
monitor mumencal stability condition number $\approx \frac{\lambda_{\text {max }}}{\lambda_{\text {min }}}$ matrix N, cold (N)
$>\sim 10^{16}$ matlab error messige
$>\sim 10^{12}$ unstable solution
$<\sim 10^{8}$ prefer
parswieler selection pubblem

- small misclosure
- few panauitus
- small condition number
qbresect.m
\% model based on polynomial correcteris \% to ephements data

$$
\begin{aligned}
& \text { NPAR }=18 \\
& \text { par }=\text { zeros }(18,1)
\end{aligned}
$$

$\% d x_{0}, d x_{1}, d x_{2}, d y_{0}, d y_{1}, d y_{2}, d z_{0}, d z_{1}, d z_{2}$
$\% d \omega_{0}, d w_{1}, d w_{2}, d p o, d p 1, d p_{2}, d k 0, d k 1, d k z$
puse $[1 ; 4 ; 7]$;
$[m, n]=\operatorname{size}$ (puse)
upuse $=m$
\% parameter index array use = Zeros (NPAR, 1) for $i=1:$ NPAR for $j=1$: np use

$$
\begin{gathered}
\text { if }(\text { puce }(j)==i) \\
\text { use }(i)=1 \\
\text { end; }
\end{gathered}
$$

end;
end:
$\%$ read' support data
att = dlmread (latt-cdf.txt');
$\%$ real GCPs
$[i d, p d, p m, p s, l d, l m, l s, h, l, s]=$
textread ('gcp.tet',' \%s \%f \%f \%f $\% f \%+\%+\% f \% f \% f$) ;

$$
\begin{aligned}
& {[m, n]=\sin \text { size }(p d) ;} \\
& n p t_{s}=m ;
\end{aligned}
$$

$\%$ init NL Ls arrays
$N=$ zeros (npuse, npuse):
$t=z e r o s($ npuse, 1$) ;$
$B=z e r o s(2 *$ npts, npuse);

$$
\begin{aligned}
& f=z \operatorname{eros}(2 * n p t s, 1) \\
& \text { delta }=z \operatorname{eros}(\text { NPAR }, 1):
\end{aligned}
$$

for $i=1$: NPAR

$$
\begin{aligned}
& \text { delta }(i)=1.0 e-06 ; \\
& \text { end }
\end{aligned}
$$

\% change voluas bacel on nuits
\% LS iteration loopa
for iter $=1: 10 \%$ hard wire C 10

$$
\begin{aligned}
& \text { nxequ }=1 \\
& \text { nyequ }=2 \\
& \text { dispv }=z \operatorname{eros}\left(n+y_{s}, 3\right) \quad \#, v_{x}, v_{y}
\end{aligned}
$$

$$
\begin{aligned}
& \text { rms } l=0 \\
& \text { rmss }=0
\end{aligned}
$$

$\%$ biuld coud. equr.
for $j=1$: upts $\%$ convert GCP's

$$
\begin{aligned}
& p h i=(p d(j)+p m(j) / 60+p s(j) / 3600) \\
& *(p i / 180) ; \\
& \operatorname{lam}=(l d(j)+\operatorname{lm}(j) / 60+l s(j) / 3600) \\
& *(p i / 180) ; \\
& h t=h(j) ; \\
& \text { lise }=l(j) \\
& \text { sample }=s(j)
\end{aligned}
$$

\% nominal valve of cone. eqn.

$$
\begin{gathered}
F=Q B(\text { line, sample, phi, lam, ht, eph, } \\
\text { att, par); } \%\left\{\begin{array}{l}
l-\operatorname{comp}(1) \\
s-\operatorname{coup}(s)
\end{array}\right.
\end{gathered}
$$

\% $v+B_{0}=f$
$\operatorname{dispv}(j, 1)=j ;$
$\operatorname{dispv}(j, 2)=F(1) ;$
$\operatorname{dispv}(j, 3)=F(2) ;$
$r_{m s l}=r_{m s l}+F(1) 12$;
$r_{\text {mss }}=r_{\text {mss }}+F(2) 12 ;$
$c o l=1$;
for $i=1: N P A R$

$$
\text { if (use }(i)=1)
$$

$\%$ compuite $\partial F_{x / o p}$, o F/yop mumencally
$\%+$ fill cocff mx B,f
purdel = par;
pardel (i) $=$ pardel (i) + delta (i)
Fdel = QB(line, sample, phi, lam, ht, eph, att, pardel);

$$
\text { \%/ } \frac{\partial F}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{F(x+\Delta x)-F(x)}{\Delta x}
$$

$\% \frac{\partial F}{\partial x} \approx \frac{F(x+\Delta x)-F(x)}{\Delta x}$

$$
\begin{aligned}
& d F_{x} d p=(F \operatorname{del}(1)-F(1)) / \operatorname{detta}(i) ; \\
& d F y d p=(F \text { del }(2)-F(2)) / \text { deltali); } \\
& B(\text { nxequ, col })=d F_{x} d p ; \\
& B(\text { nyequ }) c o l)=d F y d p ; \\
& c a l=c o l+1 \\
& f(n x e q n)=-F(1) ; \\
& f(\text { nyequ })=-F(2) ; \\
& \text { end } \% \text { use }(i)==1
\end{aligned}
$$

end \% parameto loop

$$
\begin{aligned}
& n \times e q n=n x e q n+2 ; \\
& n y e q u=n y e q u+2 ;
\end{aligned}
$$

$$
\begin{aligned}
& 22-11 \\
& N=B^{\prime} * B \% \quad \% B^{T} W B \quad \sigma_{0}^{2}=\sigma^{2} \text {. } \\
& t=B^{\prime} * f ; \\
& \text { cond_num }=\operatorname{cond}(N) \\
& \text { del }=\operatorname{inv}(N) * t \text {; } \\
& \text { dimp ('parameten correction's'); } \\
& \text { del } \\
& \text { \% apply corrections to parametus } \\
& \text { col=1 } \\
& \text { for } i=1 \text { : NPAR } \\
& \text { if(use(il }=-1 \text {) } \\
& \operatorname{par}(i)=\operatorname{par}(i)+\operatorname{del}(c a l) \\
& \text { coll }=\text { col }+1 \\
& \text { endend }
\end{aligned}
$$

rmsl $=s q r t$ (rmsl/npts);
rmss $=$ squt (rmss/npts);
\% det next 1 teratuin end $\%$ for iter $=1: 10$
\% look C mag of del $\}$ terminate iterations test convergence disp('residual'):
dispv $\% \quad \#, V_{x}, V_{y} \sim \underline{1-2 \text { pixad }}$ disp ('rms $l+s^{\prime}$)
rmsl
rmss
disp ('final parametus') ;
par
with refiniel paimetors

$$
\begin{aligned}
& l=\frac{a_{0}+a_{1} x+a_{2} y+\cdots}{1+b_{1} x+b_{2} y+\cdots \cdots}(\rightarrow 360 \mathrm{adm})^{22-15} \\
& S=\frac{c_{0}+c_{1} x+c_{2} Y+\cdots \cdot}{1+d_{1} X+d_{2} y+\cdots} \\
& 1, x, Y, X Y, x z, Y z, x^{2}, y_{1}^{2}, z^{2}, x^{2} y, x^{2} z, y^{2} x, \\
& y^{2} z, z^{2} x, z^{2} y, x y z, x^{3}, y^{3}, z^{3} \\
& \text { (20) } \\
& \text { RPC } \\
& 80 \text { unlewwins } \\
& a_{0}, a_{1} \cdots b_{0}, b_{1} \cdots \frac{-2}{78 \mu \text { menowns }}
\end{aligned}
$$

