A frame photograph has exterior orientation $\left(X_{L}, Y_{L}, Z_{L}\right)=(25.0,-5.0,45.0)$, and (omega, phi, kappa) $=(20,5,5)$ degrees. The inner orientation is $\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{f}\right)=(0,0,50.0)$. A point is observed at $(x, y)=(-5,15)$. The terrain is represented by a DEM with $40 x 40$ samples, in file terrain.mat. Use the matlab command "load terrain" to import it. Terrain $(1,1)$ is at $(X, Y)=(1,1)$. Terrain $(40,1)$ is at $(X, Y)=(1,40)$. Terrain $(1,40)$ is at $(X, Y)=(40,1)$.

Where does the ray intersect the terrain surface? Make at least 3 iterations of the algorithm described in class to obtain your result. within a grid cell.

Recall,

$$
\begin{aligned}
& \mathbf{M}=\mathbf{M}_{\kappa} \mathbf{M}_{\phi} \mathbf{M}_{\omega} \\
& \mathbf{M}_{\omega}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \omega & \sin \omega \\
0 & -\sin \omega & \cos \omega
\end{array}\right] \\
& \mathbf{M}_{\phi}=\left[\begin{array}{ccc}
\cos \phi & 0 & -\sin \phi \\
0 & 1 & 0 \\
\sin \phi & 0 & \cos \phi
\end{array}\right] \\
& \mathbf{M}_{\kappa}=\left[\begin{array}{ccc}
\cos \kappa & \sin \kappa & 0 \\
-\sin \kappa & \cos \kappa & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Remember, MATLAB needs angles in radians.

Intersect ray with plane at Z

$$
\begin{aligned}
& {\left[\begin{array}{c}
x-x_{0} \\
y-y_{0} \\
-f
\end{array}\right]=\lambda \mathbf{M}\left[\begin{array}{c}
X-X_{L} \\
Y-Y_{L} \\
Z-Z_{L}
\end{array}\right]} \\
& \frac{1}{\lambda} \mathbf{M}^{\mathbf{T}}\left[\begin{array}{c}
x-x_{0} \\
y-y_{0} \\
-f
\end{array}\right]=\left[\begin{array}{c}
X-X_{L} \\
Y-Y_{L} \\
Z-Z_{L}
\end{array}\right] \\
& \frac{1}{\lambda}\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
X-X_{L} \\
Y-Y_{L} \\
Z-Z_{L}
\end{array}\right]
\end{aligned}
$$

rearranging, with known Z

$$
\begin{aligned}
& X=X_{L}+\left(Z-Z_{L}\right)\left(\frac{u}{w}\right) \\
& Y=Y_{L}+\left(Z-Z_{L}\right)\left(\frac{v}{w}\right)
\end{aligned}
$$

