CE 603 Photogrammetry II

Homework 3 Quickbird Condition Equation Evaluation
-Evaluate the condition equations for gcp \#1 of the quickbird scene. i.e. show the misclosure in line and sample, steps outlined below
-Obtain the matlab version of the ephemeris data, "eph_att.mat". When you load this you have dg1_eph (1536×13) and dg1_att (1536×15). Generate a time vector (1536×1) to go along with this (use start time \& interval as documented in the dg1.eph and dg1.att files) suggest making time $=0$ in the middle.

- Measure point \#1 in the image (l,s). Use the first line time and the line rate/interval in dg1.imd to obtain a time for that line/point. Use same time origin as above
- Interpolate 7 parameters for that time ($\mathrm{X}_{\mathrm{L}}, \mathrm{Y}_{\mathrm{L}}, \mathrm{Z}_{\mathrm{L}}, \mathrm{q}_{\mathrm{i}}, \mathrm{q}_{\mathrm{j}}, \mathrm{q}_{\mathrm{k}}, \mathrm{q}_{\mathrm{s}}$), make sure and normalize the q's before using. Make interpolation by (a) linear method, and by (b) cubic spline method. Use MATLAB functions
- $\mathrm{PP}=$ spline(t,par), obtain piecewise cubic spline coefficients for each of 7 EO parameter series, "par" at times "t".
- $\mathrm{YY}=\mathrm{pp}$ val(tt,PP), use those spline parameters to interpolate at time tt .

CE 603 Photogrammetry II

-Having interpolated for each of the 7 EO parameters, next normalize the quaternion (magnitude = 1). Evaluate the matrix M_{b} from this quaternion either by axis/angle conversion or direct evaluation.
-Evaluate M_{c} from the given satellite to camera quaternion (this one should be very close to the identity).
-If you choose to insert an $\mathrm{M}_{\mathrm{X}}(180)$ into the rotation sequence so z is up, then make sure you handle the principal point offsets correctly.
-Evaluate the 2 collinearity condition equations (we are looking for 2 digit misclosures!)
-When you have a result from above, evaluate numerically the sensitivity of the misclosure to each of the three exposure station components (6 numbers)

$$
\frac{\delta F_{x}}{\delta X_{L}}, \frac{\delta F_{y}}{\delta X_{L}}, \text { etc. }
$$

