CF 506 Fall 2004 Homework \#1 Solution

1. Regression
(a)

x	y	$n=4$
1	3	$n_{0}=2$
3	4	$r=2$
4	5	
7	5	

x : constant, y : observation
solve by indirect observations

- need $n_{0}=2$ parameters: m, slope, and b, intercept
- need $n=4$ condition equations, one observation per equation, of the form $Y_{i}+V_{i}=m x_{i}+b$

1. $3+v_{1}=m \times 1+b$
2. $4+v_{2}=m \times 3+b$
3. $5+v_{3}=m \times 4+b$
4. $5+v_{4}=m \times 7+b$

$$
\left.\begin{array}{l}
v_{1}=m+b-3 \\
v_{2}=3 m+b-4 \\
v_{3}=4 m+b-5 \\
v_{4}=7 m+b-5
\end{array}\right\}
$$

plug these into objective function

$$
\begin{aligned}
& \phi=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+V_{4}^{2}=(m+b-3)^{2}+(3 m+b-4)^{2}+(4 m+b-5)^{2}+(7 m+b-5)^{2} \\
& \frac{\partial \phi}{\partial m}=f(m+5-3)+f(3 m+5-4) 3+f(4 m+6-5) 4+f(7 m+b-5) 7=0 \\
& \frac{\partial \phi}{\partial b}=f(m+b-3)+\neq f(3 m+b-4)+\neq(4 m+b-5)+\neq 7(7 m+b-5)=0 \\
& m+9 m+16 m+49 m=75 m, \quad b+3 b+4 b+7 b=15 b,-3-12-20-35=-70 \\
& m+3 m+4 m+7 m=15 m, \quad b+b+b+b=4 b,-3-4-5-5=-17 \\
& \begin{array}{r}
75 m+15 b-70=0 \\
15 m+4 b-17=0
\end{array} \quad\left[\begin{array}{cc}
75 & 15 \\
15 & 4
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
70 \\
17
\end{array}\right],\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{c}
0.3333 \\
3.0000
\end{array}\right] \quad \begin{array}{l}
\text { from } \text { matlab }
\end{array}
\end{aligned}
$$

plug into condition equations, $v_{1}=.3333$ adjusted observations $\hat{y}_{1}=3.3333$

$$
\begin{array}{lll}
v_{2}=0 & y_{i}+v_{i}=\hat{y}_{i} & \hat{y}_{2}=4.0000 \\
v_{3}=-.6667 & & \hat{y}_{3}=4.3333 \\
v_{4}=.3333 & \hat{y}_{4}=5.3333
\end{array}
$$

see plot of results
(b) Same regression problem, but use point \#3 twice

x	y
1	3
3	4
4	5
4	5
7	5

$n=5 \quad$ Solve by indirect observations
$\frac{n_{0}=2}{r=3} \quad n_{0}=2$ parameters m, b
$n=5$ condition equations $y_{i}+v_{i}=m x_{i}+b$

1. $3+v_{1}=m_{1} \cdot 1+b$
2. $4+v_{2}=m \cdot 3+b$
$3,5+v_{3}=m \cdot 4+b$
3. $5+v_{4}=m \cdot 4+b$
4. $5+v_{5}=m \cdot 7+b$

$$
\begin{aligned}
& V_{1}=m+b-3 \\
& V_{2}=3 m+b-4 \\
& V_{3}=4 m+b-5 \\
& V_{4}=4 m+b-5 \\
& V_{5}=7 m+b-5
\end{aligned}
$$

$$
\begin{aligned}
& \phi=v_{1}^{2}+v_{2}^{2}+v_{3}^{2}+v_{4}^{2}+v_{5}^{2}=(m+b-3)^{2}+(3 m+b-4)^{2}+(4 m+b-5)^{2}+(4 m+b-5)^{2}+(7 m+b-5)^{2} \\
& \frac{\partial \phi}{\partial m}=\not \vDash(m+b-3)+k(3 m+b-4) 3+k(4 m+b-5) 4+k(4 m+b-5) 4+k(7 m+b-5) 7=0
\end{aligned}
$$

$$
\begin{aligned}
& m+9 m+16 m+16 m+49 m=91 m, \quad b+3 b+4 b+4 b+7 b=19 b \\
& -3-12-20-20-35=-90 \\
& m+3 m+4 m+4 m+7 m=19 m, \quad b+b+b+b+b=5 b \text {, } \\
& -3-4-5-5-5=-22 \\
& \begin{array}{l}
9 / m+19 b-90=0 \\
19 m+5 b-22=0,
\end{array},\left[\begin{array}{cc}
91 & 19 \\
19 & 5
\end{array}\right]\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
90 \\
22
\end{array}\right],\left[\begin{array}{l}
m \\
b
\end{array}\right]=\left[\begin{array}{l}
0.3404 \\
3.1064
\end{array}\right]
\end{aligned}
$$

plug into condition equations,

$$
\begin{aligned}
& V_{1}=.4468 \\
& V_{2}=.1277 \\
& V_{3}=-.5319 \\
& V_{4}=-.5319 \\
& V_{5}=.4894
\end{aligned}
$$

