CE $597 Z$ Homework 2 Assigned Wed. 26 Sept. 07 Due Thur. 4 Oct.

1. In the accompanying table, $\mathrm{d}_{\mathrm{i}} \quad \mathbf{5 0 7 5 . 0 0}$ corresponds to the 3D range observation between fixed control point P_{i} and unknown point P. Also given are a priori sigmas for each observation. Using the method of indirect observations, obtain the least squares estimate of the coordinates of point P.

\mathbf{i}	d	sigma
1	698.00	0.40
2	628.40	0.40
3	483.05	0.05
4	430.30	0.40

2. Six points are observed in all three coordinates, with the given sigma describing each of the x, y, and z components. Fit a rotational ellipsoid to these data points using the method of general least squares, or the mixed model. The equation representing the ellipsoid is as follows,

$$
\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1
$$

For initial approximations, use the dimensions of WGS84

pnt	X (km)	$\mathbf{Y (k m)}$	$\mathbf{Z (k m)}$	Sigma (km)
1	4600.00	2200.00	3818.70	0.020
2	1000.00	1000.00	-6198.50	0.020
3	-3200.00	3400.00	4330.60	0.020
4	-2100.00	-2500.00	5460.75	0.020
5	-2700.00	-5000.00	-2886.95	0.002
6	200.00	-500.00	-6334.05	0.020

General comments:
-Solve the iterative problem using Matlab
-Turn in all source code, annotated listing of numerical output
-For first iteration only show all relevant matrices, subsequent iterations show only information about convergence
-For each problem make a cover sheet with analysis of problem and executive summary of solution
-Comments in code are helpful for me and you, variable names that convey clear meaning are helpful
-Implementing algorithms in code is part of the assignment, collaboration and examination of existing codes are fine, but ultimately you make and are responsible for your own code.

- On assignment like this one, waiting until the night before it is due to start is a bad strategy
-When convergence achieved, show the residuals, and the adjusted observations
-Note or comment on anything about the problem or the results that seems worthy
-Use "format compact" to reduce pages of output, make sure enough digits are displayed to evaluate the results

