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ABSTRACT

Wright, Cameron H.G. MSEE, Purdue University, May 1988. A Study of
Target Enhancement Algorithms to Counter the Hostile Nuclear Environment.
Major Professor: Edward J. Delp.

A necessary requirement of strategic defense is the detection of incoming
nuclear warheads in an environment that may include nuclear detonations of
undetected or missed target warheads. A computer model is described which
simulates incoming warheads as distant endoatmospheric targets. A model of
the expected electromagnetic noise present in a nuclear environment is
developed using estimates of the probability distributions. Predicted atmos-
pheric effects are also included. Various image enhancement algorithms, both
linear and nonlinear, are discussed concerning their anticipated ability to
suppress the noise and atmospheric effects of the nuclear environment. These

algorithms are then tested, using the combined target and noise models, and

evaluated in terms of the stated figures of merit.




CHAPTER 1
INTRODUCTION

1.1 THE NEED TO ENHANCE TARGET IMAGES

Digital image processing can be divided into several categories, such as
image enhancement, image coding, image restoration, and image analysis. This
study addresses image enhancement, which is the processiﬁg of a given digi-
tized image to make it more suitable for a specific application.

While image enhancement has received considerable attention over the
years, this study is different due to the intended application. Specifically, few
researchers have set out to compare and contrast image enhancement algo-
rithms for reducing the image degradation expected from nuclear detonations.
This application is of great interest to a variety of national security organiza-
tions, particularly those concerned with strategic defense.t

A high priority for any strategic defense system is the detection of incom-
ing nuclear warheads for targeting and interception. Such a system would
most likely utilize real time digital image processing, which must be robust
enough to perform well even if some warheads penetrate the defensive screen
and detonate. Ignoring possible physical damage to the system, nuclear deto-
nations present a very hostile image processing environment (Figure 1.1). This
environment includes electromagnetic pulses, initial nuclear radiation (neu-
troms, x rays, -y rays, and debris ions), residual nuclear radiation (v rays and 3
particles), thermal radiation, and the resulting atmospheric effects from the
blast. 'Even when shielding and radiation hardened electronics are used, the
nuclear environment can severely corrupt the image, inhibiting the detection of
follow-on warheads. It is imperative, therefore, that some form of image
enhancement be employed to counteract the degradation of the image.

t+ To ease the dissemination and handling of this study, it was decided early on to
keep it unclassified. This does not diminish the validity or utility of the information
contained herein, as the data necessary to model the nuclear environment within
accepted limits of uncertainty is available in the open literature.
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Figure 1.1 The nuclear environment.

1.2 CHOOSING APPROPRIATE ENHANCEMENT ALGORITHMS

When choosing among a variety of image enhancement algorithms, the cri-
teria specific to the intended application must be defined. The primary cri-
terion for this application is the ability to reduce or negate the effects of the
nuclear environment. As described in Chapter 3, the two major sources of
image degradation caused by nuclear detonatlons are impulsive noise and

" structured background. There are also noise sources present due to natural

and man-made phenomena not related to the nuclear environment which must
be considered. In the intended application, appropriate algorithms should pro-
duce minimal change in target size, shape, or position that might adversely

affect the ultimate goal of the system: warhead detection and targeting.

Related to this is the ability of the system to resolve multiple closely spaced
objects (CSOs); thus acceptable algorithms should not blur CSOs together.
Further, since any strategic defense system must operate in real time, the algo-
rithm time and space complexity (that is, processing delay and memory



requirements) could prove to be limiting factors.

Appropriate image enhancement algorithms can be measured relative to .
the criteria listed above and compared for their suitability to this application.
The prime focus of this study is how well the various algorithms met these cri-
teria.

1.3 SCOPE AND ORGANIZATION OF THIS STUDY

This study compares various known image processing algorithms for their
ability to enhance an image in a simulated nuclear environment. As in any
study, the problem must be defined and limited in a way that makes conclu-
sions not only useful, but also possible. In light of this, the scope of the study
is outlined below.

The algorithms were selected for image enhancement only. The special
requirements of other processing stages (such as detection, classification, track-
ing, and targeting) are not addressed. The images to be processed have no
temporal information; they are assumed to be single frames from some given
instant in time. Effects such as temporary sensor blinding, sensor dwell time,
or apparent target movement are not modeled. While it is assumed that the
sensors are of the long wavelength infrared (LWIR)} type, sensor selection is
not discussed, nor is sensor location (ground, aircraft, or space based). How-
ever, the conclusions of this study are valid for a wide range of sensor types
and locations. The targets are assumed to be endoatmospheric, and of uniform
apparent size. A necessary assumption is that the system physically survives
any initial detonation effects, such as the blast wave and thermal pulses. It is
expected that the system hardware would be shielded and make maximum use
of radiation hardened semiconductors; therefore, most image degradation is
assumed to be a combined result of energy received by the sensor and distor-
tions of the atmospheric medium. Some nonfatal hardware problems from radi-
ation, such as transient bit errors, are inevitable and are modeled appropri-
ately. Finally, it is assumed that the sources of degradation are not localized
within the sensor field of view. That is, noise is not highly clustered within
small areas of the image. These assumptions are justified in the following
chapters. ‘

This study is organized such that Chapters 2 and 3 focus on the target
. and noise models, respectively, while Chapter 4 introduces the theoretical

t+ Long wavelength infrared is also called far, thermal, or emissive infrared and spans
the wavelengths from 7-15 um [56].




aspects of the various image enhancement algorithms chosen for testing.
Chapter 5 presents the results of how well the algorithms negated the effects of -
a simulated nuclear environment in terms of the defined figures of merit.
These results are then summarized, along with the conclusions of the study, in
Chapter 6.




CHAPTER 2
TARGET IMAGE CHARACTERISTICS

2.1 INTRODUCTION

Since the envisioned strategic defense system would attempt to target and
intercept incoming nuclear warheads, the warheads are referred to as targets.
The first phase of this study was to determine the characteristics of a target
image so that it could be modeled appropriately. These characteristics are
affected by target emittance properties, atmospheric transmittance, and optical
limitations of the semsor front end. Since an in-depth treatment of sensor
parameters is beyond the scope of this study, ideal sensors are assumed. After
determining how the targets would look to a strategic defense system, digital
images of simulated targets were generated as discussed below.

2.2 MODEL OF A DISTANT ENDOATMOSPHERIC TARGET

This section is largely based on previous studies by Silva [56] and Pau and
El Nahas [48]. An excellent general treatment of the theory described in this
section is presented in [56], with an emphasis on infrared presented in [48].

The target of interest is a ballistic reentry vehicle falling through the
atmosphere. As it falls, the warhead’s skin temperature rises due to friction
with the increasingly dense air. The non-black body radiation, or radiant
exitance, M, of the target increases according to the well known Stephan-
Boltzman law, and is distributed with respect to wavelength according to its
spectral radiant exitance, M), curve defined by Planck’s radiation law. This
thermal radiation should not be confused with nuclear radiation discussed in
Chapter 3. It is safe to assume that the skin temperature of the target would
be somewhere between 800 K (a red-hot object) and 3000 K (a tungsten
filament), which means the bulk of this radiation is in the infrared region of
the electromagnetic spectrum. The background temperature of the atmosphere
is around 300 K. Since M varies as the fourth power of absolute radiant
temperature, the target will display a significant infrared signature against this
background, distinct from other endoatmospheric objects such as aircraft.
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Before the energy radiated by the hot skin of the target can reach the
sensors, it is partially scattered and absorbed by the atmosphere. Atmospheric
transmittance, 7, is determined by the three scattering mechanisms (Rayleigh
scattering, Mie scattering, and nonselective scattering) and the molecular
absorption process (primarily due to gaseous H,0, CO;, and O3). These
phenomena are wavelength dependent, and the spectral transmittance, 7,
curve is characterized by regions of high transmission (called atmospheric
windows) separated by regions of low transmission. A typical 75 curve of the
optical wavelengths is shown in Figure 2.1 for a horizontal path at sea level
with a length of 1828 meters.

| | 1 | ] ) | I ] | k] I | |
Absorbing Molecule
H.0 H.0 o cO,
0; p—b— ¢O: CO0. H-0 CO. O, H.O CO.
W T 1 11 1 il 1 i
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«
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Figure 2.1 Spectral transmittance of the Earth’s atmosphere for a horizontal
path at sea level, length 1828 m. (adapted from [48])

As a point of reference, the human eye responds to radiation with wavelengths
between 0.38 and 0.72 um, generally referred to as the vistble wavelengths.
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While slant path and nadir path transmittance variations encountered by
a strategic defense system would be somewhat different, the characteristic
atmespheric windows lie in the same spectral regions. Early work in remote
sensing of the optical frequencies established the boundaries of useful
atmospheric windews shown in Table 2.1.

Table 2.1
Atmospheric Windows of the Optical Wavelengths
(adapted from [56])

Atmospheric Spectral Portion of the
Window Region (um) | Electromagnetic Spectrum

1 0.3-1.3 reflective
2 1.5-1.8 reflective
3 2.0-2.6 reflective
4 3.0-3.6 ¥

5 4.2-5.0 }

6 7.0-15.0 emissive

+ Neither reflective nor emissive radiation dominates.

These windows correspond to the peak areas of the graph in Figure 2.1. The
reflective portion of the electromagnetic spectrum is that region in which
radiation reflected off the object of interest from some external source (such as
the sun) dominates; the emissive portion is that region in which radiation
emitted by the object itself is the dominant form of radiation. Note that only
window 6, in the long wavelength infrared (LWIR) region, is in the emissive
portion of the spectrum. Thus window 6 is not dependent on sunlight or some
_other external source to sense objects. This portion of the spectrum is also
unaflfected by clouds, rain, and other adverse weather conditions. Since a
strategic defense system must function day or night in all types of weather,
and a target will emit most of its radiation in the infrared region, the most
logical type of sensor to use for this purpose is the LWIR type.

Having established the properties of radiation that can be used to detect
the targets, and how the atmosphere affects that radiation, the remaining
factors which determine how a target should be modeled are the optical
limitations of the sensor front end. ’
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A complete description of the optical system is based on the Rayleigh-
Sommerfeld propagation integral of wave optics theory, which involves the
point spread function of the system [26:42-54], [48:136]. While the Rayleigh- -
Sommerfeld theory neglects the interactions between the electric and magnetic
field vectors described by Maxwell’s equations, it has been empirically shown to
yield very accurate results for the type of system described here [26:32]. The
target is a distant endoatmospheric object, and thus appears to the system as
a partially blurred point source (sometimes referred to as an Airy disk) of
LWIR. However, the blurring of the theoretical point source due to
atmospheric phenomena is overwhelmed by blurring due to limitations of the
optics. Thus, the point spread function of the optics determines how the point
source target can be modeled.

Since it is assumed that the optics of the system will be operating far from
the diffraction limits, and the incoming radiation from the target is incoherent,
geometrical optics theory can be used to simplify Rayleigh-Sommerfeld
predictions of optical performance. For relatively simple paraxial cases such as
this, first-order approximations which ignore the effects of aberrations are
commonly used for visible and near visible wavelengths. Using first-order
approximations, the incoherent point spread function reduces to a first order
Bessel function. But because it is very difficult to build good LWIR optics, and
because the longer wavelengths result in larger blur spots for a given
aberration, a more refined approach is necessary.

Third-order approximations are sufficiently exact, and predict the effects
of seven types of aberration: spherical, coma, astigmatism, field curvature,
distortion, axial chromatic, and off-axis chromatic. Using third-order
approximations in the presence of aberrations, the incoherent point spread
function becomes a very complex equation which can be solved only through
numerical techniques [48:141]. This equation introduces a phase-shifting plate
(the generalized pupil function) as an artifice to include aberration effects
[26:121]. However, assumptions described for the sensor front end optics allow
this equation to be simplified considerably. The incoherent point spread
function can then be approximated by the Gaussian shaped density function
[48:143). Thus, the point source appearance of a target would become a
Gaussian blur spot due to the predicted limitations of the optical system.

The ability to model a distant endoatmospheric target as a two
dimensional Gaussian pulse greatly simplifies the creation of target images.
Multiple target images are easily formed, and allow for more thorough testing
of the image enhancement algorithms. Digital images of simulated targets were
generated using bivariate Gaussian pulses as targets in a 256 x256 pixel image




using 8 bit quantization. This equation has the general form of

1 [(z—a'-‘ _ 2= (y—g)‘-’”

2(1-p7) a? 0,0, o,

flmy)=Ace {_ (2.1)

where A = K
270,00y \V 1—p?

The target pulses are scaled to have a peak value of 127 to provide
sufficient dynamic range for the noise and background models added later.
Using Equation (2.1), the standard deviation was set to 0, = 0y =8 pixels and
the correlation coefficient was set to p = 0, thus giving a circular appearance
from the zaxis. While o, # 0, and a nonzero p would have yielded a more
general elliptical appearance, there is little to be gained from an image
enhancement point of view. The concern of this study is how well various
algorithms can preserve an object of a general Gaussian shape; while reducing
the effects of the nuclear environment. Elliptical targets are more general, and
could be used to represent more gross aberration effects, but empirically do not
provide a better measure of algorithm performance for this study. An example
of a generated target image is shown in Figure 2.2. Each target image contains
three targets: one relatively far from the other two for testing single target
effects, and two targets close together for testing how the subsequent
processing will affect the ability to resolve closely spaced objects (CSOs).

and K is a scaling factor.

2.3 THE CLOSELY SPACED OBJECT PROBLEM

An acceptable strategic defense system must be able to distinguish
between multiple targets. When several targets appear in an image, they
present little problem if they are relatively distant from each other spatially.
However, when this is not the case, the closely spaced targets tend to blur into
each other due to the point spread function; it inhibits the ability of the system
to resolve them as distinct objects. This is known as the CSO problem.

The ability to resolve two closely spaced point sources has long been used
as a figure of merit for optical systems, e.g. astronomy. Several methods of
quantifying this ability have been suggested in the literature; there is no
. general agreement about which is best for a particular application.

One measure, ‘used in applications such as interferometers and radar
systems, is the half power point [48]. This is the point where two pulses
intersect at a distance where their respective power values (intensity values
squared) are half of the peak power. '




10

255.000

-—

170.000

85.0000

Gray Level

0.00000

Figure 2.2 Simulated LWIR target pulses.

Another measure, used for instruments such as spectroscopes, microscopes,
and telescopes, is the Rayleigh criterion [26]. It states that the minimum
resolvable angular separation is given by

fp =sin™" |/ (2.2)

where d is the exit pupil (effective aperture) diameter, and ) is the wavelength
-of radiation. In the paraxial case, the approximation sin f ~ 0 holds, so that
Equation (2.2) becomes

b =122 2 (2.3)

The Rayleigh criterion is only useful for incoherent sources; a very similar
measure called the Sparrow criterion is employed when the radiation is
coherent [46]. Neither of these criteria are well suited to this study.
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Another measure suggested recently [15] is the isolation measure, M,
which uses the concept of the conver hull. This is used in the processing of a

binary image. An image region R is said to be convez if for any two points a, b .

of R, the straight line segment from a to b lies entirely in R. The convez hull of
some arbitrary image region S is the smallest possible convex region that
contains S, as shown in Figure 2.3.

Figure 2.3 Example of a convex hull of an image region. Left: Original
image region. Right: Convex hull of the image region.

An algorithm is used that computes the area of an object and the area of its
convex hull, then forms the ratio

____area of the object (2.4)
area of the conver hull’ ’

Circular or elliptical objects such as the simulated targets of this study are
convex; hence, if IM is close to one, the object is a single target. If the IMis
much less than one, the object is most likely two or more CSOs. This measure
is more sophisticated, and thereby more computationally complex, than is
needed for this study.
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A very simple measure exists that can be used to deteriﬁine to what
degree an image enhancement algorithm has blurred two CSOs together; we

define. this as the CSO resolution ratio, or CSORR. The CSORR is easily
computed as

minimum value between peaks
average of the two peak values’

CSORR = (2.5)

In terms of the resolution threshold, if the CSORR < 0.5 then the CSOs can be
resolved as two targets. That is, when the peaks are twice the height (or
greater) of the valley between them, they can be discerned as two distinct
targets. A CSORR of 1.0 occurs when there is no valley at all (as in the case
of a single target); a CSORR of 0 occurs when the valley between the peaks
drops to zero (as in the case of widely separated targets). The CSORR can be
measured before and after processing; ideally there should be no change. The
simulated target images each contain three targets, two of which are CSOs, so
that each algorithm could be evaluated on this figure of merit. Examples of
cross sectional plots of target images for CSORR values of 0.25, 0.50, 0.75 and
0.90 are shown in Figures 2.4 and 2.5. The corresponding gray level images are
shown in Figure 2.6.

In this chapter we have determined the predicted characteristics of an
incoming warhead (the target) with regard to a strategic defense system’s
optics and sensor array. We then developed a realistic model that can be used
to simulate an uncorrupted target image. Since the anticipated nuclear
environment in which the system must operate will corrupt the target image,
we investigate the sources of this corruption in the next chapter and develop
appropriate models to simulate it.
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Figure 2.6 Photo of target images. CSORR equal to: 0.25 (upper left), 0.50
(upper right), 0.75 (lower left), 0.90 (lower right)
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CHAPTER 3
NOISE AND BACKGROUND CHARACTERISTICS

3.1 INTRODUCTION

After defining and generating the simulated target images, the next phase
of this study was to determine the characteristics of the noise and background
environment. We then created a noise and background model which, when
combined with the simulated target model, permitted effective testing of the
various image enhancement algorithms.

Since no strategic defense system can be expected to work perfectly, some
warheads may detonate before they can be intercepted and destroyed. Thus
the noise and background model must take into consideration the effects of this
hostile nuclear environment as well as natural sources of noise.

3.2 EFFECTS OF NUCLEAR EXPLOSIONS

This section is based mainly on information found in Glasstone and Dolan
[24], one of the most complete discussions of nuclear weapons effects in the
open literature.

No distinction is made here between fission and fusion weapons. The
detonation effects are very similar, and modern thermonuclear devices utilize
both fission and fusion mechanisms. The type of blast (e.g. exoatmospheric,
high-altitude endoatmospheric, near-surface endoatmospheric, or subsurface)
has the greatest effect on the phenomena associated with the detonation, but
all types can contribute to the corruption of a target image.

When a nuclear explosion occurs, a complex series of events take place. A
large amount of energy is liberated in a very brief period of time; the fission
products, bomb casing, and other weapon parts are converted to gaseous
plasma with temperatures at several tens of million degrees and accompanying
pressures of millions of atmospheres in less than one microsecond. This plasma
begins to emit neutrons, x rays, - rays, and debris ions collectively termed tni-
tial nuclear radiation. For an endoatmospheric blast, the x rays are absorbed
in the air immediately surrounding the detonation, and cause the formation of
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a fireball, which rises like a hot air balloon at very high speed. The resulting
thermal radiation has two major pulses; the first pulse peaks in the ultraviolet
about one millisecond after the explosion, and the second pulse, much longer
than the first, peaks in the visible and infrared after roughly half a second.
The debris ions quickly interact with surrounding matter, and many of the neu-
trons and y rays are absorbed by the device materials and the bomb casing.
However, a considerable number of neutrons and < rays escape the bomb
debris. Some ~ rays interact with the atmosphere by way of the Compton
effect, producing electromagnetic pulses (EMPs) [21]. The shock wave expands
quickly out from the epicenter, the radioactive cloud forms, and the fireball
begins to cool. After about 1 minute, the initial nuclear radiation gives way to
residual nuclear radiation, emitted by radioactive bomb debris and neutron-
induced fallout particles. This residual nuclear radiation consists mainly of v
rays and 3 particles. The atmosphere is left severely ionized and contaminated
with dust and debris particles, dependent upon the altitude of the blast.

For exoatmospheric blasts, no fireball is formed, and a greater percentage
of the detonation energy is expended in the formation of very strong EMPs and
possible ionization of the upper atmosphere. Subsurface blasts, on the other
hand, produce only weak EMPs and little atmospheric ionization, but throw
excessive amounts of dust and debris into the radioactive cloud.

In order to survive and perform its mission, a strategic defense system
must be designed to withstand the effects of initial nuclear radiation, thermal
radiation, and the shock wave [52]. The effects of the initial nuclear radiation
can be subdivided into two categories: transient radiation effects on electronics
(TREE) and electromagnetic pulse (EMP) [39]. Assuming no detonations occur
in close proximity to the system, survivability can be reasonably assured
[23],[52]. It has been shown that appropriate structural design can mitigate the
effects of thermal radiation and the shock wave [24]; protective shielding can
significantly reduce the EMP hazard [21},(34], and radiation hardened electron-
ics can keep TREE to an acceptable level [39]. However, the LWIR sensors
must be -exposed to some degree to detect potential targets. Immediately fol-
lowing a blast within or near the sensor field of view, -y rays and thermal radia-
tion will temporarily blind the sensors, but most detectors in the sensor array
will quickly clear and provide image data to the system once again [15]. Itis a
reasonable assumption, and a necessary one for this study, that the overall sys-
tem can survive the initial detonation effects with no fatal damage. As the ini-
tial effects subside, however, the system must operate effectively in an environ-
ment that includes residual nuclear radiation from one or more detonations,
and any associated atmospheric effects.
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3.3 IMPULSIVE NOISE

The residual nuclear radiation consists mainly of ¥ rays and [ particles,
andis generally considered to begin roughly 1 minute after detonation. The 8
particles are simply fast electrons emitted from radioactive nuclei isotopes;
being charged, they are easily deflected and have short mean free paths. Thus,
the primary cause of image corruption is due to <y rays [15]. When the 7 rays
(high energy photons) strike the sensor, the resulting transient ionization pro-
duces a very brief signal several orders of magnitude greater than normal for
the associated image pixel, within the dynamic range limits of the sensor elec-
tronics [39]. This spike, or 7 pulse, corrupts the image with impulsive noise.
Because of its source, this noise is often referred to as -y noise.

In the hostile nuclear environment, 7 noise can be a source of significant
image corruption for extended periods of time. Some sensor designs, such as
the impurity band conduction (IBC) shielded detector, and sampling tech-
niques, such as spike adaptive time delay integration (SATDI), can reduce the
amplitudes and event rates of 7 noise, but there is no way‘to completely
prevent it [15]. The  noise spikes can result in both constructive and destruc-
tive interference of the target image, depending upon the associated phase rela-
tionships; this is known as bipolar impulsive noise.

The critical parameter that determines the level of image corruption due
to  noise is the ~ radiation dose rate, commonly referred to as Y. A
mathematical model for  noise is a random point process; in particular, 7y
emissions from a single source have been shown to closely approximate an inho-
mogeneous Poisson process in time [57] given by

—0.693¢t
Xt = .Xoe T ’ (3.1)

where 7 is the half-life of the source isotope, X is related to the quantity of
the isotope, and for which

y==t. (3:2)

Since the radioactive fallout results in many independent sources of -y rays, and
thus many different values of 7 and Xj, the dose rate 4 cannot be accurately
predicted using the derivative of Equation (3.1). Instead, a relatively accurate
value of 4 can be approximated for times ranging from about 30 minutes to
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about 5,000 hours (= 208 days) with an empirically derived equation
;Yt o= ,'71t-1.2 (3.3)

where 4, is the  radiation dose rate at time t after detonation, and 7, is the
unit-time reference dose rate. The value of 7, depends on the units in which
time is expressed. For useful calculations, time is expressed in hours; thus ¥,
would be the dose rate at 1 hour after detonation. This equation is accurate to
within 25 percent for constant fallout conditions [24]. High < means a high
probability that a <y pulse will occur on a given pixel of a given image frame.
The probability of ¥ contamination of a pixel is given by

POAKT) =1 — ¢ ¥ (3.4)

where T is the sample time, k is the number of samples of the associated sensor
array detectors, and ~ is the mean dose rate over the sampling period [15]. As
4 decreases, P(YkT) also decreases. Using Equation (3.3), it can be seen that it
takes 6.8 hours for the 7 noise to decrease to 10 percent of the value present 1
hour after detonation, and 46.4 hours to decrease to 1 percent; P(YkT)
decreases even more slowly. It is assumed that during the short frame time in
which a given image is formed, the decrease in - suggested by Equation (3.3) is
so small that ¥ can be considered to be constant [15]. Therefore, P(7kT) can
also be considered constant for all the pixels of a given image frame.

Whether or not a particular pixel in an image is contaminated with a
pulse can be considered a random variable. We define the random variable x;
as follows: x; = 1 if a -y pulse has corrupted the #th pixel and x; = 0 other-
wise. In terms of P(7kT) defined above, let

Px;=1)=PAkT)=1—¢"™ =p

P(x;=0)=1—P(T) =M =4 (3.5)

where p =1 — g and is constant for a given image. Since there are many
independent sources of -y noise, the random variables x; are independent. That
is, the - contamination state of a given pixel does not depend on the < contam-
ination state of any other pixel.
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Therefore, to effectively model the corruption of a given image due to 7
noise, we perform a series of N Bernoulli trials, one for each of N pixels, using
the probability p, to determine which pixels contain a spike due to the 7 noise.
This is performed computationally by assigning the probability p, then for each
pixel a pseudorandom number w is found using the C library function rand().t
We first scale p such that instead of ranging from 0 to 1, the scaled value p,
ranges from 0 to 23! — 1, which is the range of w. We then compare p, to w.
Assuming equal probability of constructive or destructive interference (positive
or negative spikes), and a spike amplitude so great it is hard limited by the
sensor front end electronics, we set the pixel value as shown below.

no change if (w > p,) — uncorrupted

pizel value = | 255 if (_1_32_5_ <w <p,) — positive spike  (3.6)

0 if (0<w< %—) —» negative spike

where 255 and 0 constitute the maximum range of pixel values in the image.
For convenience, we define this noise model as type 1 impulsive noise. The
value p represents the probability of pixel error, designated P,. In Figure 3.1,
the target image of Figure 2.2 has been corrupted with type 1 impulsive noise
where P, = 0.01. Since a large percentage of the target image has no signal,
the negative spikes are difficult to discern.

The total number of spikes (positive and negative) in a given image is the
random variable z =x; + *** + xy which takes the values 0,1,...,N and
{2 = k} is the event k spikes out of N pixels. The random variable z is binomi-
ally distributed [47], which is defined as

N
P(z =k) = [ k ]p"qN'k = —’;(%':’3'. prgN k. (3.7)

The type 1 noise model, as used in this study, actually represents two
sources of image corruption. As mentioned above, it effectively models signal

+ Rand() is a multiplicative congruential pseudorandom number generator with
period 2% and a uniformly distributed output in the range from 0 to 2% — 1.,
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Figure 3.1 Target image corrupted with type 1 impulsive noise where
P, =0.01.

spikes due to 7y noise photons. It also models the result of imperfect shielding
and radiation hardening of the system hardware.

No system can be made completely impervious to, TREE and EMP.
Proper design can significantly reduce these effects, but some hardware prob-
lems are inevitable [39]. The TREE and EMP phenomena manifest themselves
most commonly in the form of latchup, upset, single-event upset (SEU), and
burnout [21],[39]. Of these, latchup and SEU affect individual bits, and will be
discussed later. Upset and burnout, however, generally affect an entire circuit
such as a detector or its associated analog to digital (A/D) converter [39]. In
terms of the front end electronics, upset and burnout would result in random
pixels being set to the maximum or minimum value with equal probability
. [34),[39]. This is exactly the effect modeled by the type 1 impulsive noise
model. While the argument for independence between pixels is not as strong in
this case as it is for 7 noise, any correlation between pixels would depend on
factors such as exact system design and mission deployment configuration,
which cannot be predicted at this time. Thus we assume for this study that
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hardware effects are independent from pixel to pixel.

While the type 1 noise model reflects the majority of the < noise corrup- .
tion due to the nuclear environment, not all impulsive noise spikes will exceed
the dynamic range of the front end electronics. In this case, not only will the
occurrence of a spike on a pixel be random, but the amplitude and polarity of
the spike will also be random. This can be effectively modeled using the con-
cept of a binary symmetric channel [17],[47).

A generalized binary channel has an input x,, and an output y, consisting
of either 0 or 1. Following [47], the statistical relationship between x, and y,
is completely specified by the input probabilities

P(x, =0)=p Px,=1)=g¢ (3.8)
and the conditional probabilities
Ply,=jlx,=1)=m; 4j5=01 (3.9)

These conditional probabilities can be put in the form of a channel matriz
given by

Tloo 701 3.10
= d
II Tio "t ( )

where 7o + Mgy =1 and m + m; =1. The channel is symmetrical if
7o = To;- The probabilities of the output states are given by

P(y, =0)=7gp + Moq P(yn,=1)=7T1p + "11g (3.11)

Given the probability of error P, = § for a binary symmetric channel, Equation

(3.10) becomes
1-8 B "
II= [ﬂ 1—,3] (3.12)

‘which is represented by the diagram shown in Figure 3.2. As the diagram indi-
cates, there is a probability § that an input bit x, is corrupted such that the
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1-p

Figure 3.2 A binary symmetric channel with P, = .

output bit y,, is the complement of x,, and a probability 1 — /3 that the output
will equal the input. To implement this, Bernoulli trials are performed on each
bit of each pixel in an image. We compare [ (scaled as before to 3,) to a pseu-
dorandom number w and only if w <, do we complement the bit. This
results in an image that is corrupted with random impulsive noise having ran-
dom amplitude and polarity. We define this noise model as type 2 impulsive
noise. For an image that is formed using m bit quantization, the type 2 model
will average m times as many spikes as the type 1 model, since m times as
many Bernoulli trials are performed on each pixel. This must be taken into
consideration when comparing P, for type 1 and type 2 noise models. In Figure
3.3, the target image of Figure 2.2 has been corrupted with type 2 impulsive
noise where P, = 0.001. Since both type 1 and type 2 noise models depend
upon repeated Bernoulli trials, the probability distribution of the total number
of type 2 spikes P(z = k) is also the binomial distribution given in Equation
(3.7).

Just as the type 1 noise model actually represents two sources of image
corruption, - noise and two categories of hardware problems, so does the type 2
model. It effectively simulates signal spikes due to 7 noise photons that do not
exceed the dynamic range of the front end electronics. But it also models
_ TREE and EMP related hardware problems that affect individual bits (latchup
and SEU). In terms of the front end electronics, latchup and SEU will most
likely occur in the high density integrated circuits used for the image memory

[39], and cause individual bits to be set to random states. This is exactly the
‘effect simulated by the type 2 noise model. Since latchup and SEU generally
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Figure 3.3 Target image corrupted with type 2 impulsive noise where
P, = 0.001.

corrupt a random memory cell [39], the argument for independence between
bits is strong.

The combination of type 1 and type 2 noise models effectively simulates
the effects of -y noise received by the sensor array, as well as anticipated nonfa-
tal hardware problems. The nuclear environment includes another
phenomenon that can severely degrade the image processing capabilities of a
strategic defense system: the atmospheric effects associated with nuclear deto-
nations. These effects can create structure in the normally uniform back-
ground.

3.4 STRUCTURED BACKGROUND

It has been suggested [15] that when multiple endoatmospheric nuclear
detonations take place, the effects from the various blasts may interact to pro-
duce a spatially periodic pattern in the atmospheric transmittance. This

phenomenon is known as a structured background. It should be emphasized

that there is very little experimental data available in the open literature to
base a reliable simulation; atmospheric testing of nuclear explosions was halted
in 1962, and no reliable observations of multiple detonation effects have been
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made. However, the effects of single endoatmospheric detonations are well
documented [24], and from these we can infer a reasonable model.

“The two mechanisms most likely to contribute to the formation of a struc-
tured background are atmospheric ionization and the creation of a dense aero-
sol from the radioactive cloud [15]. The ionization of the atmosphere results in
abnormal electron densities, which effect electromagnetic propagation in two
ways: it can attenuate the field strength and it can refract the wavefront [24].
The result is a decrease in the atmospheric transmittance across the entire
spectrum. The radioactive cloud can also effect electromagnetic propagation.
The associated dense aerosol consists of particulate matter swept into the
atmosphere by the force of the blast; a near-surface detonation will yield a
more dense aerosol than one at high-altitude. The sizes of the particles range
from less than 0.1 um to greater than 1.0 cm in diameter; particles in this size
range have been observed to stay suspended in the atmosphere for up to 24
hours after the burst [24),(42). These particles greatly increase the scattering
of electromagnetic waves. In particular, the larger particles contribute to non-
selective scattering, which attenuates electromagnetic energy independent of
the wavelength [56]. Thus this mechanism also results in a decrease of the
atmospheric transmittance across the entire spectrum.

These effects tend to decrease linearly over distance from the blast loca-
tion [24],[42]. If only one detonation had occurred, any structuring of the back-
ground would appear in the image only as a slight linear increase, or ramping,
of the background intensity in the direction away from the blast (since
transmittance increases as distance from the blast increases). However, if mul-
tiple blasts had occurred, the effects could interact and create spatially
periodic regions of high and low transmittance, similar to standing waves,
dependent upon the relative location of the detonations to each other.t This
structuring could conceivably become highly complex if many detonations
occurred in close proximity. For the purposes of this study, however, the
assumption is made that few blasts occurred close enough to each other to set
up strong interactions and that the pattern of the structuring is sinusoidal in
space. More distant blasts are assumed to add a linear ramping to the back-
ground structure. An example of this ramped sinusoidal model of a structured
background using the target image of Figure 2.2 is shown in Figure 3.4. In
terms of image coordinates (with units of pixels in the x and y directions, and
quantizer levels in the 2z direction), the linear ramp has a slope of 0.4

t It is also possible that the ionization from a single blast, interacting with the
Earth’s magnetic field, could result in a structured background.
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Figure 3.4 Target image with a ramped sinusoidal structured background.

levels /pixel, and the peak amplitude of the sinusoid is 32 levels, with a period
of 128 pixels. Given the assumptions stated above, this is a reasonable model
of the structured background that has been theorized due to interactions in a
multiple detonation nuclear environment.

The three models used to simulate the image degradation due to the
nuclear environment are the type 1 noise model, the type 2 noise model, and
the structured background model. Even without nuclear detonations, however,
noise arising from natural and man-made phenomena will be present in the
images, and must be taken into consideration.

3.6 GAUSSIAN WHITE NOISE

In an environment free of nuclear detonations, there are still a large
number of noise sources that can degrade images, although the intensity of this
noise is much lower than the noise associated with the nuclear environment.
The various types of noise arising from natural phenomena, e.g. thermal (or
"Johnson"), shot, contact, and popcorn (or burst) noise, exist to some degree at
all times in electronic systems [45]. The LWIR sensors may pick up some
atmospheric and galactic noise in the image background [48], and the A/D con-
verter and other digital circuitry will induce quantization noise and noise from
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switching transients (17] into the image. These nonnuclear related sources of
noise are generally treated as independent, random processes [11],{45]. The
instantaneous value of these processes are therefore independent random vari- |
ables which can only be described in terms of probability [45].

' The probability density function of many of these noise sources have been
defined empirically, e.g. thermal noise exhibits a Gaussian distribution [45],
shot noise exhibits a Poisson distribution [47], and noise from switching tran-
sients exhibits a log-normal distribution [13]. However, we wish to define a sin-
gle model to simulate the effects of all the nonnuclear related noise sources.

If we define the independent random variables associated with these noise
sources as Xj, . . - ,Xyn, then under conditions weak enough that we can assume
they are met for this case, the ceniral limst theorem [47] states that if

_ it tx
X = 2L - (3.13)

Nn

t_;_hen 02 =1 and we find that the probability density function of x, denoted by
f(z) approaches as a limit for n — oo the relation

lim ?(x) ~— ¢/ (3.14)

n=oo Var

This means that for large n, the sum of the independent random variables will
have a Gaussian probability density function. We can make use of this result
to create a model for the combined effects of all the nonnuclear related noise
sources. We simulate this noise with a Gaussian distribution having a mean of
0, and further assume that the frequency distribution of the noise power is uni-
form. This is known as Gaussian white noise. This model has been proven
valid empirically for a wide range of conditions [14],[45].

Computationally, we generate this using the common technique of sum-
ming 12 normalized uniformly distributed pseudorandom numbers (using the
rand() function) to obtain a single Gaussian distributed random number. This
technique produces a reasonable Gaussian approximation [55]. One Gaussian
" distributed random number is added to each pixel in the image. Figure 3.5
- shows the target image of Figure 2.2 corrupted with Gaussian white noise gen-
erated as described, having a mean of 0 and a standard deviation of 32. Due
to the angle of the plot, it is difficult to discern the three target pulses.
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Figure 3.5 Target image corrupted with Gaussian white noise having a mean
of 0 and a standard deviation of 32.

The reader may question why the random processes representing the -~y
noise are not included in the sum of the noise sources described above. The
central limit theorem does not hold unless each summand of Equation (3.13)
has a high probability of being small [8]; it also does not hold if a small number
m << n of the summand probability density functions are dominant [47]. Since
the  noise spikes are mostly very high intensity, and the associated probability
density functions would dominate the sum X, the central limit theorem does not
hold and it would be invalid to lump ~ noise into all the other sources discussed
above. Further, the Berry-Esseén theorem [53] asserts that the sum X con-

verges to.a Gaussian probability density function at a rate O(n"l/ 2); the high

amplitude impulsive nature of -y noise results in a probability density function
with heavy tails that exceeds the ability of x to converge at that rate. Only by
treating the <y noise separately, as we did using the type 1 and type 2 noise
models, can we expect an accurate simulation.

Impulsive noise in an image does not lend itself easily to calculation of the
signal to noise ratio (SNR); we usually specify impulsive noise in terms of the
probability of error P,. However, we can more easily define the SNR when
referring to Gaussian white noise. Thus the signal to noise ratio, in dB, of a
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target image corrupted with Gaussian white noise is defined as

(peak value of target pulse)®

5 (3.15)

SNR = 10 lOglo

The peak value of a target pulse in Figure 3.5 is = 127 and o = 32; thus the
SNR =~ 12 dB.

3.8 THE AGGREGATE NOISE MODEL

The four models defined in this chapter effectively simulate the predicted
corruption of a target image in the hostile nuclear environment. The combined
effects of the various sources of corruption are shown in Figure 3.6 (top), which
consists of the target image of Figure 2.2 processed by the type 1 and type 2
impulsive noise models of Section 3.3, the structured background model of Sec-
tion 3.4, and the Gaussian white noise model of Section 3.5. A cross sectional
plot of the CSOs in the target image is shown in Figure 3.6 (bottom), and the
gray level image is shown in Figure 3.7.

In this chapter, we have discussed the potential image corruption expected
in the hostile nuclear environment, and have defined a set of realistic models to
simulate it. In the next chapter, we discuss the theoretical aspects of the
image enhancement algorithms selected for their potential to mitigate these
forms of image corruption.
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Figure 3.7 Photo of the image shown in Figure 3.6.
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CHAPTER 4
IMAGE ENHANCEMENT METHODS CONSIDERED

4.1 INTRODUCTION

In the previous chapters, we have outlined the general characteristics of
both the target image and the sources of image corruption that can exist in the
hostile nuclear environment. We also defined realistic models we can use to
simulate these phenomena. The next phase of this study was to identify candi-
date image enhancement algorithms.

The primary purpose of these algorithms is to remove the impulsive noise,
any structured background, and the Gaussian white noise, while preserving the
target pulses.] This would allow other processing stages of the strategic
defense system (e.g. detection, classification, tracking, and targeting) to operate
more effectively. While in some respects this can be considered a detection
problem, since the algorithms must be able to detect a target pulse in order to
preserve it, we consider it more of a selective filtering process.

Image enhancement approaches can be divided into two broad categories:
frequency-domain techniques, which modify the Fourier transform of an image,
and spatial-domain techniques, which directly manipulate the image pixel
values [25]. Frequency-domain techniques present several drawbacks for this
application: they are computationally intensive, the effects are global to the
entire image, and they are not well suited to implementing nonlinear algo-
rithms [44],[51). With spatial-domain techniques, we can devise algorithms that
are optimized for the pixel patterns or image areas of interest, such as the
neighborhood of the target pulses [51]. Therefore, we consider only spatial-
domain techniques for this study.

Spatial-domain algorithms generally operate on a limited area of adjacent
pixels, known as a neighborhood or window, at a given time. The result of the

t+ Of the three, Gaussian white noise is the easiest to remove. We will therefore
concentrate mainly on the more difficult problems of removing the impulsive noise and
structured background.
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algorithm is mapped to an output image pixel having the same coordinates as

the center position of the window. The window is usually moved sequentially -

over—the entire input image to form a complete output image. While other
variations have been used, the most common window is a square window of odd
size, such as 3x3, 5x5, etc.; this is the type we use for this study.t When the
window is centered on a pixel near an edge of the input image, part of the win-
dow may be empty; we therefore must take this into consideration when pro-
gramming the algorithm [2],(25],[51].

Spatial-domain techniques can be further divided into linear and nonlinear
methods of image enhancement. Both methods were investigated for this
study.

4.2 LINEAR METHODS OF IMAGE ENHANCEMENT

Historically, most image processing methods have been linear in nature [2]-
Linear methods are supported by the extensive theory for linear systems (e.g.
superposition), and are thus well understood and mathematically predictable.

Two common categories of linear image enhancement algorithms are those
for image sharpening (such as the V2@ filter), and those for image smoothing
(such as the averaging filter) [51]. Sharpening techniques are used mainly to
highlight the edges of objects in an image, while smoothing techniques are used
primarily to reduce spurious effects such as noise [25]. Since the corrupted tar-
get image requires the removal of noise, we investigate two linear methods of
smoothing the image.

4.2.1 The Gaussian Filter

A well known linear method for smoothing an image is the Gaussian filter,
which is defined as the convolution of a Gaussian weighted window with the
image [27]. This is analogous to data smoothing using Hanning or Hamming
windows in signal processing to reduce side-lobe leakage problems associated
with the FFT [6],[44]. The two-dimensional Gaussian window function is given
[27] by

W(z,y) = A e_(ze + 72)/262 (4.1)

t The smallest window is sise 1X1 where the algorithm result depends only upon the
value of a single pixel; this type of algorithm is sometimes referred to as a point
operation. An example of this is contrast stretching [25].
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where normally A =1 /27r02_ to ensure the area under W{(z,y) equals one; this
results in a unity gain [28]. However, convolution of two-dimensional windows -
over-an image is a computationally intensive task.

The Gaussian shape is used in image processing because it produces
acceptable smoothing while allowing relatively efficient algorithms. The
smoothing of the Gaussian is considered particularly desirable by some
researchers due to the Gaussian distribution’s unique property of being
optimally localized in both the spatial and frequency domains (that is, the best
minimization of both Az and Aw) [27],[38]. Efficient algorithms are possible
because an n-dimensional Gaussian filter is separable into n one-dimensional
filters [10]. Thus we can convolve a one-dimensional Gaussian window with
each row of an image A to form image B, then convolve it again with each
column of image B to form image C, which is the smoothed version of image A.
This can be performed much faster than a single two-dimensional convolution.
The one-dimensional Gaussian window function is given by

W(z)=A e %/ (4.2)

where normally A = 1/0V 27 to ensure unity gain. The convolution integral
[50] for a one-dimensional continuous function z(t) with the continuous window
function w(t) is

t

y(t)==z(t) * w(t) = { z(u)w(t —u) du (4.3)

where u is a dummy variable. The discrete case of Equation (4.3) for IV data
points is given [6] by

N-1
y=nrxw= Y nw_; (4.4)
k=0 .

where k is a dummy variable. This is also 'the general form for a nonrecursive,
or finite impulse response (FIR), digital filter [6]. Given the window shape, the
Gaussian filter bears a close resemblance to a windowed FIR lowpass digital
filter [28]. The reader may question why this algorithm is not performed using
the FFT and multiplication in the frequency. domain, a technique that has been
applied in the past to image smoothing [25]. In fact, separable one-dimensional
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convolution is easier and faster when using window and image sizes typical for
this application [16]. :

“The Gaussian window w; is symmetrical, and generally much smaller-in
length than the image row (or column). The window size (in pixels) is deter-
mined by the standard deviation, o, of the Gaussian; we use the smallest win-
dow size for a given o such that the error in the coefficients is less than one
percent. This results in a window approximately 70 pixels wide in most cases.
The choice of 0, and hence the window size, controls the effect the Gaussian
filter has on the image.

Spatially, most pixels in an image change value gradually, except at sharp
edges of objects contained in the image; noise appears as more isolated discon-
tinuities compared to the surrounding pixel values [51). When we convolve a
number of pixels with a smooth window such as the Gaussian, abrupt varia-
tions in pixel value are reduced at the filter output. This tends to suppress the
effects of noise in the output image [38]. As we increase the size of the window,
an increasing number of input pixel values contribute to each output pixel
value; this results in greater smoothing of the image. However, another effect
of the convolution is to blur the edges of objects in the image [27]. As we
increase the smoothing, we also increase the blurring. While the target pulses
in this application have no sharp edges, excessive blurring of the image will
tend to raise the CSORR past the threshold at which we can discern multiple
targets; see Equation (2.5). This limits the window size of the Gaussian filter
when used for this application, and thereby limits the amount of noise reduc-
tion we can achieve with it.

The purpose of this study is to compare image enhancement algorithms for
their ability to reduce the image degradation due to nuclear detonations. Since
~ noise is the dominant form of image corruption expected in the hostile

‘nuclear environment, we are interested in how well the Gaussian filter removes
impulsive spikes from an image. Unfortunately, the Gaussian filter does not
perform well [28]. Being a linear operator, superposition holds, with the result
that all input pixel values contribute (in proportion to the associated window
coefficients) to the filter output even if one or more of the pixel values deviate
greatly from the surrounding pixels. Thus a large spike, known as a statistical
outlier, will tend to significantly affect the output value of the filter, yielding
poor suppression of the spike. Additionally, there is no known method by
which a Gaussian filter can selectively remove a structured background from
an image [15]. ‘

While the Gaussian filter has proven useful in certain applications
[27],38], it does not seem well suited to our requirements. We next discuss a
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much simpler and faster linear smoothing algorithm.

4.2.2° The Averaging Filter

The averaging filter (also known as the mean filter) is one of the most
straightforward algorithms for image smoothing, and hence noise removal. It
calculates the average (or mean) pixel value of the window, and maps that
value to the appropriate pixel in the output image {25]. Given an input image
with gray level pixel values f(z,y), we can obtain the smoothed image g(z,y)
by setting the pixel values to the average value of the window region S. If we
assume the window contains N pixels, and the center position of this window is
at location (a,b), then the average pixel value of the window region S is found
to be

g(a,b) = LN (z'yZ))ES f (=) | (4-.5)

where g(a,b) is mapped to the output image. This is performed for every pixel
in the image f(z,y).

Using the average value of the window tends to reduce spurious pixel
values, and thus suppress the effects of noise [51]. The averaging operation will
also tend to blur sharp edges of objects in the image in a manner comparable
to the Gaussian filter. The degree to which the averaging filter smooths an
image, and consequently blurs edges, is directly related to the window size
chosen for the filter. A large window, by averaging over a larger number of
pixels, will produce greater smoothing (and greater blurring) than a smaller
window. Unfortunately, the linear operation of the averaging filter causes it to
be sensitive to a single aberrant data point, much like the Gaussian filter, and
similarly limits its usefulness in the presence of impulsive noise [2]. Further,
the averaging filter is also unable to selectively remove a structured back-
ground from an image.

The Gaussian filter and the averaging filter are representative of linear
image smoothing techniques. We noted that they share certain characteristics
which may not be suitable for our intended application. In an attempt to over-
come some of these limitations of the linear approach, we now investigate non-
linear methods of image smoothing.
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4.3 NONLINEAR METHODS OF IMAGE ENHANCEMENT

The powerful tools associated with linear systems theory, such as superpo- .
sitiof, allow straightforward mathematical analysis of linear methods of image
enhancement. While this is a highly desirable characteristic, noise removal
techniques based on linear methods (e.g. image smoothing) do not seem well
suited to reducing the effects of the hostile nuclear environment. The blurring
they produce adversely affects the CSORR; they perform poorly in the presence
of impulsive noise; and they are unable to remove a structured background
from the target image. By necessity, we depart from the mathematical
elegance of linear systems theory, and examine more powerful, albeit more
difficult to analyze, filtering techniques [4],(5],(20],(59].

Compared to linear filters, nonlinear filters have been shown to provide
superior reduction of impulsive noise without excessive image blurring
[2],/51),[54]. Selective removal of a structured background has also been
demonstrated using a class of nonlinear filters [12],(15],{58]. The two categories
of nonlinear algorithms most frequently applied to image filtering are those
using ranked order operations, and those that use morphological operations.

4.3.1 Ranked Order Filters

Ranked order filters make use of the order statistics of the pixel values
contained in the window [2],[9],(32]. This requires the pixel values to be sorted
(or ranked) according to their respective magnitudes. If the N pixel values
Ty, * * * ,zy (where N in this case is odd due to the window dimensions), are
arranged in ascending order, then zy has the largest magnitude. In keeping
with the mathematical literature, we denote the ith order statistic by z;.
Using this notation, the mammum is z(y), the minimum is z(), and the median
Is Z(N-+1)/2)-

There are many varieties of ranked order filters [19]. In order to keep the
number of filter types to be compared from becoming unwieldy, we examine
only the most common implementations of each major type of ranked order
filter. This means we will not explicitly discuss such variations as separable [2],
signal adaptive [7],[19] or recursive [2] algorithms, nor alternative window
configurations [2],(3]. The interested reader is directed to [2] and [19] for an
excellent background of these variations.

4.3.1.1 The A.lpha-Trimmed Mean Filter

One of the major drawbacks we noted about linear fillers was their inabil-
ity to effectively reduce impulsive noise. Since every pixel value contained in
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the window contributed in some way to the filter output, a noise spike could

not be easily suppressed. Intuitively, we realize a need to eliminate the statist-

ical outliers contained in the window, effectively compressing the variance of
the pixel values. ‘

A trimmed mean is found by removing (or trimming) data points with the
most extreme values, both high and low, and calculating the average of the
remaining points [5]. Usually, equal numbers of high and low values are
trimmed; this is known as symmetric trimming [19). The number of data points
removed from a sample is determined by the trimming parameter o which can
range from 0 to 0.5. In equation form, the a-trimmed mean of N pixel values is
given [5] by

1 N-{oN]

X, =—= NV oz
N—2|aN| i=[an<7J+1 ¥

(4.8)

where | |is the greatest integer function, and xz(;) is the ith order statistic pre-
viously defined. The a-trimmed mean filter maps X, to the output image for
every pixel in the input image.

The most common implementation of the o-trimmed mean filter [2] is
designed to operate in a manner similar to the Olympic scoring method: the
highest and lowest scores are removed, and the remaining scores are averaged.
Thus, z(;) and z(y) are removed, and the average of the remaining N—2 pixel

values is mapped to the output image. This is the implementation tested for -

this study.

The degree of filtering is directly proportional to the window size; larger
windows provide greater image smoothing. Image blurring can still be a prob-
lem when using the o-trimmed mean filter since a variation of the linear aver-
age is performed, and there is no way to remove a structured background.
Also, if large window sizes are used or the impulsive noise is very heavy, more
statistical outliers may appear in the window than are removed by the algo-
rithm, reducing the effectiveness of the filter. We could adjust a upward in
this case so that more spikes are removed before the average is performed, but
how much is enough? It is instructive at this point to examine the algorithm at
the limit values for o. Note that when we set a =0, Equation (4.6) is
equivalent to the averaging filter defined in Equation (4.5). Further, if we set
a = 0.5, Equation (4.6) will yield the median of the window pixel values
(assuming a window of odd size). Hence, the o-trimmed mean filter provides a
link between the linear averaging filter and the nonlinear median filter [5].
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While a simple averaging filter is sufficient in many cases where the image corr-
uption is limited mainly to additive Gaussian noise (see Section 3.5), it has
been-shown that when highly impulsive noise is also present the median filter
performs better [32). Since impulsive noise predominates in the hostile nuclear
environment (see Section 3.3), we next examine the median filter.

4.3.1.2 The Median Filter

The properties of median filters have been studied extensively in recent
years (e.g., [1)-[5],[9],(18)-[20],(31],{43]). They have been shown to provide
robust suppression of impulsive noise, while preserving the edges of objects in
the image [20]. In addition to image processing, median filters are currently
used for a diverse range of applications: from laser-imaging radar, to commer-
cial CAT scan systems found in many hospitals, to smoothing female basal
temperature charts for increasing the probability of conception [2]. We focus
on a square window median filter for image enhancement.

For a2 window containing N pixel values, where N is odd, the median filter
maps the (N+1)/2 order statistic to the appropriate pixel of the output image
[9].1 That is, if the window region S is centered on position (a,b), then the out-
put of the filter is

g(a,b) = median|z,, * - - iyl 5 e 8] = T(N+1)/2) (4.7)

where g(a,b) is the output pixel value at position (a,b), and z; is the ith order
statistic of S. The median filter has many interesting properties. We briefly
mention some of them here; the interested reader is directed to [1],[2], and [20]
for a more complete treatment.

For odd size windows, the output of the filter is always one of the input
pixel values, so that the output remains properly quantized (that is, the median
filter commutes with monotonic operations) [2]. In contrast, filters that incor-
porate an averaging operation frequently produce output values that must be
rounded or truncated in order to be requantized. Another property of the
median filter is that it produces root images (images invariant to further
median filtering) in a finite number of passes [20]. The statistical properties of

t+ To remain consistent with the mathematical notation for order statistics, we
depart from the usual notation used in the literature of defining the dimensions of
median filter windows as (2N+1)x(2N+1), in which case N would be the effective filter
order.
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the median filter are such that the median filter is very insensitive to the first-
order probability distribution of the input; hence, the median filter performs
well for any heavy-tailed distribution, even the Cauchy distribution [2].

The median filter produces greater smoothing as the window size is
increased. Of particular interest is that the median filter does not tend to blur
image edges to the degree we found for linear filters [51]. This means that the
CSORR of the input image should not be adversely affected. In general, how-
ever, image objects smaller than half the dimensions of the window are elim-
inated by median filtering; too large a window could eliminate the target peaks
we wish to preserve [2]. This property might be used advantageously; if we
could eliminate only the target peaks, the remaining image would be an esti-
mate of the background. By subtracting this estimate from the original image,
we would remove any structured background. This method of background nor-
malization sounds attractive in theory; however, the window sizes required to
implement this are too large to be practical. Not only does processing time
become a concern, but the large "flat" window would introduce significant dis-
tortion in the estimate of a structured background.f Thus, while the median
filter can yield robust suppression of + noise, it would provide a poor solution
to the problem of background normalization.

In a severely corrupted image, we must resort to large windows for the
median filter to achieve acceptable noise suppression [2]. However, the size of
the window is limited by the smallest target pulses we desire to preserve.
Additionally, both image distortion and the computational requirements
increase with window size. We therefore examine filters using order statistics
other than the median in an attempt to find a better solution for this applica-
tion.

4.3.1.3 The Min/Max Filter

Generalized ranked order filters have been studied recently as possible
alternatives to the widely used median filter [19],[32],(36]. In particular, filters
known as min and max have received considerable attention concerning their
ability to remove impulsive noise from an image [41},[51],(60]. The min filter
maps the window minimum, or z(;), to the output image, while the max filter
maps the window maximum, or z(x), to the output image.

+ While we can use various shapes for the window, it is still only a two dimensional
element. It contains no gray scale information, and thus has limited potential for
geometric discrimination of nonbinary images.
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Noise in an image consisting of all positive or all negative spikes is known

as untpolar tmpulsive noise. If the noise density is such that over half the pix-

els contained in the filter window are spikes of one polarity, the median filter
will map one of the spikes to the output. The obvious solution to this problem
is to use a min filter for positive spikes, or a max filter for negative spikes [51].
Even under very noisy conditions, the spikes will be removed in the output
image. Both the min and the max filter, when used alone, tend to distort the
output image. Since the min operation is the gray level analog of the binary
shrinking operation, it tends to shrink large high valued regions; conversely, the
max operation is the gray level analog of the binary expanding operation, thus
it tends to expand large high valued regions [41]. Therefore, the usual pro-
cedure is to cascade the min and the max together; this has the added benefit
of removing bipolar impulsive noise from an image. The optimum order in
which to perform the operations is determined by the characteristics of the
input image; if the uncorrupted image consists of high valued objects on a low
valued background, we first apply the min filter followed by the max filter,
denoted as a min/max filter [51]. Conversely, a max/min filter would be best
for the opposite type of image [51].

Due to the characteristics of the simulated target image (see Figure 2.2)
we chose to test the min/max filter. Compared to the median filter, the
min /max filter requires two passes rather than one. However, for equal noise
removal, the min/max filter requires smaller windows (about half the z and y
dimensions) than the median. Since this results in fewer pixel values to be
ranked, the processing time compares favorably. While the min/max filter
would outperform the median filter for removing unipolar impulsive noise, it
seems to hold no significant advantage for removing bipolar impulsive noise
(similar to <y noise).

In the same manner that the median filter tends to eliminate objects
smaller than half the window size, the min/max filter tends to eliminate
objects smaller than the window itself. This places a more restrictive limit on
- the-largest useable window size compared to the median filter. However, we
might use this property as discussed above for background normalization.
While the smaller windows of the min/max filter alleviate to some degree the
processing time constraint mentioned above for the median filter, the windows
are still essentially "flat” image elements. The estimate of the structured back-
ground would thus be distorted in the same manner.

Ranked order filters, using two dimensional windows on what are
effectively three dimensional gray scale images, tend to distort the shape of the
image in proportion to the window size used. This distortion is usually not a
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serious problem with the window sizes typically employed for noise removal.
However, if we use the large windows required to remove target pulses in an
effort.-to estimate the image background, the distortion becomes unacceptable. |
We seek a filter type that can remove noise as well as the median or min/max,
yet uses three dimensional windows, allowing a better estimate of the back-
ground; then we may solve the background normalization problem. For-
tunately, morphological filters possess the desired characteristics.

4.3.2 Morphological Filters

Morphological filters are based upon the principles of mathematical mor-
phology, which permits the "quantitative description of geometric structures”
[54]. These principles evolved from the combined disciplines of integral
geometry and geometric probability [54), and provide an image processing
approach which is based on shape {29]. Although the theory for morphological
filters evolved separately, it has been shown that they can be directly related
to ranked order filters [35,[36]. Traditionally, the study of ranked order filters
has focused on their output statistics whereas the study of morphological filters
has focused on their syntactic properties; recent research has shown that a
combined approach can lead to a better understanding of both types of filters
[59]. While it is beyond the scope of this text to discuss the historical back-
ground of mathematical morphology, or the detailed theoretical nature of mor-
phological filters, the interested reader is referred to [22],[29],[35],[54], and [59]
for a more complete treatment.! We first state the four principles of
mathematical morphology, then examine the two basic morphological opera-
tions. We follow this with the introduction of two very useful derived opera-
tions. It is understood that many readers may be completely unfamiliar with
morphological operations. For clarity, therefore, we begin with a moderately
detailed discussion of morphology as applied to simple two dimensional binary
images, then generalize in a more concise fashion to three dimensional gray
scale images. We then proceed to examine how morphological filters can
reduce the image corruption due to the hostile nuclear environment. To aid in
the following discussion, some preliminary definitions are in order.

The notation {z: P} is used to describe the set of points z that satisfy the
property P. The translation of set A by vector b is then given by

.1 The reader is cautioned that, to a large degree, no standard notation has yet
evolved concerning mathematical morphology. While the symbols in various sources
may appear similar, inspection of the individual definitions often reveal subtle, yet
important, differences.
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Ay = {atb:a €A} | (4.8)

We define the Minkowski set addition, A @ B, of two sets A and B to be all
points ¢ such that ¢ is the algebraic vector sum ¢ = a+b, where the vectors a
and b Belong to sets A and B respectively [35]. A more useful algebraic
interpretation of A ¢ B is based on the definition of vector translation given in
Equation (4.8) above. Using this, Minkowski addition is defined as the union of
all trapslations A, of A as the vector b sweeps set B [35]. Thus

A®B = {a+b:a €A, beB}=bUBA;,. (4.9)
€

The complement of A is designated A°, and is equal to all points z that are not
members of A, given [29] by

AS ={z:z ¢ A}. / (4.10)

We then define the Minkowski set subtraction of B from A, denoted A© B,
indirectly as the dual to Minkowski set addition with respect to complementa-
tion [35]. Thus

AGB=(4°®B) = | 4, (4.11)
€

When discussing morphological methods in binary image processing, it is
common to denote an object in the image as the two dimensional closed set X,
and the structuring element as the two dimensional compact set B [35]. The
structuring element is generally a much smaller and simpler -set which is
designed to have some predetermined geometric shape parameter [22]. We are
usually interested in how well this shape parameter "fits" the image object [54].
The complement of the image object X is X°® and represents the background of
the binary image. In this discussion we assume discrete (i.e. digitized) images
throughout; thus where R" denotes the n dimensional Euclidean space used to
describe continuous images, we use Z" to denote the n dimensional discrete
space to describe discrete images.

Another definition that will prove useful is that of a symmetric set. The
symmetric set B with respect to the origin is related to B by the equation
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B={-b:beB)= bLEJB {-b}. | " (4.12)

If BC R? then B can be thought of as a 180° rotation of B in the z—y plane.
If BC R? then B is more difficult to visualize; by expressing every point b of
the structuring element B in spherical coordinates (p,6,¢), then B can be
thought of as the negation of p for every point b. That is, —b would be located
on the opposite side of an imaginary sphere centered at the origin with a radius
of p. Thus if b is (p,0,¢) then —b is (—p,0,¢). Note that if B is symmetric
about the origin, then it follows that B = B. For the discrete case where
B C Z", the descriptions of B adapt in a straightforward manner. With the
above definitions in mind, we now continue the discussion of mathematical
morphology.

4.3.2.1 Morphological Operations

In the theory of mathematical morphology, image objects are represented
by sets and are operated on by set transformations in which the image object
interacts with a structuring element [35). For a transformation to be con-
sidered a morphological operation, it must satisfy certain basic principles.

Basic Principles

The goal of mathematical morphology is the quantitative transformation
of an image object. Thus we must impose certain constraints on morphological
set transformations. These constraints correspond to the four basic principles
of mathematical morphology: translation invariance, compatibility with change
of scale, local knowledge, and upper semi-continuity [35},[54]. For a brief
explanation of these principles, we use the notation W(X) to represent the gen-
eralized transformation of set X.

(1) Translation invariance. The transformation is independent of the coordi-
nate system and the position of the origin. Thus

V(X;) = [W(X)l.-

(2) Compatibility with change of scale. A transformation that is independent
of image magnification satisfies

POX) = \W(X), N >0,
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This proves too restrictive to be useful for image analysis, since many
operators will depend on some scale parameter A. The principle is |

~satisfied, however, by defining a family of transformations Wy, given by

Wy(X) = W[—’f

)

which is independent of image magnification. This permits the transfor-
mation to be compatible with scale changes.

Local knowledge. For any bounded mask (i.e. a spatially limited and
closed frame inside of which the image is known) M; within which W(X) is
desired, there is another bounded mask M, in which the knowledge of X'is
sufficient to locally perform (i.e. within M;) the transformation. Symboli-
cally, this given by

My, IM, | (WX N M) N M =¥X)N M}

and thus the transformation requires only local knowledge of X. This is
necessary because we always have limited knowledge of the universe, just
as a photograph yields only limited knowledge of a scene.

Upper semi-continuily. For any sequence of images X, where X contains
more detail of X than Xy _;, we desire ¥(X],) to be the same for all n
except for some of the fine details. To satisfy this, we stipulate that W is
increasing and that

Y(X) = lim VY(X,
(X) = Jim W n) |
is true, where an increasing transformation has the property
Xl C X2 = ‘I’(Xl) C ‘I’(X2).

For a morphological transformation to be upper semi-continuous, the
structuring elements must be compact sets. This restriction also helps to
satisfy the principle of local knowledge described previously.
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Every set transformation satisfying the above four principles is considered

to be a morphological operation [35]. We now examine the specific set transfor-

matiens used to implement morphological filters.

The two fundamental operations of mathematical morphology are known
as eroston and dilation; they are related to classical Minkowski set subtraction
and set addition respectively [54]. From a geometric point of view, they shrink
or expand a set respectively [35]. '

Erosion

The first morphological operation we examine is erosion, which can be
viewed geometrically as a set transformation that shrinks a set. The erosion of
X by B is defined as the set Z of all points z such that the translation of B by
z, B,, is contained in the original set X [59]. This is equivalent to the Min-
kowski set subtraction of B from X [22],[35]. Thus erosion can be shown to be

X0B=Z={zB,cX}=[] X, ’ (4.13)
€

The rationale for using Bin Equation (4.13) is justified as follows. We see from
Equation (4.8) that B, = {b+z: b € B}. It can be shown [54] that as b sweeps
B, the point b+z lies in X if and only if z belongs to the translation X_,;.
Equating the definition of erosion to the Minkowski subtraction defined by
Equation (4.11) leads [22] to

{z: B,C X} = bOB {z: b+z € X}
= bOB {z:z€ X_ s}

=[] X, =XOB
beB

Therefore, the erosion of X by B is equivalent to the intersection of the transla-
tions of X by the elements of B, which, from Equation (4.11), is equal to X© B.

It follows from above that X© B = Z can be stated as Z = {z: B, C X}.
Thus the Minkowski subtraction X© B of Equation (4.11) is the set Z of all
points z such that the translation of the symmetric set B by z, I§z, fits com-
pletely inside (i.e. is a subset of) X, whereas the erosion X © B involves the
direct fitting of B (rather than B) inside X [22]. Note that if B is symmetric
about the origin, erosion and Minkowski subtraction are equivalent [54].
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A simple example that illustrates erosion in 72 follows. To clarify the
description, we use an arbitrary cartesian coordinate system for the discrete
binary image. Given

X = {(-1,0),(0,0),(1,0),(-1,-1),(0,-1),(1,-1),(-1,1),(0,1),(1,1)}
and
B = {(0,0),(1,1)}, we find that

Z = XO B = {(-1,0),(0,0),(-1,-1),(0,-1)}.

This operation is shown in Figure 4.1, where the + represents the origin of the
coordinate system.

o|0|@ [ ] 7
olé|o + o|¢
[ JK JK J o|e
X B Z=X6B

Figure 4.1 Erosion of X by B to form Z. (adapted from [35])

Computationally, there are many ways erosion can be implemented, with
efficiency largely dependent on the processing hardware [29]. In one simple
method, erosion is performed by sequentially moving the structuring element B
over the image, which is equivalent to the translation B,. At each location, we
test for a logical AND between the elements of B, and the image pixels that
correspond to those elements. All the ANDs will be true if and only if B, is
contained entirely within some image object X, in which case the binary pixel
value of 1 is mapped to the output image at the same location as the current
origin of B,. The resulting object Z in the output image is a shrunken version
~ of X; the manner in which erosion shrinks X is dependent upon the shape of
the structuring element B. Thus by designing B appropriately, we can selec-
tively erode away certain shape features from X. Note that if B does not con-
tain the origin, the output image may have nothing in common with the input
image [29)].
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Erosion is similar to the familiar shrinking operation from which the min

filter is derived [41]. Just as the min operation has as its dual the max opera-

tion,.there exists a dual to erosion.

Dilation _

We now examine dilation, the second of the two basic operations of
mathematical morphology. While erosion tends to shrink a set, dilation can be
thought of as a set transformation that expands a set [54]. Dilation is the dual
of erosion with respect to complementation [59]. Thus

X®B = (X°OB). (4.14)

As the dual of erosion, the dilation of X by B is defined as the set Z of all
points z such that the translation of B by z B,, intersects the original set X
[35),(59]. As might be expected, this is equivalent to the Minkowski set addi-
tion X and B [54]. Thus dilation can be shown to be

X®B=2={z anX¢@}=bUBX_,,. (4.15)
€

We justify the use of B in Equation (4.15) as follows. From the discussion of
erosion, we know that as b sweeps B, the point b+z lies in X if and only if 2
belongs to X_;; hence the point z+z lies in B if and only if z belongs to B_,.
Equating the definition of dilation to the Minkowski addition defined by Equa-
tion (4.9) leads [22] to

{z:B,NX#0}={2 JzeX|zeB;}
={z: JzeX| z+z¢ B}
={z: 3$€X|2€B—z}

=UB.,=UX,=Xx9B
zeX beB

. Therefore, the dilation of X by B is equivalent to the union of the translates of
X by the elements of B, which, from Equation (4.9), is equal to X® B.

It follows from above that X®B=Z can be stated as

Z ={z: B, N X # @}. Thus the Minkowski addition X® B of Equation (4.9) is

the set Z of all points z such that the translation of the symmetric set B by =,
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BZ, partially or fully overlaps (i.e. intersects with) X, whereas the dilation
X ® B involves the direct fitting of B (rather than B) to X [22]. Note that if B
is symmetric about the origin, dilation and Minkowski addition are equivalent '
[54].

A simple example that illustrates dilation in Z? follows. As before, we use
an arbitrary cartesian coordinate system for the discrete binary image. Given

X = {('1’0)’(0a0)’(1 ’0)’(0"1)’(0’1)}
and

B = {(0,0),(0,1),(1,0)}, we find that
zZ = X@é = {('2’0)7('1s0)7(070),(1’0)7('1a1)1(0a1)a('la‘l)a(o"])7(1"1)’(0"’2)}'

This operation is shown in Figure 4.2, where the + represents the origin of the
coordinate system.

° ) ole
ol 4o elo|ld|e
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Figure 4.2 Dilation of X by B to form Z. (adapted from [35])

As was the case for erosion, there are many ways dilation can be implemented
computationally, with efficiency again largely dependent on the processing
hardware [29]. In one simple method, dilation is performed by sequentially
moving the structuring element B over the image, which is equivalent to the
translation B,. At each location, we test for a logical OR between the ele-
ments of B, and the image pixels that correspond to those elements. One or
more ORs will be true if and only if B, overlaps some image object X by one or
more pixels, in which case the binary pixel value of 1 is mapped to the output
image at the same location as the current origin of B,. The resulting object Z
in. the output image is an expanded version of X; the manner in which dilation
expands X is dependent upon the shape of the structuring element B. Thus by
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designing B appropriately, we can selectively fill in or increase certain shape

features from X. Dilation, just like erosion, may result in an output image that -

has nothing in common with the input image if B does not contain the origin
[29].

It can be shown that erosion and dilation satisfy the four basic principles
of mathematical morphology; thus they are valid morphological transforma-
tions {35],[54]. Many other theoretical properties of these transformations are
presented in [22],[35] and [54]; only a few are germane to this discussion. For
example, while dilation is commutative (X@B B(+)X) and associative
(XOBOC) = (A @ B)® C), erosion is not. If B contains the origin, erosion is
antiextensive and dilation is extensive (X@é cCXc X@é). Further, since
erosion and dilation are nonlinear operators, they are in general noninvertible;
this fact allows us to define another very useful pair of dual transformations
derived from erosion and dilation.

Opening and Closing

If X is eroded by B, it is generally not possible to recover X completely by
dilating the eroded set X©B by B. Instead, we recover a new set Z which is a
somewhat simplified and less detailed version of X [35]. The exact properties of
Z are dependent upon B; indeed, Z will contain only the most morphologically
essential part with respect to B [54]. The transformation described is known as
the opening of X by B, and is denoted Xp. In terms of the the basic operations
of erosion and dilation, we can express opening as a derived morphological
operation defined by

Xp = (X©B)®B. (4.16)

The dual operation to opening is known as closing, denoted XB. As expected
closmg is performed by first dilating X by B, then eroding the dilated set X ®B
by B [54]. We express closing as a derived morphological operation defined by

=(X®B)OB. (4.17)

The properties of opening and closing follow from the properties of erosion
and dilation. We mention only those properties pertinent to this discussion; a
more complete analysis is given in [22], [35] and [54]. By definition, opening
and closing satisfy the four basic principles of mathematical morphology listed
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above [54]. From Equation (4.14), we see that opening is the dual to closing
with respect to complementation, i.e. (Xp)°* = (X*)® and (X°)p = (XB). Thus
the opening of an object in an image is the complement of closing its back-
ground. Opening is always antiextensive, while closing is always extensive;
hence Xp C X C XB. In contrast to erosion and dilation, both opening and
closing are idempotent (stable), such that (Xp)p = Xp and (xB)E = xB.

An example that illustrates these morphological operations is shown in
Figure 4.3. The image object X is an irregular shape (a) with sharp points,
narrow strips, a hole, and gaps that could be the result of noise or distortion.
The structuring element B is a small disk (b) centered on the origin of an arbi-
trary coordinate system; thus B = B. Note how erosion (c) and dilation (d)
respectively shrink and expand the object X. More importantly, observe how
the opening (e) filters out sharp points and narrow strips, while the closing (f)
fills in holes and gaps, dependent upon the relative size and shape of the struc-
turing element.

Figure 4.3 also shows the result of following one morphological operation
with another. By cascading the opening and closing (g,h), we obtain a more
accurate yet smoothed estimate of the object, with both the sharp points and
the small holes removed. However, note that by changing the order (g vs. h) of
the cascaded operations, we obtain different results. The most accurate
smoothed version of an image object would be obtained by performing both an
open-close and a close-open, then averaging the results.

Up to this point, we have been discussing morphological operations with
regard to binary images, which were represented as two dimensional sets. Hav-
ing established the basic concepts, we can be more concise in our treatment of
gray level morphology.

4.3.2.2 Gray Level Morphology

This topic has been approached from several directions in the literature:
threshold decomposition [35],(59], fuzzy logic [35],(60], and the concept an
umbra and surface [22],[29],[35],(54],(58] are the most common approaches. For
the gray level images and gray level structuring elements we use, the umbra
and surface approach seems to be the most intuitive for visualizing morphologi-
cal operations in three dimensions. The theoretical analysis of gray level mor-
phology can become quite involved. Therefore, we limit this discussion to only
those general ideas necessary to understand the filter algorithm introduced in
the next section. A rigorous treatment of gray level morphology would involve
real analysis, topology, and set theory. Thus the reader is referred to the refer-
ences cited above for greater detail than the following discussion provides.
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(a) (b)

(c)

(e)

Figure 4.3 Morphological operations. (a) Image object X. (b) Structuring
element B. (c) Erosion X©B. (d) Dilation X®B. (e) Opening
Xp. (f) Closing XB. (g) (X®)p. (b) (Xp)®. (adapted from [59])
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Three instances of generalized mathematical morphology are commonly
used for image processing. In order of  increasing complexity, they are:
transformations of a set by a set (binary images and binary structuring ele-
ments), transformations of a function by a set (gray level images and "flat"
binary structuring elements), and transformations of a function by a function
(gray level image and gray level structuring element) [35]. We have discussed
the first instance at length. Since we are most interested in the third instance
for this application, we skip the second instance as a special case of the third,
and proceed to discuss transformations of a function by a function.

In order to extend the morphological set transformations previously dis-
cussed to include gray level images, we must first establish some links between
sets and functions. This is because mathematical morphology is defined for
sets (of any dimension), whereas a gray level image is effectively a two dimen-
sional function. That is, the image represented by f (z,y) is a function defined
over (z,y) € Z%, such that f(zy) is the gray level (i.e. quantized intensity) of
the image. Thus a graph of f(z,y) versus (z,y) is three dimensienal. To aid in
visualization, the discrete three dimensional space of Z® will be shown in the
illustrations as a cross section, where the vertical axis represents the gray level
and the horizontal axis represents an edge view of the z—y plane. To discuss
the link between sets and functions, we begin with the dual concepts of the
surface of a set and the umbra of a surface [29].

A discrete three dimensional set is simply a collection of points (z,y,2) in
the space of 73. A solid sphere, for example, is a set of all points contained
within the sphere. As with two dimensional sets, if it contains its boundary, it
is closed; if it is also bounded, it is compact. Given a generalized set A, we
define the surface of A, denoted S[A], to be all points (z,y,z) where z is the
maximum z contained in A [22].1 Thus

S[A] = max{z: (z,y,2) € A}. (4.18)

We define the umbra of the surface of A, denoted U[S[A]], as the set of points
(z,y,2) in S|A], plus all points that occupy the space below S[A], down to —oo
[29]. Thus

+ The maximum and minimum is used for discrete images in Z" while the supremum
(least upper bound) and infimum (greatest lower bound), respectively, is used for
continuous images in R”.
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US|A]] = {(z,5,2): (5ye) € S|A] and z < a}. (4.19)

Note_that the umbra is a three dimensional set. A-generalized set A, its sur-
face, and the umbra of its surface are shown in Figure 4.4 as a cross section.

@ ~

>
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Figure 4.4 A generalized set A, its surface, and the umbra of its surface.
Left: Set A. Center: S[A]. Right: U[S[A]. (adapted from [29])

Since it is understood that the umbra is defined for the surface of a set A, we
usually employ the shortened notation U[A] for the umbra of the surface of A.
If we transform a set A into its surface, and then back into a set by taking the
umbra, we get a set which is unique to A but only equal to A if and only if set
A was an umbra. Thus a set A is an umbra if and only if U[A] = A [22]. It
can be shown that umbrae are idempotent, extensive, increasing, translation
invariant, and compact in Z* [22],[54]. Further, the morphological operations
previously defined for two dimensional sets are valid for umbrae [29]. Now we
relate surfaces and umbrae to two dimensional functions.

The formal definition of a function f (z,y) stipulates that for a given (z,y)
there is one and only one value of f(z,y). While a generalized three dimen-
sional set does not satisfy this requirement, the surface of the set does. Thus
the gray level image defined by f(z,y) can be represented by a surface.

- Indeed, the surface of a set is a function, and therefore S[{f] = f [29]. In order

to define morphological operators for gray level images, we seek transforms
that will allow us to move to and from a setting in which the previously defined

_ properties of erosion, dilation, opening, and closing are valid [22]. Since
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mathematical morphology is defined for umbrae, the solution is provided by the
umbra transform and the surface transform [54]. That is, we can convert two
dimensional functions into three dimensional sets via the umbra transform, per-
formﬂmorphological operations on them, then convert them back via the sur-
face transform [22]. This is possible because a function is uniquely represented
by its umbra, and thus (if we limit the allowable sets to umbrae) the surface
transform and the umbra transform are inverses of each other [22],[29],[35],(54].
For some function f, we see from above that S[U[f]] = f. Figure 4.5 illus-
trates this relationship in a cross sectional view.

f ulf]

Figure 4.5 The umbra and surface inverse relationship. (adapted from [22])

We are now ready to formally state the central idea that ties functions to
sets, and thus provides a homomorphism from gray level morphology to binary
morphology. Given the two dimensional functions f and g, we can define Min-
kowski set addition and Minkowski set subtraction as

Uf®g] = U |@©U[g] (4.20)
and .
u[fe4] = U[f|OU[g]. (.21)
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These two relations are known together as the umbra homomorphism theorem

[29]. Since umbrae are sets, the right side of Equations (4.20) and (4.21) are .

defined by Equations (4.9) and (4.11) respectively. From the inverse relation-
ship of umbra and surface transforms, we see that

f@g = S[U[f@g)] = S[U[f]®Ug) (4.22)
and

199 = S[U|&g)) = S[U[f]©Ulg]. (4.23)

Since the definition of a symmetric set given by Equation (4.12) is valid for a
set of any dimension, we can define erosion and dilation of function f by func-
tion ¢ in a similar manner. If f represents the gray level image, and g
represents the gray level structuring element, then erosion is defined [54] as

fe@d =s[ulf]e U] (4.24)
and dilation as

f©g =S[U[f]®Tlg]]. (4.25)
We can thus derive [54] the definition of opening as

f,=(/94¢)®g (4.26)

and closing as

f'=(/®g)Oy. (4.27)

Properties of the gray level morphological operations pa'rallel the basic proper-
ties previously described for the binary case.

For computational purposes, we desire definitions of gray level mophologi-
cal operators which lend themselves more easily to a digital implementation.
Recall from Equations (4.13) and (4.15) that erosion and dilation, being based
on Minkowski set subtraction and Minkowski set addition respectively, can be
defined in terms of intersections and unions of translated sets. Observe in Fig-
ure 4.6 the effect of the union and intersection of the umbrae of f and g. Note
that the surface of the union of U[f] and Ulg] equals the maximum of f and g,
while the surface of the intersection of U[f ] and Ulg] equals the minimum of f
and ¢. This relationship allows us to define erosion and dilation in a
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Figure 4.6 Union and intersection of umbrae. Left: Functions f and g.
Center: U[f | U Ulg]. Right: U[f] N Ufg].

straightforward algebraic form. Given D; as the spatial domiain in Z? over
which the gray level image f (z,y) exists, we define [35] the erosion of f by g as

fog = g)nenD({f a,b) — g(a—z,b—y)} (4.28)

and the dilation of f by g as

f&g = iy {1 (a,b) + g(a—z,b—y)}. (4.29)

The opening and closing can be easily derived from this by referring to
Equations (4.26) and (4.27). The opening of a gray level image can be visual-
ized as sliding the structuring element along the surface of the image from
beneath; the result is a-mapping of the highest points reached by any part of
the structuring element [12]. Conversely, the closing of a gray level image can
be visualized as sliding a "flipped over" version of the structuring element along
the surface of the image from above; the result is a mapping of the lowest
points reached by any part of the structuring element [12].

To illustrate these operations, we provide some simple examples. In Figure
4.7, a cross sectional view of gray level dilation and erosion is shown. In Figure
4.8, a cross sectional view of gray level opening and closing is shown.
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Figure 4.7 Gray level dilation and erosion. Downward, beginning at the top:
image f, structuring element g, dilation of f by g, erosion of f by
g. (adapted from [22])
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Figure 4.8 Gray level opening and closing. Downward, beginning at top:
image f, structuring element g, opening of f by g, closing of f by
g (adapted from (22]) ' .




60

Note how the opening tends to remove positive spikes into which the structur-
ing element cannot fit, whereas the closing tends to remove negative spikes into
which- the structuring element cannot fit. In Figure 4.9, a cross sectional view
shows the different result obtained between opening then closing, (fy)¢, versus
closing then opening, (f?),, using f and g from Figure 4.8.

Figure 4.9 Different result between opening then closing (top) versus closing
then opening (bottom). (adapted from [22])

We presented the previous discussion to familiarize the reader with the
properties of mophological operators used in image processing. We now
proceed to describe the morphological filter algorithm which is designed
specifically to mitigate the image degradation due to the hostile nuclear
environment.

4.3.2.3 The Filter Algorithm

Recall that we desire a filter algorithm which can remove <y noise, Gaus-
sian white noise, and a structured background from a corrupted image.
Several nonlinear filters, such as the median filter, seem well suited to noise
removal, yet do not provide an acceptable method for background removal. It
has been shown that morphological filters, due to their discrimination based on
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shape, are capable of removing both noise and a structured background from
signals and images [12],{15},[58].

~Noise removal using morphological operators was shown in Figure 4.8,
where positive spikes smaller than the structuring element were removed by
opening, and negative spikes smaller than the structuring element were
removed by closing. Thus for removal of bipolar noise, both an opening and a
closing are required. From Figure 4.9 we can see that the result is dependent
upon the order of the operations. The best filtered estimate of the original
image is produced when the image is processed by both open-close and close-
open, then averaging the two results [12]. However, this amount of processing
can be prohibitive; using either open-close or close-open alone provides satisfac-
tory perfromance for most types of images [12]. Since the target images consist
of high valued target pulses on a low valued background, the open-close
method should provide slightly better results [54]. If the structuring element is
designed with a shape and size such that it "fits" inside the smallest target
pulses but not within the largest noise spikes, then the open-close will eliminate
the noise spikes while preserving the target pulses. Since the target pulses are
modeled as positive Gaussian pulses, effective structuring elements should be
small positive dome shaped objects.

As previously discussed, an effective technique of background normaliza-
tion is to remove the target pulses while preserving the structured background,
then subtracting this background estimate from the original target image. The
result is an image containing target pulses but no structured background [58).
Since morphological operators can discriminate between various shapes in an
image compared to the structuring element, we can use morphology to achieve
background normalization [12],[15],[58]. We design a structuring element with
a size and shape such that it cannot "fit" within the largest target pulse, yet
closely follow the contours of the background. Because we know a priori that
the targets consist only of positive going pulses, this background estimate can
be performed with a single opening of the image {15]. It has been shown that
the best background estimate is achieved when the opening is performed on an
image in which the noise has already been removed [12].

Thus an effective filter algorithm for corrupted target images would
include and opening and closing to remove the noise, an opening to estimate
the background, and a subtraction to perform the background nomalization.
This algorithm is shown in Figure 4.10. With properly designed structuring ele-
ments for each stage, this filter should provide effective negation of the image
corruption due to the hostile nuclear environment. Further, like the other non-
linear filters discussed, this morphological filter should produce little adverse
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effect on the CSORR of the processed image.

In this chapter we have identified and examined candidate image enhance-
ment algorithms which may enable us to overcome the image degradation
expected from nuclear detonations. The morphological filter algorithm
presented seems to hold the greatest promise, since it can not only remove
noise, but it also can normalize a structured background. In the next chapter
we present the results of testing the various image enhancement algorithms
using the previously defined models.
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Figure 4.10 Morphological filter algorithm for corrupted target images.
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CHAPTER b
TARGET IMAGE ENHANCEMENT RESULTS

5.1 INTRODUCTION

In previous chapters, we developed models that simulate both the targets
and the image corruption expected in the hostile nuclear environment. We also
identified representative image enhancement algorithms that may reduce this
corruption to an acceptable level. In this chapter, we present the results of
testing these algorithms on various target images.t

5.2 CORRUPTED TARGET IMAGES

We created a set of twelve test images which each include three target
pulses (two of which are CSOs) and various degrees of corruption. The charac-
teristics of each image were chosen to test the algorithms for some specific
result. In the nuclear environment, we cannot predict if, how, when, where, or
how many warheads may penetrate the defensive screen and detonate; thus we
cannot predict the exact makeup of the actual image degradation. Therefore,
we seek algorithms which provide acceptable image enhancement for any com-
bination of image corruption. Recall that this corruption may be in the form
of impulsive noise, Gaussian white noise, structured backgrounds, or various
combinations of these. While it is likely to have impulsive noise present
without a structured background if few detonations take place, the existence of
a structured background means the effects of several detonations are probably
interacting, and thus the presence of impulsive noise is guaranteed. As dis-
cussed in Section 3.5, Gaussian white noise is always present in realizable sys-
tems.

The twelve test images are ail 256 x256 pixels and are quantized to 256
levels, as discussed in Section 2.2. The definitions of type 1 and type 2 impul-
sive noise, P, for both types, Gaussian white noise and the associated o, and

+ While the tables of results are embedded in the text, the figures all are placed at
the end of the chapter to make visual comparisons easier.
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the characteristics of the structured background can be found in Chapter 3.
Recall that the structured background was specified by three values: the linear
slope—(in levels/pixel), the sinusoidal peak amplitude (in levels), and the
sinusoidal period (in pixels). The various parameters used to create the test
images are listed in Table 5.1.

Table 5.1
Test Image Parameters

Image Type 1 | Type 2 | Gaussian Structured Testing
# CSORR P, P, o Background For
0 0.25 0 0 0 none MSE comparison
1 0.48 0 0 0 none changed CSORR
2 0.25 0 0 32 none Gaussian noise removal
3 0.25 0.05 0.005 0 none ~ noise removal
4 0.25 0.10 0.010 0 none ~ hoise removal
5 0.25 0.25 0.025 0 none ~ noise removal
6 0.25 0.50 0.050 0 none ~ noise removal
7 0.25 0 0 0 Al background removal
8 0.25 0 0 0 B! background removal
9 0.25 0.05 0.005 32 A combined scenario
10 0.25 0.10 0.010 32 A combined scenario
11 0.25 0.25 0.025 32 A combined scenario
12 0.25 0.50 0.050 32 A combined scenario

! Values used for A: slope = 0.4; peak amplitude = 32; period = 128
! Values used for B: slope == 0.4; peak amplitude = 16; period = 32

While most test images were used to evaluate how well an algorithm removed a
single form of corruption, images 9-12 combined all the forms together, with
image 12 representing the worst case scenario.

Two different structured backgrounds were used for testing. In Table 5.1
they are designated A and B. Background A is identical to that of Figure 3.4
and represents a reasonable estimate of a typical structured background
viewed at a medium distance from the sensors. Background B, however,
represents a structured background for which the period is close to the com-
bined width of the CSO pulses.

The numbers listed in Table 5.1 were obtained by quantitative estimates
of the predicted environment and qualitative visual judgement as to the
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perceived image corruption. The maximum P, used in test images 6 and 12,
for example, is the level at which the target pulses are completely obscured by -
the impulsive noise; this most likely represents greater corruption from <y noise
than would exist in reality.

5.3 FIGURES OF MERIT

When evaluating the performance of image enhancement algorithms, each
is measured relative to predefined criteria. The individual criterion may be
measured qualitatively or quantitatively. Quantitative measurements, known
as figures of merit, allow more precise comparisons between algorithms, but in
dealing with images we should not ignore qualitative judgements. We shall,
therefore, include qualitative remarks where appropriate when discussing the
image enhancement results.

As discussed in Section 1.2, the criteria for this application include max-
imum reduction in the effects of the nuclear environment; minimal change in
target size, shape, or position; minimal increase in the CSORR; “and acceptable
time and space complexity for real time image processing. Of these, we omit
specific measurements for time and space complexity since there are too many
variations of hardware and software to make any significant comparisons.

The most important figure of merit for comparing the various algorithms is
a measure of the degree to which the image corruption is removed. Some type
of comparison between the uncorrupted target image and the processed test
image must be made. While several measures of this type have been
developed, the most common figure of merit is the mean square error (MSE).
This is the measure we chose for this study. If the original image is designated
Szy, and the processed test image is designated Ezy, then the MSE is given by

MSE = ]iv T (8 — 50y)? (5.1)

Ty € 8y

where N is the number of pixels in s, and S'W. Qualitative judgements con-
cerning image quality are also included, since in some instances MSE alone can
be misleading. For example, if most of the noise were removed, yet the height
_ of the target pulses were reduced, the MSE would indicate an overly pessimistic
result. ’

Any change in target size or shape was determined from visual inspection
of displays and plots of the images. In general, this change was directly pro-
portional to the degree of corruption in the image. Possible changes in
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apparent target location were tested by determining the coordinates of the tar-
get pulse centers before and after processing; none of the algorithms tested
resukbed in any appreciable change, except for the median/morphological
hybrid discussed later. The final figure of merit compares how much the
CSORR changes due to processing. Once again, this is simply a matter of
measuring the value before and after processing.

These figures of merit were determined for all the test images processed by
the various image enhancement algorithms. The pertinent results are
presented and analyzed in the next section.

5.4 ANALYSIS OF THE RESULTS

We wish to provide the basis for a comparative analysis of the various
filter algorithms. We first present the test results concerning removal of Gaus-
sian noise and 7 noise (type 1 and type 2 impulsive noise), followed by back-
ground normalization (removal of the structured background). Then, we
present the test results from applying the most promising enhancement tech-
niques to images with all the types of corruption combined. This most closely
simulates the hostile nuclear environment. We follow this with measurements
of CSO blurring for all the filter types considered.

The notation used in the following sections for the morphological filters is
defined as follows:

M1 Opening with a 3x3 gray level structuring element, followed by clos-
ing with a 5x5 gray level structuring element (see Figure 5.1) for
noise removal. These structuring elements were empirically derived.

M33 Opening with a 33x33 gray level structuring element (see Figure 5.2)
to remove targets and thus estimate the background.

M49x3  Opening with a 49x3 gray level structuring element (see Figure 5.2)
to remove targets and thus estimate the background.

The design of structuring elements for morphological filters is still a somewhat
ad hoc process. We estimated which image shape parameters we wished to
preserve and which ones we wished to eliminate, and from these parameters
designed a group of structuring elements. After examining the results, we
modified the structuring elements to optimize the desired enhancement effects.
While this may seem to be an imprecise method of designing structuring ele-
ments, it produces the best results at this point in time. As the statistical pro-
perties of morphological filters become more defined in the future, the design of
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structuring elements will become more exact.

The results of this study are presented in the following four sections, mak-
ing use of tabular, graphical, and pictorial representations as appropriate.

5.4.1 Noise Removal

The figure of merit relative to the noise removal performance of a filter
can be separated into two parameters: removal of Gaussian noise, and removal
of 7y noise.

The first parameter tested was the ability of each algorithm to suppress
Gaussian noise. While the level of corruption due to Gaussian noise should not
be a significant problem, it still represents a form of image degradation that
will be present even if no nuclear detonations occur. We are therefore
interested in how each filter suppresses Gaussian noise. Test image 2 was pro-
cessed by each filter type; the MSE between the processed image and the
uncorrupted standard (test image 0) was then determined. This data is shown
in Table 5.2. Note: the signal to noise ratio of test image 2 is ~'12 dB.

Table 5.2
Gaussian Noise Removal Results
(using Test Image 2)

Filter Type MSE
None 499.8
Gaussian 0= 1.0 160.9
Averaging 3x3 186.4
o-Trimmed Mean 3x3 | 122.4
Median 3x3 85.7
Min/Max 3x3 0.8
M1 18.3

While all the filter types significantly reduced the Gaussian noise, the min /max
and morphological filters yielded the best results.

The second parameter tested was the ability of each filter to suppress 7y
noise. Variations of each filter type were used to process test images 3-6. See
Table 5.1 for the level of ¥ noise corruption (due to type 1 and type 2 impulsive
noise models) for these test images. The MSE between the processed image
and the standard uncorrupted test image 0 was computed. This data is shown
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in Table 5.3. The nonlinear filters are definitely superior at reducing the effects
of v noise. While the 3x3 min/max filter appears to be superior to the 3x3 .
median filter in terms of MSE, this is a case where qualitative observations are
important.

Table 5.3
Gamma Noise Removal Results

Filter Type Test Image MSE
None 3 1707.5
None 4 3272.0
None 5 8131.9
None 6 15429.2
Gaussian 0= 1.0 3 176.5
Gaussian 0 = 2.0 3 77.1
Averaging 7x7 3 84.6
Averaging 11x11 3 65.9
a-Trimmed Mean 3x3 4 152.0
a-Trimmed Mean 3x3 5 1084.7
Median 3x3 5 193.1
Median 7x7 5 0.7
Median 7x7 6 50.7
Median 11x11 6 8.4
Min/Max 3x3 5 33.1
Min/Max 3x3 6 90.1
M1 4 0.8
M1 5 6.3
M1 6 385.2

The min/max filter suppresses the impulsive spikes more effectively, at the cost
of breaking the target pulses up into many smaller objects when the image
corruption is high, as in test images 5 and 6. This effect would tend to con-
found the CSO problem. Larger window sizes cause the min/max filter to
nearly eliminate the target pulses. The median filter, however, is nearly as
effective at removing the gamma noise without adversely affecting the target
pulses. Thus the median filter is the most desirable of the ranked order filters.

The morphological filter produces results comparable to the median filter
until the degree of image corruption becomes very high, as in test image 6. At
this level of 7y noise, the target pulses are corrupted to such a degree that the
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structuring elements cannot effectively eliminate the spikes. The net result is
that the target pulses are broken up into several smaller pulses. This effect is
similar to that observed for the min/max filter; however, it is not a problem
until very high levels of image corruption (as in test image 6) exist.

5.4.2 Background Normalization

As indicated in Chapter 4, most filter types cannot acceptably remove a
structured background from an image. Only morphological filters, which
respond to the shape of the image, can selectively remove the target pulses
without undue distortion of the structured background. Because of this, we
test only the morphological approach to background normalization described in
Section 4.3.2.3.

Two test images (7 and 8) were used to measure the effectiveness of the
background normalization procedure. Test image 7 represents the most reason-
able guess for a typical structured background in the nuclear environment.
Test image 8 presents more of a challenge; its period was designed to approach
the combined width of the CSO pulses. A structuring element large enough to
remove the pulses is too large to follow the shape of this type of background.
Whether this situation would actually exist in the nuclear environment is
unknown; we only wish to demonstrate the limitation inherent in this approach
to background normalization.

Two structuring elements were used to estimate the background. The
33x33 dome shaped structuring element, being symmetrical, is designed to
yield the best estimate for any orientation of the background. The 49x3
oblong structuring element is designed to yield the optimum estimate when the
orientation of the background is known. Using compass points as reference, if
the structured background consists of a sinusoidal variation from east to west,
then the long dimension of the structuring element is oriented north to south.
It is designed such that its long dimension allows removal of the target pulses,
but is short dimension is small enough to follow the shape of the background
variations.

The test images were processed by performing an opening with the indi-
cated structuring element. The MSE between the processed image and the
standard uncorrupted test image 0 was computed. This data is shown in Table
5.4. See Figure 5.3 for a comparison of the background estimate of test image
7 using both structuring elements. Note that the dome shaped structuring ele-
ment results in some visible error in the estimate, while the oblong structuring
element yields an almost perfect estimate. However, the oblong structuring ele-
ment is useful only when the background orientation is known a priori.
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_ Table 5.4
Background Normalization Results

Filter Type | Test Image MSE

None 7 7669.1
None 8 5358.5
M33 7 93.1
M33 8 171.7
M49x3 7 0.1
M49x3 8 0.2

Two observations are apparent from the table. First, the shorter period
background is much more difficult to estimate and thus normalize. Second,
while the 33x33 structuring element yields very good results, the 49x3 struc-
turing element is nearly ideal when it is properly aligned with the background.
Unfortunately, it is highly unlikely that we can expect to have much a priori
knowledge about the orientation of the structured background. Thus the
33 x 33 structuring element would most likely be the best choice.

5.4.3 Combined Scenario

The ultimate test of the filter algorithms is how well they can negate the
combined effects of the hostile nuclear environment. Test images 9-12 were
used for this; they include corruption from 7y noise, Gaussian white noise, and a
structured background. Three stage morphological filters (opening then closing
for noise removal, then opening for background estimation) were tested using
both 33 x33 and 49 x 3 structuring elements for background normalization.

Morphological filters tend to become less effective for v noise removal at
very high levels of image corruption, whereas median filters do not. Because of
this, we also tested a hybrid filter consisting of a 7x7 median filter (for noise
removal) followed by a morphological opening using the 33x33 structuring ele-
ment (for background normalization). The 7x7 window size was chosen as a
tradeoff between noise suppression and processing speed. This hybrid filter is
similar to the filter of Section 4.3.2.3; we simply replaced the initial opening
and closing with the median filter.

We computed the MSE between the proceésed images and the standard
uncorrupted test image O for comparison. This data is shown in Table 5.5.
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~ Table 5.5
Combined Noise Removal and
Background Normalization Results

Filter Type Test Image MSE
None 9 11911.9
None 10 13446.4
None 11 18265.9
None 12 25726.1
M1/M33 9 90.5
M1/M33 10 109.3
M1/M33 11 156.6
M1/M33 12 631.0
M1/M49x3 9 26.2
M1/M49x3 10 42.4
M1/M49x3 11 99.4
M1 /M49x3 12 563.9
Median 7x7/M33 9 87.3
Median 7x7/M33 10 98.6
Median 7x7/M33 11 153.1
Median 7x7/M33 12 411.5

The results of processing test images 9-12 with the morphological filters
M1/M33 and M1/M49x3 are shown in Figures 5.4 through 5.8.

The noise removal and background normalization algorithm using morpho-
logical filters provides very good results until the image corruption is very high,
as in test image 12. This level of v noise exceeds the ability of the morphologi-
cal opening-closing to effectively discriminate between target pulses and noise

spikes. However, Figure 5.8 shows that the pulses are clearly visible after pro-

cessing.

The hybrid median /morphological filter did not yield much better results.
While the median filter removes  noise alone very effectively, it appears that
_ when a structured background is present the "flat” window of the median filter
causes enough distortion (sort of a "staircase” effect) to significantly reduce the
ability of the morphological opening to accurately estimate the background.
This greatly lessens the effectiveness of the algorithm. Further, this filter dis-
torted the shape of the pulses in test image 12 to such a degree that a
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targeting system using the pulse center of mass for localization would be ren-
dered useless. This characteristic of the hybrid median /morphological filter
would make it a poor choice for a strategic defense system.

Since the level of corruption represented by test image 12 most likely
exceeds that which could be expected in the field, the morphological filter
M1/M33 is the best general solution to the problem of noise removal and back-
ground normalization.

5.4.4 CSO Blurring

As stated previously, filter algorithms that tend to blur CSOs together,
and thus increase the CSORR, will make it more difficult for the system to
discriminate between the CSOs. We tested each algorithm by processing test
image 1 (having a CSORR of 0.48) with each filter type, then recorded the
average value of the two CSO peaks and the valley between them. The
CSORR was then computed using Equation (2.5). This data is shown in Table
5.6. ’

Table 5.6
CSO Blurring Results
(using Test Image 1)

Filter Type peak | valley | CSORR
None 125.3 | 60.5 0.48
Gaussian 0 = 1.0 122.0 60.0 0.49
Gaussian 0 = 2.0 117.3 61.0 0.52
Averaging 3x3 123.3 60.0 0.49
Averaging 11x11 107.3 63.0 0.59
o-Trimmed Mean 3x3 | 123.3 60.0 0.49
Median 3x3 123.7 60.5 0.49
Median 11x11 110.0 62.0 0.56
Min/Max 3x3 125.0 | 60.5 0.48
M1 124.0 62.5 0.50
M1/M33 98.0 | 405 0.41
Median 7x7/M33 93.0 | 40.0 0.43

As indicated, the linear filters tend to increase the CSORR more for a given
window size. Recall that the Gaussian filter has a window size of approxi-
mately 70. The change in CSORR due to the background normalization stage -
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(M33) is dependent upon the fidelity of the background estimation. Note that
this can lead to the unexpected result of the processed CSORR being better
than the input CSORR. From Table 5.6 we see that the M1/M33 morphologi-
cal filter, recommended for noise removal and background normalization, is
also acceptable with regard to its effect on the CSORR. -

In this chapter we have presented the results of testing the various image
enhancement algorithms. Using the models that simulate image corruption due
to nuclear detonations, we found that the best solution to the problem of
reducing this corruption appeared to be the three stage morphological filter
described in Section 4.3.2.3. The next chapter provides a brief summary of this
study and presents our conclusions.



75

~"3.00000 -1
2.00000 1

1.00000 A

Gray Level

0.00000 -

S5.00000 -

3.33333 1

1.66667 1

Gray Level

Figure 5.1 Structuring elements for noise removal. Top: 3x3. Bottom: 5x5.
Despite the appearance of the graphs, these structuring elements
are centered about the origin.
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Bottom: Image after processing by M1/M33.
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Figure 5.6 Photos of initial processing of test images 9-12. Top: Original
images. Bottom: Images after opening and closing by M1.
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Figure 5.7 Photos of background estimates for test images 9-12. Top:
Background estimate using M33. Bottom: Background estimate
using M49x3. '
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Figure 5.8 Photos of final processing of test images 9-12. Top: Processed by
M1/M33. Bottom: Processed by M1/M49x3.
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CHAPTER 6
SUMMARY AND CONCLUSIONS

6.1 REVIEW OF THIS STUDY

In this study, we developed a realistic model for incoming nuclear war-
heads as they would appear to LWIR sensors. We showed that these war-
heads, being distant endoatmospheric objects radiating infrared radiation,
could be modeled as two dimensional Gaussian pulses. Further, we described
how closely spaced objects (CSOs) require special consideration. ,

Next, we developed four models representing the image corruption that
would exist in the hostile nuclear environment. In order of presentation, these
models are described below.

Type 1 impulsive noise:
Bipolar impulsive noise due to 7 radiation and limited hardware mal-
functions, with spike intensity limited by the dynamic range of the sys-
tem. Modeled using Bernoulli trials on each pixel of the image.

Type 2 impulsive noise:
Bipolar impulsive noise due to 7 radiation and limited hardware mal-
functions, with random spike amplitude and polarity. Modeled using
Bernoulli trials on each bit of every pixel in the image.

Structured background:
Spatial structuring of the atmospheric transmittance due to interactions
between multiple nuclear detonations. Modeled using a linear ramped
sinusoidal function.

Gaussian white noise: ,
Noise due to natural and man-made phenomena unrelated to the nuclear
. environment, and therefore present even in the absence of nuclear deto-
nations. Modeled using a zero mean Gaussian distribution.

These models were combined into an aggregate noise model which was used to
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corrupt the simulated target images.

Various image enhancement algorithms were then introduced and dis-
cussed as to their anticipated ability to reduce or negate the effects of the
nuclear environment. In order of presentation, these algorithms are listed
below.

Linear Methods
Gaussian Filter
Averaging Filter

Nonlinear Methods
Alpha-Trimmed Mean Filter
Median Filter
Min /Max Filter
Morphological Filters

It was predicted that the linear filters would perform poorly in the presence of
impulsive noise, while the nonlinear filters would be effective at suppressing
both impulsive and Gaussian noise. The morphological filter, by incorporating
an additional stage for background normalization, would possibly be able to
remove a structured background from the image.

We then tested each algorithm using the corrupted target images, and
presented the results. As predicted, the linear filters failed to remove impulsive
noise effectively. They also introduced significant image blurring which had
detrimental effects on the CSORR. The nonlinear filters significantly reduced
the image corruption due to both impulsive noise and Gaussian white noise

with much less effect on the CSORR. And most importantly, the morphological
" filter was able to remove the structured background from the image as well. A
hybrid median /morphological filter was tested as an alternative to the morpho-
logical filter, but tended to distort the shape of the target pulses. Thus the
morphological filter, using the implementation described in Section 4.3.2.3, is
the best overall choice for enhancing target images corrupted by the hostile
nuclear environment.

" 6.2 CONCLUDING REMARKS

As stated above, morphological filters provide an effective solution to the
combined problem of noise removal and background normalization. However,
one of the ramifications of applying any filtering operation is the danger that
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important elements of the image may be inadvertently removed. Given this
caveat, the key to successful implementation of the morphological filters used
in this study is careful choice of the structuring elements. For the noise remo-
val stage, the structuring element is designed to be small enough that the smal-
lest anticipated target will be preserved, yet large enough that the variations
and impulSes due to noise are removed. This may involve tradeoffs between
early warhead detection and maximum acceptable noise in the image. For the
background normalization stage, the structuring element is designed to be large
enough that the largest anticipated target (including targets combined as
CSOs) will be removed, yet small enough to follow the contours of any struc-
tured background that may occur in the image. If the periodicity of the back-
ground approaches the size of the largest target pulse, background normaliza-
tion begins to fail. Here, the tradeoff is more critical: a poorly designed struc-
turing element for this stage would not only fail to normalize the structured
background, but could also prevent the system from ever detecting a legitimate
target. This would occur if the background estimate included a.legitimate tar-
get pulse, which would consequently be subtracted out of the image.

While it may seem obvious, we point out that even with the best image
enhancement algorithms, the target image must contain target pulses. Some
effects from nuclear detonations, such as large clouds of dust and other parti-
culate matter, may reduce the atmospheric transmittance to such a degree that
the targets will not show up at all. Multiple sensor locations and multiple sen-
sor platforms (ground, aircraft, and space) would be one approach to circum-
vent this problem.

Further research is recommended for refining the models developed in this
study, using empirical test data where possible. In particular, the incorpora-
tion of actual sensor parameters, plus experimentally derived ~ noise probabili-
ties and structured backgrounds would be beneficial. Further refinement of
optimum structuring element design for the background normalization stage is
recommended; nonsymmetrical shapes can provide more robust performance for
structured backgrounds, even with low periodicity, but presently require an
unrealistic amount of a priori knowledge. A valuable continuation of this
study would be an extension to four dimensions by including temporal informa-
tion; multi-frame sequences include much more data about the targets.
Exploration of using image phase information instead of or in addition to
amplitude information is also recommended; this might yield even better results
than we have demonstrated here. Further research is also recommended to
explore the potential of combining several- signal processing stages (such as
noise and background removal, target detection, classification, and tracking)




86

into fewer stages using the geometric discrimination of morpbhological operators.

In conclusion, it appears that properly designed morphological filters can
provide us with the ability to effectively negate the image corruption due to the
hostile nuclear environment. However, further research is required before we
can fully realize this potential and apply it to a reliable strategic defense sys-
tem.
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