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Two Obscure Vector Identities 
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You can prove these by expanding using definitions of cross product 
and inner / dot product, yielding equal expressions



Newton, 2nd law of motion
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For the 2-body problem,
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Next take the difference between the accelerations at 2 and 1 
from equations 6 and 7.
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Inertial reference frame
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Taking the difference in acceleration and changing sign of vector
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Now all vectors are relative, rearrange
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But, m1 >>m2 for artificial earth satellite

( ) μ=≈+ 121 GmmmG
Dropping the subscripts, acceleration of satellite in earth gravity field
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−= This is 2-body equation of 
relative motion
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Constants and Notation
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Product is known to greater precision than individual factors,
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The 2-body relative equation of motion (12) can be manipulated to 
yield a trajectory equation, we will show it to be a conic section



The angular momentum vector, h

rrvrh ×=×=
Show the time derivative of h is zero, therefore h is constant
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Cross product of parallel vectors is zero, substitute from 12
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again, cross product of parallel vectors,
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Constant h implies that relative motion takes place in a plane, 
with h normal to that plane
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Find the time derivative of unit vector in the direction of r,

2r
rr

rdt
d rrr −

=⎟
⎠
⎞

⎜
⎝
⎛ [17]

2

rulequotient 

v
udvvdu

v
u

dt
d −

=⎟
⎠
⎞

⎜
⎝
⎛

But,

( ) ( )

r
r

rr
rr

r
dt
d

dt
d

rr
rr
rr

rr

⋅
=

=⋅
=⋅

=⋅

22

2

Plug this result into equation 17
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Now consider ( )hr×
dt
d
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dt
d

second term above is zero since h is zero, substitute from eqn. 13
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Substitute expression for r from equation 12
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Evaluate this triple cross product by vector identity in equation 2
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Move the minus sign inside parenthesis
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This looks like the right side of equation 22, replace by left side
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The quantity in the parentheses,

r
rhrA μ−×=

is the Runge-Lenz vector, and it is constant since its time derivative is 
zero

[28]

[29]

[30]

[31]



Now consider rA ⋅
θcosAr=⋅rA

Also, from equation 31,
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Substitute definition of h from equation 13, and simplify
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Now use vector identity in equation 1 to replace the triple cross product

( ) ( )( ) rμ−⋅−⋅⋅= rrrrrrr
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( )( ) ( )( ) rμ−⋅⋅−⋅⋅=⋅ rrrrrrrrrA
Now use vector identity, equation 3, on the first two terms above, and 
then simplify,
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Replace left side with definition of dot product from equation 32
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Solve for r,
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Divide numerator and denominator by μ
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Referring back to equation 1, this is the equation of a conic section in 
polar coordinates. e is the eccentricity and p is the semi-latus rectum.  θ
is the true anomaly, often represented as f or ν.  For a complete 
description of a particular satellite orbit we must specify the conic 
section, as here, plus the orientation of the orbit plane, and the 
orientation of the curve in the plane, and the relationship of time and the 
orbiting body.  These parameters may be expressed as state vectors or 
kepler elements.
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