at a number of points. The tail ends of the curves are
almost merged together implying that in the final iterations, both the processes
arrived at states that have approximately the same cost values. The results
indicate that in terms of cost minimization, both the methods gave
approximately the same performance. When parallel processing is available, it
is clearly more advantageous in terms of computation time to implement the
algorithm that allows for parallel implementation. Figure 5.15 shows the
detected edges for the noisy rings image (SNR=1.0) using the three different
methods of implementing Simulated Annealing; the method of rapid cooling,
sequential implementation, and parallel implementation.

161

(a) (e)
(5) 0
(c) ().
@ (1)

Figure 5.13 Intermediate edge configurations in annealing process.
(a) Tteration 1, Cost=16190. (b) Iteration 5, Cost=6954. (c)
Iteration 10, Cost==5217. (d) Iteration 20, Cost=3714. (e)
Iteration 50, Cost—2864. (f) Tteration 100, Cost=2833. (g)
Iteration 198, Cost=2827. (h) Iteration 200, Cost=2810.

162

3700.0

3323.6 1

—_—
[
~—
COST
g
(-2

3075.0 1

7000 %00 2500 000 7500 1000 1250 1.0 1780 £00.0

Number of iterations

3000.0 4

£2973.0

(b)

CosT
2
o

2873.0

2800.0 T T . T T T T 1
0.006 £35.086 S0.00 7300 106.0 1850 1500 1750 200.0

Number of iterations

Figure 5.14 Comparison of parallel and sequential implementations. Squares
denote the data points for the annealing process that can only be
implemented sequentially. Diamonds denote the data points for
the annealing process that can be implemented in parallel. (a)
Plot of cost vs the number of iterations through image. (b) Same
plot on expanded scale.

163

Figure 5.15 FEdges obtained using three different methods of implementing
Simulated Annealing. Test image used was the noisy rings image
with SNR=1.0. Top : Edges detected by rapid cooling (see
Figure 5.12). Bottom left: Edges detected using annealing
process that can only be implemented sequentially (see Figure
5.14). Bottom right: Edges detected using annealing process that
can be implemented in parallel (see Figure 5.14).

164

5.3 Experiments with Real Images

In this section we show two examples of the detected edges for general
scenes. Both images were of size 256 x 256.

House image

In this example, we show the detected edges for both the original and
noisy image of a general outdoor scene. The house image is shown in Figure
5.16. The image was corrupted with additive zero-mean i.i.d. Gaussian noise
of standard deviation 35. In each case of the detected edges, the detection
parameters were selected so that the different techniques produced
approximately the same number of edge points, and the edges were visibly
similar. The choice of parameters is quite subjective as it is difficult to
quantify edge quality for general scenes. After determining the necessary
parameters for the noiseless image, the same parameters were then used to
detect edges in the noisy image. In all cases except one, the standard deviation
of the Gaussian function was set at 2.0. The V2G operator used a standard
deviation of 2.5. For the ACF technique, the weights of the cost factors were:
w.=0.75, w3=2.0, w,=1.0, w;=3.0, w,=7.01, and w;=0.583. No state space
reduction was used and 100 iterations through the image were made. The
detected edges are shown in Figure 5.17.

Airport image

In Figure 5.18 we show the detected edges for an airport image using the
ACF technique. The weights of the cost factors were: w,=0.5, w4=2.0, w,=1.0,
w;=3.0, w,=7.01, and w;=0.833. A total of 200 iterations through the image
were made.

5.4 Other Dissimilarity Measures

In the previous examples, we have detected edges using dissimilarity
functions f, and f, which measure the difference of gray level averages of the
regions on either sides of the edge. In this section, we will show examples of
detected edges using other forms of dissimilarity measures. In the first example,
we show how a priori information can be incorporated into the measure so as
to detect specific kinds of edges. In the second example, we show how the
measure can be defined to find texture edges based on second order statistical
properties of the regions of interest.

165

Figure 5.16 House image. Top: Original house image. Bottom: House image
corrupted with additive zero-mean i.i.d. Gaussian noise of
standard deviation 35.

166

Figure 5.17 Comparison of various detection techniques on house image. In
each case, the figure on the left shows the detected edges for the

noiseless house image while the figure on the right shows the
edges for the noisy image. (a) VG. (b) V2G. (c) Facet model.

(d) SEL. (e) CCF. (f) ACF.

167

ey

7

e
) gl

Figure 5.17, continued

168

Figure 5.18 Airport image. Intensity image and edges detected using ACF
approach.

169

Airplanes image

Figure 5.19 shows an image containing ten airplanes. The important
features of interest in this image are the airplanes, the two large buildings on
the left part of the image, and portions of the tarmac. The edges detected
using the CCF, ACF, the facet model, and the VG operator techniques are also
shown in the figure. For the CCF and ACF techniques, the image was
smoothed by a Gaussian function of standard deviation 1.0 prior to edge
detection. The VG technique also used a value of 1.0 for the standard
deviation. In each case, the thresholds and relevant parameters were chosen so
as to recover as much of the boundaries of the airplanes and the large
buildings as possible, without introducing an excessive number of false edges.
For all four techniques, it was found that selecting a threshold low enough to
recover the boundaries of the large buildings resulted in a high degree of false
edges being detected. Hence, by thresholding alone, it is not possible to obtain
a good set of edges representing the features of interest.

It can be seen that the important features of interest in the image
generally have a lighter shade than the background, corresponding to higher
image intensity values. We use this a priori information by incorporating it
into the dissimilarity measures f, and f,. We specify that regions have high
dissimilarity when two conditions hold: (1) the average intensity values are
significantly different, and (2) the average intensity value for one of the regions
is sufficiently high. This is different from the previous definition of dissimilarity
where we do not include the latter condition. For the comparative cost
function, this new definition of dissimilarity is mathematically captured simply
by specifying the dissimilarity measure to be f,(R1,R2)=m(d,5). The function
m is defined as:

(d,5) = m(d) - g(h) ,
where m(d) is as defined in Equation (2.6), § is the larger of the average
intensity values of the two regions, and g is the pietewise linear function shown
in Figure 5.20. For the absolute cost function, this definition is captured by
specifying the measure to be

fa(RlaRZ) =d- g(ﬁ))

where d is as given in Equation (2.4), and g(f) is the same function defined
above. The weights of the ACF were: w.=0.2, wg4=2.0, w,=1.0, w;=2.0,
wy=5.01, and w;=0.81. The annealing process made 200 iterations through the
image. Using these new definitions of region dissimilarity, the detected edges

170

Figure 5.19 Airplanes image. The important features of interest are the
airplanes, the two large buildings on the left, and portions of the

tarmac. (a) Intensity image. (b) Facet model. (c) VG. (d) CCF.
(e) ACF.

171

Figure 5.19, continued

172

Figure 5.19, continued

g(8)

173

Figure 5.20

130 150 255

Piecewise linear function g(() used in the definition of m(d,0).

174

Figure 5.21 Edges of airplanes image detected using a priori information
about the features of interest. Top: CCF approach. Bottom:
ACF approach.

175

are shown in Figure 5.21. Notice that the edges of the large buildings, the
airplanes, and the boundary region of the tarmac on the lower right portion of
the image are clearly visible.

Box texture image

Figure 5.22 shows an image of size 128 x 128 containing two texture
regions. The average intensity value was approximately the same throughout
the image. However, the variance of the intensity values within the box region
was higher than the variance of the background. This image was constructed
by adding zero-mean i.i.d. Gaussian random noise to an image of constant gray
level equal to 128. Within a 64 x 64 box region, the noise standard deviation
was 30; outside of the box region, the noise standard deviation was 10. Since
the boundary of the box does not correspond to a step or a ramp, it is not
possible to use the VG or facet model methods to detect the edges of the box.

The cost function approach can be used to detect the boundary of such
texture regions by the use of an appropriate measure for region dissimilarity.
In this example, a suitable measure of dissimilarity is the difference of the
standard deviation of the pixels in the regions of interest. We show an example
of this using the absolute cost function. Let ml and m2 be the gray level

averages of the pixels in R1 and R2 respectively. The dissimilarity measure is
defined as:

where
1

01 m 2 z
{ IRll ,J%Rl[g(7.]) 1] } ’

and 0, is similarly defined. Figure 5.22 shows the detected edges using the
following weight values: w.=0.75, w;=2.0, w,=1.0, w;=4.0, w,=9.01, and
wy=0.917. The annealing process made 200 iterations through the image.

5.6 Computation Time and Final Costs

In this section, we summarize some of the results of using the ACF
approach in terms of the computation time required and the cost of the final
edge configurations achieved by the annealing process. In Table 5.2, we
tabulate the computation time required to detect the edges of the different test

176

Figure 5.22 Texture edge detection. Box image and detected edges using
ACF approach.

177

Table 5.2. Computation time for minimizing the ACF
using Simulated Annealing.

Image Size SSR | Iterations | CPU time (hr)
Vertical step 256 x 256 200 10.09
Vertical step 256 x 256 Yes 200 1.28
Rings, SNR=1.0 | 128 x 128 200 2.70
Rings, SNR=1.0 | 128 x 128 | Yes 200 1.24
House 256 x 256 100 5.32
Airport 256 % 256 | Yes 200 ST
Airplanes 256 x 256 Yes 200 3.59
Texture box 128 x 128 200 2.42

178

images. The cost minimization process using Simulated Annealing was _
implemented by sequential processing on the VAX 11/780. For purposes of
comparison and standardization, the annealing process was implemented using
200 iterations through each image, except for the house image. Typically, for
general images, about 100 iterations is sufficient to bring the annealing process
to a suitably low cost state. Table 5.2 shows a comparison of the computation
time required for each image with and without the use of state space reduction
(SSR). The results indicate that, depending on the scene content, computation
time for the annealing process can be reduced by a factor of about 1 to 8
times through the use of SSR. Generally, images that have smaller number of
edges achieve greater reduction in computation time.

Table 5.3 shows a comparison of the cost of the final states for different
cases of the annealing process. Two important observations can be made. First,
the use of SSR results in edge configurations that have approximately the same
cost as those configurations produced without it. Second, the annealing
algorithm which can be executed in parallel produces edge configurations which
have approximately the same cost as those configurations produced by the
algorithm which can be implemented only sequentially. Based on these
observations, we deduce that the most efficient method of producing edge
configurations of low cost is to use SSR and parallel implementation.

5.6 Use of 5§ Cost Factors

In all the previous examples of the absolute cost function approach, we
used 6 cost factors in the definition of the cost function. The cost factor C,
described in Section 4.3.2.1 was included to constrain all edges to be either
isolated paths or cycles; multiple edge segments linked at a single point were
disallowed. The main reason for including this factor was to enable us to
derive a tight estimate of the upper bound on the parameter d*, as given in
Equation (4.32).

In this section, we show the experimental results of minimizing a cost
function that does not contain the cost factor C,. That is, the cost function is a
a weighted sum of only 5 cost factors: C, C4, C, C; and C;. Figures 5.23
through 5.29 show the detected edges for the previous test images using 5 cost
factors for the ACF. The cost minimization annealing process is also shown. In
each case, all the parameters except w, were chosen to be the same as those of
the corresponding previous examples which used 6 cost factors. To avoid thick
edges, the weight w; was chosen based on Proposition 3.15. We used the same

179

Table 5.3. Cost of the final state in the annealing process.

Image SSR Parallel | Iterations Cost
Rings, SNR=1.0 200 2810
Rings, SNR=1.0 Yes 200 2812
Rings, SNR=1.0 Yes Yes 200 2815
Rings, SNR=1.0 Yes 200 2859
(Rapid cooling)

Rings, SNR=0.574 200 3161
Rings, SNR=0.574 Yes 200 3160
Rings, SNR=0.574 Yes Yes 200 3161
Vertical step 200 2876
Vertical step Yes 200 2873
Vertical step Yes Yes 200 2878
House 100 9253
House Yes 100 9244
Airport Yes 200 21771
Airport Yes Yes 200 21765
Airplanes Yes 200 7572
Airplanes Yes Yes 200 7567

180

Figure 5.23

5200.0 A

CosT

3160.0 1

£2800.0 T T T T T Y T 1
0.000 25060 50.00 ?5.00 100.0 125.0 1%.0 17S.0 200.0

Number of iterations

Detected edges and annealing process of vertical step image using
5 cost factors of the ACF. The weights were: w,=0.75, wy=2.0,
we=1.0, w;=3.0, and w;=6.25. (Figure 5.4 shows the results using
6 cost factors).

181

Figure 5.24

3275.0 1

3200.0 4

3123.0 1

30506.0

CosT

2975.0 1

£883.0 1

D50 o0 s 7500 w0 18 1m0 1750 £00.0
Number of iterations
Detected edges and annealing process of rings image (SNR=1.0)
using 5 cost factors of the ACF. The weights were: w,=0.5,
wq=2.0, w,=1.0, w;=3.0, and w;=6.5. (Figure 5.10 shows the
results using 6 cost factors).

Figure

182

3750.0 1

450 .0 1

COST

2850.0 1

3150.0 4

30.0 v Y T . T T T y
0.000 23.00 S0.00 7S.00 100.0 125.0 150.0 175.0 £00.0
Number of iterations

5.25 Detected edges and annealing process of rings image
(SNR=0.574) using 5 cost factors of the ACF. The weights
were: w.=0.5, wg=2.0, w,=1.0, w;=3.0, and w;=6.5. (Figure 5.11
shows the results using 6 cost factors).

183

168100.9 4

16918.5 4

157235.0 1

14537.5 1

13330.0 4

COST

12162.5 4

10973.0 1

5787 .50 4

0.00 r T T T T T T —
0.000 12 2500 375 S0.00 6250 75.00 67.% 100.0
Number of iterations

Figure 5.26 Detected edges and annealing process of house image using 5 cost
factors of the ACF. The weights were: w,=0.75, wy=2.0,
we=1.0, w;=3.0, and w;=6.25. (Figure 5.17 shows the results
using 6 cost factors).

NS

:
~ S .

a2

CosT

Figure 5.27

184

%

BI2ET.0 4

£3500.0

£22925.0 1

£23%50.0

21775.0 1

£1200.0 Y T T ¥ T
0.000 2500 %0.00 ?5.00 100.0 125.0

150.0 175.0 £00.0

Number of iterations

Detected edges and annealing process of airport image using 5
cost factors of the ACF. The weights were: w,=0.5, w;=2.0,

we=1.0, w;=3.0, and w;=6.5. (
6 cost factors).

Figure 5.18 shows the results using

185

Figure 5.28

CosT

9100.00 3

£500.00

8700 .00

8300 .00 4

8304 .00 -

€100.00

7900 .00

7700 .00

7500.00 T T r T T v v v
0.006 2500 30.00 75.00 100.0 125.0 150.0 175.0 200.0
Number of iterations

Detected edges and annealing process of airplanes image using 5
cost factors of the ACF. The weights were: w.=0.2, w4=2.0,
we=1.0, w;=2.0, and w;=4.81. (Figure 5.21 shows the results
using 6 cost factors).

186

5125.9 4

#730.0

4373.0 -

4000.0 1

CosT

3623.0 4

32%0.0

£300.0 y v T : T v r —
0.000 25.00 50,00 75.00 100.0 1250 1%0.0 17S.0 £00.0
Number of iterations

Figure 5.29 Detected edges and annealing process of texture box image using
5 cost factors of the ACF. The weights were: w.=0.75, wy=2.0,
We=1.0, w;=4.0, and w;=8.25. (Figure 5.22 shows the results
using 6 cost factors). '

187

estimate of d* based on Equation (4.32). The results indicate that the removal

of the cost factor C, alters the detected edges in a very minor way which is
only slightly visible. Depending on the test image used, this alteration may
improve or degrade detection performance.

5.7 Summary

We have shown examples of the detection of edges using both the CCF
and ACF approaches. Comparison of the detection performance has been
made with four other recent edge detection techniques: derivative of Gaussian,
Laplacian of Gaussian, facet model, and Sequential Edge Linking. Both real
and artificial images were used in evaluating the detection performance. Based
on the Pratt figure of merit, it has been show that the detected edges of both
the CCF and ACF techniques that are at least of comparable quality with
other current techniques.

For the ACF approach, we have shown that all detected edges are thin,
provided that the weight w; is properly selected based on Propositions 3.15, 4.1
and 4.2. We have also demonstrated the usefulness of the cost factor for
fragmentation in linking together fragmented edges, while at the same time
suppressing short sporadic edges. This approach to edge detection is flexible in
the sense that it allows for the detection of many different types of edges. In
particular, we have shown examples of how the dissimilarity measure for the
cost function can be defined to detect texture edges or other specific edge

types.

188

CHAPTER 6
SUMMARY AND CONCLUSIONS

6.1 Summary of Results

The main emphasis of this work has been to cast edge detection as a
problem in cost minimization. We have achieved this by the formulation of
two cost functions that evaluate the quality of edge configurations. The first is
a comparative cost function (CCF), which is a linear sum of weighted cost
factors. It is heuristic in nature and can be applied only to pairs of similar edge
configurations. It measures the relative quality between the configurations. The
detection of edges is accomplished by a a heuristic iterative search algorithm
which uses the CCF to evaluate edge quality.

The second cost function is the absolute cost function (ACF), which is also
a linear sum of weighted cost factors. The cost factors capture desirable
characteristics of edges such as accuracy in localization, thinness, and
continuity. Edges are detected by finding the edge configurations that minimize
the ACF. We have analyzed the function in terms of the characteristics of the
edges in minimum cost configurations. These characteristics are directly
dependent of the associated weight of each cost factor. Through the analysis of
the ACF, we have provided guidelines on the choice of weights to achieve
certain characteristics of the detected edges.

Minimizing the ACF is accomplished by the use of Simulated Annealing.
Specifically, we have developed a set of strategies for generating next states for
the annealing process. The method of generating next states allows the
annealing process to be executed largely in parallel. We have also stated an
estimate of the upper bound on the maximum cup depth of the cost function.
This bound is useful in the design of an efficient temperature schedule for the
annealing process.

Experimental results are shown which verify the usefulness of the CCF
and ACF techniques for edge detection. In comparison, the ACF technique
produces better edges than the CCF or other current detection techniques. A
major difficulty with the annealing process is the large amount of computation

189

time required to minimize the ACF.

6.2 Suggestions for Further Work

Minimizing the absolute cost function is a novel approach to edge

detection. Its usefulness has been both theoretically and experimentally
justified. The following is a brief list of further research that could be
undertaken in pursuit of this approach to edge detection.

(1)

(4)

The approach is capable of detecting various kinds of edges, provided that
a suitable measure of dissimilarity f,(R1,R2) can be defined. We could
investigate the numerous possible ways of defining f,(R1,R2), and show
how it can be applied to detect different edge types in real world
situations.

In this report, the basis set of edge structures for use in dissimilarity
enhancement was constrained to be thin edge structures of 3 pixels.
Investigation could be made into the use of other basis sets, possibly
comprised of larger edge structures. This investigation should be
performed in conjunction with (1) above.

More experiments with Simulated Annealing could be undertaken. Five

areas of possible investigation are listed below.

(i) Choice of the probabilities p; as given in Equation (4.21). These
probabilities govern the frequency each strategy of gemerating next
states is used.

(ii) Alternate methods of generating next states.

(iii) Alternate temperature schedules. The reference [63] could be
consulted.

(iv) Use of rapid cooling and different initial states.

(v) Parallel implementation. '

It is not apparent that Simulated Annealing is the best algorithm for
minimizing the absolute cost function. Other minimization techmques
could be investigated.

The investigation of how a priori information can be best incorporated
into the cost function. This can be achieved either by direct incorporation
into the dissimilarity measure f,(R1,R2), or by the inclusion of additional
cost factors.

190

(6) The use of additional cost factors to capture desirable edge characteristics _
that have not already been mentioned.

REFERENCES

1]

[2]

[4]

[5]

[14]

191

REFERENCES

M. Brady, “Computational approaches to image understanding,”
Computing Surveys, vol. 14, No. 1, pp. 3-71, March 1982.

P. J. Besl and R. C. Jain, “Three-dimensional object recognition,”
Computing Surveys, vol. 17, No. 1, pp. 75-145, March 1985.

L. S. Davis and A. Mitiche, “Edge detection in textures,”” Computer
Graphics and Image Processing, vol. 12, pp. 25-39, 1980.

A. Rosenfeld and A. C. Kak, Digital Picture Processing. New York:
Academic Press, 1982,1 & 2.

T. Peli and D. Malah, “A study of edge detection algorithms,” Computer
Graphics and Image Processing, vol. 20, pp. 1-21, 1982.

L. S. Davis, ““A survey of edge detection techniques,” Computer Graphics
and Image Processing, vol. 4, pp. 248-270, 1975.

V. Torre and T. A. Poggio, “On edge detection,” IEEE Trans. Pattern
Anal. Machine Intelligence, vol. PAMI-8, No. 2, pp. 147-163, March 1986.

T. Poggio, “Early vision: From computational structure to algorithms
and parallel hardware,” Computer Vision, Graphics, and Image |
Processing, vol. 31, pp. 139-155, 1985. |

F. M. Dickey and K. S. Shanmugam, “Optimum edge detection filter,”
Appl. Opt., vol. 16 no. 1, pp. 145-148, Jan. 1977.

J. Canny, “A computational approach to edge detection,” IEEE Trans.
Paitern Anal. Machine Intelligence, vol. PAMI-8, No. 6, pp. 679-698,
November 19886.

D. Marr and E. Hildreth, “Theory of edge detection,” Proc. Royal Soc.
London, vol. B 207, pp. 187-217, 1980.

D. Marr, Vision. New York: W. H. Freeman and Company, 1982.

M. J. Brooks, ‘“Rationalizing edge detectors,” Computer Graphics and
Image Processing, vol. 8, pp. 277-285, 1978.

M. H. Hueckel, *“An operator which locates edges in digitized pictures,”
Journal of the Association for Computing Machinery, vol. 18, No. 1, pp.
113-125, January 1971.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[25]

[26]

[27]

192

R. M. Haralick, ‘“Edge and region analysis for digital image data,”

Computer Graphics and Image Processing, vol. 12, pp. 60-73, 1980.

R. M. Haralick and L. Watson, “A facet model for image data,”
Computer Graphics and Image Processing, vol. 15, pp. 113-129, 1981.

R. M. Haralick, “Digital step edges from zero crossing of second
directional derivatives,” IEEE Trans. Pattern Anal. Machine Intelligence,
vol. PAMI-6, No. 1, pp. 58-68, IEEE, January 1984.

V. Nalwa and T. O. Binford, “On detecting edges,” IEEE Trans. Pattern
Anal. Machine Intelligence, vol. PAMI-8, No. 6, pp. 699-714, November
1986.

B. J. Schachter and A. Rosenfeld, “Some new methods of detecting step
edges in digital pictures,” Communications of the ACM, vol. 21, No. 2,
pp. 172-176, February 1978.

R. Machuca and A. L. Gilbert, “Finding edges in noisy scenes,” IEEE
Trans. Pattern Anal. Machine Intelligence, vol. PAMI-3, No. 1, pp. 103-
111, January 1981.

A. Martellli, “An application of heuristic search methods to edge and
contour detection,” Communications of the ACM, vol. 19, No. 2, pp. 73-
83, February 1976.

G. P. Ashkar and J. W. Modestino, “The contour extraction problem
with biomedical applications,” Computer Graphics and Image Processing,
vol. 7, pp. 331-355, 1978.

P. H. Eichel and E. J. Delp, “Sequential edge detection in correlated
random fields,” Proceedings of the IEEE Computer Vision and Pattern
Recognition Conference, pp. 14-21, San Francisco, June 1985.

R. Nevatia and K. R. Babu, “Linear feature extraction and description,”
Computer Vision and Image Processing, vol. 13, pp. 257-269, 1980.

A. Rosenfeld, Image Modeling. New York: Academic Press, 1981.

A. Rosenfeld, ‘Tterative methods in image processing,”” Pattern
Recognition, vol. 10, pp. 181-187, Pergamon Press Ltd., 1978.

S. Ullman, ‘‘Relaxation and constrained optimization by local processes,”
Computer Graphics and Image Processing, vol. 10, pp. 115-125, 1979.

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

193

S. Peleg, “A new probabilistic relaxation scheme,”” IEEE Trans. Pattern

Anal. Machine Intelligence, vol. PAMI-2, No. 4, pp. 362-369, IEEE, July, -

1980.

J. A. Bondy and U. 8. R. Murthy, Graph Theory With Applications.
New York: North-Holland, 1976.

C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, New Jersey: Prentice-
Hall, Inc., 1982.

J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods.
London: London: Methuen, 1964.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller, “Equation of state calculations by fast computing machines,” The
Journal of Chemical Physics, vol. 21, No. 6, pp. 1087-1092, June 1953.

C. J. Thompson, Mathematical Statistical Mechanics. New York:
Macmillan Company, 1972.

A. B. Brotz, M. H. Kalos, and J. L. Lebowitz, “A new algorithm for
Monte Carlo simulation of Ising spin systems,” Journal of Computational
Physzcs, vol. 17, pp. 10-18, 1975.

I. Z. Fisher, ‘““Applications of the Monte Carlo method in statistical
physics,” Soviet Physics Uspekhi, vol. 2, No. 6, pp. 783-1012, June 1960.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, ‘“Optimization by
simulated annealing,” Science, vol. 220, No. 4598, pp. 671-680, 13 May
1983.

V. Cerny, “Thermodynamical approach to the traveling salesman
problem: An efficient simulation algorithm,” Journal of Optimization
Theory and Applications, vol. 45, No. 1, pp. 41-51, January 1985.

C. C. Skiscim and B. L. Golden, “Optimization by simulated annealing:
A preliminary computational study for the TSP,” in Proceedings of the
1988 Winter Stmulation Conference, IEEE, 1983, pp. 523-535.

M. P. Vecchi and S. Kirkpatrick, ‘‘Global wiring by simulated
annealing,” IEEE Transactions on Computer-Aided Design, vol. CAD-2,
No. 4, pp. 215-222, October 1983.

A. A. El Gamal, L. A. Hemachandra, 1. Shperling, and V. K. Wei, “Using
simulated annealing to design good codes,” IEEE Trans. Inform. Theory,
vol. IT-33, No. 1, pp. 116-123, January 1987.

[41]

[42]

[43]

[45]

[46]

[47]

[48]

[49]

[50]

194

D. B. Paul, “Training of HMM recognizers by simulated annealing,” in
Proceedings of the IEEE International Conference on Acoustics, Speech -
and Signal Processing, vol. 1, 1985, pp. 13-16.

P. Carnevali, L. Coletti, and S. Patarnello, ‘“Image processing by
simulated annealing,” IBM J. Res. Develop., vol. 29, No. 6, pp. 569-579,
November 1985.

W. E. Smith, H. H. Barrett, and R. G. Paxman, ‘“Reconstruction of
objects from coded images by simulated annealing,” Optics Letters, vol.
8, No. 4, pp. 199-201, April 1983.

H. Fleisher, J. Giraldi, D. B. Martin, R. L. Phoenix, and M. A. Tavel,
“Simulated annealing as a tool for logic optimization in a cad
environment,” in IEEE International Conference on Computer-Aided
Design , 1985, pp. 203-205.

E. Cinlar, Introduction to Stochastic Processes. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc., 1975. :

D. L. Isaacson and Richard W. Madsen, Markov Chains and Applications.
New York: John Wiley and Somns, 1975.

M. lIosifescu, Finite Markov Processes and Their Applications. New
York: John Wiley and Sons, 1979.

E. Wong and B. Hajek, Stochastic Processes in Engineering Systems.
New York: Springer-Verlag, 1985.

F. Romeo and Alberto Sangiovanni-Vincentelli, ‘Probabilistic hill
climbing algorithms: Properties and applications,” in 1985 Chapel Hill
Conference on VLSI, 1985, pp. 393-417.

F. Romeo, A. Sangiovanni-Vincentelli, and C. Sechen, ‘“Research on
simulated annealing at Berkeley,” in Proceedings of the IEEE
Interngtional Conference on Computer Design: VLSI in Computers, 1984,
Pp. 652-657.

M. Lundy and A. Mees, “Convergence of an annealing algorithm,”
Mathematical Programming, vol. 34, pp. 111-124, 1986.

S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and
the bayesian restoration of images,” IEEE Trans. Pattern Anal. Machine
Intelligence, vol. PAMI-6, No. 6, pp. 721-741, November 1984.

D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, *‘Convergence and
finite-time behavior of simulated annealing,” in Proceedings of 24th

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

195

Conference on Decision and Control, 1985, pp. 761-767.

D. Mitra, F. Romeo, and Alberto Sangiovanni-Vincentelli, “Convergence
and finite-time behavior of simulated annealing,” Adv. Appl. Prob., vol.
18, pp. 747-771, 1986.

S. B. Gelfand and S. K. Mitter, “Analysis of simulated annealing for
optimization,” in Proceedings of 24th Conference on Decision and
Control, F't. Lauderdale, FL., December 1985, pp. 779-786.

B. Gidas, “Nonstationary markov chains and convergence of the
annealing algorithm,” Journal of Statistical Physics, vol. 39, Nos. 1 /2, pp.
73-131, 1985.

B. Hajek, “A tutorial survey of theory and applications of simulated
annealing,” in Proceedings of 2fth Conference on Decision and Control,
Ft. Lauderdale, FL., December 1985, pp. 755-760.

B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of
Operations Research, vol. 13 No.2, pp. 311-329, May 1988.

J. Serra, Image Analysis and Mathematical Morphology. New York:
Academic Press, 1982.

W. Pratt, Digital Image Processing. New York: Wiley, 1978.

I. Abdou and W. Pratt, “Quantitative design and evaluation of
enhancement/thresholding edge detectors,” Proc. of IEEE, vol. 67, pp.
753-763, May 1979.

L. Kitchen and A. Rosenfeld, ‘“Edge evaluation using local edge
coherence,” IEEE Transactions on Systems, Man and Cybernetics, vol.
SMC-11, No. 9, pp. 597-605, IEEE, Sept. 1981.

P. J. M. van Laarhoven and E. H. Aarts, Stmulated Annealing: Theory
and Applications. Dordrecht, Holland: D. Reidel Publishing Company,
1987.

VITA

196

VITA

Hin Leong Tan was born in the Republic of Singapore on August 8th,
1959. From December 1977 to June 1980, he was enrolled in the military
service. He received his B.S. (with high scholastic honors) and M.S. degrees in
Electrical and Computer Engineering from Oregon State University at
Corvallis, Oregon, in June 1983, and June 1984 respectively.

Between March 1984 to January 1985, he was a VLSI design engineer at
Integrated Device Technology in Santa Clara, California. Since January 1985,
he has been working toward his Ph.D. degree at Purdue University. He is
scheduled to receive his degree in December 1988. From November 1988, he
will be with the Imaging Electronics Center at Eastman Kodak Company in
Rochester, New York.

He is a member of the Eta Kappa Nu, and the IEEE.

