International Society for Photogrammetry and Remote Sensing

information from imagery
-Commission I: Sensors, Platforms, and Imagery
-Commission II: Systems for Data Processing, Analysis, and Representation
-Commission III: Theory and Algorithms
-Commission IV: Spatial Information Systems and Digital Mapping
-Commission V: Close-Range Vision Technology
-Commission VI: Education and Communication
-Commission VII: Resource and Environmental Monitoring

Note: nominal scale is the same everywhere in the image

CE 503 - Photogrammetry I - Fall 2002 - Purdue University

Frame Geometry

Frame Geometry with Lens for Large Aperture

CE 503 - Photogrammetry I - Fall 2002 - Purdue University

0	0	0
0	0	0
0	0	0

Layout of vertically extended objects within an image

Relief displacement as found in frame imagery, entire image captured at same instant, relief displacement is always radial with respect to the nadir point

Relief displacement as found in pushbroom imagery, the image is built up over time by the platform motion, relief displacement only exists within a line. It is still radial with respect to the nadir point, but there is a different nadir point for every line. Therefore the only component of relief displacement is cross-track, there is no along-track component. (platform motion is up/down)

Relief Displacement for Nadir Imagery

Ideal geometry: nadir imagery, flat terrain

Parallax: apparent change in position due to change in view location (sometimes called disparity)

Base $=\mathrm{B}$

$\frac{d p}{d H}=-f B H^{-2}=-\left(\frac{f}{H}\right) \frac{B}{H}=-($ scale $) \frac{B}{H} \quad \begin{aligned} & \Rightarrow \quad \text { Rate of change of parallax with } \\ & \text { respect to distance } \sim \text { scale and } B / H\end{aligned}$

Anaglyph Stereo of Mars scene shows greater disparity or parallax in foreground and less in the background or far distance

Wide angle and given overlap yields large B / H ratio

Narrow angle and same overlap yields small B / H ratio

Can compensate for narrow angle camera by introducing strong convergence angle thus
restoring favorable B / H ratio

High frame rate motion imagery $=$ short baseline or small B/H (between adjacent images)

Correspondence is easy, since small displacements and parallaxes between adjacent images, for point tracking or optical flow, but determination of heights is weak (unless you extend over many frames)

Correspondence can be a challenge if large parallaxes, but determination of heights is strong

Conventional aerial imagery $=$ long baseline or large B / H

$$
\begin{aligned}
& {\left[\begin{array}{c}
x \\
-f
\end{array}\right]=k\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]\left[\begin{array}{c}
X-X_{L} \\
Z-Z_{L}
\end{array}\right]} \\
& \frac{x}{-f}=\frac{m_{11}\left(X-X_{L}\right)+m_{12}\left(Z-Z_{L}\right)}{m_{21}\left(X-X_{L}\right)+m_{22}\left(Z-Z_{L}\right)} \\
& x=-f \frac{m_{11}\left(X-X_{L}\right)+m_{12}\left(Z-Z_{L}\right)}{m_{21}\left(X-X_{L}\right)+m_{22}\left(Z-Z_{L}\right)}
\end{aligned}
$$

$$
\mathbf{M}=\left[\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta_{1} & \sin \theta_{1} \\
-\sin \theta_{1} & \cos \theta_{1}
\end{array}\right]
$$

For $\mathrm{h}=300 \mathrm{~m}$, theta- $2=2 \mathrm{deg}$, we have the following values for theta-1 and dx:

θ_{1}	$d x$
10 deg	6.2 pix
20 deg	10.6 pix
27 deg	13.0 pix

Relief displacment for offnadir SPOT is significant

