CE 503

Homework \#1 8-Parameter Transformation Assigned 28-August-02, due one week.

The 8-parameter transformation is used to relate corresponding points in two planes that are related by perspective projection (i.e. a film plane and an object plane). We will assume that the area around the engineering mall is a plane. Download the annotated image file shown below, and measure the image points in a program like Adobe Photoshop. Make sure the measuring units are set to "pixels". To avoid ambiguity call the image coordinates (row,column) or (r,c) rather than photoshop's (y, x). For each point you can form 2 matrix equations in 8 unknowns. Thus with 8 points you should have 16 equations. Solve that overdetermined system and submit your results with (a) the parameter values, and (b) the image point residuals.

Control Points (units meters)				
ID	X	Y	Z	
1	14374.19	75071.87	189.5	
2	14397.55	75057.60	189.5	
3	14427.64	75075.23	189.5	
4	14419.03	75121.11	189.5	
5	14412.81	75198.59	189.5	
6	14384.74	75156.97	189.5	
7	14358.01	75164.70	189.5	
8	14336.41	75138.63	189.5	

See equation for one point below. Use MATLAB and build a $16 x 8$ coefficient matrix, A, and a 16×1 vector \mathbf{b}. Then solve for the unknowns by $\mathbf{x}=\boldsymbol{\operatorname { i n v }}\left(\mathbf{A}^{\mathbf{T}} \mathbf{A}\right) * \mathbf{A}^{\mathbf{T}} \mathbf{b}$, etc.
Suggestion: type your commands into a $*$.m file, then if you later want to rerun, you do not have to type everything again. We are using a linear approximation to the true nonlinear 8-parameter model. Obtain the residual by $\mathbf{b}-\mathbf{A} * \mathbf{x}$, where \mathbf{x} is the solution vector that you solved for. This is the first step to performing a simple rectification. Notice that we assume all points are in the object plane so the \mathbf{z} coordinate is not used. The transformation is not valid for any points displaced from that object plane. (notes: (1) for image points $5 \& 7$, use the dark corner nearest Hovde Hall - the one with columns.
(2) to avoid numerical problems, subtract from each r, the mean of all the r 's, likewise the c's, the x's, and the y's)

$$
\begin{aligned}
& r=\frac{a_{0}+a_{1} x+a_{2} y}{1+c_{1} x+c_{2} y} \\
& c=\frac{b_{0}+b_{1} x+b_{2} y}{1+c_{1} x+c_{2} y} \\
& r+r c_{1} x+r c_{2} y=a_{0}+a_{1} x+a_{2} y \\
& c+c c_{1} x+c c_{2} y=b_{0}+b_{1} x+b_{2} y \\
& r=a_{0}+a_{1} x+a_{2} y-r c_{1} x-r c_{2} y \\
& c=b_{0}+b_{1} x+b_{2} y-c c_{1} x-c c_{2} y
\end{aligned}
$$

$$
\left[\begin{array}{l}
r \\
c
\end{array}\right]=\left[\begin{array}{llllllll}
1 & x & y & 0 & 0 & 0 & -r x & -r y \\
0 & 0 & 0 & 1 & x & y & -c x & -c y
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
b_{0} \\
b_{1} \\
b_{2} \\
c_{1} \\
c_{2}
\end{array}\right]
$$

