Homework 5.
Stereo 3D
Extraction of Buildings

From model 3-6, 3-8 in blockfile403.blk

Building Names and Assignments

Building Assignments

1	CA1	13	PHARM	25	RES8
2	CA2	14	THEA	26	MCD
3	CA3	15	NURS	27	PEFCU
4	CA4	16	SCHL	28	RES9
5	CIVL	17	HOVDE	29	RES10
6	CHME	18	RES1	30	RES11
7	PHYS	19	RES2	31	RES12
8	MSEE	20	RES3	32	FOLL
9	ECE	21	RES4	33	BP
10	ME	22	RES5	34	SPIR
11	NWPKG	23	RES6	35	FLOW
12	PSHC	24	RES 7	36	GARR

Wasin	5,29
Okutu	$1,2,30$
Rura	$3,4,31$
Lenihan	7,32
Reed	6,33
Jeong	8,12
Galloza	9,34
Quansah	10,35
Wang	11,36
Luo	13,14
Alkheder	15,16
Gungor	17,18
Sui	19,20
Hottel	21,22
Ng	23,24
Beal	25,26
Wrathell	27,28

File Format: ascii text
for example CIVL.TXT
polygons: clockwise vertex order, do not duplicate
the first point as the last
text after semicolon is comment, not in file

Building Name CIVL
Total Polygons 20
Polygon 1
Color 12083150 ; ($\mathrm{R}, \mathrm{G}, \mathrm{B}$)
Count 4
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012

Polygon 2
Color 12083150
Count 3
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012

Polygon 3
Color 12083150
Count 5
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012
507178.2344475120 .367189 .012

Examples of Face Topology Needed

2 approaches to data collection: (1) collect and label the vertices, then build the faces manually off-line, or (2) collect the faces directly. Approach 1 is probably easier and guarantees that the topolgy will be consistent. Approach 2 would be faster but how do you guarantee unique vertices? Also you will have to build manually any faces that you cannot see. Measure the terrain elevation in the vicinity of the building and make sure that the side faces go down that far. Burying is preferable to floating.
You will be evaluated on (1) accuracy, (2) completeness, and (3) topology (i.e. no gaps or holes), and (4) appearance.

You may reformat your data for your own quality check using Autocad and the 3dface command, or VRML, or

Do not try to "cookie cut" features into a face. Just make the whole face and the renderer will only display what is in front and it will "look" correct.

Estimate the "average" color for a face. Similar faces should all have the same color. Let the renderer take care of shadows, illumination effects, etc. An ambitious class member may suggest a color for commonly occurring materials: red clay tile roofs, red bricks, etc.

How do you render a $4(+)$-sided face if the vertices are not coplanar? See lecture material

Computers which will run Erdas Imagine / Stereo Analyst with reasonable performance

All of the new (black) machines in room 1212. These are Dell optiplex G260 machines. They only work in the anaglyph mode, so you have to borrow some red/blue glasses from g144. The older machines in 1212 are not fast enough to keep up with all of the image resampling that Erdas is doing. If you work on one of the machines with the active goggles, then you must remember to select "quad buffered stereo" from the option menu.

Continued,

Continued,

G144 Photogrammetry Lab

```
Civlg144pc6.ecn, at present
only anaglyph, z-controlled
by mousetrak
```


civlg144pc7.ecn, at present only anaglyph, z-controlled by mousetrak

Hall

Erdas Imagine - Stereo Analyst

Locations

- 1212 - new machines only
- 1115 (undergrad lab) (1) (installation still in progress)
- GIS lab (2)
- g144 - photogrammetry lab (3)

Programs

- ECN Programs
- CE Programs
- Erdas Imagine v8.6
- many module options

Stereo Analyst

- File
- Open
- Imagine Orthobase Block File
\Igeomaticsldatalbethellce503\} purdue 1 \blockfile403.blk
File utility Giew Featore Raster Help

Map XYZ: (507260:398709, 4475610.690282, 196.24), Map Scale: 1:3862

Point 2507174.1044764475414 .221903 meters, 191.6211 meters.
Point 3. 507303.2418054475578 .163615 meters, 194.0615 meters.
Point 4. 507204.042662 .4475646 .696091 meters, 195.0818 meters.
-

Map XYZ: (507204.042662, 4475646.696091, 195.08), Map Scaler 1:2896

笽 blockfile403.blk [3_6....

