
1. write a function to evaluate distance condition equation with Syntax:

2. Write a function to evaluate engle condition equations;

Vesult = angle 2d (a, i, j, k, x, Y)

Vesult: [Fa & sxi & syi & sxi & sxx & sx

3. Using these adjust the braced quadrilateral with $(X_1,Y_1)=(362.0,415.0)$ a full control point, and $Y_2=129.0$ a partial control point.

065	ralue	5	05s_	value	5
di	1161.80	0.1	Θ_{5}	35-54-30	10"
d ₂	660.69	0.1	0,	40-36-14	10"
Θı	44-56-50	10"	∂ ₂	67-26-31	10"
02	31-33-42	to"	<i>⊙</i> ₄	36-02-50	16"
Θ_3	30-07-48	16"	∞ 8		
64	73-21-19	10"			

- 4. make the global test at $\alpha = .05$ level of significance note: make 2-sided test.
 - 5, compute 50% confidence interval for X2
 - 6. compute 50% confidence ellipse for points 3 and 4.
 - 7. compute the 50% circular error for points 3 and 4.
 - 8. plot the network and error figures at appropriate scales. Give a scale indication on the plot
 - 9. Summarije your results, turn in graphies, and your code.