CE 597 (029) Adj. of Geospatial Obs. HW6

Assigned Thur. 4 Dec., Due Thur. 11 Dec.

-Go to http://www.ngs.noaa.gov/CORS/ for info and data related to the Continuously Operating Reference Stations operated by and in conjunction with NGS.
-Retrieve compressed RINEX GPS data for stations PRDU (operated respectively by Purdue University) for 19 November 2008 (Wednesday) for epochs 0:0:0.00, 0:15:0.00; 0:30:0.00, 0:45:0.00 (h:m:s). Filenames should be something like prdu324a.08o. In each file find the specified epochs and find the field C1 (pseudorange on C/A code). Units are meters for the pseudoranges. Also find approximate geocentric ECEF coordinates of the station.
-Retrieve satellite data for the same day from a CORS ftp site. Filename should be something like igu15063_00.sp3. we need data for the same epochs as above for each of the satellites for which there is an observation. Fields needed are $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{dt}$. Units are km, in ECEF, dt units are micro-seconds. $P R($ corr $)=P R($ raw $)+c^{\star} d t$. Use c $=299792458 \mathrm{~m} / \mathrm{s}$. micro-seconds are 1*10e-06 sec.
-Recommend units in the LS problems: km \& usec, use $\mathrm{W}=\mathrm{I}$ and compute post-adj estimate of obs. variance, consider satellite positions to be constant. You will find some matlab code from 2007 that you may use \& modify as needed.

- Solve the following LS problems using pseudorange observations:
-Solve for prdu location using only the first epoch (one clock unknown)
- Solve for prdu location using all 4 epochs (four clock unknowns)
- In both cases try given XYZ and $(0,0,0)$ as initial approximations
-Use Error propagation to get Qdd(ENU) from Qdd(XYZ)
-Use Leick's formulas and compute HDOP and VDOP as, HDOP=sqrt(qe + qn), and VDOP=sqrt(qu)
-Remember that you need a new parameter DT for each receiver for each epoch -Use the following condition equation:

$$
F=P R_{c o r r}-\left[\left(x-x_{s}\right)^{2}+\left(y-y_{s}\right)^{2}+\left(z-z_{s}\right)^{2}\right]^{1 / 2}-c(D T)=0
$$

